1
|
Shu M, Dong Y, Ni M, Cai D, Ning H, Yang S, Zhou X, Chen D, Yang Z. Strategically Engineered Metal Cluster-Rare Earth Oxide Heterojunction Catalyst for High-Performance Lean Electrolyte Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4961-4971. [PMID: 39797775 DOI: 10.1021/acsami.4c18159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Developing high-energy-density lithium-sulfur batteries faces serious polysulfide shuttle effects and sluggish conversion kinetics, often necessitating the excessive use of electrolytes, which in turn adversely affects battery performance. Our study introduces a meticulously designed electrocatalyst, Cu-CeO2-x@N/C, to enhance lean-electrolyte lithium-sulfur battery performance. This catalyst, featuring in situ synthesized Cu clusters, regulates oxygen vacancies in CeO2 and forms Cu-CeO2-x heterojunctions, thereby diminishing sulfur conversion barriers and hastening reaction kinetics through the generation of S32-/S3*- intermediates. Besides, the three-dimensional conductive networks, composed of Cu and nitrogen-doped carbon matrices with high electrolyte affinity, effectively confine sparse electrolytes proximal to the catalyst locations, thereby facilitating rapid transport of Li+/electron to the active sites. As a result, the 1% Cu-CeO2-x@N/C cell demonstrated robust performance, achieving an initial discharge capacity of 793.2 mAh/g at 5 C over 500 cycles and maintaining a capacity of 719.9 mAh/g at 0.3 C with an electrolyte-to-sulfur ratio of 5 μL mg-1 and a high sulfur loading of 5.4 mg cm-2 after 60 cycles. These findings highlight the catalyst design for high-performance lean-electrolyte lithium-sulfur batteries, further paving the way for their commercialization.
Collapse
Affiliation(s)
- Meiling Shu
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- Institute of Industrial Carbon Materials and Hydrogen Energy Technology of Wenzhou University, Wenzhou University, Wenzhou 325035, China
| | - Yangyang Dong
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Mengdi Ni
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Dong Cai
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- Institute of Industrial Carbon Materials and Hydrogen Energy Technology of Wenzhou University, Wenzhou University, Wenzhou 325035, China
| | - Hongtian Ning
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Shuo Yang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
- Institute of Industrial Carbon Materials and Hydrogen Energy Technology of Wenzhou University, Wenzhou University, Wenzhou 325035, China
| | - Xuemei Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Duo Chen
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhi Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- Institute of Industrial Carbon Materials and Hydrogen Energy Technology of Wenzhou University, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
2
|
Wei S, Shang J, Zheng Y, Wang T, Kong X, He Q, Zhang Z, Zhao Y. Leveraging doping strategies and interface engineering to enhance catalytic transformation of lithium polysulfides for high-performance lithium-sulfur batteries. J Colloid Interface Sci 2024; 675:904-914. [PMID: 39002240 DOI: 10.1016/j.jcis.2024.07.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The commercialization of lithium-sulfur (Li-S) batteries has faced challenges due to the shuttle effect of soluble intermediate polysulfides and the sluggish kinetics of sulfur redox reactions. In this study, a synergistic catalyst medium was developed as a high-performance sulfur cathode material for Li-S batteries. Termed A/R-TiO2@ Ni-N-MXene, this sulfur cathode material features an in-situ derived anatase-rutile homojunction of TiO2 nanoparticles on Ni-N dual-atom-doped MXene nanosheets. Using in-situ transmission electron microscopy (TEM) technique, we observed the growth process of the homojunction for the first time confirming that homojunctions facilitated charge transfer, while dual-atom doping offered abundant active sites for anchoring and converting soluble polysulfides. Theoretical calculations and experiments showed that these synergistic effects effectively mitigated the shuttle effect, leading to improved cycling performance of Li-S batteries. After 500 cycles at a 1C rate, Li-S batteries using A/R-TiO2@Ni-N-MXene as cathode materials exhibited stable and highly reversible capacity with a capacity decay of only 0.056 % per cycle. Even after 150 cycles at a 0.1C rate, a high-capacity retention rate of 62.8 % was achieved. Additionally, efficient sulfur utilization was observed, with 1280.76 mA h/g at 0.1C, 694.24 mA h/g at 1C, alongside a sulfur loading of 1.5-2 mg/cm2. The effective strategy based on homojunctions showcases promise for designing high-performance Li-S batteries.
Collapse
Affiliation(s)
- Shasha Wei
- The Institute of Technological Sciences, Wuhan University, Wuhan 430000, China
| | - Jitao Shang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430000, China
| | - Yayun Zheng
- The Institute of Technological Sciences, Wuhan University, Wuhan 430000, China
| | - Teng Wang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430000, China
| | - Xirui Kong
- The Institute of Technological Sciences, Wuhan University, Wuhan 430000, China
| | - Qiu He
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Zhaofu Zhang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430000, China.
