1
|
Naganaboina VR, Jana S, Singh SG. Chemiresistive sensor array for quantitative prediction of CO and NO 2 gas concentrations in their mixture using machine learning algorithms. Mikrochim Acta 2024; 191:756. [PMID: 39579234 DOI: 10.1007/s00604-024-06835-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/09/2024] [Indexed: 11/25/2024]
Abstract
Single sensors have been developed for specific gas detection in real-time environments, but their selectivity is limited by interference from other gases when considering mixtures of gases. Consequently, accurate detection of target gases in mixed gas environments is essential. Therefore, this study develops a sensor array approach to quantitatively estimate the concentration of carbon monoxide (CO) and nitrogen dioxide (NO2) gases in their binary mixture (CO and NO2). The sensor array consists of two different sensors, developed with zinc oxide and graphene-cobalt sulfide. The sensor array was tested in the presence of 29 different proportions of the binary mixture at room temperature. Subsequently, machine learning (ML) algorithms are applied on sensor signals to estimate the concentration of gases. The ML models unfortunately exhibited inaccurate prediction when all sensor signals were considered, therefore, to improve the prediction accuracy, the sensor signals were divided into three levels based on the mixed gas concentration regime. Interestingly, the classification and regression algorithms provided good classification accuracy (85.13 ± 3.2%) and reasonable predictions of target gas concentrations at three levels. The proposed computational framework can be extended to include additional gases in mixed gases and used in various applications, including automotive, industrial, and environmental monitoring.
Collapse
Affiliation(s)
- Venkata Ramesh Naganaboina
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
- Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham Amaravati Campus, Amaravati, Andhra Pradesh, 522503, India
| | - Soumya Jana
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| |
Collapse
|
2
|
Duan Y, Guo Z, Wang T, Zhang J. Uniform anchoring of MoS 2 nanosheets on MOFs-derived CoFe 2O 4 porous nanolayers to construct heterogeneous structural configurations for efficient and stable overall water splitting. J Colloid Interface Sci 2024; 680:541-551. [PMID: 39579421 DOI: 10.1016/j.jcis.2024.11.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Rational interfacial engineering and morphology modulation are recognized as effective strategies to modulate the electronic structure and improving the activity of spinel materials. In this paper, we report a strategy of Fe-induced creation of porous nanolayers of CoFe2O4 with unique morphology derived from MOFs by introducing ferrocene, and then constructed CoFe2O4/MoS2 heterostructures were fabricated by homogeneously anchoring MoS2 nanosheets onto the surface of CoFe2O4. The triple synergistic effect of heterogeneous interfaces, highly active Mo(IV) sites, and unsaturated S effectively accelerates the cycling process between Fe(III)/Fe(II) and Co(III)/Co(II), which in turn enhances the adsorption of reactive intermediates on the active sites, as further corroborates by density functional theory (DFT) calculations. As a result, the CoFe2O4/MoS2 heterostructured catalysts prepared without noble metals exhibit high catalytic performance, necessitating only 270 mV and 229 mV to achieve the current density of 100 mA·cm-2 for OER and HER respectively, which is superior to most of the reported catalysts of interest. In addition, when used in an alkaline electrolyzer, it provides a current density of 10 mA·cm-2 at 1.54 V cell voltage. This work provides a new way for the rational construction of bifunctional water electrolytic catalysts.
Collapse
Affiliation(s)
- Yulin Duan
- School of Materials Science and Engineering & Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China
| | - Zhengang Guo
- School of Materials Science and Engineering & Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Tingting Wang
- School of Materials Science and Engineering & Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China
| | - Jifan Zhang
- School of Materials Science and Engineering & Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
3
|
Dilebo WB, Tsai MC, Chang CY, Edao HG, Nikodimos Y, Moges EA, Lakshmanan K, Angerasa FT, Guta CB, Ibrahim KB, Awoke YA, Alamirew T, Liao WS, Desta GB, Chen JL, Su WN, Hwang BJ. Synergistic interfacial electronic modulation of topotactically developed bimetallic CoNiP on NiS nanorods for enhanced alkaline hydrogen evolution reaction. NANOSCALE 2024; 16:20701-20713. [PMID: 39434624 DOI: 10.1039/d4nr02788d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Designing hybrid transition metal phosphosulfide electrocatalysts is critical for the hydrogen evolution reaction (HER). We propose a novel approach by designing a hierarchical structure of cobalt phosphide (CoP) and nickel phosphide (Ni8P3) nanoparticles topotactically developed on nickel sulfide (Ni3S2) nanorods (CoNiP/NiS) via a sulfuration-phosphorization strategy using conductive 3D nickel foam. Hierarchical heterostructured nanorods were achieved without the need for template removal steps or the assistance of surfactants. This not only simplifies the process but also improves the exposure of active sites for catalytic purposes. Furthermore, the theoretical calculation results revealed that the high H* adsorption-free energy for CoP and Ni8P3 phases significantly decreases upon coupling with Ni3S2, which indicates that the interfacial electronic interaction synergistically modulates both CoP and Ni8P3 (CoNiP) at the coupled interfaces and facilitates the adsorption and desorption of H* intermediates during the HER process. The resulting electrode exhibits excellent performance in the HER catalytic process and shows great performance for further exploration in the urea oxidation reaction (UOR). Our work provides a stepping stone toward rational topotactic transformation of active materials on porous substrates, using electronic structure regulation and heterointerfaces to produce promising electrocatalysts for sustainable, large-scale hydrogen production from water electrolysis.
Collapse
Affiliation(s)
- Woldesenbet Bafe Dilebo
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Meng-Che Tsai
- Department of Greenergy, National University of Tainan, Tainan City 70005, Taiwan.
| | - Chia-Yu Chang
- Nano-electrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Habib Gemechu Edao
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Yosef Nikodimos
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
- Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei City 106, Taiwan
| | - Endalkachew Asefa Moges
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Keseven Lakshmanan
- Nano-electrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Fikiru Temesgen Angerasa
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Chemeda Barasa Guta
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Kassa Belay Ibrahim
- Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia Mestre, Italy
| | - Yohannes Ayele Awoke
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Tesfaye Alamirew
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Wei-Sheng Liao
- Nano-electrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Gidey Bahre Desta
- Nano-electrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| | - Wei-Nien Su
- Nano-electrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
- Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei City 106, Taiwan
| | - Bing Joe Hwang
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan.
- Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei City 106, Taiwan
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| |
Collapse
|
4
|
Khera N, Jeevanandam P. CuCo 2S 4 nanoparticles synthesized via a thermal decomposition approach: evaluation of their potential as peroxidase mimics. NANOSCALE 2024; 16:18108-18118. [PMID: 39258884 DOI: 10.1039/d4nr02215g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The current study demonstrates the synthesis of CuCo2S4 nanoparticles using a novel thermal decomposition approach. The CuCo2S4 nanoparticles were synthesized under various conditions by changing the source of sulfur and the solvent. The CuCo2S4 nanoparticles were characterized using an array of analytical techniques. Powder XRD results indicate the successful formation of CuCo2S4 nanoparticles. TEM results show agglomerated nanoparticles with close to spherical morphology and XPS measurements indicate the presence of Cu2+, Cu+, Co3+, Co2+, and S2- in the samples. The CuCo2S4 nanoparticles exhibit weak ferromagnetic and paramagnetic behaviour at 5 K and 300 K, respectively. The CuCo2S4 nanoparticles were explored for their enzyme mimetic activity using 3,3',5,5' tetramethylbenzidine (TMB) as a substrate. They exhibit better catalytic activity compared to that of a natural enzyme (horseradish peroxidase) and other metal sulfide nanoparticles reported in the literature.
Collapse
Affiliation(s)
- Nainy Khera
- Department of Chemistry, Indian Institute of Technology, Roorkee, Roorkee-247667, India.
| | - Pethaiyan Jeevanandam
- Department of Chemistry, Indian Institute of Technology, Roorkee, Roorkee-247667, India.
| |
Collapse
|
5
|
Li J, Zhao Y, Xie X, Shi Y, Li L, Yang S, Xu HB, Wang Z, Chen X, Hu Y, Yu HB, Li Y, Peng X. Alloy Reconstruction in Pyrolytic Bowknot-like Heteronuclear CoFe Clusters for Electrocatalytic Application. Inorg Chem 2024; 63:16103-16113. [PMID: 39149799 DOI: 10.1021/acs.inorgchem.4c02915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The construction of doped molecular clusters is an intriguing way to perform bimetallic doping for electrocatalysts. However, efficiently harnessing the benefits of a doping strategy and alloy engineering to create a nanostructure for electrocatalytic application at the molecular level has consistently posed a challenge. Here we propose an in situ reconstruction strategy aimed at producing an alloy nanostructure through a pyrolysis process, originating from bowknot-like heterometallic clusters. The Schiff base, denoted as ligand L1 (o-vanillin ethylenediamine), was introduced as a precursor to coordinate Fe and Co metals, thereby yielding a heteronuclear metal cluster [(FeCo)(L1)2O]CH3CN. Subsequently, a comprehensive investigation of the in situ reconstruction process [(FeCo)(L1)2O](CH3CN) → [(FeCo)(L1)2O] → [M-O-M/M-O] [CH3+/CH3O+/H2C═N/C2H5+/C4H4+] → [FeCo/Fe3O4/Fe2O3/Co3O4][carbon layer] led to the formation of MOx/CoFe@NC-700 during the pyrolysis. This process reveals that the metals Fe and Co in the clusters undergo partly in situ evolution into FeCo alloys, resulting in the successful preparation of MOx/CoFe@NC (M = Fe, Co) nanomaterials that leverage the advantages of both doping strategies and alloy engineering. The synergistic interaction between alloy particles and metal oxides establishes active sites that contribute to the excellent oxygen evolution (OER) and hydrogen evolution (HER) catalytic behaviors. Notably, these materials exhibit outstanding OER and HER properties under alkaline conditions, with overpotentials of 191 and 88 mV for OER and HER, respectively, at 10 mA cm-2. Investigation of the in situ conversion of Schiff base bimetal clusters into alloy materials through pyrolysis offers a novel strategy for advancing electrocatalytic applications.
