1
|
Mujica M, Mohabir A, Shetty PP, Cline WR, Aziz D, McDowell MT, Breedveld V, Behrens SH, Filler MA. Programming Semiconductor Nanowire Composition with Sub-100 nm Resolution via the Geode Process. NANO LETTERS 2022; 22:554-560. [PMID: 34989235 DOI: 10.1021/acs.nanolett.1c02545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We demonstrate the vapor-liquid-solid growth of single-crystalline i-Si, i-Si/n-Si, and SixGe1-x/SiyGe1-y nanowires via the Geode process. By enabling nanowire growth on the large internal surface area of a microcapsule powder, the Geode process improves the scalability of semiconductor nanowire manufacturing while maintaining nanoscale programmability. Here, we show that heat and mass transport limitations introduced by the microcapsule wall are negligible, enabling the same degree of compositional control for nanowires grown inside microcapsules and on conventional flat substrates. Efficient heat and mass transport also minimize the structural variations of nanowires grown in microcapsules with different diameters and wall thicknesses. Nanowires containing at least 16 segments and segment lengths below 75 nm are demonstrated.
Collapse
Affiliation(s)
- Maritza Mujica
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Amar Mohabir
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Pralav P Shetty
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Wesley R Cline
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Daniel Aziz
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew T McDowell
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Victor Breedveld
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sven Holger Behrens
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michael A Filler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Garcia-Gil A, Biswas S, Holmes JD. A Review of Self-Seeded Germanium Nanowires: Synthesis, Growth Mechanisms and Potential Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2002. [PMID: 34443831 PMCID: PMC8398625 DOI: 10.3390/nano11082002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022]
Abstract
Ge nanowires are playing a big role in the development of new functional microelectronic modules, such as gate-all-around field-effect transistor devices, on-chip lasers and photodetectors. The widely used three-phase bottom-up growth method utilising a foreign catalyst metal or metalloid is by far the most popular for Ge nanowire growth. However, to fully utilise the potential of Ge nanowires, it is important to explore and understand alternative and functional growth paradigms such as self-seeded nanowire growth, where nanowire growth is usually directed by the in situ-formed catalysts of the growth material, i.e., Ge in this case. Additionally, it is important to understand how the self-seeded nanowires can benefit the device application of nanomaterials as the additional metal seeding can influence electron and phonon transport, and the electronic band structure in the nanomaterials. Here, we review recent advances in the growth and application of self-seeded Ge and Ge-based binary alloy (GeSn) nanowires. Different fabrication methods for growing self-seeded Ge nanowires are delineated and correlated with metal seeded growth. This review also highlights the requirement and advantage of self-seeded growth approach for Ge nanomaterials in the potential applications in energy storage and nanoelectronic devices.
Collapse
Affiliation(s)
- Adrià Garcia-Gil
- School of Chemistry, Tyndall National Institute, University College Cork, T12 YN60 Cork, Ireland; (A.G.-G.); (J.D.H.)
- AMBER Centre, Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland
| | - Subhajit Biswas
- School of Chemistry, Tyndall National Institute, University College Cork, T12 YN60 Cork, Ireland; (A.G.-G.); (J.D.H.)
- AMBER Centre, Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland
| | - Justin D. Holmes
- School of Chemistry, Tyndall National Institute, University College Cork, T12 YN60 Cork, Ireland; (A.G.-G.); (J.D.H.)