| | - Yan Zhao
- The Institute of Technological Sciences, Wuhan University, Wuhan 430000, China; College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| |
Collapse
|
3
|
Suo L, Feng L, Wang J, Xing M, Lv S, Mou H, Gao X, Zhang D, Song J. Nitrogen-Doped Graphene-Supported Tungsten Oxynitride Nanoparticles as an Efficient Bidirectional Polysulfide Convertor for Advanced Lithium-Sulfur Batteries. NANO LETTERS 2024; 24:15159-15166. [PMID: 39556699 DOI: 10.1021/acs.nanolett.4c04791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Catalytic materials are considered pivotal in addressing the sluggish kinetics and shuttle effect in lithium-sulfur batteries (LSBs). However, effectively harnessing the utilization rate of active sites within catalytic materials remains a pivotal challenge. In this study, a novel conductive nitrogen-doped graphene-loaded tungsten oxynitride nanoparticle (WNO/NG) with abundant active sites is prepared through a polymer-assisted templating method for serving as a sulfur host. Electrochemical analysis coupled with in situ XRD confirm the dual-directional electrocatalytic behavior of WNO/NG for accelerating the conversion of lithium polysulfide (LiPSs). Theoretical calculations demonstrate that the intrinsic mechanism underlying the performance enhancement is attributed to the high inherent conductivity of WNO/NG and the efficient interface charge transfer with LiPSs. The assembled 500 mAh pouch cell delivers a 97% capacity retention after 25 cycles. This strategy provides valuable insights for designing catalytic materials with abundant activity sites and sheds light on the mechanisms of catalytic enhancement in Li-S chemistry.
Collapse
Affiliation(s)
- Lulu Suo
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
| | - Lei Feng
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
| | - Juan Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
| | - Miaomiao Xing
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
| | - Shuhua Lv
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
| | - Hongyu Mou
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
| | - Xing Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
| | - Deliang Zhang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, China
| |
Collapse
|
4
|
Shahbaz M, Saeed M, Sharif S, Afzal TTR, Ashraf A, Riaz B, Ghaznavi Z, Shahzad S, Mushtaq MW, Shahzad A. A Review on Architecting Rationally Designed Metal-Organic Frameworks for the Next-Generation Li-S Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406613. [PMID: 39466947 DOI: 10.1002/smll.202406613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Indexed: 10/30/2024]
Abstract
The modern era demands the development of energy storage devices with high energy density and power density. There is no doubt that lithium‒sulfur batteries (Li‒S) claim high theoretical energy density and have attracted great attention from researchers, but fundamental exploration and practical applications cannot converge to utilize their maximum potential. The design parameters of Li-S batteries involve various complex mechanisms, and their obliviousness has resulted in failure at the commercial level. This article presents a review on rationally designed metal-organic frameworks (MOFs) for improving next-generation Li-S batteries. The use of MOFs in Li-S batteries is of great interest because of their large surface area, porous structure, and selective permeability for ions. The working principles of Li-S batteries, the commercialization of Li-S batteries, and the use of MOFs as electrodes, electrolytes, and separators are critically examined. Finally, designed strategies (host structure, binder improvement, separator modification, lithium metal protection, and electrolyte optimization) are developed to increase the performance of Li-S batteries.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University Lahore, Lahore, 54000, Pakistan
| | - Maham Saeed
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University Lahore, Lahore, 54000, Pakistan
| | - Shahzad Sharif
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University Lahore, Lahore, 54000, Pakistan
| | - Tayyaba Tur Rehman Afzal
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University Lahore, Lahore, 54000, Pakistan
| | - Alishba Ashraf
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University Lahore, Lahore, 54000, Pakistan
| | - Bilal Riaz
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University Lahore, Lahore, 54000, Pakistan
| | - Zainab Ghaznavi
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University Lahore, Lahore, 54000, Pakistan
| | - Sundas Shahzad
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University Lahore, Lahore, 54000, Pakistan
| | | | - Ayesha Shahzad
- Materials Chemistry Laboratory, Department of Chemistry, Govt. College University Lahore, Lahore, 54000, Pakistan
| |
Collapse
|
5
|
Dong H, Wang L, Cheng Y, Sun H, You T, Qie J, Li Y, Hua W, Chen K. Flash Joule Heating: A Promising Method for Preparing Heterostructure Catalysts to Inhibit Polysulfide Shuttling in Li-S Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405351. [PMID: 39013082 PMCID: PMC11425280 DOI: 10.1002/advs.202405351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Indexed: 07/18/2024]
Abstract
The "shuttle effect" issue severely hinders the practical application of lithium-sulfur (Li-S) batteries, which is primarily caused by the significant accumulation of lithium polysulfides in the electrolyte. Designing effective catalysts is highly desired for enhancing polysulfide conversion to address the above issue. Here, the one-step flash-Joule-heating route is employed to synthesize a W-W2C heterostructure on the graphene substrate (W-W2C/G) as a catalytic interlayer for this purpose. Theoretical calculations reveal that the work function difference between W (5.08 eV) and W2C (6.31 eV) induces an internal electric field at the heterostructure interface, accelerating the movement of electrons and ions, thus promoting the sulfur reduction reaction (SRR) process. The high catalytic activity is also confirmed by the reduced activation energy and suppressed polysulfide shuttling by in situ Raman analyses. With the W-W2C/G interlayer, the Li-S batteries exhibit an outstanding rate performance (665 mAh g-1 at 5.0 C) and cycle steadily with a low decay rate of 0.06% over 1000 cycles at a high rate of 3.0 C. Moreover, a high areal capacity of 10.9 mAh cm-2 (1381.4 mAh g-1) is obtained with a high area sulfur loading of 7.9 mg cm-2 but a low electrolyte/sulfur ratio of 9.0 µL mg-1.