Collapse
Affiliation(s)
- Jianing Li
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Qianjiang Institute of Industrial Technology, School of Microelectronics, Hubei University, Youyi Avenue 368#, Wuhan 430062, P. R. China
| | - Yuanmeng Zhao
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Qianjiang Institute of Industrial Technology, School of Microelectronics, Hubei University, Youyi Avenue 368#, Wuhan 430062, P. R. China
| | - Xiangting Xie
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Qianjiang Institute of Industrial Technology, School of Microelectronics, Hubei University, Youyi Avenue 368#, Wuhan 430062, P. R. China
| | - Yuxin Shi
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Qianjiang Institute of Industrial Technology, School of Microelectronics, Hubei University, Youyi Avenue 368#, Wuhan 430062, P. R. China
| | - Li Li
- Wuhan National High Magnetic Field Center & School of Physic, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Shaoxi Yang
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Qianjiang Institute of Industrial Technology, School of Microelectronics, Hubei University, Youyi Avenue 368#, Wuhan 430062, P. R. China
| | - Hai-Bing Xu
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Qianjiang Institute of Industrial Technology, School of Microelectronics, Hubei University, Youyi Avenue 368#, Wuhan 430062, P. R. China
| | - Zheng Wang
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Qianjiang Institute of Industrial Technology, School of Microelectronics, Hubei University, Youyi Avenue 368#, Wuhan 430062, P. R. China
| | - Xueli Chen
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Yuxuan Hu
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Qianjiang Institute of Industrial Technology, School of Microelectronics, Hubei University, Youyi Avenue 368#, Wuhan 430062, P. R. China
| | - Hai-Bin Yu
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Qianjiang Institute of Industrial Technology, School of Microelectronics, Hubei University, Youyi Avenue 368#, Wuhan 430062, P. R. China
- Wuhan National High Magnetic Field Center & School of Physic, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yuebin Li
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Qianjiang Institute of Industrial Technology, School of Microelectronics, Hubei University, Youyi Avenue 368#, Wuhan 430062, P. R. China
| | - Xu Peng
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Qianjiang Institute of Industrial Technology, School of Microelectronics, Hubei University, Youyi Avenue 368#, Wuhan 430062, P. R. China
| |
Collapse
|
6
|
Krishna BNV, Ankinapalli OR, Reddy AR, Yu JS. Strong Carbon Layer-Encapsulated Cobalt Tin Sulfide-Based Nanoporous Material as a Bifunctional Electrocatalyst for Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311176. [PMID: 38528437 DOI: 10.1002/smll.202311176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/28/2024] [Indexed: 03/27/2024]
Abstract
Global demands for cost-effective, durable, highly active, and bifunctional catalysts for metal-air batteries are tremendously increasing in scientific research fields. In this work, a strategy for the rational fabrication of carbon layer-encapsulated cobalt tin sulfide nanopores (CoSnOH/S@C NPs) material as a bifunctional electrocatalyst for rechargeable zinc (Zn)-air batteries by a cost-effective and facile two-step hydrothermal method is reported. Moreover, the effect of metal elements on the morphology of CoSnOH nanodisks material via the hydrothermal method is investigated. Owing to its excellent nanostructure, exclusive porous network, and high specific surface area, the optimized CoSnOH/S@C NPs material reveals superior catalytic properties. The as-prepared CoSnOH/S@C NPs electrocatalyst reveals better properties of oxygen reduction reaction (half-wave potential of -0.88 V vs reversible hydrogen electrode) and oxygen evolution reaction (overpotential of 137 mV at 10 mA cm-2) when compared with commercial Pt/C and IrO2 catalyst materials. Most significantly, the CoSnO/S@C NPs-based Zn-air battery exhibits more excellent cycling stability than the Pt/C+IrO2 catalyst-based one. Consequently, the proposed material provides a new route for fabricating more active and stable multifunctional catalyst materials for energy conversion and storage systems.
Collapse
Affiliation(s)
- B N Vamsi Krishna
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Obula Reddy Ankinapalli
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Ayyaluri Ramakrishna Reddy
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jae Su Yu
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| |
Collapse
|
7
|
Yang Q, Chung K, Liu X, Sun L, Han J, Yang Y, Chen T, Shi W, Xu B. Confined Space Dual-Type Quantum Dots for High-Rate Electrochemical Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401375. [PMID: 38747977 DOI: 10.1002/adma.202401375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/10/2024] [Indexed: 05/21/2024]
Abstract
Owing to the quantum size effect and high redox activity, quantum dots (QDs) play very essential roles toward electrochemical energy storage. However, it is very difficult to obtain different types and uniformly dispersed high-active QDs in a stable conductive microenvironment, because QDs prepared by traditional methods are mostly dissolved in solution or loaded on the surface of other semiconductors. Herein, dual-type semiconductor QDs (Co9S8 and CdS) are skillfully constructed within the interlayer of ultrathin-layered double hydroxides. In particular, the expandable interlayer provides a very suitable confined space for the growth and uniform dispersion of QDs, where Co9S8 originates from in situ transformation of cobalt atoms in laminate and CdS is generated from interlayer pre-embedding Cd2+. Meanwhile, XAFS and GGA+U calculations are employed to explore and prove the mechanism of QDs formation and energy storage characteristics as compared to surface loading QDs. Significantly, the hybrid supercapacitors achieve a high energy density of 329.2 µWh cm-2, capacitance retention of 99.1%, and coulomb efficiency of 96.9% after 22 000 cycles, which is superior to the reported QDs-based supercapacitors. These findings provide unique insights for designing and developing stable, ordered, and highly active QDs.
Collapse
Affiliation(s)
- Qingjun Yang
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - KingYan Chung
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Xinlong Liu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Lin Sun
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jing Han
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Yujue Yang
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Tiandi Chen
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Bingang Xu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
8
|
Orgiani P, Braglia L, Polewczyk V, Nie Z, Lavini F, Punathum Chalil S, Chaluvadi SK, Rajak P, Morabito F, Dobovičnik E, Foglietti V, Torelli P, Riedo E, Ciancio R, Yang N, Aruta C. On the origin of the improved hydrogen evolution reaction in Mn- and Co-doped MoS 2. NANOSCALE 2024; 16:12237-12247. [PMID: 38847457 DOI: 10.1039/d4nr00876f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
In the field of hydrogen production, MoS2 demonstrates good catalytic properties for the hydrogen evolution reaction (HER) which improve when doped with metal cations. However, while the role of sulfur atoms as active sites in the HER is largely reported, the role of metal atoms (i.e. molybdenum or the dopant cations) has yet to be studied in depth. To understand the role of the metal dopant, we study MoS2 thin films doped with Co and Mn ions. We identify the contribution of the electronic bands of the Mn and Co dopants to the integral valence band of the material using in situ resonant photoemission measurements. We demonstrate that Mn and Co dopants act differently: Mn doping favors the shift of the S-Mo hybridized band towards the Fermi level, while in the case of Co doping it is the less hybridized Co band that shifts closer to the Fermi level. Doping with Mn increases the effectiveness of S as the active site, thus improving the HER, while doping with Co introduces the metallic site of Co as the active site, which is less effective in improving HER properties. We therefore clarify the role of the dopant cation in the electronic structure determining the active site for hydrogen adsorption/desorption. Our results pave the way for the design of efficient materials for hydrogen production via the doping route, which can be extended to different catalytic reactions in the field of energy applications.
Collapse
Affiliation(s)
- Pasquale Orgiani
- CNR-IOM, Strada Statale 14, km 163, 5 Basovizza, Trieste 34149, Italy
| | - Luca Braglia
- CNR-IOM, Strada Statale 14, km 163, 5 Basovizza, Trieste 34149, Italy
- Area Science Park, Padriciano 99, Trieste 34149, Italy
| | - Vincent Polewczyk
- CNR-IOM, Strada Statale 14, km 163, 5 Basovizza, Trieste 34149, Italy
| | - Zhiwei Nie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Francesco Lavini
- Tandon School of Engineering, New York University, New York, NY 11201, USA
| | | | | | - Piu Rajak
- CNR-IOM, Strada Statale 14, km 163, 5 Basovizza, Trieste 34149, Italy
| | - Floriana Morabito
- CNR-IOM, Strada Statale 14, km 163, 5 Basovizza, Trieste 34149, Italy
- Area Science Park, Padriciano 99, Trieste 34149, Italy
| | - Edvard Dobovičnik
- Department of Engineering and Architecture, University of Trieste, Trieste 34127, Italy
| | | | - Piero Torelli
- CNR-IOM, Strada Statale 14, km 163, 5 Basovizza, Trieste 34149, Italy
| | - Elisa Riedo
- Tandon School of Engineering, New York University, New York, NY 11201, USA
| | - Regina Ciancio
- CNR-IOM, Strada Statale 14, km 163, 5 Basovizza, Trieste 34149, Italy
- Area Science Park, Padriciano 99, Trieste 34149, Italy
| | - Nan Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Carmela Aruta
- CNR-SPIN, via del Fosso del Cavaliere 100, Roma 00133, Italy.
