1
|
Herlah B, Goričan T, Benedik NS, Grdadolnik SG, Sosič I, Perdih A. Simulation- and AI-directed optimization of 4,6-substituted 1,3,5-triazin-2(1 H)-ones as inhibitors of human DNA topoisomerase IIα. Comput Struct Biotechnol J 2024; 23:2995-3018. [PMID: 39135887 PMCID: PMC11318567 DOI: 10.1016/j.csbj.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 08/15/2024] Open
Abstract
The 4,6-substituted-1,3,5-triazin-2(1H)-ones are promising inhibitors of human DNA topoisomerase IIα. To further develop this chemical class targeting the enzyme´s ATP binding site, the triazin-2(1H)-one substitution position 6 was optimized. Inspired by binding of preclinical substituted 9H-purine derivative, bicyclic substituents were incorporated at position 6 and the utility of this modification was validated by a combination of molecular simulations, dynamic pharmacophores, and free energy calculations. Considering also predictions of Deepfrag, a software developed for structure-based lead optimization based on deep learning, compounds with both bicyclic and monocyclic substitutions were synthesized and investigated for their inhibitory activity. The SAR data showed that the bicyclic substituted compounds exhibited good inhibition of topo IIα, comparable to their mono-substituted counterparts. Further evaluation on a panel of human protein kinases showed selectivity for the inhibition of topo IIα. Mechanistic studies indicated that the compounds acted predominantly as catalytic inhibitors, with some exhibiting topo IIα poison effects at higher concentrations. Integration of STD NMR experiments and molecular simulations, provided insights into the binding model and highlighted the importance of the Asn120 interaction and hydrophobic interactions with substituents at positions 4 and 6. In addition, NCI-60 screening demonstrated cytotoxicity of the compounds with bicyclic substituents and identified sensitive human cancer cell lines, underlining the translational relevance of our findings for further preclinical development of this class of compounds. The study highlights the synergy between simulation and AI-based approaches in efficiently guiding molecular design for drug optimization, which has implications for further preclinical development of this class of compounds.
Collapse
Affiliation(s)
- Barbara Herlah
- National Institute of Chemistry, Hajdrihova 19, SI 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000 Ljubljana, Slovenia
| | - Tjaša Goričan
- National Institute of Chemistry, Hajdrihova 19, SI 1000 Ljubljana, Slovenia
| | - Nika Strašek Benedik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000 Ljubljana, Slovenia
| | | | - Izidor Sosič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000 Ljubljana, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, SI 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Vecchioni S, Ohayon YP, Hernandez C, Hoshika S, Mao C, Benner SA, Sha R. Six-Letter DNA Nanotechnology: Incorporation of Z- P Base Pairs into Self-Assembling 3D Crystals. NANO LETTERS 2024; 24:14302-14306. [PMID: 39471314 DOI: 10.1021/acs.nanolett.4c03949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Artificially expanded genetic information systems (AEGIS) were developed to expand the diversity and functionality of biological systems. Recent experiments have shown that these expanded DNA molecular systems are robust platforms for information storage and retrieval as well as useful for basic biotechnologies. In tandem, nucleic acid nanotechnology has seen the use of information-based "semantomorphic" encoding to drive the self-assembly of a vast array of supramolecular devices. To establish the effectiveness of AEGIS toward nanotechnological applications, we investigated the ability of a six-letter alphabet composed of A:T, G:C and synthetic Z:P (Z, 6-amino-3-(1'-β-d-2'-deoxy ribofuranosyl)-5-nitro-(1H)-pyridin-2-one; P, 2-amino-8-(1'-β-d-2'-deoxyribofuranosyl)-imidazo-[1,2a]-1,3,5-triazin-(8H)-4-one) base pairs to engage in 3D self-assembly. We found that crystals could be programmably assembled from AEGIS oligomers. We conclude that unnatural base pairs can be used for the topological self-assembly of crystals. We anticipate the expansion of AEGIS-based nucleic acid nanotechnologies to enable the development of novel nanomaterials, high-fidelity signal cascades, and dynamic nanoscale devices.
Collapse
Affiliation(s)
- Simon Vecchioni
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Yoel P Ohayon
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Carina Hernandez
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution, Alachua, Florida 32615, United States
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida 32615, United States
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
3
|
Wang B, Rocca JR, Hoshika S, Chen C, Yang Z, Esmaeeli R, Wang J, Pan X, Lu J, Wang KK, Cao YC, Tan W, Benner SA. A folding motif formed with an expanded genetic alphabet. Nat Chem 2024; 16:1715-1722. [PMID: 38858518 PMCID: PMC11446821 DOI: 10.1038/s41557-024-01552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 05/07/2024] [Indexed: 06/12/2024]
Abstract
Adding synthetic nucleotides to DNA increases the linear information density of DNA molecules. Here we report that it also can increase the diversity of their three-dimensional folds. Specifically, an additional nucleotide (dZ, with a 5-nitro-6-aminopyridone nucleobase), placed at twelve sites in a 23-nucleotides-long DNA strand, creates a fairly stable unimolecular structure (that is, the folded Z-motif, or fZ-motif) that melts at 66.5 °C at pH 8.5. Spectroscopic, gel and two-dimensional NMR analyses show that the folded Z-motif is held together by six reverse skinny dZ-:dZ base pairs, analogous to the crystal structure of the free heterocycle. Fluorescence tagging shows that the dZ-:dZ pairs join parallel strands in a four-stranded compact down-up-down-up fold. These have two possible structures: one with intercalated dZ-:dZ base pairs, the second without intercalation. The intercalated structure would resemble the i-motif formed by dC:dC+-reversed pairing at pH ≤ 6.5. This fZ-motif may therefore help DNA form compact structures needed for binding and catalysis.
Collapse
Affiliation(s)
- Bang Wang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Center for Research at Bio/Nano Interface, Department of Chemistry, Department of Physiology and Functional Genomics, Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - James R Rocca
- AMRIS, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution, Alachua, FL, USA
- Firebird Biomolecular Sciences LLC, Alachua, FL, USA
| | - Cen Chen
- Foundation for Applied Molecular Evolution, Alachua, FL, USA
- Firebird Biomolecular Sciences LLC, Alachua, FL, USA
| | - Zunyi Yang
- Foundation for Applied Molecular Evolution, Alachua, FL, USA.
- Firebird Biomolecular Sciences LLC, Alachua, FL, USA.
| | - Reza Esmaeeli
- Center for Research at Bio/Nano Interface, Department of Chemistry, Department of Physiology and Functional Genomics, Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, China
| | - Xiaoshu Pan
- Center for Research at Bio/Nano Interface, Department of Chemistry, Department of Physiology and Functional Genomics, Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kevin K Wang
- Department of Emergency Medicine, University of Florida, Gainesville, FL, USA
| | - Y Charles Cao
- Center for Research at Bio/Nano Interface, Department of Chemistry, Department of Physiology and Functional Genomics, Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Weihong Tan
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
- Center for Research at Bio/Nano Interface, Department of Chemistry, Department of Physiology and Functional Genomics, Health Cancer Center, University of Florida, Gainesville, FL, USA.
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China.
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Alachua, FL, USA.
- Firebird Biomolecular Sciences LLC, Alachua, FL, USA.
| |
Collapse
|
4
|
Jena NR, Shukla PK. Hydroxyl radical-induced C1'-H abstraction reaction of different artificial nucleotides. J Mol Model 2024; 30:330. [PMID: 39269493 DOI: 10.1007/s00894-024-06126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
CONTEXT Recently, a few antiviral drugs viz Molnupiravir (EIDD-1931), Favipiravir, Ribavirin, Sofosbuvir, Galidesivir, and Remdesivir are shown to be beneficial against COVID-19 disease. These drugs bind to the viral RNA single strand to inhibit the virus genome replication. Similarly, recently, some artificial nucleotides, such as P, J, B, X, Z, V, S, and K were proposed to behave as potent antiviral candidates. However, their activity in the presence of the most reactive hydroxyl (OH) radical is not yet known. Here, the possibility of RNA strand break due to the OH radical-induced C1'-hydrogen (H) abstraction reaction of the above molecules (except Remdesivir) is studied in detail by considering their nucleotide conformation. The results are compared with those of the natural RNA nucleotides (G, C, A, and U). Due to low Gibbs barrier-free energy and high exothermicity, all these nucleotides (except Remdesivir) are prone to OH radical-induced C1'-H abstraction reaction. As Remdesivir contains a C1'-CN bond, the OH radical substitution reactions at the CN and C1' sites would likely liberate the catalytically important CN group, thereby downgrading its activity. METHOD Initially, the B3LYP-D3 dispersion-corrected density functional theory method and 6-31 + G* basis set were used to optimize all reactant, transition state, and product complexes in the implicit aqueous medium. Subsequently, the structures of these complexes were further optimized by using the ωB97X-D dispersion-corrected density functional theory method and cc-PVTZ basis set in the aqueous medium. The IEFPCM method was used to model the aqueous medium.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, 482005, India.
| | - P K Shukla
- Department of Physics, Assam University, Silcharm, 788011, India
| |
Collapse
|
5
|
Stanisavljević A, Aleksić J, Stojanović M, Baranac-Stojanović M. Solid-state synthesis of polyfunctionalized 2-pyridones and conjugated dienes. Org Biomol Chem 2024; 22:7218-7230. [PMID: 39163014 DOI: 10.1039/d4ob00902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Functionalized 2-pyridones are important biologically active compounds, DNA base analogues and synthetic intermediates. Herein, we report a simple, green, solid-state synthesis of differently substituted 2-pyridones. It starts from commercially available amines and activated alkynes, uses silica gel (15%Cs2CO3/SiO2) as the solid phase and a reaction vial as the only equipment. If necessary, heating is performed in a laboratory oven. Since most reactions are completed within a few hours, no additional energy consumption is required. The syntheses do not require solvents and other reagents and are easily monitored by standard analytical techniques. The atom economy is high, since all atoms of reactants are present in the products and EtOH is the only by-product. The syntheses produce polyfunctionalized conjugated dienes as the only intermediates, which are also important building blocks.