Collapse
Affiliation(s)
- Huiyi Dong
- Center for the Physics of Low‐Dimensional MaterialsHenan Joint International Research Laboratory of New Energy Materials and DevicesSchool of Physics and ElectronicsHenan UniversityKaifeng475004China
| | - Lu Wang
- School of Materials Science and EngineeringShandong UniversityJinan250061China
| | - Yi Cheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Huiyue Sun
- Center for the Physics of Low‐Dimensional MaterialsHenan Joint International Research Laboratory of New Energy Materials and DevicesSchool of Physics and ElectronicsHenan UniversityKaifeng475004China
| | - Tianqi You
- Center for the Physics of Low‐Dimensional MaterialsHenan Joint International Research Laboratory of New Energy Materials and DevicesSchool of Physics and ElectronicsHenan UniversityKaifeng475004China
| | - Jingjing Qie
- Center for the Physics of Low‐Dimensional MaterialsHenan Joint International Research Laboratory of New Energy Materials and DevicesSchool of Physics and ElectronicsHenan UniversityKaifeng475004China
| | - Yifan Li
- Center for the Physics of Low‐Dimensional MaterialsHenan Joint International Research Laboratory of New Energy Materials and DevicesSchool of Physics and ElectronicsHenan UniversityKaifeng475004China
| | - Wuxing Hua
- Center for the Physics of Low‐Dimensional MaterialsHenan Joint International Research Laboratory of New Energy Materials and DevicesSchool of Physics and ElectronicsHenan UniversityKaifeng475004China
| | - Ke Chen
- Center for the Physics of Low‐Dimensional MaterialsHenan Joint International Research Laboratory of New Energy Materials and DevicesSchool of Physics and ElectronicsHenan UniversityKaifeng475004China
| |
Collapse
|
6
|
Deng DR, Xiong HJ, Luo YL, Yu KM, Weng JC, Li GF, Lei J, Li Y, Zheng MS, Wu QH. Accelerating the Rate-Determining Steps of Sulfur Conversion Reaction for Lithium-Sulfur Batteries Working at an Ultrawide Temperature Range. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406135. [PMID: 38869350 DOI: 10.1002/adma.202406135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Indexed: 06/14/2024]
Abstract
Wide operation temperature is the crucial objective for an energy storage system that can be applied under harsh environmental conditions. For lithium-sulfur batteries, the "shuttle effect" of polysulfide intermediates will aggravate with the temperature increasing, while the reaction kinetics decreases sharply as the temperature decreasing. In particular, sulfur reaction mechanism at low temperatures seems to be quite different from that at room temperature. Here, through in situ Raman and electrochemical impedance spectroscopy studies, the newly emerged platform at cryogenic temperature corresponds to the reduction process of Li2S8 to Li2S4, which will be another rate-determining step of sulfur conversion reaction, in addition to the solid-phase conversion process of Li2S4 to Li2S2/Li2S at low temperatures. Porous bismuth vanadate (BiVO4) spheres are designed as sulfur host material, which achieve the rapid snap-transfer-catalytic process by shortening lithium-ion transport pathway and accelerating the targeted rate-determining steps. Such promoting effect greatly inhibits severe "shuttle effect" at high temperatures and simultaneously improves sulfur conversion efficiency in the cryogenic environment. The cell with the porous BiVO4 spheres as the host exhibits excellent rate capability and cycle performance under wide working temperatures.
Collapse
Affiliation(s)
- Ding-Rong Deng
- College of Marine Equipment and Mechanical Engineering, Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen, Fujian, 361021, China
| | - Hai-Ji Xiong
- College of Marine Equipment and Mechanical Engineering, Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen, Fujian, 361021, China
| | - Yu-Lin Luo
- College of Marine Equipment and Mechanical Engineering, Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen, Fujian, 361021, China
| | - Kai-Min Yu
- College of Marine Equipment and Mechanical Engineering, Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen, Fujian, 361021, China
| | - Jian-Chun Weng
- College of Marine Equipment and Mechanical Engineering, Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen, Fujian, 361021, China
| | - Gui-Fang Li
- College of Marine Equipment and Mechanical Engineering, Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen, Fujian, 361021, China
| | - Jie Lei
- College of Materials Science and Engineering, Institute of New Energy Materials and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yi Li
- Jiangsu Key Lab of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ming-Sen Zheng
- State Key Laboratory for Physical Chemistry of Solide Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChem, Xiamen University, Xiamen, 361005, China
| | - Qi-Hui Wu
- College of Marine Equipment and Mechanical Engineering, Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen, Fujian, 361021, China
| |
Collapse
|
7
|
Lin Z, Zhu H, Qian L, Tang X, Wen J, Wang Y, Wang X, Han S, Zhu J, Lin H, Zhao Y. Modulating the Coordination Chemistry of Cobalt Catalytic Sites by Ruthenium Species to Accelerate the Polysulfide Conversion Kinetics in Lithium-Sulfur Batteries. Chemistry 2024; 30:e202400945. [PMID: 38690799 DOI: 10.1002/chem.202400945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
The performance of lithium-sulfur batteries is compromised by the loss of sulfur as dissolved polysulfides in the electrolyte and consequently the polysulfide redox shutting effect. Accelerating the conversion kinetics of polysulfide intermediates into sulfur or lithium sulfide through electrocatalysis has emerged as a root-cause solution. Co-N-C composite electrocatalyst is commonly used for this purpose. It is illustrated here that how the effectiveness can be improved by modulating the coordination chemistry of Co-N-C catalytic sites through introducing Ru species (RuCo-NC). The well-dispersed Ru in the Co-NC carbon matrix altered the total charge distribution over the Co-N-C catalytic sites and led to the formation of electron-rich Co-N, which is highly active for the polysulfide conversion reactions. Using Ru to modulate the electronic structure in the Co-N-C configuration and the additional catalytic sites over the Ru-Nx species can manifest optimal adsorption behavior of polysulfides. Consequently, the sulfur cathode with RuCo-NC can reduce the capacity fade rate from 0.11 % per cycle without catalyst (initial capacity of 701 mAh g-1) to 0.054 % per cycle (initial capacity of 1074 mAh g-1) over 400 cycles at 0.2 C rate. The results of this study provide the evidence for a feasible catalyst modification strategy for the polysulfide electrocatalysis.