| |
Collapse
|
9
|
Zhao Y, Wan W, Erni R, Pan L, Patzke GR. Operando Spectroscopic Monitoring of Metal Chalcogenides for Overall Water Splitting: New Views of Active Species and Sites. Angew Chem Int Ed Engl 2024; 63:e202400048. [PMID: 38587199 DOI: 10.1002/anie.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/16/2024] [Accepted: 04/08/2024] [Indexed: 04/09/2024]
Abstract
Metal-based chalcogenides exhibit great promise for overall water splitting, yet their intrinsic catalytic reaction mechanisms remain to be fully understood. In this work, we employed operando X-ray absorption (XAS) and in situ Raman spectroscopy to elucidate the structure-activity relationships of low-crystalline cobalt sulfide (L-CoS) catalysts toward overall water splitting. The operando results for L-CoS catalyzing the alkaline hydrogen evolution reaction (HER) demonstrate that the cobalt centers in the bulk are predominantly coordinated by sulfur atoms, which undergo a kinetic structural rearrangement to generate metallic cobalt in S-Co-Co-S moieties as the true catalytically active species. In comparison, during the acidic HER, L-CoS undergoes local structural optimization of Co centers, and H2 production proceeds with adsorption/desorption of key intermediates atop the Co-S-Co configurations. Further operando characterizations highlight the crucial formation of high-valent Co4+ species in L-CoS for the alkaline oxygen evolution reaction (OER), and the formation of such active species was found to be far more facile than in crystalline Co3O4 and Co-LDH references. These insights offer a clear picture of the complexity of active species and site formation in different media, and demonstrate how their restructuring influences the catalytic activity.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Wenchao Wan
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, D-45470, Mülheim an der Ruhr, Germany
| | - Rolf Erni
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
| | - Long Pan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
10
|
Ding Z, Chen S, Yang T, Sheng Z, Zhang X, Pei C, Fu D, Zhao ZJ, Gong J. Atomically dispersed MoNi alloy catalyst for partial oxidation of methane. Nat Commun 2024; 15:4636. [PMID: 38821951 PMCID: PMC11143339 DOI: 10.1038/s41467-024-49038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
The catalytic partial oxidation of methane (POM) presents a promising technology for synthesizing syngas. However, it faces severe over-oxidation over catalyst surface. Attempts to modify metal surfaces by incorporating a secondary metal towards C-H bond activation of CH4 with moderate O* adsorption have remained the subject of intense research yet challenging. Herein, we report that high catalytic performance for POM can be achieved by the regulation of O* occupation in the atomically dispersed (AD) MoNi alloy, with over 95% CH4 conversion and 97% syngas selectivity at 800 °C. The combination of ex-situ/in-situ characterizations, kinetic analysis and DFT (density functional theory) calculations reveal that Mo-Ni dual sites in AD MoNi alloy afford the declined O2 poisoning on Ni sites with rarely weaken CH4 activation for partial oxidation pathway following the combustion reforming reaction (CRR) mechanism. These results underscore the effectiveness of CH4 turnovers by the design of atomically dispersed alloys with tunable O* adsorption.
Collapse
Affiliation(s)
- Zheyuan Ding
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Tingting Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Zunrong Sheng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Xianhua Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, China.
| |
Collapse
|
11
|
Yang K, Han SH, Cheng C, Guo C, Li T, Yu Y. Unveiling the Reaction Mechanism of Nitrate Reduction to Ammonia Over Cobalt-Based Electrocatalysts. J Am Chem Soc 2024; 146:12976-12983. [PMID: 38567925 DOI: 10.1021/jacs.3c13517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Electrocatalytic reduction of nitrate to ammonia (NRA) has emerged as an alternative strategy for sewage treatment and ammonia generation. Despite excellent performances having been achieved over cobalt-based electrocatalysts, the reaction mechanism as well as veritable active species across a wide potential range are still full of controversy. Here, we adopt CoP, Co, and Co3O4 as model materials to solve these issues. CoP evolves into a core@shell structured CoP@Co before NRA. For CoP@Co and Co catalysts, a three-step relay mechanism is carried out over superficial dynamical Coδ+ active species under low overpotential, while a continuous hydrogenation mechanism from nitrate to ammonia is unveiled over superficial Co species under high overpotential. In comparison, Co3O4 species are stable and steadily catalyze nitrate hydrogenation to ammonia across a wide potential range. As a result, CoP@Co and Co exhibit much higher NRA activity than Co3O4 especially under a low overpotential. Moreover, the NRA performance of CoP@Co is higher than Co although they experience the same reaction mechanism. A series of characterizations clarify the reason for performance enhancement highlighting that CoP core donates abundant electrons to superficial active species, leading to the generation of more active hydrogen for the reduction of nitrogen-containing intermediates.
Collapse
Affiliation(s)
- Kaiwen Yang
- Institute of Molecular Plus, School of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Shu-He Han
- Institute of Molecular Plus, School of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Chuanqi Cheng
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chengying Guo
- Institute of Molecular Plus, School of Chemical Engineering, Tianjin University, Tianjin 300072, China
- Asia Silicon Joint Research Center of Ammonia-Hydrogen New Energy, Tianjin University, Xining 810000, China
| | - Tieliang Li
- Institute of Molecular Plus, School of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Yifu Yu
- Institute of Molecular Plus, School of Chemical Engineering, Tianjin University, Tianjin 300072, China
- Asia Silicon Joint Research Center of Ammonia-Hydrogen New Energy, Tianjin University, Xining 810000, China
| |
Collapse
|
12
|
Wang H, Yuan H, Wang W, Wang X, Sun J, Yang J, Liu X, Zhao Q, Wang T, Wen N, Gao Y, Song K, Chen D, Wang S, Zhang YW, Wang J. Accelerating Sulfur Redox Kinetics by Electronic Modulation and Drifting Effects of Pre-Lithiation Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307741. [PMID: 37813568 DOI: 10.1002/adma.202307741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/01/2023] [Indexed: 10/17/2023]
Abstract
Efficient catalyst design is crucial for addressing the sluggish multi-step sulfur redox reaction (SRR) in lithium-sulfur batteries (LiSBs), which are among the promising candidates for the next-generation high-energy-density storage systems. However, the limited understanding of the underlying catalytic kinetic mechanisms and the lack of precise control over catalyst structures pose challenges in designing highly efficient catalysts, which hinder the LiSBs' practical application. Here, drawing inspiration from the theoretical calculations, the concept of precisely controlled pre-lithiation SRR electrocatalysts is proposed. The dual roles of channel and surface lithium in pre-lithiated 1T'-MoS2 are revealed, referred to as the "electronic modulation effect" and "drifting effect", respectively, both of which contribute to accelerating the SRR kinetics. As a result, the thus-designed 1T'-Lix MoS2 /CS cathode obtained by epitaxial growth of pre-lithiated 1T'-MoS2 on cubic Co9 S8 exhibits impressive performance with a high initial specific capacity of 1049.8 mAh g-1 , excellent rate-capability, and remarkable long-term cycling stability with a decay rate of only 0.019% per cycle over 1000 cycles at 3 C. This work highlights the importance of precise control in pre-lithiation parameters and the synergistic effects of channel and surface lithium, providing new valuable insights into the design and optimization of SRR electrocatalysts for high-performance LiSBs.
Collapse
Affiliation(s)
- Haimei Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Hao Yuan
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - Wanwan Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Xingyang Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Jianguo Sun
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Jing Yang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - Ximeng Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Qi Zhao
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Tuo Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Ning Wen
- School of Chemistry and Chemical Engineering, Shandong University Jinan, Jinan, Shandong, 250100, China
| | - Yulin Gao
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Kepeng Song
- Electron Microscopy Center, Shandong University, Jinan, Shandong, 250100, China
| | - Dairong Chen
- School of Chemistry and Chemical Engineering, Shandong University Jinan, Jinan, Shandong, 250100, China
| | - Shijie Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
- National University of Singapore (Chongqing) Research Institute, Chongqing Liang Jiang New Area, Chongqing, 401120, China
| |
Collapse
|
13
|
Xin J, Pang H, Gómez-García CJ, Sun W, Wu Q, Au CM, Ma H, Wang X, Yang G, Yu WY. One-Step Synthesis of Hollow CoS 2 Spheres Derived from Polyoxometalate-Based Metal-Organic Frameworks with Peroxidase-like Activity. Inorg Chem 2024; 63:860-869. [PMID: 38141027 DOI: 10.1021/acs.inorgchem.3c03890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
In this work, hollow CoS2 particles were prepared by a one-step sulfurization strategy using polyoxometalate-based metal-organic frameworks as the precursor. The morphology and structure of CoS2 have been monitored by scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray powder diffraction. The mechanism for the formation of CoS2 is discussed. The reaction time and sulfur content are found to be important factors that affect the morphology and pure phase formation of CoS2, and a hollow semioctahedral morphology of CoS2 with open voids was obtained when the sulfur source was twice as large as the precursor and the reaction time was 24 h. The CoS2 (24 h) particles show an excellent peroxidase-like activity for the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized (oxTMB) by hydrogen peroxide. The polyoxometalate used as a precursor helps to stabilize oxTMB during catalytic oxidation, forming a stable curve platform for at least 8 min. Additionally, the colorimetric detection of hydroquinone is developed with a low detection limit of 0.42 μM. This research provides a new strategy to design hollow materials with high peroxidase-mimicking activity.
Collapse
Affiliation(s)
- Jianjiao Xin
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
- Center of Teaching Experiment and Equipment Management, Qiqihar University, Qiqihar 161006, P. R. China
| | - Haijun Pang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Carlos J Gómez-García
- Departamento de Química Inorgánica, Universidad de Valencia, C/Dr. Moliner 50, Burjasot 46100, Spain
| | - Wenlong Sun
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Qiong Wu
- Department of Chemical Science and Technology, Kunming University, Kunming 650214, Yunnan, China
| | - Chi-Ming Au
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Huiyuan Ma
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Xinming Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Guixin Yang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Wing-Yiu Yu
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| |
Collapse
|
14
|
Sangtam BT, Park H. Review on Bubble Dynamics in Proton Exchange Membrane Water Electrolysis: Towards Optimal Green Hydrogen Yield. MICROMACHINES 2023; 14:2234. [PMID: 38138403 PMCID: PMC10745635 DOI: 10.3390/mi14122234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Water electrolysis using a proton exchange membrane (PEM) holds substantial promise to produce green hydrogen with zero carbon discharge. Although various techniques are available to produce hydrogen gas, the water electrolysis process tends to be more cost-effective with greater advantages for energy storage devices. However, one of the challenges associated with PEM water electrolysis is the accumulation of gas bubbles, which can impair cell performance and result in lower hydrogen output. Achieving an in-depth knowledge of bubble dynamics during electrolysis is essential for optimal cell performance. This review paper discusses bubble behaviors, measuring techniques, and other aspects of bubble dynamics in PEM water electrolysis. It also examines bubble behavior under different operating conditions, as well as the system geometry. The current review paper will further improve the understanding of bubble dynamics in PEM water electrolysis, facilitating more competent, inexpensive, and feasible green hydrogen production.