- AMBER Centre, Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland
| |
Collapse
|
3
|
Braun MR, Güniat L, Fontcuberta I Morral A, McIntyre PC. In-situ reflectometry to monitor locally-catalyzed initiation and growth of nanowire assemblies. NANOTECHNOLOGY 2020; 31:335703. [PMID: 32344388 DOI: 10.1088/1361-6528/ab8def] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate in-situ laser reflectometry for measuring the axial growth rate in chemical vapor deposition of assemblies of well-aligned vertical germanium nanowires grown epitaxially on single crystal substrates. Finite difference frequency domain optical simulations were performed in order to facilitate quantitative analysis and interpretation of the measured reflectivity data. The results show an insensitivity of the reflected intensity oscillation period to nanowire diameter and density within the range of experimental conditions investigated. Compared to previous quantitative in-situ measurements performed on III-V nanowire arrays, which showed two distinct rate regimes, we observe a constant, steady-state nanowire growth rate. Furthermore, we show that the measured reflectivity decay can be used to determine the germanium nanowire nucleation time with good precision. This technique provides an avenue to monitor growth of nanowires in a variety of materials systems and growth conditions.
Collapse
Affiliation(s)
- Michael R Braun
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | | | | | | |
Collapse
|
4
|
Design of Silicon Nanowire Array for PEDOT:PSS-Silicon Nanowire-Based Hybrid Solar Cell. ENERGIES 2020. [DOI: 10.3390/en13153797] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Among various photovoltaic devices, the poly 3, 4-ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS) and silicon nanowire (SiNW)-based hybrid solar cell is getting momentum for the next generation solar cell. Although, the power-conversion efficiency of the PEDOT:PSS–SiNW hybrid solar cell has already been reported above 13% by many researchers, it is still at a primitive stage and requires comprehensive research and developments. When SiNWs interact with conjugate polymer PEDOT:PSS, the various aspects of SiNW array are required to optimize for high efficiency hybrid solar cell. Therefore, the designing of silicon nanowire (SiNW) array is a crucial aspect for an efficient PEDOT:PSS–SiNW hybrid solar cell, where PEDOT:PSS plays a role as a conductor with an transparent optical window just-like as metal-semiconductor Schottky solar cell. This short review mainly focuses on the current research trends for the general, electrical, optical and photovoltaic design issues associated with SiNW array for PEDOT:PSS–SiNW hybrid solar cells. The foremost features including the morphology, surface traps, doping of SiNW, which limit the efficiency of the PEDOT:PSS–SiNW hybrid solar cell, will be addressed and reviewed. Finally, the SiNW design issues for boosting up the fill-factor, short-circuit current and open-circuit voltage will be highlighted and discussed.
Collapse
|
5
|
Mohabir AT, Tutuncuoglu G, Weiss T, Vogel EM, Filler MA. Bottom-Up Masking of Si/Ge Surfaces and Nanowire Heterostructures via Surface-Initiated Polymerization and Selective Etching. ACS NANO 2020; 14:282-288. [PMID: 31854980 DOI: 10.1021/acsnano.9b04363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fully bottom-up and scalable synthesis of complex micro/nanoscale materials and functional devices requires masking methods to define key features and direct the deposition of various coatings and films. Here, we demonstrate selective coaxial lithography via etching of surfaces (SCALES), an enabling bottom-up process to add polymer masks to micro/nanoscale objects. SCALES is a three-step process, including (1) bottom-up synthesis of compositionally modulated structures, (2) surface-initiated polymerization of a conformal mask, and (3) selective removal of the mask only from regions whose underlying surface is susceptible to an etchant. We demonstrate the key features of and characterize the SCALES process with a series of model Si/Ge systems: Si and Ge wafers, Si and Ge nanowires, and Si/Ge heterostructure nanowires.