Collapse
Affiliation(s)
- Anđela Stanisavljević
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, P.O. Box 158, 11000 Belgrade, Serbia.
| | - Jovana Aleksić
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy - Center for Chemistry, Njegoševa 12, P.O. Box 473, 11000 Belgrade, Serbia.
| | - Milovan Stojanović
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy - Center for Chemistry, Njegoševa 12, P.O. Box 473, 11000 Belgrade, Serbia.
| | - Marija Baranac-Stojanović
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, P.O. Box 158, 11000 Belgrade, Serbia.
| |
Collapse
|
6
|
Laatri S, El Khayari S, Qriouet Z. Exploring the molecular aspect and updating evolutionary approaches to the DNA polymerase enzymes for biotechnological needs: A comprehensive review. Int J Biol Macromol 2024; 276:133924. [PMID: 39033894 DOI: 10.1016/j.ijbiomac.2024.133924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
DNA polymerases are essential enzymes that play a key role in living organisms, as they participate in the synthesis and maintenance of the DNA molecule. The intrinsic properties of these enzymes have been widely observed and studied to understand their functions, activities, and behavior, which has allowed their natural power in DNA synthesis to be exploited in modern biotechnology, to the point of making them true pillars of the field. In this context, the laboratory evolution of these enzymes, either by directed evolution or rational design, has led to the generation of a wide range of new DNA polymerases with novel properties, suitable for a variety of biotechnological needs. In this review, we examine DNA polymerases at the molecular level, their biotechnological use, and their evolutionary methods in relation to the novel properties sought, providing a chronological selection of evolved DNA polymerases cited in the literature that we consider to be of great interest. To our knowledge, this work is the first to bring together the molecular, functional and evolutionary aspects of the DNA polymerase enzyme. We believe it will be of great interest to researchers whose aim is to produce new lines of evolved DNA polymerases.
Collapse
Affiliation(s)
- Said Laatri
- Microbiology and Molecular Biology Laboratory, Faculty of Sciences, Mohammed V-Souissi University, Rabat 10100, Morocco.
| | | | - Zidane Qriouet
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V-Souissi University, Rabat 10100, Morocco
| |
Collapse
|
7
|
Debnath T, Cisneros GA. Investigation of the stability of D5SIC-DNAM-incorporated DNA duplex in Taq polymerase binary system: a systematic classical MD approach. Phys Chem Chem Phys 2024; 26:7287-7295. [PMID: 38353000 PMCID: PMC11078294 DOI: 10.1039/d3cp05571j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
DNA polymerases are fundamental enzymes that play a crucial role in processing DNA with high fidelity and accuracy ensuring the faithful transmission of genetic information. The recognition of unnatural base pairs (UBPs) by polymerases, enabling their replication, represents a significant and groundbreaking discovery with profound implications for genetic expansion. Romesberg et al. examined the impact of DNA containing 2,6-dimethyl-2H-isoquiniline-1-thione: D5SIC (DS) and 2-methoxy-3-methylnaphthalene: DNAM (DN) UBPs bound to T. aquaticus DNA polymerase (Taq) through crystal structure analysis. Here, we have used polarizable and nonpolarizable classical molecular dynamics (MD) simulations to investigate the structural aspects and stability of Taq in complex with a DNA duplex including a DS-DN pair in the terminal 3' and 5' positions. Our results suggest that the flexibility of UBP-incorporated DNA in the terminal position is arrested by the polymerase, thus preventing fraying and mispairing. Our investigation also reveals that the UBP remains in an intercalated conformation inside the active site, exhibiting two distinct orientations in agreement with experimental findings. Our analysis pinpoints particular residues responsible for favorable interactions with the UBP, with some relying on van der Waals interactions while other on Coulombic forces.
Collapse
Affiliation(s)
- Tanay Debnath
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA.
| | - G Andrés Cisneros
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA.
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA
| |
Collapse
|
8
|
Debnath T, Cisneros GA. Investigation of dynamical flexibility of D5SIC-DNAM inside DNA duplex in aqueous solution: a systematic classical MD approach. Phys Chem Chem Phys 2024; 26:7435-7445. [PMID: 38353005 PMCID: PMC11080001 DOI: 10.1039/d3cp05572h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Incorporation of artificial 3rd base pairs (unnatural base pairs, UBPs) has emerged as a fundamental technique in pursuit of expanding the genetic alphabet. 2,6-Dimethyl-2H-isoquiniline-1-thione: D5SIC (DS) and 2-methoxy-3-methylnaphthalene: DNAM (DN), a potential unnatural base pair (UBP) developed by Romesberg and colleagues, has been shown to have remarkable capability for replication within DNA. Crystal structures of a Taq polymerase/double-stranded DNA (ds-DNA) complex containing a DS-DN pair in the 3' terminus showed a parallelly stacked geometry for the pre-insertion, and an intercalated geometry for the post-insertion structure. Unconventional orientations of DS-DN inside a DNA duplex have inspired scientists to investigate the conformational orientations and structural properties of UBP-incorporated DNA. In recent years, computational simulations have been used to investigate the geometry of DS-DN within the DNA duplex; nevertheless, unresolved questions persist owing to inconclusive findings. In this work, we investigate the structural and dynamical properties of DS and DN inside a ds-DNA strand in aqueous solution considering both short and long DNA templates using polarizable, and non-polarizable classical MD simulations. Flexible conformational change of UBP with major populations of Watson-Crick-Franklin (WCF) and three distinct non-Watson-Crick-Franklin (nWCFP1, nWCFP2, nWCFO) conformations through intra and inter-strand flipping have been observed. Our results suggest that a dynamical conformational change leads to the production of diffierent conformational distribution for the systems. Simulations with a short ds-DNA duplex suggest nWCF (P1 and O) as the predominant structures, whereas long ds-DNA duplex simulations indicate almost equal populations of WCF, nWCFP1, nWCFO. DS-DN in the terminal position is found to be more flexible with occasional mispairing and fraying. Overall, these results suggest flexibility and dynamical conformational change of the UBP as well as indicate varied conformational distribution irrespective of starting orientation of the UBP and length og DNA strand.
Collapse
Affiliation(s)
- Tanay Debnath
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA.
| | - G Andrés Cisneros
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA.
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA
| |
Collapse
|
9
|
Sett A, Gadewar M, Babu MA, Panja A, Sachdeva P, Almutary AG, Upadhye V, Jha SK, Jha NK. Orchestration and theranostic applications of synthetic genome with Hachimoji bases/building blocks. Chem Biol Drug Des 2024; 103:e14378. [PMID: 38230795 DOI: 10.1111/cbdd.14378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 01/18/2024]
Abstract
Synthetic genomics is a novel field of chemical biology where the chemically modified genetic alphabets have been considered in central dogma of life. Tweaking of chemical compositions of natural nucleotide bases could be developed as novel building blocks of DNA/RNA. The modified bases (dP, dZ, dS, and dB etc.) have been demonstrated to be adaptable for replication, transcription and follow Darwinism law of evolution. With advancement of chemical biology especially nucleotide chemistry, synthetic genetic codes have been discovered and Hachimoji nucleotides are the most important and significant one among them. These additional nucleotide bases can form orthogonal base-pairing, and also follow Darwinian evolution and other structural features. In the Hachimoji base pairing, synthetic building blocks are formed using eight modified nucleotide (DNA/RNA) letters (hence the name "Hachimoji"). Their structural conformations, like polyelectrolyte backbones and stereo-regular building blocks favor thermodynamic stability and confirm Schrodinger aperiodic crystal. From the structural genomics aspect, these synthetic bases could be incorporated into the central dogma of life. Researchers have shown Hachimoji building blocks were transcribed to its RNA counterpart as a functional fluorescent Hachimoji aptamer. Apart from several unnatural nucleotide base pairs maneuvered into its in vitro and in vivo applications, this review describes future perspective towards the development and therapeutic utilization of the genetic codes, a primary objective of synthetic and chemical biology.
Collapse
Affiliation(s)
- Arghya Sett
- ERIN Department, Luxembourg Institute of Science and Technology, 5 Av. des Hauts-Fourneaux, Belval, 4362, Esch, Luxembourg
| | - Manoj Gadewar
- Department of Pharmacology, School of Medical and Allied Sciences, K R Mangalam University, Gurgaon, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | | | | | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Vijay Upadhye
- Centre of Research for Development (CR4D) and Department of Microbiology, Parul University, Vadodara, Gujarat, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Centre of Research Impact and Outreach, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| |
Collapse
|
10
|
Oh J, Shan Z, Hoshika S, Xu J, Chong J, Benner SA, Lyumkis D, Wang D. A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase. Nat Commun 2023; 14:8219. [PMID: 38086811 PMCID: PMC10716388 DOI: 10.1038/s41467-023-43735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Artificially Expanded Genetic Information Systems (AEGIS) add independently replicable unnatural nucleotide pairs to the natural G:C and A:T/U pairs found in native DNA, joining the unnatural pairs through alternative modes of hydrogen bonding. Whether and how AEGIS pairs are recognized and processed by multi-subunit cellular RNA polymerases (RNAPs) remains unknown. Here, we show that E. coli RNAP selectively recognizes unnatural nucleobases in a six-letter expanded genetic system. High-resolution cryo-EM structures of three RNAP elongation complexes containing template-substrate UBPs reveal the shared principles behind the recognition of AEGIS and natural base pairs. In these structures, RNAPs are captured in an active state, poised to perform the chemistry step. At this point, the unnatural base pair adopts a Watson-Crick geometry, and the trigger loop is folded into an active conformation, indicating that the mechanistic principles underlying recognition and incorporation of natural base pairs also apply to AEGIS unnatural base pairs. These data validate the design philosophy of AEGIS unnatural basepairs. Further, we provide structural evidence supporting a long-standing hypothesis that pair mismatch during transcription occurs via tautomerization. Together, our work highlights the importance of Watson-Crick complementarity underlying the design principles of AEGIS base pair recognition.
Collapse
Affiliation(s)
- Juntaek Oh
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Zelin Shan
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd Box 7, Alachua, FL, 32615, USA
| | - Jun Xu
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jenny Chong
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd Box 7, Alachua, FL, 32615, USA.
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute 10550 N Torrey Pines Road, La Jolla, CA, 92037, USA.