Collapse
Affiliation(s)
| | - Hanwook Park
- Department of Biomedical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Republic of Korea;
| |
Collapse
|
15
|
Wang B, Yang F, Feng L. Recent Advances in Co-Based Electrocatalysts for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302866. [PMID: 37434101 DOI: 10.1002/smll.202302866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Indexed: 07/13/2023]
Abstract
Water splitting is a promising technique in the sustainable "green hydrogen" generation to meet energy demands of modern society. Its industrial application is heavily dependent on the development of novel catalysts with high performance and low cost for hydrogen evolution reaction (HER). As a typical non-precious metal, cobalt-based catalysts have gained tremendous attention in recent years and shown a great prospect of commercialization. However, the complexity of the composition and structure of newly-developed Co-based catalysts make it urgent to comprehensively retrospect and summarize their advance and design strategies. Hence, in this review, the reaction mechanism of HER is first introduced and the possible role of the Co component during electrocatalysis is discussed. Then, various design strategies that could effectively enhance the intrinsic activity are summarized, including surface vacancy engineering, heteroatom doping, phase engineering, facet regulation, heterostructure construction, and the support effect. The recent progress of the advanced Co-based HER electrocatalysts is discussed, emphasizing that the application of the above design strategies can significantly improve performance by regulating the electronic structure and optimizing the binding energy to the crucial intermediates. At last, the prospects and challenges of Co-based catalysts are shown according to the viewpoint from fundamental explorations to industrial applications.
Collapse
Affiliation(s)
- Bin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou, 225002, China
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou, 225002, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou, 225002, China
| |
Collapse
|
16
|
Wang Y, Liu C, Duan H, Li Z, Wang C, Tan H, Feng S, Liu R, Li P, Yan W. Controlled synthesis of van der Waals CoS 2for improved p-type transistor contact. NANOTECHNOLOGY 2023; 35:025601. [PMID: 37797610 DOI: 10.1088/1361-6528/ad0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
Two-dimensional (2D) van der Waals (vdW) p-type semiconductors have shown attractive application prospects as atomically thin channels in electronic devices. However, the high Schottky hole barrier of p-type semiconductor-metal contacts induced by Fermi-level pinning is hardly removed. Herein, we prepare a vdW 1T-CoS2nanosheet as the contact electrode of a WSe2field-effect transistor (FET), which shows a considerably high on/off ratio > 107and a hole mobility of ∼114.5 cm2V-1s-1. The CoS2nanosheets exhibit metallic conductivity with thickness dependence, which surpasses most 2D transition metal dichalcogenide metals or semimetals. The excellent FET performance of the CoS2-contacted WSe2FET device can be attributed to the high work function of CoS2, which lowers the Schottky hole barrier. Our work provides an effective method for growing vdW CoS2and opens up more possibilities for the application of 2D p-type semiconductors in electronic devices.
Collapse
Affiliation(s)
- Yao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| | - Chaocheng Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| | - Hengli Duan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| | - Zhi Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| | - Hao Tan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| | - Sihua Feng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| | - Ruiqi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| | - Pai Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| |
Collapse
|
17
|
Su Y, Johannessen B, Zhang S, Chen Z, Gu Q, Li G, Yan H, Li JY, Hu HY, Zhu YF, Xu S, Liu H, Dou S, Xiao Y. Soft-Rigid Heterostructures with Functional Cation Vacancies for Fast-Charging and High-Capacity Sodium Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305149. [PMID: 37528535 DOI: 10.1002/adma.202305149] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/16/2023] [Indexed: 08/03/2023]
Abstract
Optimizing charge transfer and alleviating volume expansion in electrode materials are critical to maximize electrochemical performance for energy-storage systems. Herein, an atomically thin soft-rigid Co9 S8 @MoS2 core-shell heterostructure with dual cation vacancies at the atomic interface is constructed as a promising anode for high-performance sodium-ion batteries. The dual cation vacancies involving VCo and VMo in the heterostructure and the soft MoS2 shell afford ionic pathways for rapid charge transfer, as well as the rigid Co9 S8 core acting as the dominant active component and resisting structural deformation during charge-discharge. Electrochemical testing and theoretical calculations demonstrate both excellent Na+ -transfer kinetics and pseudocapacitive behavior. Consequently, the soft-rigid heterostructure delivers extraordinary sodium-storage performance (389.7 mA h g-1 after 500 cycles at 5.0 A g-1 ), superior to those of the single-phase counterparts: the assembled Na3 V2 (PO4 )3 ||d-Co9 S8 @MoS2 /S-Gr full cell achieves an energy density of 235.5 Wh kg-1 at 0.5 C. This finding opens up a unique strategy of soft-rigid heterostructure and broadens the horizons of material design in energy storage and conversion.
Collapse
Affiliation(s)
- Yu Su
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, China
| | | | - Shilin Zhang
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ziru Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qinfen Gu
- Australian Synchrotron, Clayton, VIC, 3168, Australia
| | - Guanjie Li
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Hong Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jia-Yang Li
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, China
| | - Hai-Yan Hu
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, China
| | - Yan-Fang Zhu
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, China
| | - Sailong Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, China
| | - Huakun Liu
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shixue Dou
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yao Xiao
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, China
| |
Collapse
|
18
|
Zhang J, Zhao W, Qian C, Cui Y, Li Y, Chen W, Li J, Huang H, Li X, Zhu X. Facile construction of a sulfur vacancy defect-decorated CoS x@In 2S 3 core/shell heterojunction for efficient visible-light-driven photocatalytic hydrogen evolution. Dalton Trans 2023; 52:12899-12908. [PMID: 37642527 DOI: 10.1039/d3dt02213g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Photoinduced electron-separation and -transport processes are two independent crucial factors for determining the efficiency of photocatalytic hydrogen production. Herein, a sulfur vacancy defect-decorated CoSx@In2S3 (CoSx@VS-In2S3) core/shell heterojunction photocatalyst was synthesized via an in situ sulfidation method followed by a liquid-phase corrosion process. Photocatalytic hydrogen evolution experiments showed that the CoSx@VS-In2S3 nanohybrids delivered an attractive photocatalytic activity of 4.136 mmol h-1 g-1 under visible-light irradiation, which was 8.23 times higher than that of the pristine In2S3 samples. As expected, VS could enhance the charge-separation efficiency of In2S3 through rearranging the electrons of the In2S3 basal plane, in addition to improving the electron-transfer efficiency, as visually verified by transient absorption spectroscopy. Mechanism studies based on density functional theory calculations confirmed that the In atoms adjacent to VS played a key role in the translation, rotation, and transformation of electrons for water reduction. This scalable strategy focused on defect engineering paves a new avenue for the design and assembly of 2D core/shell heterostructures for efficient and robust water-splitting photocatalysts.
Collapse
Affiliation(s)
- Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China.
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Weixian Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, P. R. China
| | - Canhui Qian
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China.
| | - Yan Cui
- Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, P. R. China.
| | - Yonghua Li
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Wei Chen
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, Zhejiang Province, 318000, P. R. China
| | - Jin Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, P. R. China
| | - Xing'ao Li
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China.
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Xinbao Zhu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
19
|
Tian Z, Wang W, Dong C, Deng X, Wang GH. A General and Scalable Approach to Sulfur-Doped Mono-/Bi-/Trimetallic Nanoparticles Confined in Mesoporous Carbon. ACS NANO 2023; 17:3889-3900. [PMID: 36790029 DOI: 10.1021/acsnano.2c12168] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal nanoparticles confined in porous carbon materials have been widely used in various heterogeneous catalytic processes due to their enhanced activity and stability. However, fabrication of such catalysts in a facile and scalable way remains challenging. Herein, we report a general and scalable thiol-assisted strategy to synthesize sulfur-doped mono-/bi-/trimetallic nanoparticles confined in mesoporous carbon (S-M@MC, M = Pt, Pd, Rh, Co, Zn, etc.), involving only two synthetic steps, i.e., a hydrothermal process and pyrolysis. The strategy is based on coordination chemistry and hydro-phobic interaction that the metal precursors coordinated with the hydrophobic thiol ligands are located at the hydrophobic core of micelles, in situ confined in the hydrothermally prepared mesostructured polymer, and then converted into sulfur-doped metal nanoparticles confined in MC after pyrolysis. It is demonstrated that the S-PtCo@MC exhibits enhanced catalytic activity and improved durability toward acidic hydrogen evolution reaction due to the confinement effect and S-doping.
Collapse
Affiliation(s)
- Zhengbin Tian
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Wenquan Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Dong
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiaohui Deng
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Guang-Hui Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Zhang C, Xu Z, Han N, Tian Y, Kallio T, Yu C, Jiang L. Superaerophilic/superaerophobic cooperative electrode for efficient hydrogen evolution reaction via enhanced mass transfer. SCIENCE ADVANCES 2023; 9:eadd6978. [PMID: 36652519 PMCID: PMC9848275 DOI: 10.1126/sciadv.add6978] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Hydrogen evolution reaction (HER), as an effective method to produce green hydrogen, is greatly impeded by inefficient mass transfer, i.e., bubble adhesion on electrode, bubble dispersion in the vicinity of electrode, and poor dissolved H2 diffusion, which results in blocked electrocatalytic area and large H2 concentration overpotential. Here, we report a superaerophilic/superaerophobic (SAL/SAB) cooperative electrode to efficiently promote bubble transfer by asymmetric Laplace pressure and accelerate dissolved H2 diffusion through reducing diffusion distance. Benefiting from the enhanced mass transfer, the overpotential for the SAL/SAB cooperative electrode at -10 mA cm-2 is only -19 mV, compared to -61 mV on the flat Pt electrode. By optimizing H2SO4 concentration, the SAL/SAB cooperative electrode can achieve ultrahigh current density (-1867 mA cm-2) at an overpotential of -500 mV. We can envision that the SAL/SAB cooperative strategy is an effective method to improve HER efficiency and stimulate the understanding of various gas-involved processes.