Collapse
Affiliation(s)
- Amar T Mohabir
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Gozde Tutuncuoglu
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Trent Weiss
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Eric M Vogel
- School of Materials Science & Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Michael A Filler
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
6
|
In situ analysis of catalyst composition during gold catalyzed GaAs nanowire growth. Nat Commun 2019; 10:4577. [PMID: 31594930 PMCID: PMC6783420 DOI: 10.1038/s41467-019-12437-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/10/2019] [Indexed: 11/16/2022] Open
Abstract
Semiconductor nanowires offer the opportunity to incorporate novel structures and functionality into electronic and optoelectronic devices. A clear understanding of the nanowire growth mechanism is essential for well-controlled growth of structures with desired properties, but the understanding is currently limited by a lack of empirical measurements of important parameters during growth, such as catalyst particle composition. However, this is difficult to accurately determine by investigating post-growth. We report direct in situ measurement of the catalyst composition during nanowire growth for the first time. We study Au-seeded GaAs nanowires inside an electron microscope as they grow and measure the catalyst composition using X-ray energy dispersive spectroscopy. The Ga content in the catalyst during growth increases with both temperature and Ga precursor flux. Semiconductor nanowires are promising materials for miniaturized devices, but a thorough understanding of their growth mechanism is necessary for controlled synthesis. Here, the authors use in situ spectroscopy and microscopy to measure the composition of the catalyst droplet as a function of different growth parameters during Au-seeded GaAs nanowire growth.
Collapse
|
7
|
Malhotra A, Maldovan M. Phononic pathways towards rational design of nanowire heat conduction. NANOTECHNOLOGY 2019; 30:372002. [PMID: 31151114 DOI: 10.1088/1361-6528/ab261d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Thermal conduction in semiconductor nanowires is controlled by the transport of atomic vibrations also known as thermal phonons. The ability of nanowires to tailor the transport of thermal phonons stems from their precise atomic scale growth coupled with high structural surface to volume ratios. Understanding and manipulating thermal transport properties at the nanoscale is central for progress in the fields of microelectronics, optoelectronics, and thermoelectrics. Here, we review state-of-the-art advances in the understanding of nanowire thermal phonon transport and the design and fabrication of nanowires with tailored thermal conduction properties. We first introduce the basic physical mechanisms of thermal conduction at the nanoscale and detail recent developments in employing nanowires as thermal materials. We discuss and provide insight on different strategies to modulate nanowire thermal properties leveraging the underlying phonon transport processes occurring in nanowires. We also highlight challenges and key areas of interest to motivate future research and create exceptional capabilities to control heat flow in nanowires.
Collapse
Affiliation(s)
- Abhinav Malhotra
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | | |
Collapse
|
8
|
Han SY, Boebinger MG, Kondekar NP, Worthy TJ, McDowell MT. Seeded Nanowire and Microwire Growth from Lithium Alloys. NANO LETTERS 2018; 18:4331-4337. [PMID: 29860834 DOI: 10.1021/acs.nanolett.8b01334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although vapor-liquid-solid (VLS) growth of nanowires from alloy seed particles is common in various semiconductor systems, related wire growth in all-metal systems is rare. Here, we report the spontaneous growth of nano- and microwires from metal seed particles during the cooling of Li-rich bulk alloys containing Au, Ag, or In. The as-grown wires feature Au-, Ag-, or In-rich metal tips and LiOH shafts; the results indicate that the wires grow as Li metal and are converted to polycrystalline LiOH during and/or after growth due to exposure to H2O and O2. This new process is a simple way to create nanostructures, and the findings suggest that metal nanowire growth from alloy seeds is possible in a variety of systems.
Collapse
|
9
|
Kim H, Ren D, Farrell AC, Huffaker DL. Catalyst-free selective-area epitaxy of GaAs nanowires by metal-organic chemical vapor deposition using triethylgallium. NANOTECHNOLOGY 2018; 29:085601. [PMID: 29300185 DOI: 10.1088/1361-6528/aaa52e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We demonstrate catalyst-free growth of GaAs nanowires by selective-area metal-organic chemical vapor deposition (MOCVD) on GaAs and silicon substrates using a triethylgallium (TEGa) precursor. Two-temperature growth of GaAs nanowires-nucleation at low temperature followed by nanowire elongation at high temperature-almost completely suppresses the radial overgrowth of nanowires on GaAs substrates while exhibiting a vertical growth yield of almost 100%. A 100% growth yield is also achieved on silicon substrates by terminating Si(111) surfaces by arsenic prior to the nanowire growth and optimizing the growth temperature. Compared with trimethylgallium (TMGa) which has been exclusively employed in the vapor-solid phase growth of GaAs nanowires by MOCVD, the proposed growth technique using TEGa is advantageous because of lower growth temperature and fully suppressed radial overgrowth. It is also known that GaAs grown by TEGa induce less impurity incorporation compared with TMGa, and therefore the proposed method could be a building block for GaAs nanowire-based high-performance optoelectronic and nanoelectronic devices on both III-V and silicon platforms.