- Graduate School of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
11
|
Ji C, Wei J, Zhang L, Hou X, Tan J, Yuan Q, Tan W. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem Rev 2023; 123:12471-12506. [PMID: 37931070 DOI: 10.1021/acs.chemrev.3c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Serving as the basis of cell life, interactions between nucleic acids and proteins play essential roles in fundamental cellular processes. Aptamers are unique single-stranded oligonucleotides generated by in vitro evolution methods, possessing the ability to interact with proteins specifically. Altering the structure of aptamers will largely modulate their interactions with proteins and further affect related cellular behaviors. Recently, with the in-depth research of aptamer-protein interactions, the analytical assays based on their interactions have been widely developed and become a powerful tool for biomolecular detection. There are some insightful reviews on aptamers applied in protein detection, while few systematic discussions are from the perspective of regulating aptamer-protein interactions. Herein, we comprehensively introduce the methods for regulating aptamer-protein interactions and elaborate on the detection techniques for analyzing aptamer-protein interactions. Additionally, this review provides a broad summary of analytical assays based on the regulation of aptamer-protein interactions for detecting biomolecules. Finally, we present our perspectives regarding the opportunities and challenges of analytical assays for biological analysis, aiming to provide guidance for disease mechanism research and drug discovery.
Collapse
Affiliation(s)
- Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junyuan Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinru Hou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
12
|
Jena NR, Shukla PK. Structure and stability of different triplets involving artificial nucleobases: clues for the formation of semisynthetic triple helical DNA. Sci Rep 2023; 13:19246. [PMID: 37935822 PMCID: PMC10630353 DOI: 10.1038/s41598-023-46572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
A triple helical DNA can control gene expression, help in homologous recombination, induce mutations to facilitate DNA repair mechanisms, suppress oncogene formations, etc. However, the structure and function of semisynthetic triple helical DNA are not known. To understand this, various triplets formed between eight artificial nucleobases (P, Z, J, V, B, S, X, and K) and four natural DNA bases (G, C, A, and T) are studied herein by employing a reliable density functional theoretic (DFT) method. Initially, the triple helix-forming artificial nucleobases interacted with the duplex DNA containing GC and AT base pairs, and subsequently, triple helix-forming natural bases (G and C) interacted with artificial duplex DNA containing PZ, JV, BS, and XK base pairs. Among the different triplets formed in the first category, the C-JV triplet is found to be the most stable with a binding energy of about - 31 kcal/mol. Similarly, among the second category of triplets, the Z-GC and V-GC triplets are the most stable. Interestingly, Z-GC and V-GC are found to be isoenergetic with a binding energy of about - 30 kcal/mol. The C-JV, and Z-GC or V-GC triplets are about 12-14 kcal/mol more stable than the JV and GC base pairs respectively. Microsolvation of these triplets in 5 explicit water molecules further enhanced their stability by 16-21 kcal/mol. These results along with the consecutive stacking of the C-JV triplet (C-JV/C-JV) data indicate that the synthetic nucleobases can form stable semisynthetic triple helical DNA. However, consideration of a full-length DNA containing one or more semisynthetic bases or base pairs is necessary to understand the formation of semisynthetic DNA in living cells.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Dumna Airport Road, Khamaria, Jabalpur, 482005, India.
| | - P K Shukla
- Department of Physics, Assam University, Silchar, Assam, 788 011, India
| |
Collapse
|
13
|
Arboleda-García A, Alarcon-Ruiz I, Boada-Acosta L, Boada Y, Vignoni A, Jantus-Lewintre E. Advancements in synthetic biology-based bacterial cancer therapy: A modular design approach. Crit Rev Oncol Hematol 2023; 190:104088. [PMID: 37541537 DOI: 10.1016/j.critrevonc.2023.104088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Synthetic biology aims to program living bacteria cells with artificial genetic circuits for user-defined functions, transforming them into powerful tools with numerous applications in various fields, including oncology. Cancer treatments have serious side effects on patients due to the systemic action of the drugs involved. To address this, new systems that provide localized antitumoral action while minimizing damage to healthy tissues are required. Bacteria, often considered pathogenic agents, have been used as cancer treatments since the early 20th century. Advances in genetic engineering, synthetic biology, microbiology, and oncology have improved bacterial therapies, making them safer and more effective. Here we propose six modules for a successful synthetic biology-based bacterial cancer therapy, the modules include Payload, Release, Tumor-targeting, Biocontainment, Memory, and Genetic Circuit Stability Module. These will ensure antitumor activity, safety for the environment and patient, prevent bacterial colonization, maintain cell stability, and prevent loss or defunctionalization of the genetic circuit.
Collapse
Affiliation(s)
- Andrés Arboleda-García
- Systems Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain
| | - Ivan Alarcon-Ruiz
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lissette Boada-Acosta
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Molecular Oncology Laboratory, Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain
| | - Yadira Boada
- Systems Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain
| | - Alejandro Vignoni
- Systems Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain.
| | - Eloisa Jantus-Lewintre
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Molecular Oncology Laboratory, Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
14
|
Dörrenhaus R, Wagner PK, Kath-Schorr S. Two are not enough: synthetic strategies and applications of unnatural base pairs. Biol Chem 2023; 404:883-896. [PMID: 37354104 DOI: 10.1515/hsz-2023-0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023]
Abstract
Nucleic acid chemistry is a rapidly evolving field, and the need for novel nucleotide modifications and artificial nucleotide building blocks for diagnostic and therapeutic use, material science or for studying cellular processes continues unabated. This review focusses on the development and application of unnatural base pairs as part of an expanded genetic alphabet. Not only recent developments in "nature-like" artificial base pairs are presented, but also current synthetic methods to get access to C-glycosidic nucleotides. Wide-ranging viability in synthesis is a prerequisite for the successful use of unnatural base pairs in a broader spectrum and will be discussed.
Collapse
|
15
|
Pham TM, Miffin T, Sun H, Sharp KK, Wang X, Zhu M, Hoshika S, Peterson RJ, Benner SA, Kahn JD, Mathews DH. DNA Structure Design Is Improved Using an Artificially Expanded Alphabet of Base Pairs Including Loop and Mismatch Thermodynamic Parameters. ACS Synth Biol 2023; 12:2750-2763. [PMID: 37671922 PMCID: PMC10510751 DOI: 10.1021/acssynbio.3c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Indexed: 09/07/2023]
Abstract
We show that in silico design of DNA secondary structures is improved by extending the base pairing alphabet beyond A-T and G-C to include the pair between 2-amino-8-(1'-β-d-2'-deoxyribofuranosyl)-imidazo-[1,2-a]-1,3,5-triazin-(8H)-4-one and 6-amino-3-(1'-β-d-2'-deoxyribofuranosyl)-5-nitro-(1H)-pyridin-2-one, abbreviated as P and Z. To obtain the thermodynamic parameters needed to include P-Z pairs in the designs, we performed 47 optical melting experiments and combined the results with previous work to fit free energy and enthalpy nearest neighbor folding parameters for P-Z pairs and G-Z wobble pairs. We find G-Z pairs have stability comparable to that of A-T pairs and should therefore be included as base pairs in structure prediction and design algorithms. Additionally, we extrapolated the set of loop, terminal mismatch, and dangling end parameters to include the P and Z nucleotides. These parameters were incorporated into the RNAstructure software package for secondary structure prediction and analysis. Using the RNAstructure Design program, we solved 99 of the 100 design problems posed by Eterna using the ACGT alphabet or supplementing it with P-Z pairs. Extending the alphabet reduced the propensity of sequences to fold into off-target structures, as evaluated by the normalized ensemble defect (NED). The NED values were improved relative to those from the Eterna example solutions in 91 of 99 cases in which Eterna-player solutions were provided. P-Z-containing designs had average NED values of 0.040, significantly below the 0.074 of standard-DNA-only designs, and inclusion of the P-Z pairs decreased the time needed to converge on a design. This work provides a sample pipeline for inclusion of any expanded alphabet nucleotides into prediction and design workflows.
Collapse
Affiliation(s)
- Tuan M. Pham
- Department
of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Terrel Miffin
- Department
of Chemistry & Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Hongying Sun
- Department
of Surgery, University of Rochester Medical
Center, Rochester, New York 14642, United States
| | - Kenneth K. Sharp
- Department
of Chemistry & Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Xiaoyu Wang
- Department
of Chemistry & Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Mingyi Zhu
- Department
of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Shuichi Hoshika
- Foundation
for Applied Molecular Evolution, Alachua, Florida 32615, United States
| | | | - Steven A. Benner
- Foundation
for Applied Molecular Evolution, Alachua, Florida 32615, United States
| | - Jason D. Kahn
- Department
of Chemistry & Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - David H. Mathews
- Department
of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
16
|
Pham TM, Miffin T, Sun H, Sharp KK, Wang X, Zhu M, Hoshika S, Peterson RJ, Benner SA, Kahn JD, Mathews DH. DNA Structure Design Is Improved Using an Artificially Expanded Alphabet of Base Pairs Including Loop and Mismatch Thermodynamic Parameters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543917. [PMID: 37333404 PMCID: PMC10274641 DOI: 10.1101/2023.06.06.543917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
We show that in silico design of DNA secondary structures is improved by extending the base pairing alphabet beyond A-T and G-C to include the pair between 2-amino-8-(1'-β-D-2'-deoxyribofuranosyl)-imidazo-[1,2- a ]-1,3,5-triazin-(8 H )-4-one and 6-amino-3-(1'-β-D-2'-deoxyribofuranosyl)-5-nitro-(1 H )-pyridin-2-one, simply P and Z. To obtain the thermodynamic parameters needed to include P-Z pairs in the designs, we performed 47 optical melting experiments and combined the results with previous work to fit a new set of free energy and enthalpy nearest neighbor folding parameters for P-Z pairs and G-Z wobble pairs. We find that G-Z pairs have stability comparable to A-T pairs and therefore should be considered quantitatively by structure prediction and design algorithms. Additionally, we extrapolated the set of loop, terminal mismatch, and dangling end parameters to include P and Z nucleotides. These parameters were incorporated into the RNAstructure software package for secondary structure prediction and analysis. Using the RNAstructure Design program, we solved 99 of the 100 design problems posed by Eterna using the ACGT alphabet or supplementing with P-Z pairs. Extending the alphabet reduced the propensity of sequences to fold into off-target structures, as evaluated by the normalized ensemble defect (NED). The NED values were improved relative to those from the Eterna example solutions in 91 of 99 cases where Eterna-player solutions were provided. P-Z-containing designs had average NED values of 0.040, significantly below the 0.074 of standard-DNA-only designs, and inclusion of the P-Z pairs decreased the time needed to converge on a design. This work provides a sample pipeline for inclusion of any expanded alphabet nucleotides into prediction and design workflows.