Collapse
Affiliation(s)
- Chunhui Zhang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Xu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Nana Han
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland
| | - Ye Tian
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tanja Kallio
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland
| | - Cunming Yu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- Corresponding author. (C.Y.); (L.J.)
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- Corresponding author. (C.Y.); (L.J.)
| |
Collapse
|
21
|
Vinayagam R, Hebbar A, Senthil Kumar P, Rangasamy G, Varadavenkatesan T, Murugesan G, Srivastava S, Concepta Goveas L, Manoj Kumar N, Selvaraj R. Green synthesized cobalt oxide nanoparticles with photocatalytic activity towards dye removal. ENVIRONMENTAL RESEARCH 2023; 216:114766. [PMID: 36370813 DOI: 10.1016/j.envres.2022.114766] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The present study aimed at the synthesis of cobalt oxide nanoparticles (CONPs) mediated by leaf extract of Muntingia calabura using a rapid and simple method and evaluation of its photocatalytic activity against methylene blue (MB) dye. UV-vis absorption spectrum showed multiple peaks with an optical band gap of 2.05 eV, which was concordant with the literature. FESEM image signified the irregular-shaped, clusters of CONPs, and EDX confirmed the existence of the Co and O elements. The sharp peaks of XRD spectrum corroborated the crystalline nature with a mean crystallite size of 27.59 nm. Raman spectrum substantiated the purity and structural defects. XPS signified the presence of Co in different oxidation states. FTIR image revealed the presence of various phytochemicals present on the surface and the bands at 515 and 630 cm-1 designated the characteristic Co-O bonds. VSM studies confirmed the antiferromagnetic property with negligible hysteresis. The high BET specific surface area (10.31 m2/g) and the mesoporous nature of the pores of CONPs signified the presence of a large number of active sites, thus, indicating their suitability as photocatalysts. The CONPs degraded 88% of 10 mg/L MB dye within 300 min of exposure to sunlight. The degradation of MB dye occurred due to the formation of hydroxyl free radicals on exposure to sunlight, which followed first-order kinetics with rate constant of 0.0065 min-1. Hence, the CONPs synthesized herein could be applied to degrade other xenobiotics and the treatment of industrial wastewater and environmentally polluted samples.
Collapse
Affiliation(s)
- Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Akshatha Hebbar
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
| | - Gayathri Rangasamy
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gokulakrishnan Murugesan
- Department of Biotechnology, M.S.Ramaiah Institute of Technology, Bengaluru - 560054, Karnataka, India
| | - Shikhar Srivastava
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Louella Concepta Goveas
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka, 574110, India
| | - N Manoj Kumar
- Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
22
|
Recent Advances in In Situ/Operando Surface/Interface Characterization Techniques for the Study of Artificial Photosynthesis. INORGANICS 2022. [DOI: 10.3390/inorganics11010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
(Photo-)electrocatalytic artificial photosynthesis driven by electrical and/or solar energy that converts water (H2O) and carbon dioxide (CO2) into hydrogen (H2), carbohydrates and oxygen (O2), has proven to be a promising and effective route for producing clean alternatives to fossil fuels, as well as for storing intermittent renewable energy, and thus to solve the energy crisis and climate change issues that we are facing today. Basic (photo-)electrocatalysis consists of three main processes: (1) light absorption, (2) the separation and transport of photogenerated charge carriers, and (3) the transfer of photogenerated charge carriers at the interfaces. With further research, scientists have found that these three steps are significantly affected by surface and interface properties (e.g., defect, dangling bonds, adsorption/desorption, surface recombination, electric double layer (EDL), surface dipole). Therefore, the catalytic performance, which to a great extent is determined by the physicochemical properties of surfaces and interfaces between catalyst and reactant, can be changed dramatically under working conditions. Common approaches for investigating these phenomena include X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), scanning probe microscopy (SPM), wide angle X-ray diffraction (WAXRD), auger electron spectroscopy (AES), transmission electron microscope (TEM), etc. Generally, these techniques can only be applied under ex situ conditions and cannot fully recover the changes of catalysts in real chemical reactions. How to identify and track alterations of the catalysts, and thus provide further insight into the complex mechanisms behind them, has become a major research topic in this field. The application of in situ/operando characterization techniques enables real-time monitoring and analysis of dynamic changes. Therefore, researchers can obtain physical and/or chemical information during the reaction (e.g., morphology, chemical bonding, valence state, photocurrent distribution, surface potential variation, surface reconstruction), or even by the combination of these techniques as a suite (e.g., atomic force microscopy-based infrared spectroscopy (AFM-IR), or near-ambient-pressure STM/XPS combined system (NAP STM-XPS)) to correlate the various properties simultaneously, so as to further reveal the reaction mechanisms. In this review, we briefly describe the working principles of in situ/operando surface/interface characterization technologies (i.e., SPM and X-ray spectroscopy) and discuss the recent progress in monitoring relevant surface/interface changes during water splitting and CO2 reduction reactions (CO2RR). We hope that this review will provide our readers with some ideas and guidance about how these in situ/operando characterization techniques can help us investigate the changes in catalyst surfaces/interfaces, and further promote the development of (photo-)electrocatalytic surface and interface engineering.
Collapse
|
23
|
Begildayeva T, Theerthagiri J, Lee SJ, Yu Y, Choi MY. Unraveling the Synergy of Anion Modulation on Co Electrocatalysts by Pulsed Laser for Water Splitting: Intermediate Capturing by In Situ/Operando Raman Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204309. [PMID: 36192152 DOI: 10.1002/smll.202204309] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Herein, the authors produce Co-based (Co3 (PO4 )2 , Co3 O4 , and Co9 S8 ) electrocatalysts via pulsed laser ablation in liquid (PLAL) to explore the synergy of anion modulation on phase-selective active sites in the electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Co3 (PO4 )2 displays an ultralow overpotential of 230 mV at 10 mA cm-2 with 48.5 mV dec-1 Tafel slope that outperforms the state-of-the-art Ir/C in OER due to its high intrinsic activity. Meanwhile, Co9 S8 exhibits the highest HER performance known to the authors among the synthesized Co-based catalysts, showing the lowest overpotential of 361 mV at 10 mA cm-2 with 95.8 mV dec-1 Tafel slope in the alkaline medium and producing H2 gas with ≈500 mmol g-1 h-1 yield rate under -0.45 V versus RHE. The identified surface reactive intermediates over in situ electrochemical-Raman spectroscopy reveal that cobalt(hydr)oxides with higher oxidation states of Co-cation forming under oxidizing potentials on the electrode-electrolyte surface of Co3 (PO4 )2 facilitate the OER, while Co(OH)2 facilitate the HER. Notably, the fabricated two-electrode electrolyzers using Co3 (PO4 )2 , Co3 O4 , and Co9 S8 electrocatalysts deliver the cell potentials ≈2.01, 2.11, and 1.89 V, respectively, at 10 mA cm-2 . This work not only shows PLAL-synthesized electrocatalysts as promising candidates for water splitting, but also provides an underlying principle for advanced energy-conversion catalysts and beyond.
Collapse
Affiliation(s)
- Talshyn Begildayeva
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jayaraman Theerthagiri
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, South Korea
| | - Yiseul Yu
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, South Korea
| |
Collapse
|
24
|
Ali M, Wahid M, Majid K. Mixed NiCo-phosphate/sulphide heterostructure as an efficient electrocatalyst for hydrogen evolution reaction. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01764-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Williams CK, McCarver GA, Chaturvedi A, Sinha S, Ang M, Vogiatzis KD, Jiang J“J. Electrocatalytic Hydrogen Evolution Using A Molecular Antimony Complex under Aqueous Conditions: An Experimental and Computational Study on Main‐Group Element Catalysis. Chemistry 2022; 28:e202201323. [DOI: 10.1002/chem.202201323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Caroline K. Williams
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati Ohio 45221 USA
| | - Gavin A. McCarver
- Department of Chemistry University of Tennessee Knoxville Tennessee 37996-1600 USA
| | - Ashwin Chaturvedi
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati Ohio 45221 USA
| | - Soumalya Sinha
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati Ohio 45221 USA
| | - Marcus Ang
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati Ohio 45221 USA
| | | | - Jianbing “Jimmy” Jiang
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati Ohio 45221 USA
| |
Collapse
|
26
|
Sudrajat H, Susanti A, Hartuti S. Efficient electron extraction by CoS 2loaded onto anatase TiO 2for improved photocatalytic hydrogen evolution. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:344005. [PMID: 35762787 DOI: 10.1088/1361-648x/ac792d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Titanium dioxide (TiO2) as a benchmark photocatalyst has been attracting attention due to its photocatalytic activity combined with photochemical stability. In particular, TiO2with anatase polymorph holds promise for driving reduction reactions, such as proton reduction to evolve H2via photocatalysis. In this study, anatase TiO2is loaded with CoS2through the hydrothermal route to form a CoS2@TiO2photocatalyst system. X-ray absorption near edge structure confirms the +2-oxidation state of the Co cation, while extended x-ray absorption fine structure shows that each Co2+cation is primarily coordinated to six S-anions forming a CoS2-like species. A small fraction of the Co2+species is also coordinated to O2-anions forming CoxOyspecies and substitutionally resides at the Ti4+-sites. Further investigations with steady-state IR absorption induced by UV-light and time-resolved microwave conductivity suggest an efficient electron transfer from the conduction band of TiO2to the surface-loaded CoS2which acts as a metallic material with no bandgap. The CoS2shallowly traps electrons at the host surface and facilitates proton reduction. An appreciably enhanced H2evolution rate (8 times) is recognised upon the CoS2loading. The CoS2is here proposed to function as a proton reduction cocatalyst, which can potentially be an alternative to noble metals.