Collapse
Affiliation(s)
- Zhiqian Lin
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haoxian Zhu
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liyuan Qian
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaohui Tang
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiangnan Wen
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yun Wang
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaofei Wang
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Songbai Han
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinlong Zhu
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haibin Lin
- Shenzhen Key Laboratory of Solid State Batteries, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Academy for Advanced Interdisciplinary Studies, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yusheng Zhao
- Eastern Institute for Advanced Study, Ningbo, 315201, China
| |
Collapse
|
8
|
Islam T, Chandra Roy S, Bayat S, Adigo Weret M, Hoffman JM, Rao KR, Sawicki C, Nie J, Alam R, Oketola O, Donley CL, Kumbhar A, Feng R, Wiaderek KM, Risko C, Amin R, Islam SM. Mo 3S 13 Chalcogel: A High-Capacity Electrode for Conversion-Based Li-Ion Batteries. CHEMSUSCHEM 2024; 17:e202400084. [PMID: 38519865 DOI: 10.1002/cssc.202400084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Despite large theoretical energy densities, metal-sulfide electrodes for energy storage systems face several limitations that impact the practical realization. Here, we present the solution-processable, room temperature (RT) synthesis, local structures, and application of a sulfur-rich Mo3S13 chalcogel as a conversion-based electrode for lithium-sulfide batteries (LiSBs). The structure of the amorphous Mo3S13 chalcogel is derived through operando Raman spectroscopy, synchrotron X-ray pair distribution function (PDF), X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) analysis, along with ab initio molecular dynamics (AIMD) simulations. A key feature of the three-dimensional (3D) network is the connection of Mo3S13 units through S-S bonds. Li/Mo3S13 half-cells deliver initial capacity of 1013 mAh g-1 during the first discharge. After the activation cycles, the capacity stabilizes and maintains 312 mAh g-1 at a C/3 rate after 140 cycles, demonstrating sustained performance over subsequent cycling. Such high-capacity and stability are attributed to the high density of (poly)sulfide bonds and the stable Mo-S coordination in Mo3S13 chalcogel. These findings showcase the potential of Mo3S13 chalcogels as metal-sulfide electrode materials for LiSBs.
Collapse
Affiliation(s)
- Taohedul Islam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, 39217, Jackson, MS, USA
| | - Subrata Chandra Roy
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, 39217, Jackson, MS, USA
| | - Sahar Bayat
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, 40506-0055, Lexington, KY, USA
| | - Misganaw Adigo Weret
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, 39217, Jackson, MS, USA
| | - Justin M Hoffman
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 60439, Argonne, Illinois, USA
| | - Keerthan R Rao
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, 40506-0055, Lexington, KY, USA
| | - Conrad Sawicki
- Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Hardin Valley Campus, 37830, Knoxville, TN, USA
| | - Jing Nie
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, 39217, Jackson, MS, USA
| | - Robiul Alam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, 39217, Jackson, MS, USA
| | - Oluwaseun Oketola
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, 39217, Jackson, MS, USA
| | - Carrie L Donley
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599-3290, Chapel Hill, NC, USA
| | - Amar Kumbhar
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599-3290, Chapel Hill, NC, USA
| | - Renfei Feng
- Canadian Light Source, S7 N 2 V3, Saskatoon, Saskatchewan, Canada
| | - Kamila M Wiaderek
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 60439, Argonne, Illinois, USA
| | - Chad Risko
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, 40506-0055, Lexington, KY, USA
| | - Ruhul Amin
- Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Hardin Valley Campus, 37830, Knoxville, TN, USA
| | - Saiful M Islam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, 39217, Jackson, MS, USA
| |
Collapse
|
9
|
Yao W, Liao K, Lai T, Sul H, Manthiram A. Rechargeable Metal-Sulfur Batteries: Key Materials to Mechanisms. Chem Rev 2024; 124:4935-5118. [PMID: 38598693 DOI: 10.1021/acs.chemrev.3c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Rechargeable metal-sulfur batteries are considered promising candidates for energy storage due to their high energy density along with high natural abundance and low cost of raw materials. However, they could not yet be practically implemented due to several key challenges: (i) poor conductivity of sulfur and the discharge product metal sulfide, causing sluggish redox kinetics, (ii) polysulfide shuttling, and (iii) parasitic side reactions between the electrolyte and the metal anode. To overcome these obstacles, numerous strategies have been explored, including modifications to the cathode, anode, electrolyte, and binder. In this review, the fundamental principles and challenges of metal-sulfur batteries are first discussed. Second, the latest research on metal-sulfur batteries is presented and discussed, covering their material design, synthesis methods, and electrochemical performances. Third, emerging advanced characterization techniques that reveal the working mechanisms of metal-sulfur batteries are highlighted. Finally, the possible future research directions for the practical applications of metal-sulfur batteries are discussed. This comprehensive review aims to provide experimental strategies and theoretical guidance for designing and understanding the intricacies of metal-sulfur batteries; thus, it can illuminate promising pathways for progressing high-energy-density metal-sulfur battery systems.