Collapse
Affiliation(s)
- Hyunseok Kim
- Department of Electrical Engineering, University of California Los Angeles, Los Angeles, California 90095, United States of America
| | | | | | | |
Collapse
|
10
|
Abstract
Functional materials and devices require nanoscale control of morphology, crystal structure, and composition. Vapor-liquid-solid (VLS) crystal growth and its related growth modes enable the synthesis of 1D nanostructures, commonly called "nanowires", where the necessary nanoscale heterogeneity can be encoded axially. During the VLS process, a seed particle collects atoms and directs the nucleation of crystalline material. Modulating the delivery of growth species or conditions permits compositional and/or structural encoding. A range of materials and devices (e.g., for electronics, photonics, thermal transport, and bioprobes) have been produced by VLS growth, but plenty of challenges remain: many desirable structures cannot currently be made, and even for those structures that can be made, the parameter window-in terms of, e.g., temperatures and pressures-is often narrow. Moreover, we are quite far from ab initio determination of which growth conditions should be used or even if a desired structure is fundamentally achievable within the VLS framework. To fully understand the challenges and promises of VLS growth, the governing physicochemical processes must be explored and understood at the atomic scale. This final level of detail is being unraveled with the help of in situ characterization techniques. The picture that is emerging is of a highly dynamical process with several deeply interconnected and highly fundamental components that are difficult to detect with postgrowth ex situ interrogation. For example, recent in situ microscopy and spectroscopy studies have shown that the growth front can undergo cyclical reshaping involving dissolution as well as crystallization and that the state of the nanowire surface, which changes with growth conditions as a result of a competition between adsorption and desorption of passivating species, plays a crucial role in determining the transport to/from and the stability of the seed particle. The available in situ observations currently constitute a somewhat disparate list, but if they can be connected to each other and to the outstanding challenges, they promise meaningful advances in our understanding of VLS growth. In this Account, we review the state of the art regarding the atomic-scale thermodynamic and kinetic phenomena that control VLS growth. Rather than cataloging all of the outstanding contributions to the field, we give priority to in situ observations that have revealed unexpected effects as well as those that hint at incongruities in our current knowledge. As such, our discussion should be viewed as an opportunity to gain deeper understanding and control of the fundamental processes at play, which will be crucial in future scale-up efforts and expansion to completely new materials systems and application areas.
Collapse
Affiliation(s)
- Martin Ek
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Solid
State Physics/NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
| | - Michael A. Filler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
Behrens SH, Breedveld V, Mujica M, Filler MA. Process Principles for Large-Scale Nanomanufacturing. Annu Rev Chem Biomol Eng 2017; 8:201-226. [PMID: 28375773 DOI: 10.1146/annurev-chembioeng-060816-101522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nanomanufacturing—the fabrication of macroscopic products from well-defined nanoscale building blocks—in a truly scalable and versatile manner is still far from our current reality. Here, we describe the barriers to large-scale nanomanufacturing and identify routes to overcome them. We argue for nanomanufacturing systems consisting of an iterative sequence of synthesis/assembly and separation/sorting unit operations, analogous to those used in chemicals manufacturing. In addition to performance and economic considerations, phenomena unique to the nanoscale must guide the design of each unit operation and the overall process flow. We identify and discuss four key nanomanufacturing process design needs: (a) appropriately selected process break points, (b) synthesis techniques appropriate for large-scale manufacturing, (c) new structure- and property-based separations, and (d) advances in stabilization and packaging.