Collapse
Affiliation(s)
- Hanggara Sudrajat
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Ari Susanti
- Department of Chemical Engineering, State Polytechnic of Malang, Malang 65141, Indonesia
| | - Sri Hartuti
- Department of Environmental and Renewable Energy Systems, Graduate School of Engineering, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
27
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 242] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
28
|
Wang Y, Li H, Zhou W, Zhang X, Zhang B, Yu Y. Structurally Disordered RuO 2 Nanosheets with Rich Oxygen Vacancies for Enhanced Nitrate Electroreduction to Ammonia. Angew Chem Int Ed Engl 2022; 61:e202202604. [PMID: 35231157 DOI: 10.1002/anie.202202604] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 01/19/2023]
Abstract
Electrochemical reduction of nitrate pollutants to ammonia has emerged as an attractive alternative for ammonia synthesis. Currently, many strategies have been developed for enhancing nitrate reduction to ammonia (NRA) efficiency, but the influence of the degree of structural disorder is still unexplored. Here, carbon-supported RuO2 nanosheets with adjustable crystallinity are synthesized by a facile molten salt method. The as-synthesized amorphous RuO2 displays high ammonia Faradaic efficiency (97.46 %) and selectivity (96.42 %), greatly outperforming the crystalline counterparts. The disordered structure with abundant oxygen vacancies is revealed to modulate the d-band center and hydrogen affinity, thus lowering the energy of the potential-determining step (NH2 *→NH3 *).
Collapse
Affiliation(s)
- Yuting Wang
- School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Hongjiao Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wei Zhou
- School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Xi Zhang
- School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Bin Zhang
- School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Yifu Yu
- School of Science, Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
29
|
Lei Y, Wu C, Lu X, Hua W, Li S, Liang Y, Liu H, Lai WH, Gu Q, Cai X, Wang N, Wang YX, Chou SL, Liu HK, Wang G, Dou SX. Streamline Sulfur Redox Reactions to Achieve Efficient Room-Temperature Sodium-Sulfur Batteries. Angew Chem Int Ed Engl 2022; 61:e202200384. [PMID: 35119192 DOI: 10.1002/anie.202200384] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 11/06/2022]
Abstract
It is vital to dynamically regulate S activity to achieve efficient and stable room-temperature sodium-sulfur (RT/Na-S) batteries. Herein, we report using cobalt sulfide as an electron reservoir to enhance the activity of sulfur cathodes, and simultaneously combining with cobalt single atoms as double-end binding sites for a stable S conversion process. The rationally constructed CoS2 electron reservoir enables the straight reduction of S to short-chain sodium polysulfides (Na2 S4 ) via a streamlined redox path through electron transfer. Meanwhile, cobalt single atoms synergistically work with the electron reservoir to reinforce the streamlined redox path, which immobilize in situ formed long-chain products and catalyze their conversion, thus realizing high S utilization and sustainable cycling stability. The as-developed sulfur cathodes exhibit a superior rate performance of 443 mAh g-1 at 5 A g-1 with a high cycling capacity retention of 80 % after 5000 cycles at 5 A g-1 .
Collapse
Affiliation(s)
- Yaojie Lei
- Institute for Superconducting & Electronic Materials, University of Wollongong, Innovation Campus, Wollongong, NSW 2500, Australia
| | - Can Wu
- Institute for Superconducting & Electronic Materials, University of Wollongong, Innovation Campus, Wollongong, NSW 2500, Australia.,Institute of Powder and New Energy Material Preparation Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Xinxin Lu
- Particles and catalysis research group, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Weibo Hua
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Shaobo Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Yaru Liang
- School of Materials Science and Engineering, Xiangtan University, Hunan, 411105, China
| | - Hanwen Liu
- Institute for Superconducting & Electronic Materials, University of Wollongong, Innovation Campus, Wollongong, NSW 2500, Australia
| | - Wei-Hong Lai
- Centre for Clean Energy Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qinfeng Gu
- Australian Synchrotron 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Xiaolan Cai
- Institute of Powder and New Energy Material Preparation Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Nana Wang
- Institute for Superconducting & Electronic Materials, University of Wollongong, Innovation Campus, Wollongong, NSW 2500, Australia
| | - Yun-Xiao Wang
- Institute for Superconducting & Electronic Materials, University of Wollongong, Innovation Campus, Wollongong, NSW 2500, Australia
| | - Shu-Lei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Hua-Kun Liu
- Institute for Superconducting & Electronic Materials, University of Wollongong, Innovation Campus, Wollongong, NSW 2500, Australia
| | - Guoxiu Wang
- Centre for Clean Energy Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Shi-Xue Dou
- Institute for Superconducting & Electronic Materials, University of Wollongong, Innovation Campus, Wollongong, NSW 2500, Australia
| |
Collapse
|
30
|
Shen S, Wang Z, Lin Z, Song K, Zhang Q, Meng F, Gu L, Zhong W. Crystalline-Amorphous Interfaces Coupling of CoSe 2 /CoP with Optimized d-Band Center and Boosted Electrocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110631. [PMID: 35040208 DOI: 10.1002/adma.202110631] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Amorphous and heterojunction materials have been widely used in the field of electrocatalytic hydrogen evolution due to their unique physicochemical properties. However, the current used individual strategy still has limited effects. Hence efficient tailoring tactics with synergistic effect are highly desired. Herein, the authors have realized the deep optimization of catalytic activity by a constructing crystalline-amorphous CoSe2 /CoP heterojunction. Benefiting from the strong electronic coupling at the interfaces, the d-band center of the material moves further down compared to its crystalline-crystalline counterpart, optimizing the valence state and the H adsorption of Co and lowering the kinetic barrier of hydrogen evolution reaction (HER). The heterojunction shows an overpotential of 65 mV to drive a current density of 10 mA cm-2 in the acidic medium. Besides, it also shows competitive properties in both neutral and basic media. This work provides inspiration for optimizing the catalytic activity through combining a crystalline and amorphous heterojunction, which can be implemented for other transition metal compound electrocatalysts.
Collapse
Affiliation(s)
- Shijie Shen
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Zongpeng Wang
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Zhiping Lin
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Kai Song
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Qinghua Zhang
- Institution of Physics, Chinese Academic of Science, No. 8, 3rd South Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Fanqi Meng
- Institution of Physics, Chinese Academic of Science, No. 8, 3rd South Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Lin Gu
- Institution of Physics, Chinese Academic of Science, No. 8, 3rd South Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Wenwu Zhong
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang, Zhejiang, 318000, China
- School of Material Science and Hydrogen Energy, Foshan Institute of Technology, No. 18, Jiangwanyi Road, Foshan, 528000, China
| |
Collapse
|
31
|
Shao Z, Zhu Q, Sun Y, Zhang Y, Jiang Y, Deng S, Zhang W, Huang K, Feng S. Phase-Reconfiguration-Induced NiS/NiFe 2 O 4 Composite for Performance-Enhanced Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110172. [PMID: 35170104 DOI: 10.1002/adma.202110172] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Constructing composite structures is an essential approach for obtaining multiple functionalities in a single entity. Available synthesis methods of the composites need to be urgently exploited; especially in situ construction. Here, a NiS/NiFe2 O4 composite through a local metal-S coordination at the interface is reported, which is derived from phase reconstruction in the highly defective matrix. X-ray absorption fine structure confirms that long-range order is broken via the local metal-S coordination and, by using electron energy loss spectroscopy, the introduction of NiS/NiFe2 O4 interfaces during the irradiation of plasma energy is identified. Density functional theory (DFT) calculations reveal that in situ phase reconfiguration is crucial for synergistically reducing energetic barriers and accelerating reaction kinetics toward catalyzing the oxygen evolution reaction (OER). As a result; it leads to an overpotential of 230 mV @10 mA cm-2 for the OER and a half-wave potential of 0.81 V for the oxygen reduction reaction (ORR); as well as an excellent zinc-air battery (ZAB) performance with a power density of 148.5 mW cm-2 . This work provides a new compositing strategy in terms of fast phase reconstruction of bifunctional catalysts.