Collapse
Affiliation(s)
- Weiqi Yao
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kameron Liao
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tianxing Lai
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyunki Sul
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Arumugam Manthiram
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Ren L, Sun K, Wang Y, Kumar A, Liu J, Lu X, Zhao Y, Zhu Q, Liu W, Xu H, Sun X. Tandem Catalysis inside Double-Shelled Nanocages with Separated and Tunable Atomic Catalyst Sites for High Performance Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310547. [PMID: 37972306 DOI: 10.1002/adma.202310547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Single-atomic catalysts are effective in mitigating the shuttling effect and slow redox kinetics of lithium polysulfides (LiPSs) in lithium-sulfur (Li-S) batteries, but their ideal performance has yet to be achieved due to the multi-step conversion of LiPSs requiring multifunctional active sites for tandem catalysis. Here double-shelled nano-cages (DSNCs) have been developed to address this challenge, featuring separated and tunable single-atom sites as nano reactors that trigger tandem catalysis and promote the efficient electrochemical conversion of LiPSs. This enables high capacity and durable Li-S batteries. The DSNCs, with inner Co-N4 and outer Zn-N4 sites (S/CoNC@ZnNC DSNCs), exhibit a high specific capacity of 1186 mAh g-1 at 1 C, along with a low capacity fading rate of 0.063% per cycle over 500 cycles. Even with a high sulfur loading (4.2 mg cm-2) and a low E/S ratio (6 µL mg-1), the cell displays excellent cycling stability. Moreover, the Li-S pouch cells are capable of stable cycling for more than 160 cycles. These results demonstrate the feasibility of driving successive sulfur conversion reactions with separated active sites, and are expected to inspire further catalyst design for high performance Li-S batteries.
Collapse
Affiliation(s)
- Longtao Ren
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Sun
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan Wang
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Anuj Kumar
- Department of Chemistry, GLA University, Mathura, 281406, India
| | - Jun Liu
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiwen Lu
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yajun Zhao
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingyi Zhu
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wen Liu
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haijun Xu
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoming Sun
- College of Chemistry, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
11
|
Zhao M, Peng HJ, Li BQ, Huang JQ. Kinetic Promoters for Sulfur Cathodes in Lithium-Sulfur Batteries. Acc Chem Res 2024. [PMID: 38319810 DOI: 10.1021/acs.accounts.3c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
ConspectusLithium-sulfur (Li-S) batteries have attracted worldwide attention as promising next-generation rechargeable batteries due to their high theoretical energy density of 2600 Wh kg-1. The actual energy density of Li-S batteries at the pouch cell level has significantly exceeded that of state-of-the-art Li-ion batteries. However, the overall performances of Li-S batteries under practical working conditions are limited by the sluggish conversion kinetics of the sulfur cathodes. To overcome the above challenge, various kinetic promotion strategies have been proposed to accelerate the multiphase and multi-electron cathodic redox reactions between sulfur, lithium polysulfides (LiPSs), and lithium sulfide. Nowadays, kinetic promoters have been massively employed in sulfur cathodes to achieve Li-S batteries with high energy densities, high rates, and long lifespans. A comprehensive and timely summary of cutting-edge kinetic promoters for sulfur cathodes is of great essence to afford an in-depth understanding of the unique Li-S electrochemistry.In this Account, we outline the recent efforts on the design of sulfur cathode kinetic promoters for advanced Li-S batteries. The latest progress is discussed in detail regarding heterogeneous, homogeneous, and semi-immobilized kinetic promoters. Heterogeneous promoters, representatively known as electrocatalysts, function mainly by reducing the energy barriers of the interfacial electrochemical reactions. The working mechanism, activity regulation strategies, and reconstitution/deactivation processes of the heterogeneous promoters are reviewed to provide guiding principles for rational design. In comparison, homogeneous promoters are able to fully contact with the reaction interfaces and regulate the electron/ion-inaccessible reactants in working Li-S batteries. Redox mediators and redox comediators are typical homogeneous promoters. The former establishes extra chemical reaction pathways to circumvent the originally sluggish steps and boost the overall kinetics, while the latter fundamentally modifies the LiPS molecules to enhance their redox kinetics. For semi-immobilized promoters, the active units are generally anchored on the cathode substrate through flexible chains with mobile characteristics. Such a design endows the promoter with both heterogeneous and homogeneous characteristics to comprehensively regulate the multiphase sulfur redox reactions involving both mobile and immobile reactants.Overall, this Account summarizes the fundamental electrochemistry, design principles, and practical promotion effects of the various kinetic promoters used for the sulfur cathodes in Li-S batteries. We believe that this Account will provide an in-depth and cutting-edge understanding of the unique sulfur electrochemistry, thereby providing guidance for further development of high-performance Li-S batteries and analogous rechargeable battery systems.
Collapse
Affiliation(s)
- Meng Zhao
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong-Jie Peng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Bo-Quan Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jia-Qi Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
12
|
Liu J, Zhou Y, Xiao Z, Ren X, Liu S, Yan T. A Catalytic Electrolyte Additive Modulating Molecular Orbital Energy Levels of Lithium Polysulfides for High-Performance Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55608-55619. [PMID: 37982664 DOI: 10.1021/acsami.3c10163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Lithium-sulfur (Li-S) batteries have ultrahigh theoretical specific capacity, but the practical application is hindered by the severe shuttle effect and the sluggish redox kinetics of the intermediate lithium polysulfides (LiPSs). Effectively enhancing the conversion kinetics of LiPSs is essential for addressing these issues. Herein, the redox kinetics of LiPSs are effectively improved by introducing 6-azauracil (6-AU) molecules to the organic electrolyte to modulate the molecular orbital energy level of LiPSs. The 6-AU as a soluble catalyst can form complexes with LiPSs via Li-O bonds. These complexes are liable to transform because of the elevated HOMO and the reduced LUMO energy levels as compared to the dissociative LiPSs, resulting in small energy gaps (Egap) and exhibiting stronger redox activity. Benefiting from the rapid conversion kinetics, the shuttling effect of LiPSs is alleviated to a great extent, so that sulfur utilization is improved and the lithium electrode is protected. In addition, the introduction of 6-AU modulates the deposition behavior of Li2S and eases the coverage of the cathode surface by the insulating Li2S layer. The Li-S battery containing 6-AU provides superior capacity retention of 853 mAh g-1 after 150 cycles at 0.2 C and shows remarkable high-rate performance and retains a specific discharge capacity of 855 mAh g-1 at 5 C. This study accelerates the kinetics of Li-S batteries by tuning the HOMO and LUMO energy levels of LiPSs, which opens an avenue for designing functional electrolyte additives.