Collapse
Affiliation(s)
- Tuan M. Pham
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY
| | - Terrel Miffin
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD
| | - Hongying Sun
- Department of Surgery, University of Rochester Medical Center, Rochester, NY
| | - Kenneth K. Sharp
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD
| | - Xiaoyu Wang
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD
| | - Mingyi Zhu
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY
| | | | | | | | - Jason D. Kahn
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD
| | - David H. Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
17
|
Gerecht K, Freund N, Liu W, Liu Y, Fürst MJLJ, Holliger P. The Expanded Central Dogma: Genome Resynthesis, Orthogonal Biosystems, Synthetic Genetics. Annu Rev Biophys 2023; 52:413-432. [PMID: 37159296 DOI: 10.1146/annurev-biophys-111622-091203] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Synthetic biology seeks to probe fundamental aspects of biological form and function by construction [i.e., (re)synthesis] rather than deconstruction (analysis). In this sense, biological sciences now follow the lead given by the chemical sciences. Synthesis can complement analytic studies but also allows novel approaches to answering fundamental biological questions and opens up vast opportunities for the exploitation of biological processes to provide solutions for global problems. In this review, we explore aspects of this synthesis paradigm as applied to the chemistry and function of nucleic acids in biological systems and beyond, specifically, in genome resynthesis, synthetic genetics (i.e., the expansion of the genetic alphabet, of the genetic code, and of the chemical make-up of genetic systems), and the elaboration of orthogonal biosystems and components.
Collapse
Affiliation(s)
- Karola Gerecht
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom;
| | - Niklas Freund
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom;
| | - Wei Liu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom;
| | - Yang Liu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom;
| | - Maximilian J L J Fürst
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom;
- Current address: Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom;
| |
Collapse
|
18
|
Romesberg FE. Discovery, implications and initial use of semi-synthetic organisms with an expanded genetic alphabet/code. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220030. [PMID: 36633274 PMCID: PMC9835597 DOI: 10.1098/rstb.2022.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/25/2022] [Indexed: 01/13/2023] Open
Abstract
Much recent interest has focused on developing proteins for human use, such as in medicine. However, natural proteins are made up of only a limited number of canonical amino acids with limited functionalities, and this makes the discovery of variants with some functions difficult. The ability to recombinantly express proteins containing non-canonical amino acids (ncAAs) with properties selected to impart the protein with desired properties is expected to dramatically improve the discovery of proteins with different functions. Perhaps the most straightforward approach to such an expansion of the genetic code is through expansion of the genetic alphabet, so that new codon/anticodon pairs can be created to assign to ncAAs. In this review, I briefly summarize more than 20 years of effort leading ultimately to the discovery of synthetic nucleotides that pair to form an unnatural base pair, which when incorporated into DNA, is stably maintained, transcribed and used to translate proteins in Escherichia coli. In addition to discussing wide ranging conceptual implications, I also describe ongoing efforts at the pharmaceutical company Sanofi to employ the resulting 'semi-synthetic organisms' or SSOs, for the production of next-generation protein therapeutics. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Floyd E. Romesberg
- Platform Innovation, Synthorx, a Sanofi Company, 11099 N. Torrey Pines Road, Suite 190, La Jolla, CA 92037, USA
| |
Collapse
|
19
|
Shukla MS, Hoshika S, Benner SA, Georgiadis MM. Crystal structures of 'ALternative Isoinformational ENgineered' DNA in B-form. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220028. [PMID: 36633282 PMCID: PMC9835606 DOI: 10.1098/rstb.2022.0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/20/2022] [Indexed: 01/13/2023] Open
Abstract
The first structural model of duplex DNA reported in 1953 by Watson & Crick presented the double helix in B-form, the form that genomic DNA exists in much of the time. Thus, artificial DNA seeking to mimic the properties of natural DNA should also be able to adopt B-form. Using a host-guest system in which Moloney murine leukemia virus reverse transcriptase serves as the host and DNA as the guests, we determined high-resolution crystal structures of three complexes including 5'-CTTBPPBBSSZZSAAG, 5'-CTTSSPBZPSZBBAAG and 5'-CTTZZPBSBSZPPAAG with 10 consecutive unnatural nucleobase pairs in B-form within self-complementary 16 bp duplex oligonucleotides. We refer to this ALternative Isoinformational ENgineered (ALIEN) genetic system containing two nucleobase pairs (P:Z, pairing 2-amino-imidazo-[1,2-a]-1,3,5-triazin-(8H)-4-one with 6-amino-5-nitro-(1H)-pyridin-2-one, and B:S, 6-amino-4-hydroxy-5-(1H)-purin-2-one with 3-methyl-6-amino-pyrimidin-2-one) as ALIEN DNA. We characterized both position- and sequence-specific helical, nucleobase pair and dinucleotide step parameters of P:Z and B:S pairs in the context of B-form DNA. We conclude that ALIEN DNA exhibits structural features that vary with sequence. Further, Z can participate in alternative stacking modes within a similar sequence context as captured in two different structures. This finding suggests that ALIEN DNA may have a larger repertoire of B-form structures than natural DNA. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Madhura S. Shukla
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, no. 7, Alachua, FL 32615, USA
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, no. 7, Alachua, FL 32615, USA
| | - Millie M. Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
20
|
Abstract
To expand the existing genetic letters beyond the natural four nucleotides, such as G, C, A, and T, it is necessary to design robust nucleotides that can not only produce stable and unperturbed DNA but also function naturally in living cells. Although hydrophobic bases, such as d5SICS (2,6-dimethyl-2H-isoquiniline-1-thione) and dNaM (2-methoxy-3-methylnaphthalene) were shown to be replicated in bacterial cells, the d5SICS:dNaM base-pair was found to perturb the structure of the duplex DNA. Therefore, it is necessary to design nucleobases that can form base pairs like the natural G:C and A:T pairs. Here, a reliable dispersion-corrected density functional theory has been used to design several nucleobases that can produce three-hydrogen-bonded base pairs like the G:C pair. In doing so, the Watson-Crick faces of d5SICS and dNaM were modified by replacing the hydrophobic groups with hydrogen bond donors and acceptors. As dNaM contains an unnatural C-glycosidic bond (C-dNaM), it was also modified to contain the natural N-glycosidic bond (N-dNaM). This technique produced 91 new bases (N-d5SICS-X (X = 1-33), C-dNaM-X (X = 1-35), and N-dNaM-X (X = 1-23), where X is the different types of modifications applied to d5SICS and dNaM) and 259 base-pairs. Among these base pairs, 76 base pairs are found to be more stable than the G:C pair. Interestingly, the N-d5SICS-32:C-dNaM-32 and N-d5SICS-32:N-dNaM-20 pairs are found to be the most stable with binding energies of about -28.0 kcal/mol. The base-pair patterns of these pairs are also analogous to that of the G:C pair. Hence, it is proposed that N-d5SICS-32, C-dNaM-32, and N-dNaM-20 would act as efficient new genetic letters to produce stable and unperturbed artificial DNA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Khamaria, Jabalpur, India
| | - P Das
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Khamaria, Jabalpur, India
| |
Collapse
|
21
|
Jena NR, Pant S, Srivastava HK. Artificially expanded genetic information systems (AEGISs) as potent inhibitors of the RNA-dependent RNA polymerase of the SARS-CoV-2. J Biomol Struct Dyn 2022; 40:6381-6397. [PMID: 33565387 PMCID: PMC7885727 DOI: 10.1080/07391102.2021.1883112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/25/2021] [Indexed: 01/18/2023]
Abstract
The recent outbreak of the SARS-CoV-2 infection has affected the lives and economy of more than 200 countries. The unavailability of virus-specific drugs has created an opportunity to identify potential therapeutic agents that can control the rapid transmission of this pandemic. Here, the mechanisms of the inhibition of the RNA-dependent RNA polymerase (RdRp), responsible for the replication of the virus in host cells, are examined by different ligands, such as Remdesivir (RDV), Remdesivir monophosphate (RMP), and several artificially expanded genetic information systems (AEGISs) including their different sequences by employing molecular docking, MD simulations, and MM/GBSA techniques. It is found that the binding of RDV to RdRp may block the RNA binding site. However, RMP would acquire a partially flipped conformation and may allow the viral RNA to enter into the binding site. The internal dynamics of RNA and RdRp may help RMP to regain its original position, where it may inhibit the RNA-chain elongation reaction. Remarkably, AEGISs are found to obstruct the binding site of RNA. It is shown that dPdZ, a two-nucleotide sequence containing P and Z would bind to RdRp very strongly and may occupy the positions of two nucleotides in the RNA strand, thereby denying access of the substrate-binding site to the viral RNA. Thus, it is proposed that the AEGISs may act as novel therapeutic candidates against the SARS-CoV-2. However, in vivo evaluations of their potencies and toxicities are needed before using them against COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- N. R. Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, Madhya Pradesh, India
| | - Suyash Pant
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Hemant Kumar Srivastava
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Changsari, Guwahati, Assam, India
| |
Collapse
|
22
|
Hoshika S, Shukla MS, Benner SA, Georgiadis MM. Visualizing "Alternative Isoinformational Engineered" DNA in A- and B-Forms at High Resolution. J Am Chem Soc 2022; 144:15603-15611. [PMID: 35969672 DOI: 10.1021/jacs.2c05255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A fundamental property of DNA built from four informational nucleotide units (GCAT) is its ability to adopt different helical forms within the context of the Watson-Crick pair. Well-characterized examples include A-, B-, and Z-DNA. For this study, we created an isoinformational biomimetic polymer, built (like standard DNA) from four informational "letters", but with the building blocks being artificial. This ALternative Isoinformational ENgineered (ALIEN) DNA was hypothesized to support two nucleobase pairs, the P:Z pair matching 2-amino-imidazo-[1,2a]-1,3,5-triazin-[8H]-4-one with 6-amino-3-5-nitro-1H-pyridin-2-one and the B:S pair matching 6-amino-4-hydroxy-5-1H-purin-2-one with 3-methyl-6-amino-pyrimidin-2-one. We report two structures of ALIEN DNA duplexes at 1.2 Å resolution and a third at 1.65 Å. All of these are built from a single self-complementary sequence (5'-CTSZZPBSBSZPPBAG) that includes 12 consecutive ALIEN nucleotides. We characterized the helical, nucleobase pair, and dinucleotide step parameters of ALIEN DNA in these structures. In addition to showing that ALIEN pairs retain basic Watson-Crick pairing geometry, two of the ALIEN DNA structures are characterized as A-form DNA and one as B-form DNA. We identified parameters that map differences effecting the transition between the two helical forms; these same parameters distinguish helical forms of isoinformational natural DNA. Collectively, our analyses suggest that ALIEN DNA retains essential structural features of natural DNA, not only its information density and Watson-Crick pairing but also its ability to adopt two canonical forms.