Collapse
Affiliation(s)
- Sven H. Behrens
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100
| | - Victor Breedveld
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100
| | - Maritza Mujica
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100
| | - Michael A. Filler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100
| |
Collapse
|
12
|
Sivaram SV, Hui HY, de la Mata M, Arbiol J, Filler MA. Surface Hydrogen Enables Subeutectic Vapor-Liquid-Solid Semiconductor Nanowire Growth. NANO LETTERS 2016; 16:6717-6723. [PMID: 27347747 DOI: 10.1021/acs.nanolett.6b01640] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Vapor-liquid-solid nanowire growth below the bulk metal-semiconductor eutectic temperature is known for several systems; however, the fundamental processes that govern this behavior are poorly understood. Here, we show that hydrogen atoms adsorbed on the Ge nanowire sidewall enable AuGe catalyst supercooling and control Au transport. Our approach combines in situ infrared spectroscopy to directly and quantitatively determine hydrogen atom coverage with a "regrowth" step that allows catalyst phase to be determined with ex situ electron microscopy. Maintenance of a supercooled catalyst with only hydrogen radical delivery confirms the centrality of sidewall chemistry. This work underscores the importance of the nanowire sidewall and its chemistry on catalyst state, identifies new methods to regulate catalyst composition, and provides synthetic strategies for subeutectic growth in other nanowire systems.
Collapse
Affiliation(s)
- Saujan V Sivaram
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Ho Yee Hui
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - María de la Mata
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra, Barcelona, Catalonia 08193, Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra, Barcelona, Catalonia 08193, Spain
| | - Michael A Filler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
13
|
Kolíbal M, Pejchal T, Vystavěl T, Šikola T. The Synergic Effect of Atomic Hydrogen Adsorption and Catalyst Spreading on Ge Nanowire Growth Orientation and Kinking. NANO LETTERS 2016; 16:4880-4886. [PMID: 27458789 DOI: 10.1021/acs.nanolett.6b01352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hydride precursors are commonly used for semiconductor nanowire growth from the vapor phase and hydrogen is quite often used as a carrier gas. Here, we used in situ scanning electron microscopy and spatially resolved Auger spectroscopy to reveal the essential role of atomic hydrogen in determining the growth direction of Ge nanowires with an Au catalyst. With hydrogen passivating nanowire sidewalls the formation of inclined facets is suppressed, which stabilizes the growth in the ⟨111⟩ direction. By contrast, without hydrogen gold diffuses out of the catalyst and decorates the nanowire sidewalls, which strongly affects the surface free energy of the system and results in the ⟨110⟩ oriented growth. The experiments with intentional nanowire kinking reveal the existence of an energetic barrier, which originates from the kinetic force needed to drive the droplet out of its optimum configuration on top of a nanowire. Our results stress the role of the catalyst material and surface chemistry in determining the nanowire growth direction and provide additional insights into a kinking mechanism, thus allowing to inhibit or to intentionally initiate spontaneous kinking.