Collapse
Affiliation(s)
- Jing Liu
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhao Zhou
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhenxue Xiao
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaozhe Ren
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sheng Liu
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tianying Yan
- Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
13
|
Sun Y, Wang J, Shang T, Li Z, Li K, Wang X, Luo H, Lv W, Jiang L, Wan Y. Counting d-Orbital Vacancies of Transition-Metal Catalysts for the Sulfur Reduction Reaction. Angew Chem Int Ed Engl 2023; 62:e202306791. [PMID: 37779352 DOI: 10.1002/anie.202306791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The electrocatalytic sulfur reduction reaction (SRR) would allow the production of renewable high-capacity rechargeable lithium-sulfur (Li-S) batteries using sustainable and nontoxic elemental sulfur as a cathode material, but its slow reaction rate causes a serious shuttle effect and dramatically reduces the capacity. We found that a catalyst composed of Pd nanoparticles supported by ordered mesoporous carbon (Pd/OMC) had a high reaction rate in the SRR, and a Li-S battery assembled with this catalyst had a low shuttle constant of 0.031 h-1 and a high-rate performance with a specific capacity of 1527 mAh g-1 at 0.1 C which is close to the theoretical value. The high activity of Pd/OMC with a d-orbital vacancy of 0.87 e was predicted from a volcano relationship between the d charge for the metal and the adsorption activation entropy and reaction rate for the SRR by examining Pd, Au, Pt, Rh, and Ru transition-metal nanocatalysts. The strategy of using a single electronic structure descriptor to design high-efficiency SRR catalysts has suggested a way to produce practical Li-S batteries.
Collapse
Affiliation(s)
- Yafei Sun
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, China
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 200234, Shanghai, China
| | - Jingyi Wang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 200234, Shanghai, China
| | - Tongxin Shang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, China
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 200234, Shanghai, China
- Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Zejian Li
- Shenzhen Key Laboratory for Graphene-based Materials and Engineering Laboratory for Functionalized Carbon Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Kanghui Li
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 200234, Shanghai, China
| | - Xianwei Wang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 200234, Shanghai, China
| | - Huarui Luo
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 200234, Shanghai, China
| | - Wei Lv
- Shenzhen Key Laboratory for Graphene-based Materials and Engineering Laboratory for Functionalized Carbon Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Lilong Jiang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, 350007, Fuzhou, China
| | - Ying Wan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, China
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 200234, Shanghai, China
- Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
14
|
Duan T, Wang L, Ma Z, Pei Y. Theoretical Insights into Single-Atom Catalysts Supported on N-Doped Defective Graphene for Fast Reaction Redox Kinetics in Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303760. [PMID: 37340573 DOI: 10.1002/smll.202303760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Single-atom catalysts are proven to be an effective strategy for suppressing shuttle effect at the source by accelerating the redox kinetics of intermediate polysulfides in lithium-sulfur (Li-S) batteries. However, only a few 3d transition metal single-atom catalysts (Ti, Fe, Co, Ni) are currently applied for sulfur reduction/oxidation reactions (SRR/SOR), which remains challenging for screening new efficient catalysts and understanding the relationship between structure-activity of catalysts. Herein, N-doped defective graphene (NG) supported 3d, 4d, and 5d transition metals are used as single-atom catalyst models to explore electrocatalytic SRR/SOR in Li-S batteries by using density functional theory calculations. The results show that M1 /NG (M1 = Ru, Rh, Ir, Os) exhibits lower free energy change of rate-determining step( Δ G Li 2 S ∗ ) $( {\Delta {G}_{{\mathrm{Li}}_{\mathrm{2}}{{\mathrm{S}}}^{\mathrm{*}}\ }} )$ and Li2 S decomposition energy barrier, which significantly enhance the SRR and SOR activity compared to other single-atom catalysts. Furthermore, the study accurately predicts theΔ G Li 2 S ∗ $\Delta {G}_{{\mathrm{Li}}_{\mathrm{2}}{{\mathrm{S}}}^{\mathrm{*}}\ }$ by machine learning based on various descriptors and reveals the origin of the catalyst activity by analyzing the importance of the descriptors. This work provides great significance for understanding the relationships between the structure-activity of catalysts, and manifests that the employed machine learning approach is instructive for theoretical studies of single-atom catalytic reactions.