Collapse
Affiliation(s)
- Zhiyu Shao
- State Key Laboratory of Inorganic Synthesis and Preparative, Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Qian Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative, Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Yu Sun
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, China
| | - Yuan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative, Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Yilan Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Shiqing Deng
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Wei Zhang
- Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative, Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative, Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| |
Collapse
|
32
|
Wang Y, Li H, Zhou W, Zhang X, Zhang B, Yu Y. Structurally Disordered RuO
2
Nanosheets with Rich Oxygen Vacancies for Enhanced Nitrate Electroreduction to Ammonia. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuting Wang
- School of Science, Institute of Molecular Plus Tianjin University Tianjin 300072 China
| | - Hongjiao Li
- School of Chemical Engineering Sichuan University Chengdu Sichuan 610065 China
| | - Wei Zhou
- School of Science, Institute of Molecular Plus Tianjin University Tianjin 300072 China
| | - Xi Zhang
- School of Science, Institute of Molecular Plus Tianjin University Tianjin 300072 China
| | - Bin Zhang
- School of Science, Institute of Molecular Plus Tianjin University Tianjin 300072 China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering Ministry of Education) Tianjin University Tianjin 300072 China
| | - Yifu Yu
- School of Science, Institute of Molecular Plus Tianjin University Tianjin 300072 China
| |
Collapse
|
33
|
Wang Q, Xu H, Qian X, Huang B, Wang K, Jin L, He G, Chen H. Successive Anion/Cation Exchange Enables the Fabrication of Hollow CuCo 2S 4 Nanorods for Advanced Oxygen Evolution Reaction Electrocatalysis. Inorg Chem 2022; 61:3176-3185. [PMID: 35143186 DOI: 10.1021/acs.inorgchem.1c03641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hollow CuCo2S4 nanorods (H-CCS-Ns) have been successfully developed via a facile successive anion/cation-exchange method. The outstanding electrocatalytic performance of H-CCS-Ns is mainly attributed to its distinctive hollow structure, which accelerates the electron transfer rate and provides abundant active sites. Moreover, a mechanism study indicates that H-CCS-Ns has highly active octahedral Co3+, and the existence of Co3+ cations optimizes the adsorption of oxygen-involved intermediates, making H-CCS-Ns a promising OER electrocatalyst. Optimized H-CCS-Ns only need an ultralow overpotential of 220 mV to drive a current density of 10 mA·cm-2 and exhibit distinguished cycling stability with a negligible fluctuation for 30 h. More impressively, when H-CCS-Ns are assembled with Pt/C for overall water splitting, a voltage as low as 1.545 V is required at a current density of 10 mA·cm-2, and the catalyst shows outstanding stability for as long as 38 h. This study offers a feasible strategy to design hollow spinel catalysts for efficient OER catalysis.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Xingyue Qian
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Bingji Huang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Kun Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Lei Jin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| |
Collapse
|
34
|
Wang G, Lei Y, Wu C, Lu X, Hua W, Li S, Liang Y, Liu H, lai W, Gu Q, Cai X, Wang N, Wang Y, Chou S, Liu HK, Dou SX. Streamline sulfur redox reactions to achieve efficient room‐temperature sodium‐sulfur batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guoxiu Wang
- University of Technology, Sydney Department of Chemistry and Forensic Science No 1 Broadway 2007 Sydney AUSTRALIA
| | | | - Can Wu
- University of Wollongong AIIM AUSTRALIA
| | - Xinxin Lu
- University of New South Wales School of Chemical Engineering AUSTRALIA
| | - Weibo Hua
- Karlsruhe Institute of Technology Institute for Applied Materials GERMANY
| | - Shaobo Li
- South China University of Technology School of Materials Science and Engineering CHINA
| | - Yaru Liang
- Xiangtan University School of Material Science and Engineering CHINA
| | | | - weihong lai
- University of Technology Sydney Faculty of Science AUSTRALIA
| | - Qinfeng Gu
- Australian Synchrotron Australian Synchrotron AUSTRALIA
| | - Xiaolan Cai
- Kunming University of Science and Technology Faculty of Metallurgical and Energy Engineering CHINA
| | - Nana Wang
- University of Wollongong AIIM AUSTRALIA
| | | | - Shulei Chou
- Wenzhou University College of Chemistry and Materials Engineering CHINA
| | | | | |
Collapse
|
35
|
Wang J, Wang Y, Yao Z, Jiang Z. Metal–organic framework-derived Ni doped Co3S4 hierarchical nanosheets as a monolithic electrocatalyst for highly efficient hydrogen evolution reaction in alkaline solution. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Huang HQ, Li YY, Chen SH, Liu ZG, Cui YM, Li HQ, Guo Z, Huang XJ. Noble-metal-free Fe 3O 4/Co 3S 4 nanosheets with oxygen vacancies as an efficient electrocatalyst for highly sensitive electrochemical detection of As(III). Anal Chim Acta 2022; 1189:339208. [PMID: 34815044 DOI: 10.1016/j.aca.2021.339208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022]
Abstract
The electrochemical method for highly sensitive determination of arsenic(III) in real water samples with noble-metal-free nanomaterials is still a difficult but significant task. Here, an electrochemical sensor driven by noble-metal-free layered porous Fe3O4/Co3S4 nanosheets was successfully employed for As(III) analysis, which was prepared via a facile two-step method involves a hydrothermal treatment and a subsequent sulfurization process. As expected, the electrochemical detection of As(III) in 0.1 M HAc-NaAc (pH 6.0) by square wave anodic stripping voltammetry (SWASV) with a considerable sensitivity of 4.359 μA/μg·L-1 was obtained, which is better than the commonly used noble metals modified electrodes. Experimental and characterization results elucidate the enhancement of As(III) electrochemical performance could be attributed to its nano-porous structure, the presence of oxygen vacancies and strong synergetic coupling effects between Fe3O4 and Co3S4 species. Besides, the Fe3O4/Co3S4 modified screen printed carbon electrode (Fe3O4/Co3S4-SPCE) shows remarkable stability and repeatability, valuable anti-interference ability and could be used for detection in real water samples. Consequently, the results confirm that as-prepared porous Fe3O4/Co3S4 nanosheets is identified as a promising modifier to detect As(III) in real sample analysis.
Collapse
Affiliation(s)
- Hong-Qi Huang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Yong-Yu Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Shi-Hua Chen
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Zhong-Gang Liu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Yu-Min Cui
- Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, PR China
| | - Hui-Quan Li
- Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, PR China.
| | - Zheng Guo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China.
| | - Xing-Jiu Huang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China; Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China.
| |
Collapse
|
37
|
Zhang J, Wu Y, Hao H, Zhang Y, Chen X, Xing K, Xu J. Construction of amorphous Fe0.95S1.05 nanorods with high electrocatalytic activity for enhanced hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Wu Z, Wang J, Li H, Cao L, Dong B. Boosting of Oxygen Evolution Reaction Performance through Defect and Lattice Distortion Engineering. NEW J CHEM 2022. [DOI: 10.1039/d2nj00104g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing efficient, stable, and inexpensive electrocatalyst for oxygen evolution reaction (OER) is significant for development and utilization of clean energy. Defects in electrocatalysts strongly impact their chemical properties and can...
Collapse
|
39
|
In-situ and operando spectroscopies for the characterization of catalysts and of mechanisms of catalytic reactions. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Liu X, Xu J, Ma L, Liu Y, Hu L. High efficiency hydrogen production with visible light layered MgAl-LDH coupled with CoSx. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
41
|
Hu J, Al‐Salihy A, Wang J, Li X, Fu Y, Li Z, Han X, Song B, Xu P. Improved Interface Charge Transfer and Redistribution in CuO-CoOOH p-n Heterojunction Nanoarray Electrocatalyst for Enhanced Oxygen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2103314. [PMID: 34643068 PMCID: PMC8596130 DOI: 10.1002/advs.202103314] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/27/2021] [Indexed: 05/26/2023]
Abstract
Electron density modulation is of great importance in an attempt to achieve highly active electrocatalysts for the oxygen evolution reaction (OER). Here, the successful construction of CuO@CoOOH p-n heterojunction (i.e., p-type CuO and n-type CoOOH) nanoarray electrocatalyst through an in situ anodic oxidation of CuO@CoSx on copper foam is reported. The p-n heterojunction can remarkably modify the electronic properties of the space-charge region and facilitate the electron transfer. Moreover, in situ Raman study reveals the generation of SO4 2- from CoSx oxidation, and electron cloud density distribution and density functional theory calculation suggest that surface-adsorbed SO4 2- can facilitate the OER process by enhancing the adsorption of OH- . The positively charged CoOOH in the space-charge region can significantly enhance the OER activity. As a result, the CuO@CoOOH p-n heterojunction shows significantly enhanced OER performance with a low overpotential of 186 mV to afford a current density of 10 mA cm-2 . The successful preparation of a large scale (14 × 25 cm2 ) sample demonstrates the possibility of promoting the catalyst to industrial-scale production. This study offers new insights into the design and fabrication of non-noble metal-based p-n heterojunction electrocatalysts as effective catalytic materials for energy storage and conversion.
Collapse
Affiliation(s)
- Jing Hu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Adel Al‐Salihy
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Jing Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Xue Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Yanfei Fu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Zhonghua Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Xijiang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| | - Bo Song
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsHarbin Institute of TechnologyHarbin150001P. R. China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001P. R. China
| |
Collapse
|
42
|
Tetef S, Govind N, Seidler GT. Unsupervised machine learning for unbiased chemical classification in X-ray absorption spectroscopy and X-ray emission spectroscopy. Phys Chem Chem Phys 2021; 23:23586-23601. [PMID: 34651631 DOI: 10.1039/d1cp02903g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report a comprehensive computational study of unsupervised machine learning for extraction of chemically relevant information in X-ray absorption near edge structure (XANES) and in valence-to-core X-ray emission spectra (VtC-XES) for classification of a broad ensemble of sulphorganic molecules. By progressively decreasing the constraining assumptions of the unsupervised machine learning algorithm, moving from principal component analysis (PCA) to a variational autoencoder (VAE) to t-distributed stochastic neighbour embedding (t-SNE), we find improved sensitivity to steadily more refined chemical information. Surprisingly, when embedding the ensemble of spectra in merely two dimensions, t-SNE distinguishes not just oxidation state and general sulphur bonding environment but also the aromaticity of the bonding radical group with 87% accuracy as well as identifying even finer details in electronic structure within aromatic or aliphatic sub-classes. We find that the chemical information in XANES and VtC-XES is very similar in character and content, although they unexpectedly have different sensitivity within a given molecular class. We also discuss likely benefits from further effort with unsupervised machine learning and from the interplay between supervised and unsupervised machine learning for X-ray spectroscopies. Our overall results, i.e., the ability to reliably classify without user bias and to discover unexpected chemical signatures for XANES and VtC-XES, likely generalize to other systems as well as to other one-dimensional chemical spectroscopies.
Collapse
Affiliation(s)
- Samantha Tetef
- Department of Physics, University of Washington, Seattle, WA 98195, USA.
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Gerald T Seidler
- Department of Physics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
43
|
Anantharaj S, Karthik PE, Noda S. The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sengeni Anantharaj
- Department of Applied Chemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Waseda Research Institute for Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Pitchiah Esakki Karthik
- Department of Chemical Engineering Hanyang University 222 Wangsimni ro, Seongdong-gu Seoul 04763 Republic of Korea
| | - Suguru Noda
- Department of Applied Chemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Waseda Research Institute for Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| |
Collapse
|
44
|
Anantharaj S, Karthik PE, Noda S. The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angew Chem Int Ed Engl 2021; 60:23051-23067. [PMID: 34523770 PMCID: PMC8596788 DOI: 10.1002/anie.202110352] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 11/08/2022]
Abstract
For decades, turnover frequency (TOF) has served as an accurate descriptor of the intrinsic activity of a catalyst, including those in electrocatalytic reactions involving both fuel generation and fuel consumption. Unfortunately, in most of the recent reports in this area, TOF is often not properly reported or not reported at all, in contrast to the overpotentials at a benchmarking current density. The current density is significant in determining the apparent activity, but it is affected by catalyst-centric parasitic reactions, electrolyte-centric competing reactions, and capacitance. Luckily, a properly calculated TOF can precisely give the intrinsic activity free from these phenomena in electrocatalysis. In this Viewpoint we ask: 1) What makes the commonly used activity markers unsuitable for intrinsic activity determination? 2) How can TOF reflect the intrinsic activity? 3) Why is TOF still underused in electrocatalysis? 4) What methods are used in TOF determination? and 5) What is essential in the more accurate calculation of TOF? Finally, the significance of normalizing TOF by Faradaic efficiency (FE) is stressed and we give our views on the development of universal analytical tools to determine the exact number of active sites and real surface area for all kinds of materials.