Collapse
Affiliation(s)
- Miroslav Kolíbal
- Institute of Physical Engineering, Brno University of Technology , Technická 2, 616 69 Brno, Czech Republic
- CEITEC BUT, Brno University of Technology , Purkyňova 123, 616 69 Brno, Czech Republic
| | - Tomáš Pejchal
- CEITEC BUT, Brno University of Technology , Purkyňova 123, 616 69 Brno, Czech Republic
| | - Tomáš Vystavěl
- FEI Company, Vlastimila Pecha 1282/12, 627 00 Brno, Czech Republic
| | - Tomáš Šikola
- Institute of Physical Engineering, Brno University of Technology , Technická 2, 616 69 Brno, Czech Republic
- CEITEC BUT, Brno University of Technology , Purkyňova 123, 616 69 Brno, Czech Republic
| |
Collapse
|
14
|
Li Y, Wang Y, Ryu S, Marshall AF, Cai W, McIntyre PC. Spontaneous, Defect-Free Kinking via Capillary Instability during Vapor-Liquid-Solid Nanowire Growth. NANO LETTERS 2016; 16:1713-1718. [PMID: 26837774 DOI: 10.1021/acs.nanolett.5b04633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Kinking, a common anomaly in nanowire (NW) vapor-liquid-solid (VLS) growth, represents a sudden change of the wire's axial growth orientation. This study focuses on defect-free kinking during germanium NW VLS growth, after nucleation on a Ge (111) single crystal substrate, using Au-Ge catalyst liquid droplets of defined size. Statistical analysis of the fraction of kinked NWs reveals the dependence of kinking probability on the wire diameter and the growth temperature. The morphologies of kinked Ge NWs studied by electron microscopy show two distinct, defect-free, kinking modes, whose underlying mechanisms are explained with the help of 3D multiphase field simulations. Type I kinking, in which the growth axis changes from vertical [111] to ⟨110⟩, was observed in Ge NWs with a nominal diameter of ∼ 20 nm. This size coincides with a critical diameter at which a spontaneous transition from ⟨111⟩ to ⟨110⟩ growth occurs in the phase field simulations. Larger diameter NWs only exhibit Type II kinking, in which the growth axis changes from vertical [111] directly to an inclined ⟨111⟩ axis during the initial stages of wire growth. This is caused by an error in sidewall facet development, which produces a shrinkage in the area of the (111) growth facet with increasing NW length, causing an instability of the Au-Ge liquid droplet at the tip of the NW.
Collapse
Affiliation(s)
- Yanying Li
- Department of Applied Physics, Stanford University , Stanford, California 94305, United States
| | - Yanming Wang
- Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States
| | - Seunghwa Ryu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology , 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea
| | - Ann F Marshall
- Stanford Nano Shared Facilities, Stanford University , Stanford, California 94305, United States
| | - Wei Cai
- Department of Mechanical Engineering, Stanford University , Stanford, California 94305, United States
| | - Paul C McIntyre
- Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
15
|
Gamalski AD, Tersoff J, Kodambaka S, Zakharov DN, Ross FM, Stach EA. The Role of Surface Passivation in Controlling Ge Nanowire Faceting. NANO LETTERS 2015; 15:8211-8216. [PMID: 26539668 DOI: 10.1021/acs.nanolett.5b03722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In situ transmission electron microscopy observations of nanowire morphologies indicate that during Au-catalyzed Ge nanowire growth, Ge facets can rapidly form along the nanowire sidewalls when the source gas (here, digermane) flux is decreased or the temperature is increased. This sidewall faceting is accompanied by continuous catalyst loss as Au diffuses from the droplet to the wire surface. We suggest that high digermane flux and low temperatures promote effective surface passivation of Ge nanowires with H or other digermane fragments inhibiting diffusion and attachment of Au and Ge on the sidewalls. These results illustrate the essential roles of the precursor gas and substrate temperature in maintaining nanowire sidewall passivation, necessary to ensure the growth of straight, untapered, ⟨111⟩-oriented nanowires.
Collapse
Affiliation(s)
- A D Gamalski
- Center for Functional Nanomaterials, Brookhaven National Laboratory , Upton, New York 11973, United States
| | - J Tersoff
- IBM Research Division, T. J. Watson Research Center , Yorktown Heights, New York 10598, United States
| | - S Kodambaka
- Department of Materials Science and Engineering, University of California Los Angeles , Los Angeles, California 90095, United States
| | - D N Zakharov
- Center for Functional Nanomaterials, Brookhaven National Laboratory , Upton, New York 11973, United States
| | - F M Ross
- IBM Research Division, T. J. Watson Research Center , Yorktown Heights, New York 10598, United States
| | - E A Stach
- Center for Functional Nanomaterials, Brookhaven National Laboratory , Upton, New York 11973, United States
| |
Collapse
|