Collapse
Affiliation(s)
- Shuichi Hoshika
- Foundation for Molecular Evolution, 13709 Progress Boulevard, No. 7, Alachua, Florida 32615, United States
| | - Madhura S Shukla
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, Indiana 46202, United States
| | - Steven A Benner
- Foundation for Molecular Evolution, 13709 Progress Boulevard, No. 7, Alachua, Florida 32615, United States
| | - Millie M Georgiadis
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, Indiana 46202, United States
| |
Collapse
|
23
|
Göppel T, Rosenberger JH, Altaner B, Gerland U. Thermodynamic and Kinetic Sequence Selection in Enzyme-Free Polymer Self-Assembly Inside a Non-Equilibrium RNA Reactor. Life (Basel) 2022; 12:life12040567. [PMID: 35455058 PMCID: PMC9032526 DOI: 10.3390/life12040567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
The RNA world is one of the principal hypotheses to explain the emergence of living systems on the prebiotic Earth. It posits that RNA oligonucleotides acted as both carriers of information as well as catalytic molecules, promoting their own replication. However, it does not explain the origin of the catalytic RNA molecules. How could the transition from a pre-RNA to an RNA world occur? A starting point to answer this question is to analyze the dynamics in sequence space on the lowest level, where mononucleotide and short oligonucleotides come together and collectively evolve into larger molecules. To this end, we study the sequence-dependent self-assembly of polymers from a random initial pool of short building blocks via templated ligation. Templated ligation requires two strands that are hybridized adjacently on a third strand. The thermodynamic stability of such a configuration crucially depends on the sequence context and, therefore, significantly influences the ligation probability. However, the sequence context also has a kinetic effect, since non-complementary nucleotide pairs in the vicinity of the ligation site stall the ligation reaction. These sequence-dependent thermodynamic and kinetic effects are explicitly included in our stochastic model. Using this model, we investigate the system-level dynamics inside a non-equilibrium ‘RNA reactor’ enabling a fast chemical activation of the termini of interacting oligomers. Moreover, the RNA reactor subjects the oligomer pool to periodic temperature changes inducing the reshuffling of the system. The binding stability of strands typically grows with the number of complementary nucleotides forming the hybridization site. While shorter strands unbind spontaneously during the cold phase, larger complexes only disassemble during the temperature peaks. Inside the RNA reactor, strand growth is balanced by cleavage via hydrolysis, such that the oligomer pool eventually reaches a non-equilibrium stationary state characterized by its length and sequence distribution. How do motif-dependent energy and stalling parameters affect the sequence composition of the pool of long strands? As a critical factor for self-enhancing sequence selection, we identify kinetic stalling due to non-complementary base pairs at the ligation site. Kinetic stalling enables cascades of self-amplification that result in a strong reduction of occupied states in sequence space. Moreover, we discuss the significance of the symmetry breaking for the transition from a pre-RNA to an RNA world.
Collapse
|
24
|
Fu TH, Lin MY, Fu CB, Yu XF, Xiao B, Cheng JB, Li Q. The role of nitro group on the excited-state relaxation mechanism of P-Z base pair. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120549. [PMID: 34810098 DOI: 10.1016/j.saa.2021.120549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/09/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
DNAs' photostability is significant to the normal function of organisms. P-Z is a hydrogen bonded artificial DNA base pair, where P and Z represent 2-amino-imidazo[1,2-a]-1,3,5-triazin-4(8H)one and 6-amino-5nitro-2(1H)-pyridone, respectively. The excited-state relaxation mechanism of P-Z pair is investigated using static TDDFT calculations combined with the non-adiabatic dynamic simulations at TDDFT level. The roles of nitro rotation, nitro out-of-plane deformation, and single proton transfer (SPT) along hydrogen bond are revealed. The results of potential energy profile calculations demonstrate that the SPT processes along the hydrogen bonds are unfavorable to occur statically, which is in great contrast to the natural base pair. The non-adiabatic dynamic simulations show that the excited-state nitro rotation and nitro out-of-plane deformation are the two important relaxation channels which lead to the fast internal conversion to S0 state. The SPT from Z to P is also observed, followed by distortion on P, inducing the fast internal conversion to S0 state. However, this channel (decay via SPT process) plays minor roles on the excited-state relaxation mechanism statistically. This work shows the great differences of the excited-state relaxation mechanism between the natural base pairs and artificial base pair, also sheds new light into the role of hydrogen bond and nitro group in P-Z base pair.
Collapse
Affiliation(s)
- Ting-He Fu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China
| | - Man-Yu Lin
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China
| | - Cheng-Bin Fu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China
| | - Xue-Fang Yu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.
| | - Bo Xiao
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China
| | - Jian-Bo Cheng
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China
| |
Collapse
|
25
|
Romesberg FE. Creation, Optimization, and Use of Semi-Synthetic Organisms that Store and Retrieve Increased Genetic Information. J Mol Biol 2021; 434:167331. [PMID: 34710400 DOI: 10.1016/j.jmb.2021.167331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
With few exceptions, natural proteins are built from only 20 canonical (proteogenic) amino acids which limits the functionality and accordingly the properties they can possess. Genetic code expansion, i.e. the creation of codons and the machinery needed to assign them to non-canonical amino acids (ncAAs), promises to enable the discovery of proteins with novel properties that are otherwise difficult or impossible to obtain. One approach to expanding the genetic code is to expand the genetic alphabet via the development of unnatural nucleotides that pair to form an unnatural base pair (UBP). Semi-synthetic organisms (SSOs), i.e. organisms that stably maintain the UBP, transcribe its component nucleotides into RNA, and use it to translate proteins, would have available to them new codons and the anticodons needed to assign them to ncAAs. This review summarizes the development of a family of UBPs, their use to create SSOs, and the optimization and application of the SSOs to produce candidate therapeutic proteins with improved properties that are now undergoing evaluation in clinical trials.
Collapse
|
26
|
Rusling DA. Triplex-forming properties and enzymatic incorporation of a base-modified nucleotide capable of duplex DNA recognition at neutral pH. Nucleic Acids Res 2021; 49:7256-7266. [PMID: 34233006 PMCID: PMC8287925 DOI: 10.1093/nar/gkab572] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/31/2021] [Accepted: 07/06/2021] [Indexed: 11/14/2022] Open
Abstract
The sequence-specific recognition of duplex DNA by unmodified parallel triplex-forming oligonucleotides is restricted to low pH conditions due to a necessity for cytosine protonation in the third strand. This has severely restricted their use as gene-targeting agents, as well as for the detection and/or functionalisation of synthetic or genomic DNA. Here I report that the nucleobase 6-amino-5-nitropyridin-2-one (Z) finally overcomes this constraint by acting as an uncharged mimic of protonated cytosine. Synthetic TFOs containing the nucleobase enabled stable and selective triplex formation at oligopurine-oligopyrimidine sequences containing multiple isolated or contiguous GC base pairs at neutral pH and above. Moreover, I demonstrate a universal strategy for the enzymatic assembly of Z-containing TFOs using its commercially available deoxyribonucleotide triphosphate. These findings seek to improve not only the recognition properties of TFOs but also the cost and/or expertise associated with their chemical syntheses.