Collapse
Affiliation(s)
- Sengeni Anantharaj
- Department of Applied ChemistrySchool of Advanced Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
- Waseda Research Institute for Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
| | - Pitchiah Esakki Karthik
- Department of Chemical EngineeringHanyang University222 Wangsimni ro, Seongdong-guSeoul04763Republic of Korea
| | - Suguru Noda
- Department of Applied ChemistrySchool of Advanced Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
- Waseda Research Institute for Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
| |
Collapse
|
45
|
Zhang H, Cao L, Wang Y, Gan Z, Sun F, Xiao M, Yang Y, Mei B, Wu D, Lu J, He H, Jiang Z. Interfacial Proton Transfer for Hydrogen Evolution at the Sub-Nanometric Platinum/Electrolyte Interface. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47252-47261. [PMID: 34546698 DOI: 10.1021/acsami.1c14615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the dynamic process of interfacial charge transfer prior to chemisorption is crucial to the development of electrocatalysis. Recently, interfacial water has been highlighted in transferring protons through the electrode/electrolyte interface; however, the identification of the related structural configurations and their influences on the catalytic mechanism is largely complicated by the amorphous and mutable structure of the electrical double layer (EDL). To this end, sub-nanometric Pt electrocatalysts, potentially offering intriguing activity and featuring fully exposed atoms, are studied to uncover the elusive electrode/electrolyte interface via operando X-ray absorption spectroscopy during the hydrogen evolution reaction (HER). Our results show that the metallic Pt clusters derived from the reduction of sub-nanometric Pt clusters (SNM-Pt) exhibit excellent HER activity, with an only 18 mV overpotential at 10 mA/cm2 and one-magnitude-higher mass activity than commercial Pt/C. More importantly, a unique Pt-interfacial water configuration with a Pt (from Pt clusters)-O (from water) radial distance of approximately 2.5 Å is experimentally identified as the structural foundation for the interfacial proton transfer. Toward high overpotentials, the interfacial water that structurally evolves from "O-close" to "O-far" accelerates the proton transfer and is responsible for the improved reaction rate by increasing the hydrogen coverage.
Collapse
Affiliation(s)
- Hao Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University, Suzhou 215123, China
| | - Lina Cao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquid Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Bejing 100190, China
| | - Zhongdong Gan
- Beijing Key Laboratory of Ionic Liquid Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Bejing 100190, China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Meiling Xiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yuqi Yang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingbao Mei
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongshuang Wu
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakechho, Sakyoku, Kyoto 606-8502, Japan
| | - Junling Lu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquid Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Bejing 100190, China
| | - Zheng Jiang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Beijing Key Laboratory of Ionic Liquid Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Bejing 100190, China
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| |
Collapse
|
46
|
Dai T, Zhang X, Sun M, Huang B, Zhang N, Da P, Yang R, He Z, Wang W, Xi P, Yan CH. Uncovering the Promotion of CeO 2 /CoS 1.97 Heterostructure with Specific Spatial Architectures on Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102593. [PMID: 34480381 DOI: 10.1002/adma.202102593] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Structural engineering and compositional controlling are extensively applied in rationally designing and fabricating advanced freestanding electrocatalysts. The key relationship between the spatial distribution of components and enhanced electrocatalysis performance still needs further elaborate elucidation. Here, CeO2 substrate supported CoS1.97 (CeO2 -CoS1.97 ) and CoS1.97 with CeO2 surface decorated (CoS1.97 -CeO2 ) materials are constructed to comprehensively investigate the origin of spatial architectures for the oxygen evolution reaction (OER). CeO2 -CoS1.97 exhibits a low overpotential of 264 mV at 10 mA cm-2 due to the stable heterostructure and faster mass transfer. Meanwhile, CoS1.97 -CeO2 has a smaller Tafel slope of 49 mV dec-1 through enhanced adsorption of OH- , fast electron transfer, and in situ formation of Co(IV)O2 species under the OER condition. Furthermore, operando spectroscopic characterizations combined with theoretical calculations demonstrate that spatial architectures play a distinguished role in modulating the electronic structure and promoting the reconstruction from sulfide to oxyhydroxide toward higher chemical valence. The findings highlight spatial architectures and surface reconstruction in designing advanced electrocatalytic materials.
Collapse
Affiliation(s)
- Tengyuan Dai
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xin Zhang
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, 999077, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, 999077, China
| | - Nan Zhang
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Pengfei Da
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Rui Yang
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zidong He
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing, 100871, China
| |
Collapse
|
47
|
First in situ temperature quantification of CoMoS species upon gas sulfidation enabled by new insight on cobalt sulfide formation. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.06.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Zang Y, Yang B, Li A, Liao C, Chen G, Liu M, Liu X, Ma R, Zhang N. Tuning Interfacial Active Sites over Porous Mo 2N-Supported Cobalt Sulfides for Efficient Hydrogen Evolution Reactions in Acid and Alkaline Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41573-41583. [PMID: 34433265 DOI: 10.1021/acsami.1c10060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although various cobalt-sulfide-based materials have been reported for the hydrogen evolution reaction, only a few have achieved high activity in both acid and alkaline electrolytes due to the inherent poor conductivity and low active sites. In this work, a heterojunction of cobalt sulfide and Mo2N is designed for efficient hydrogen evolution reactions in both acid and alkaline electrolytes. X-ray photoelectron spectroscopy reveals that Mo-S bonds are formed at the interface between Mo2N and CoS2, which result in the fabricated Mo2N/CoS2 materials exhibiting a considerably enhanced hydrogen evolution reaction activity than the corresponding Mo2N, CoS2, and most reported Mo- and Co-based catalysts in electrolytes of H2SO4 and KOH solutions. Density functional theory calculations suggest that the redistribution of charges occurs at the heterointerface. In addition, the interfacial active sites possess a considerably lower hydrogen adsorption Gibbs free energy than those atoms that are far away from the interface, which is beneficial to the process of hydrogen evolution reaction. This study provides a feasible strategy for designing hetero-based electrocatalysts with a tuned highly active interface.
Collapse
Affiliation(s)
- Yan Zang
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Baopeng Yang
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - An Li
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Chengan Liao
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Gen Chen
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Min Liu
- School of Physical Science and Electronics, Central South University, Changsha, Hunan 410083, P. R. China
| | - Xiaohe Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ning Zhang
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, P. R. China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, Guangdong, P. R. China
| |
Collapse
|
49
|
Dong Y, Ran J, Liu Q, Zhang G, Jiang X, Gao D. Hydrogen-etched CoS 2 to produce a Co 9S 8@CoS 2 heterostructure electrocatalyst for highly efficient oxygen evolution reaction. RSC Adv 2021; 11:30448-30454. [PMID: 35480289 PMCID: PMC9041110 DOI: 10.1039/d1ra05677h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023] Open
Abstract
There is a pressing requirement for developing high-efficiency non-noble metal electrocatalysts in oxygen evolution reactions (OER), where transition metal sulfides are considered to be promising electrocatalysts for the OER in alkaline medium. Herein, we report the outstanding OER performance of Co9S8@CoS2 heterojunctions synthesized by hydrogen etched CoS2, where the optimized heterojunction shows a low η 50 of 396 mV and a small Tafel slope of 181.61 mV dec-1. The excellent electrocatalytic performance of this heterostructure is attributed to the interface electronic effect. Importantly, the post-stage characterization results indicate that the Co9S8@CoS2 heterostructure exhibits a dynamic reconfiguration during the OER with the formation of CoOOH in situ, and thus exhibits a superior electrocatalytic performance.
Collapse
Affiliation(s)
- Yucan Dong
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University Lanzhou 730000 People's Republic of China
| | - Jiaqi Ran
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University Lanzhou 730000 People's Republic of China
| | - Qun Liu
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University Lanzhou 730000 People's Republic of China
| | - Guoqiang Zhang
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University Lanzhou 730000 People's Republic of China
| | - Xingdong Jiang
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University Lanzhou 730000 People's Republic of China
| | - Daqiang Gao
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
50
|
Zhang B, Zhang B, Jiang Y, Ma T, Pan H, Sun W. Single-Atom Electrocatalysts for Multi-Electron Reduction of CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101443. [PMID: 34242473 DOI: 10.1002/smll.202101443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/20/2021] [Indexed: 05/21/2023]
Abstract
The multi-electron reduction of CO2 to hydrocarbons or alcohols is highly attractive in a sustainable energy economy, and the rational design of electrocatalysts is vital to achieve these reactions efficiently. Single-atom electrocatalysts are promising candidates due to their well-defined coordination configurations and unique electronic structures, which are critical for delivering high activity and selectivity and may accelerate the explorations of the activity origin at atomic level as well. Although much effort has been devoted to multi-electron reduction of CO2 on single-atom electrocatalysts, there are still no reviews focusing on this emerging field and constructive perspectives are also urgent to be addressed. Herein recent advances in how to design efficient single-atom electrocatalysts for multi-electron reduction of CO2 , with emphasis on strategies in regulating the interactions between active sites and key reaction intermediates, are summarized. Such interactions are crucial in designing active sites for optimizing the multi-electron reduction steps and maximizing the catalytic performance. Different design strategies including regulation of metal centers, single-atom alloys, non-metal single-atom catalysts, and tandem catalysts, are discussed accordingly. Finally, current challenges and future opportunities for deep electroreduction of CO2 are proposed.
Collapse
Affiliation(s)
- Bingxing Zhang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Baohua Zhang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yinzhu Jiang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Hongge Pan
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|