Collapse
Affiliation(s)
- Tengfei Duan
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applicationics of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Li Wang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applicationics of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Zhongyun Ma
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applicationics of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applicationics of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan, 411105, China
- The National Center for Applied Mathematics in Hunan, Xiangtan, 411105, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming, 650093, China
| |
Collapse
|
15
|
Zheng Q, Hou Q, Shu Z, Liu G, Fan X, Wang K, Fan J, Yuan R, Zheng M, Dong Q. An Endogenous Prompting Mechanism for Sulfur Conversions Via Coupling with Polysulfides in Li-S Batteries. Angew Chem Int Ed Engl 2023; 62:e202308726. [PMID: 37469106 DOI: 10.1002/anie.202308726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
The sluggish kinetics process and shuttling of soluble intermediates present in complex conversion between sulfur and lithium sulfide severely limit the practical application of lithium-sulfur batteries. Herein, by introducing a designated functional organic molecule to couple with polysulfide intermediators, an endogenous prompting mechanism of sulfur conversions has thus been created leading to an alternative sulfur-electrode process, in another words, to build a fast "internal cycle" of promotors that can promote the slow "external cycle" of sulfur conversions. The coupling-intermediators between the functional organic molecule and polysulfides, organophosphorus polysulfides, to be the "promotors" for sulfur conversions, are not only insoluble in the electrolyte but also with higher redox-activity. So the sulfur-electrode process kinetics is greatly improved and the shuttle effect is eliminated simultaneously by this strategy. Meanwhile, with the endogenous prompting mechanism, the morphology of the final discharge product can be modified into a uniform covering film, which is more conducive to its decomposition when charging. Benefiting from the effective mediation of reaction kinetics and control of intermediates solubility, the lithium-sulfur batteries can act out excellent rate performance and cycling stability.
Collapse
Affiliation(s)
- Qingyi Zheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Qing Hou
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenghao Shu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Guoqing Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaoxiang Fan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Kun Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jingmin Fan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ruming Yuan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Mingsen Zheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Quanfeng Dong
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
16
|
Abd-Alkuder Salman E, Abaid Samawi K, Fawzi Nassar M, Abdulkareem-Alsultan G, Abdulmalek E. 3D hollow spheres comprising MXene/g-C3N4 heterostructre for efficient polysulfide adsorption and conversion in high-performance Li-S batteries. J Electroanal Chem (Lausanne) 2023; 945:117629. [DOI: 10.1016/j.jelechem.2023.117629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
17
|
Xu W, Lang S, Wang K, Zeng R, Li H, Feng X, Krumov MR, Bak SM, Pollock CJ, Yeo J, Du Y, Abruña HD. Fundamental mechanistic insights into the catalytic reactions of Li─S redox by Co single-atom electrocatalysts via operando methods. SCIENCE ADVANCES 2023; 9:eadi5108. [PMID: 37585528 PMCID: PMC10431713 DOI: 10.1126/sciadv.adi5108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/14/2023] [Indexed: 08/18/2023]
Abstract
Lithium-sulfur batteries represent an attractive option for energy storage applications. A deeper understanding of the multistep lithium-sulfur reactions and the electrocatalytic mechanisms are required to develop advanced, high-performance batteries. We have systematically investigated the lithium-sulfur redox processes catalyzed by a cobalt single-atom electrocatalyst (Co-SAs/NC) via operando confocal Raman microscopy and x-ray absorption spectroscopy (XAS). The real-time observations, based on potentiostatic measurements, indicate that Co-SAs/NC efficiently accelerates the lithium-sulfur reduction/oxidation reactions, which display zero-order kinetics. Under galvanostatic discharge conditions, the typical stepwise mechanism of long-chain and intermediate-chain polysulfides is transformed to a concurrent pathway under electrocatalysis. In addition, operando cobalt K-edge XAS studies elucidate the potential-dependent evolution of cobalt's oxidation state and the formation of cobalt-sulfur bonds. Our work provides fundamental insights into the mechanisms of catalyzed lithium-sulfur reactions via operando methods, enabling a deeper understanding of electrocatalysis and interfacial dynamics in electrical energy storage systems.
Collapse
Affiliation(s)
- Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Shuangyan Lang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Kaiyang Wang
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Huiqi Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Xinran Feng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Mihail R. Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Seong-Min Bak
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Christopher J. Pollock
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, NY, 14853, USA
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yonghua Du
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Héctor D. Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
18
|
Wang M, Mao J, Pang Y, Zhang X, Wang H, Yang Z, Lu Z, Yang S. Theoretical identification of the superior anchoring effect and electrochemical performance of Ti 2CS 2 by single atom Zn doping for lithium-sulfur batteries. Phys Chem Chem Phys 2023. [PMID: 37449881 DOI: 10.1039/d3cp01161e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
As one of the promising next-generation energy storage systems, lithium-sulfur (Li-S) batteries have been the subject of much recent attention. However, the polysulfide shuttle effect remains problematic owing to the dissolution of intermediate polysulfide species in the electrolyte and the sluggish reaction dynamics in Li-S batteries. To overcome these issues, this work reports an effective strategy for enhancing the electrochemical performance of Li-S batteries using single atom Zn doping on the S-terminated Ti2C MXenes (Ti2-xZnxCS2). Spin-polarized density functional theory (DFT) calculations were performed to elucidate the interactions of lithium polysulfides (LiPSs) and the Ti2-xZnxCS2 surface in terms of geometric and electronic properties, as well as the delithiation process of Li2S on the Ti2-xZnxCS2 surface. It is found that doping single atom Zn could induce a new Lewis acid-based sites, which could provide proper affinity toward LiPSs. Combined with the metallic character, a low Li diffusion barrier and high catalytic activity for the delithiation process of Li2S, makes Ti2-xZnxCS2 a promising cathode material for Li-S batteries. The results demonstrate the importance of surface chemistry and the electronic structure of MXenes in LiPSs' adsorption and catalysis capability. We believe that our findings provide insights into the recent experimental results and guidance for the preparation and practical application of MXenes in Li-S batteries.