Collapse
Affiliation(s)
- David A Rusling
- School of Biological Sciences, University of Southampton, Southampton, Hampshire SO17 1BJ, UK
| |
Collapse
|
27
|
Manandhar M, Chun E, Romesberg FE. Genetic Code Expansion: Inception, Development, Commercialization. J Am Chem Soc 2021; 143:4859-4878. [DOI: 10.1021/jacs.0c11938] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Miglena Manandhar
- Synthorx, a Sanofi Company, La Jolla, California 92037, United States
| | - Eugene Chun
- Synthorx, a Sanofi Company, La Jolla, California 92037, United States
| | | |
Collapse
|
28
|
Chawla M, Gorle S, Shaikh AR, Oliva R, Cavallo L. Replacing thymine with a strongly pairing fifth Base: A combined quantum mechanics and molecular dynamics study. Comput Struct Biotechnol J 2021; 19:1312-1324. [PMID: 33738080 PMCID: PMC7940798 DOI: 10.1016/j.csbj.2021.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 01/14/2023] Open
Abstract
The non-natural ethynylmethylpyridone C-nucleoside (W), a thymidine (T) analogue that can be incorporated in oligonucleotides by automated synthesis, has recently been reported to form a high fidelity base pair with adenosine (A) and to be well accommodated in B-DNA duplexes. The enhanced binding affinity for A of W, as compared to T, makes it an ideal modification for biotechnological applications, such as efficient probe hybridization for the parallel detection of multiple DNA strands. In order to complement the experimental study and rationalize the impact of the non-natural W nucleoside on the structure, stability and dynamics of DNA structures, we performed quantum mechanics (QM) calculations along with molecular dynamics (MD) simulations. Consistently with the experimental study, our QM calculations show that the A:W base pair has an increased stability as compared to the natural A:T pair, due to an additional CH-π interaction. Furthermore, we show that mispairing between W and guanine (G) causes a distortion in the planarity of the base pair, thus explaining the destabilization of DNA duplexes featuring a G:W pair. MD simulations show that incorporation of single or multiple consecutive A:W pairs in DNA duplexes causes minor changes to the intra- and inter-base geometrical parameters, while a moderate widening/shrinking of the major/minor groove of the duplexes is observed. QM calculations applied to selected stacks from the MD simulations also show an increased stacking energy for W, over T, with the neighboring bases.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Suresh Gorle
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Abdul Rajjak Shaikh
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
29
|
Alenaizan A, Barnett JL, Hud NV, Sherrill CD, Petrov AS. The proto-Nucleic Acid Builder: a software tool for constructing nucleic acid analogs. Nucleic Acids Res 2021; 49:79-89. [PMID: 33300028 PMCID: PMC7797056 DOI: 10.1093/nar/gkaa1159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
The helical structures of DNA and RNA were originally revealed by experimental data. Likewise, the development of programs for modeling these natural polymers was guided by known structures. These nucleic acid polymers represent only two members of a potentially vast class of polymers with similar structural features, but that differ from DNA and RNA in the backbone or nucleobases. Xeno nucleic acids (XNAs) incorporate alternative backbones that affect the conformational, chemical, and thermodynamic properties of XNAs. Given the vast chemical space of possible XNAs, computational modeling of alternative nucleic acids can accelerate the search for plausible nucleic acid analogs and guide their rational design. Additionally, a tool for the modeling of nucleic acids could help reveal what nucleic acid polymers may have existed before RNA in the early evolution of life. To aid the development of novel XNA polymers and the search for possible pre-RNA candidates, this article presents the proto-Nucleic Acid Builder (https://github.com/GT-NucleicAcids/pnab), an open-source program for modeling nucleic acid analogs with alternative backbones and nucleobases. The torsion-driven conformation search procedure implemented here predicts structures with good accuracy compared to experimental structures, and correctly demonstrates the correlation between the helical structure and the backbone conformation in DNA and RNA.
Collapse
Affiliation(s)
- Asem Alenaizan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.,Center for Computational Molecular Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Joshua L Barnett
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, USA
| | - Nicholas V Hud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - C David Sherrill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.,Center for Computational Molecular Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.,School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0765, USA
| | - Anton S Petrov
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| |
Collapse
|
30
|
Ouaray Z, Benner SA, Georgiadis MM, Richards NGJ. Building better polymerases: Engineering the replication of expanded genetic alphabets. J Biol Chem 2020; 295:17046-17059. [PMID: 33004440 PMCID: PMC7863901 DOI: 10.1074/jbc.rev120.013745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/30/2020] [Indexed: 11/30/2022] Open
Abstract
DNA polymerases are today used throughout scientific research, biotechnology, and medicine, in part for their ability to interact with unnatural forms of DNA created by synthetic biologists. Here especially, natural DNA polymerases often do not have the "performance specifications" needed for transformative technologies. This creates a need for science-guided rational (or semi-rational) engineering to identify variants that replicate unnatural base pairs (UBPs), unnatural backbones, tags, or other evolutionarily novel features of unnatural DNA. In this review, we provide a brief overview of the chemistry and properties of replicative DNA polymerases and their evolved variants, focusing on the Klenow fragment of Taq DNA polymerase (Klentaq). We describe comparative structural, enzymatic, and molecular dynamics studies of WT and Klentaq variants, complexed with natural or noncanonical substrates. Combining these methods provides insight into how specific amino acid substitutions distant from the active site in a Klentaq DNA polymerase variant (ZP Klentaq) contribute to its ability to replicate UBPs with improved efficiency compared with Klentaq. This approach can therefore serve to guide any future rational engineering of replicative DNA polymerases.
Collapse
Affiliation(s)
- Zahra Ouaray
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida, USA
| | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Nigel G J Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom; Foundation for Applied Molecular Evolution, Alachua, Florida, USA.
| |
Collapse
|
31
|
Flamme M, Röthlisberger P, Levi-Acobas F, Chawla M, Oliva R, Cavallo L, Gasser G, Marlière P, Herdewijn P, Hollenstein M. Enzymatic Formation of an Artificial Base Pair Using a Modified Purine Nucleoside Triphosphate. ACS Chem Biol 2020; 15:2872-2884. [PMID: 33090769 DOI: 10.1021/acschembio.0c00396] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expansion of the genetic alphabet with additional, unnatural base pairs (UBPs) is an important and long-standing goal in synthetic biology. Nucleotides acting as ligands for the coordination of metal cations have advanced as promising candidates for such an expansion of the genetic alphabet. However, the inclusion of artificial metal base pairs in nucleic acids mainly relies on solid-phase synthesis approaches, and very little is known about polymerase-mediated synthesis. Herein, we report the selective and high yielding enzymatic construction of a silver-mediated base pair (dImC-AgI-dPurP) as well as a two-step protocol for the synthesis of DNA duplexes containing such an artificial metal base pair. Guided by DFT calculations, we also shed light into the mechanism of formation of this artificial base pair as well as into the structural and energetic preferences. The enzymatic synthesis of the dImC-AgI-dPurP artificial metal base pair provides valuable insights for the design of future, more potent systems aiming at expanding the genetic alphabet.
Collapse
Affiliation(s)
- Marie Flamme
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
- Université Paris Descartes, Sorbonne Paris Cité, 12 rue de l’École de Médecine, 75006 Paris, France
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Pascal Röthlisberger
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Fabienne Levi-Acobas
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal, 23955-6900 Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, 80143, Naples, Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal, 23955-6900 Saudi Arabia
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Philippe Marlière
- University of Paris Saclay, CNRS, iSSB, UEVE, Genopole, 5 Rue Henri Desbrueres, 91030 Evry, France
| | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat, 3000 Leuven, Belgium
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
32
|
Kimoto M, Hirao I. Genetic alphabet expansion technology by creating unnatural base pairs. Chem Soc Rev 2020; 49:7602-7626. [PMID: 33015699 DOI: 10.1039/d0cs00457j] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advancements in the creation of artificial extra base pairs (unnatural base pairs, UBPs) are opening the door to a new research area, xenobiology, and genetic alphabet expansion technologies. UBPs that function as third base pairs in replication, transcription, and/or translation enable the site-specific incorporation of novel components into DNA, RNA, and proteins. Here, we describe the UBPs developed by three research teams and their application in PCR-based diagnostics, high-affinity DNA aptamer generation, site-specific labeling of RNAs, semi-synthetic organism creation, and unnatural-amino-acid-containing protein synthesis.
Collapse
Affiliation(s)
- Michiko Kimoto
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore.
| | | |
Collapse
|
33
|
Flamme M, Levi-Acobas F, Hensel S, Naskar S, Röthlisberger P, Sarac I, Gasser G, Müller J, Hollenstein M. Enzymatic Construction of Artificial Base Pairs: The Effect of Metal Shielding. Chembiochem 2020; 21:3398-3409. [PMID: 32673442 DOI: 10.1002/cbic.202000402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Th formation of metal base pairs is a versatile method for the introduction of metal cations into nucleic acids that has been used in numerous applications including the construction of metal nanowires, development of energy, charge-transfer devices and expansion of the genetic alphabet. As an alternative, enzymatic construction of metal base pairs is an alluring strategy that grants access to longer sequences and offers the possibility of using such unnatural base pairs (UBPs) in SELEX experiments for the identification of functional nucleic acids. This method remains rather underexplored, and a better understanding of the key parameters in the design of efficient nucleotides is required. We have investigated the effect of methylation of the imidazole nucleoside (dImnMe TP) on the efficiency of the enzymatic construction of metal base pairs. The presence of methyl substituents on dImTP facilitates the polymerase-driven formation of dIm4Me -AgI -dIm and dIm2Me TP-CrIII -dIm base pairs. Steric factors rather than the basicity of the imidazole nucleobase appear to govern the enzymatic formation of such metal base pairs. We also demonstrate the compatibility of other metal cations rarely considered in the construction of artificial metal bases by enzymatic DNA synthesis under both primer extension reaction and PCR conditions. These findings open up new directions for the design of nucleotide analogues for the development of metal base pairs.
Collapse
Affiliation(s)
- Marie Flamme
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France.,Université Paris Descartes, Sorbonne Paris Cité, 12 rue de l'École de Médecine, 75006, Paris, France.,Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 11, rue Pierre et Marie Curie, 75005, Paris, France
| | - Fabienne Levi-Acobas
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Susanne Hensel
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstrasse 30, 48149, Münster, Germany
| | - Shuvankar Naskar
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstrasse 30, 48149, Münster, Germany
| | - Pascal Röthlisberger
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Ivo Sarac
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 11, rue Pierre et Marie Curie, 75005, Paris, France
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstrasse 30, 48149, Münster, Germany
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
34
|
Marx A, Betz K. The Structural Basis for Processing of Unnatural Base Pairs by DNA Polymerases. Chemistry 2020; 26:3446-3463. [PMID: 31544987 PMCID: PMC7155079 DOI: 10.1002/chem.201903525] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Indexed: 12/16/2022]
Abstract
Unnatural base pairs (UBPs) greatly increase the diversity of DNA and RNA, furthering their broad range of molecular biological and biotechnological approaches. Different candidates have been developed whereby alternative hydrogen-bonding patterns and hydrophobic and packing interactions have turned out to be the most promising base-pairing concepts to date. The key in many applications is the highly efficient and selective acceptance of artificial base pairs by DNA polymerases, which enables amplification of the modified DNA. In this Review, computational as well as experimental studies that were performed to characterize the pairing behavior of UBPs in free duplex DNA or bound to the active site of KlenTaq DNA polymerase are highlighted. The structural studies, on the one hand, elucidate how base pairs lacking hydrogen bonds are accepted by these enzymes and, on the other hand, highlight the influence of one or several consecutive UBPs on the structure of a DNA double helix. Understanding these concepts facilitates optimization of future UBPs for the manifold fields of applications.
Collapse
Affiliation(s)
- Andreas Marx
- Department of ChemistryKonstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstrasse 1078464KonstanzGermany
| | - Karin Betz
- Department of ChemistryKonstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstrasse 1078464KonstanzGermany
| |
Collapse
|
35
|
Ouaray Z, Singh I, Georgiadis MM, Richards NGJ. Building better enzymes: Molecular basis of improved non-natural nucleobase incorporation by an evolved DNA polymerase. Protein Sci 2020; 29:455-468. [PMID: 31654473 PMCID: PMC6954703 DOI: 10.1002/pro.3762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 01/02/2023]
Abstract
Obtaining semisynthetic microorganisms that exploit the information density of "hachimoji" DNA requires access to engineered DNA polymerases. A KlenTaq variant has been reported that incorporates the "hachimoji" P:Z nucleobase pair with a similar efficiency to that seen for Watson-Crick nucleobase incorporation by the wild type (WT) KlenTaq DNA polymerase. The variant polymerase differs from WT KlenTaq by only four amino acid substitutions, none of which are located within the active site. We now report molecular dynamics (MD) simulations on a series of binary complexes aimed at elucidating the contributions of the four amino acid substitutions to altered catalytic activity. These simulations suggest that WT KlenTaq is insufficiently flexible to be able to bind AEGIS DNA correctly, leading to the loss of key protein/DNA interactions needed to position the binary complex for efficient incorporation of the "hachimoji" Z nucleobase. In addition, we test literature hypotheses about the functional roles of each amino acid substitution and provide a molecular description of how individual residue changes contribute to the improved activity of the KlenTaq variant. We demonstrate that MD simulations have a clear role to play in systematically screening DNA polymerase variants capable of incorporating different types of nonnatural nucleobases thereby limiting the number that need to be characterized by experiment. It is now possible to build DNA molecules containing nonnatural nucleobase pairs in addition to A:T and G:C. Exploiting this development in synthetic biology requires engineered DNA polymerases that can replicate nonnatural nucleobase pairs. Computational studies on a DNA polymerase variant reveal how amino acid substitutions outside of the active site yield an enzyme that replicates nonnatural nucleobase pairs with high efficiency. This work will facilitate efforts to obtain bacteria possessing an expanded genetic alphabet.
Collapse
Affiliation(s)
| | - Isha Singh
- Department of Biochemistry & Molecular BiologyIndiana University School of MedicineIndianapolisIndiana
| | - Millie M. Georgiadis
- Department of Biochemistry & Molecular BiologyIndiana University School of MedicineIndianapolisIndiana
| | | |
Collapse
|
36
|
Confluence of theory and experiment reveals the catalytic mechanism of the Varkud satellite ribozyme. Nat Chem 2020; 12:193-201. [PMID: 31959957 PMCID: PMC7389185 DOI: 10.1038/s41557-019-0391-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/13/2019] [Indexed: 11/09/2022]
Abstract
The Varkud satellite ribozyme catalyses site-specific RNA cleavage and ligation, and serves as an important model system to understand RNA catalysis. Here, we combine stereospecific phosphorothioate substitution, precision nucleobase mutation and linear free-energy relationship measurements with molecular dynamics, molecular solvation theory and ab initio quantum mechanical/molecular mechanical free-energy simulations to gain insight into the catalysis. Through this confluence of theory and experiment, we unify the existing body of structural and functional data to unveil the catalytic mechanism in unprecedented detail, including the degree of proton transfer in the transition state. Further, we provide evidence for a critical Mg2+ in the active site that interacts with the scissile phosphate and anchors the general base guanine in position for nucleophile activation. This novel role for Mg2+ adds to the diversity of known catalytic RNA strategies and unifies functional features observed in the Varkud satellite, hairpin and hammerhead ribozyme classes.
Collapse
|
37
|
Jena NR. Electron and hole interactions with P, Z, and P:Z and the formation of mutagenic products by proton transfer reactions. Phys Chem Chem Phys 2020; 22:919-931. [DOI: 10.1039/c9cp05367k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Z would act as an electron acceptor and P would capture a hole in the unnatural DNA. The latter process would produce mutagenic products via a proton transfer reaction.
Collapse
Affiliation(s)
- N. R. Jena
- Discipline of Natural Sciences
- Indian Institute of Information Technology, Design, and Manufacturing
- Jabalpur-482005
- India
| |
Collapse
|
38
|
Zhang L, Wang S, Yang Z, Hoshika S, Xie S, Li J, Chen X, Wan S, Li L, Benner SA, Tan W. An Aptamer-Nanotrain Assembled from Six-Letter DNA Delivers Doxorubicin Selectively to Liver Cancer Cells. Angew Chem Int Ed Engl 2019; 59:663-668. [PMID: 31650689 DOI: 10.1002/anie.201909691] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/16/2019] [Indexed: 12/30/2022]
Abstract
Expanding the number of nucleotides in DNA increases the information density of functional DNA molecules, creating nanoassemblies that cannot be invaded by natural DNA/RNA in complex biological systems. Here, we show how six-letter GACTZP DNA contributes this property in two parts of a nanoassembly: 1) in an aptamer evolved from a six-letter DNA library to selectively bind liver cancer cells; and 2) in a six-letter self-assembling GACTZP nanotrain that carries the drug doxorubicin. The aptamer-nanotrain assembly, charged with doxorubicin, selectively kills liver cancer cells in culture, as the selectivity of the aptamer binding directs doxorubicin into the aptamer-targeted cells. The assembly does not kill untransformed cells that the aptamer does not bind. This architecture, built with an expanded genetic alphabet, is reminiscent of antibodies conjugated to drugs, which presumably act by this mechanism as well, but with the antibody replaced by an aptamer.
Collapse
Affiliation(s)
- Liqin Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China.,Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Sai Wang
- Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, FL, 32611, USA.,Current address: College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Zunyi Yang
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, Box 7, Alachua, FL, 32615, USA.,Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, FL, 32615, USA
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, Box 7, Alachua, FL, 32615, USA.,Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, FL, 32615, USA
| | - Sitao Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Jin Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Xigao Chen
- Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Shuo Wan
- Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Long Li
- Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, Box 7, Alachua, FL, 32615, USA.,Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, FL, 32615, USA
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China.,Department of Chemistry, Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
39
|
Zhang L, Wang S, Yang Z, Hoshika S, Xie S, Li J, Chen X, Wan S, Li L, Benner SA, Tan W. An Aptamer‐Nanotrain Assembled from Six‐Letter DNA Delivers Doxorubicin Selectively to Liver Cancer Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Liqin Zhang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology, Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
- Department of Chemistry Department of Physiology and Functional Genomics UF Health Cancer Center UF Genetics Institute University of Florida Gainesville FL 32611 USA
| | - Sai Wang
- Department of Chemistry Department of Physiology and Functional Genomics UF Health Cancer Center UF Genetics Institute University of Florida Gainesville FL 32611 USA
- Current address: College of Food Science and Engineering Ocean University of China Qingdao Shandong 266003 China
| | - Zunyi Yang
- Foundation for Applied Molecular Evolution 13709 Progress Boulevard, Box 7 Alachua FL 32615 USA
- Firebird Biomolecular Sciences LLC 13709 Progress Boulevard, Box 17 Alachua FL 32615 USA
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution 13709 Progress Boulevard, Box 7 Alachua FL 32615 USA
- Firebird Biomolecular Sciences LLC 13709 Progress Boulevard, Box 17 Alachua FL 32615 USA
| | - Sitao Xie
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology, Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Jin Li
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology, Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
| | - Xigao Chen
- Department of Chemistry Department of Physiology and Functional Genomics UF Health Cancer Center UF Genetics Institute University of Florida Gainesville FL 32611 USA
| | - Shuo Wan
- Department of Chemistry Department of Physiology and Functional Genomics UF Health Cancer Center UF Genetics Institute University of Florida Gainesville FL 32611 USA
| | - Long Li
- Department of Chemistry Department of Physiology and Functional Genomics UF Health Cancer Center UF Genetics Institute University of Florida Gainesville FL 32611 USA
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution 13709 Progress Boulevard, Box 7 Alachua FL 32615 USA
- Firebird Biomolecular Sciences LLC 13709 Progress Boulevard, Box 17 Alachua FL 32615 USA
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology, Aptamer Engineering Center of Hunan Province Hunan University Changsha Hunan 410082 China
- Department of Chemistry Department of Physiology and Functional Genomics UF Health Cancer Center UF Genetics Institute University of Florida Gainesville FL 32611 USA
| |
Collapse
|
40
|
Leonard P, Kondhare D, Jentgens X, Daniliuc C, Seela F. Nucleobase-Functionalized 5-Aza-7-deazaguanine Ribo- and 2′-Deoxyribonucleosides: Glycosylation, Pd-Assisted Cross-Coupling, and Photophysical Properties. J Org Chem 2019; 84:13313-13328. [DOI: 10.1021/acs.joc.9b01347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Dasharath Kondhare
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Xenia Jentgens
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Constantin Daniliuc
- Institut für Organische Chemie, Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| |
Collapse
|
41
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
42
|
Yan J, Xiong H, Cai S, Wen N, He Q, Liu Y, Peng D, Liu Z. Advances in aptamer screening technologies. Talanta 2019; 200:124-144. [DOI: 10.1016/j.talanta.2019.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/20/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
|
43
|
Behera B, Das P, Jena NR. Accurate Base Pair Energies of Artificially Expanded Genetic Information Systems (AEGIS): Clues for Their Mutagenic Characteristics. J Phys Chem B 2019; 123:6728-6739. [PMID: 31290661 DOI: 10.1021/acs.jpcb.9b04653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, several artificial nucleobases, such as B, S, J, V, X, K, P, and Z, have been proposed to help in the expansion of the genetic information system and diagnosis of diseases. Among these bases, P and Z were identified to form stable DNA and to participate in the replication. However, the stabilities of P:Z and other artificial base pairs are not fully understood. The abilities of these unnatural nucleobases in mispairing with themselves and with natural bases are also not known. Here, the ωB97X-D dispersion-corrected density functional theoretical and complete basis set (CBS-QB3) methods are used to obtain accurate structural and energetic data related to base pair interactions involving these unnatural nucleobases. The roles of protonation and deprotonation of certain artificial bases in inducing mutations are also studied. It is found that each artificial purine has a complementary artificial pyrimidine, the base pair interactions between which are similar to those of the natural Watson-Crick base pairs. Hence, these base pairs will function naturally and would not impart mutagenicity. Among these base pairs, the J:V complex is found to be the most stable and promising artificial base pair. Remarkably, the noncomplementary artificial nucleobases are found to form stable mispairs, which may generate mutagenic products in DNA. Similarly, the misinsertions of natural bases opposite artificial bases are also found to be mutagenic. The mechanisms of these mutations are explained in detail. These results are in agreement with earlier biochemical studies. It is thus expected that this study would aid in the advancement of the synthetic biology to design more robust artificial nucleotides.
Collapse
Affiliation(s)
- B Behera
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Jabalpur 482005 , India
| | - P Das
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Jabalpur 482005 , India
| | - N R Jena
- Discipline of Natural Sciences , Indian Institute of Information Technology, Design and Manufacturing , Jabalpur 482005 , India
| |
Collapse
|
44
|
Chawla M, Minenkov Y, Vu KB, Oliva R, Cavallo L. Structural and Energetic Impact of Non-natural 7-Deaza-8-azaguanine, 7-Deaza-8-azaisoguanine, and Their 7-Substituted Derivatives on Hydrogen-Bond Pairing with Cytosine and Isocytosine. Chembiochem 2019; 20:2262-2270. [PMID: 30983115 DOI: 10.1002/cbic.201900245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Indexed: 12/12/2022]
Abstract
The impact of 7-deaza-8-azaguanine (DAG) and 7-deaza-8-azaisoguanine (DAiG) modifications on the geometry and stability of the G:C Watson-Crick (cWW) base pair and the G:iC and iG:C reverse Watson-Crick (tWW) base pairs has been characterized theoretically. In addition, the effect on the same base pairs of seven C7-substituted DAG and DAiG derivatives, some of which have been previously experimentally characterized, has been investigated. Calculations indicate that all of these modifications have a negligible impact on the geometry of the above base pairs, and that modification of the heterocycle skeleton has a small impact on the base-pair interaction energies. Instead, base-pair interaction energies are dependent on the nature of the C7 substituent. For the 7-substituted DAG-C cWW systems, a linear correlation between the base-pair interaction energy and the Hammett constant of the 7-substituent is found, with higher interaction energies corresponding to more electron-withdrawing substituents. Therefore, the explored modifications are expected to be accommodated in both parallel and antiparallel nucleic acid duplexes without perturbing their geometry, while the strength of a base pair (and duplex) featuring a DAG modification can, in principle, be tuned by incorporating different substituents at the C7 position.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal, 23955-6900, Saudi Arabia
| | - Yury Minenkov
- Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region, 141700, Russia
| | - Khanh B Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ho Chi Minh City, Vietnam
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, 80143, Naples, Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
45
|
Zhou X, Kondhare D, Leonard P, Seela F. Anomeric 5-Aza-7-deaza-2'-deoxyguanosines in Silver-Ion-Mediated Homo and Hybrid Base Pairs: Impact of Mismatch Structure, Helical Environment, and Nucleobase Substituents on DNA Stability. Chemistry 2019; 25:10408-10419. [PMID: 31062885 DOI: 10.1002/chem.201901276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/30/2019] [Indexed: 12/13/2022]
Abstract
Nucleoside configuration (α-d vs. β-d), nucleobase substituents, and the helical DNA environment of silver-mediated 5-aza-7-deazaguanine-cytosine base pairs have a strong impact on DNA stability. This has been demonstrated by investigations on oligonucleotide duplexes with silver-mediated base pairs of α-d and β-d anomeric 5-aza-7-deaza-2'-deoxyguanosines and anomeric 2'-deoxycytidines incorporated in 12-mer duplexes. To this end, a new synthetic protocol has been developed to access the pure anomers of 5-aza-7-deaza-2'-deoxyguanosine by glycosylation of either the protected nucleobase or its salt followed by separation of the glycosylation products by crystallization and chromatography. Thermal stability measurements were performed on duplexes with α-d/α-d and β-d/β-d homo base pairs or α-d/β-d and β-d/α-d hybrid pairs within two sequence environments, positions 6 or 7, of oligonucleotide duplexes. The respective Tm stability increases observed after silver ion addition differ significantly. Homo base pairs with β-d/β-d or α-d/α-d nucleoside combinations are more stable than α-d/β-d hybrid base pairs. The positional switch of silver-ion-mediated base pairs has a significant impact on stability. Nucleobase substituents introduced at the 5-position of the dC site of silver-mediated base pairs affect base pair stability to a minor extent. Our investigation might lead to applications in the construction of bioinspired nanodevices, in DNA diagnostics, or metal-DNA hybrid materials.
Collapse
Affiliation(s)
- Xinglong Zhou
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 11, 48149, Münster, Germany
| | - Dasharath Kondhare
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 11, 48149, Münster, Germany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 11, 48149, Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany
| |
Collapse
|
46
|
Singh I, Laos R, Hoshika S, Benner SA, Georgiadis MM. Snapshots of an evolved DNA polymerase pre- and post-incorporation of an unnatural nucleotide. Nucleic Acids Res 2019; 46:7977-7988. [PMID: 29986111 PMCID: PMC6125688 DOI: 10.1093/nar/gky552] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/15/2018] [Indexed: 01/20/2023] Open
Abstract
The next challenge in synthetic biology is to be able to replicate synthetic nucleic acid sequences efficiently. The synthetic pair, 2-amino-8-(1-beta-d-2′- deoxyribofuranosyl) imidazo [1,2-a]-1,3,5-triazin-[8H]-4-one (trivially designated P) with 6-amino-3-(2′-deoxyribofuranosyl)-5-nitro-1H-pyridin-2-one (trivially designated Z), is replicated by certain Family A polymerases, albeit with lower efficiency. Through directed evolution, we identified a variant KlenTaq polymerase (M444V, P527A, D551E, E832V) that incorporates dZTP opposite P more efficiently than the wild-type enzyme. Here, we report two crystal structures of this variant KlenTaq, a post-incorporation complex that includes a template-primer with P:Z trapped in the active site (binary complex) and a pre-incorporation complex with dZTP paired to template P in the active site (ternary complex). In forming the ternary complex, the fingers domain exhibits a larger closure angle than in natural complexes but engages the template-primer and incoming dNTP through similar interactions. In the binary complex, although many of the interactions found in the natural complexes are retained, there is increased relative motion of the thumb domain. Collectively, our analyses suggest that it is the post-incorporation complex for unnatural substrates that presents a challenge to the natural enzyme and that more efficient replication of P:Z pairs requires a more flexible polymerase.
Collapse
Affiliation(s)
- Isha Singh
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Roberto Laos
- Foundation for Applied Molecular Evolution and the Westheimer Institute of Science & Technology, Alachua, FL 32615, USA
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution and the Westheimer Institute of Science & Technology, Alachua, FL 32615, USA
| | - Steven A Benner
- Foundation for Applied Molecular Evolution and the Westheimer Institute of Science & Technology, Alachua, FL 32615, USA.,Firebird Biomolecular Sciences LLC, Alachua, FL 32615, USA
| | - Millie M Georgiadis
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
47
|
Padroni G, Withers JM, Taladriz-Sender A, Reichenbach LF, Parkinson JA, Burley GA. Sequence-Selective Minor Groove Recognition of a DNA Duplex Containing Synthetic Genetic Components. J Am Chem Soc 2019; 141:9555-9563. [DOI: 10.1021/jacs.8b12444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Giacomo Padroni
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Jamie M. Withers
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Andrea Taladriz-Sender
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Linus F. Reichenbach
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - John A. Parkinson
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Glenn A. Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
48
|
Abstract
Steve Benner and collaborators have recently reported an analysis of DNA containing eight nucleotide letters, the four natural letters (dG, dC, dA, and dT) and four additional letters (dP, dZ, dS, and dB). Their analysis demonstrates that the additional letters do not perturb the structure or stability of the base pairs formed between the natural letters and, remarkably, that the new base pairs, dP-dZ and dS-dB, behave virtually identically to the natural base pairs. This unprecedented result convincingly demonstrates that the thermodynamic and structural behavior previously thought to be the purview of only natural DNA is in fact not unique and can be imparted to suitably designed synthetic components. In addition, the first evidence that the eight-letter DNA can be transcribed into RNA by a mutant RNA polymerase is presented, paving the way for the transfer of more information from one biopolymer to another. Along with others working to develop unnatural DNA base pairs for both in vitro and in vivo applications, this work represents an important step toward the expansion of the genetic alphabet, a central goal of synthetic biology, and has profound implications for our understanding of the molecules and forces that can make life possible.
Collapse
Affiliation(s)
- Vivian T Dien
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Matthew Holcomb
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Floyd E Romesberg
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
49
|
|
50
|
Tan J, Zhao M, Wang J, Li Z, Liang L, Zhang L, Yuan Q, Tan W. Regulation of Protein Activity and Cellular Functions Mediated by Molecularly Evolved Nucleic Acids. Angew Chem Int Ed Engl 2019; 58:1621-1625. [PMID: 30556364 PMCID: PMC6442720 DOI: 10.1002/anie.201809010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/07/2018] [Indexed: 01/05/2023]
Abstract
Regulation of protein activity is essential for revealing the molecular mechanisms of biological processes. DNA and RNA achieve many uniquely efficient functions, such as genetic expression and regulation. The chemical capability to synthesize artificial nucleotides can expand the chemical space of nucleic acid libraries and further increase the functional diversity of nucleic acids. Herein, a versatile method has been developed for modular expansion of the chemical space of nucleic acid libraries, thus enabling the generation of aptamers able to regulate protein activity. Specifically, an aptamer that targets integrin alpha3 was identified and this aptamer can inhibit cell adhesion and migration. Overall, this chemical-design-assisted in vitro selection approach enables the generation of functional nucleic acids for elucidating the molecular basis of biological activities and uncovering a novel basis for the rational design of new protein-inhibitor pharmaceuticals.
Collapse
Affiliation(s)
- Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082 China,
| | - Mengmeng Zhao
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082 China
| | - Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Ling Liang
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082 China
| | - Liqin Zhang
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082 China,
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082 China, Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|