Collapse
Affiliation(s)
- Mingyang Wang
- School of Physics, Henan Normal University and Henan Key Laboratory of Photovoltaic Materials, Xinxiang, Henan, 453007, People's Republic of China.
- Henan Battery Research Institute, Xinxiang, Henan, 453007, People's Republic of China.
| | - Jianjun Mao
- Department of Chemistry, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, People's Republic of China
| | - Yudong Pang
- School of Physics, Henan Normal University and Henan Key Laboratory of Photovoltaic Materials, Xinxiang, Henan, 453007, People's Republic of China.
| | - Xilin Zhang
- School of Physics, Henan Normal University and Henan Key Laboratory of Photovoltaic Materials, Xinxiang, Henan, 453007, People's Republic of China.
| | - Haiyan Wang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry and Chemistry Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Zongxian Yang
- School of Physics, Henan Normal University and Henan Key Laboratory of Photovoltaic Materials, Xinxiang, Henan, 453007, People's Republic of China.
| | - Zhansheng Lu
- School of Physics, Henan Normal University and Henan Key Laboratory of Photovoltaic Materials, Xinxiang, Henan, 453007, People's Republic of China.
| | - Shuting Yang
- Henan Battery Research Institute, Xinxiang, Henan, 453007, People's Republic of China.
| |
Collapse
|
19
|
Bai Z, Wang Z, Li R, Wu Z, Feng P, Zhao L, Wang T, Hou W, Bai Y, Wang G, Sun K. Engineering Triple-Phase Interfaces Enabled by Layered Double Perovskite Oxide for Boosting Polysulfide Redox Conversion. NANO LETTERS 2023. [PMID: 37216428 DOI: 10.1021/acs.nanolett.3c00566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The electrocatalytic conversion of polysulfides is crucial to lithium-sulfur batteries and mainly occurs at triple-phase interfaces (TPIs). However, the poor electrical conductivity of conventional transition metal oxides results in limited TPIs and inferior electrocatalytic performance. Herein, a TPI engineering approach comprising superior electrically conductive layered double perovskite PrBaCo2O5+δ (PBCO) is proposed as an electrocatalyst to boost the conversion of polysulfides. PBCO has superior electrical conductivity and enriched oxygen vacancies, effectively expanding the TPI to its entire surface. DFT calculation and in situ Raman spectroscopy manifest the electrocatalytic effect of PBCO, proving the critical role of enhanced electrical conductivity of this electrocatalyst. PBCO-based Li-S batteries exhibit an impressive reversible capacity of 612 mAh g-1 after 500 cycles at 1.0 C with a capacity fading rate of 0.067% per cycle. This work reveals the mechanism of the enriched TPI approach and provides novel insight into designing new catalysts for high-performance Li-S batteries.
Collapse
Affiliation(s)
- Zhe Bai
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhenhua Wang
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Ruilong Li
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zeyu Wu
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Pingli Feng
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Lina Zhao
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Tan Wang
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Wenshuo Hou
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yu Bai
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematics and Physics, Faculty of Science, University of Technology Sydney, Broadway, Sydney NSW 2007, Australia
| | - Kening Sun
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
20
|
Yang JL, Yang P, Cai DQ, Wang Z, Fan HJ. Atomically Dispersed Fe-N 4 and Ni-N 4 Independent Sites Enable Bidirectional Sulfur Redox Electrocatalysis. NANO LETTERS 2023; 23:4000-4007. [PMID: 37125765 DOI: 10.1021/acs.nanolett.3c00787] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Single-atom catalysts (SACs) with high atom utilization and outstanding catalytic selectivity are useful for improving battery performance. Herein, atomically dispersed Ni-N4 and Fe-N4 dual sites coanchored on porous hollow carbon nanocages (Ni-Fe-NC) are fabricated and deployed as the sulfur host for Li-S battery. The hollow and conductive carbon matrix promotes electron transfer and also accommodates volume fluctuation during cycling. Notably, the high d band center of Fe in Fe-N4 site demonstrates strong polysulfide affinity, leading to an accelerated sulfur reduction reaction. Meanwhile, Li2S on the Ni-N4 site delivers a metallic property with high S 2p electron density of states around the Femi energy level, enabling a low sulfur evolution reaction barrier. The dual catalytic effect on Ni-Fe-NC endows sulfur cathode high energy density, prolonged lifespan, and low polarization.
Collapse
Affiliation(s)
- Jin-Lin Yang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Peihua Yang
- The Institute of Technological Sciences, MOE Key Laboratory of Hydrodynamic Transients, Wuhan University, Wuhan 430072, China
| | - Da-Qian Cai
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhe Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
21
|
Wu J, Huang J, Cui Y, Miao D, Ke X, Lu Y, Wu D. Rough Endoplasmic Reticulum Inspired Polystyrene-Brush-Based Superhigh Sulfur Content Cathodes Enable Lithium-Sulfur Cells with High Mass and Capacity Loading. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211471. [PMID: 36807410 DOI: 10.1002/adma.202211471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/10/2023] [Indexed: 05/26/2023]
Abstract
The development of highly sophisticated biomimetic models is significant yet remains challenging in the electrochemical energy storage field. Lithium-sulfur (Li-S) cells with high sulfur content and high-sulfur-loading cathodes are urgently required to meet the fast-growing demand for electronic devices. Nevertheless, such cathode materials generally suffer from large sulfur agglomeration, nonporous structure, and insufficient conductivity, leading to rapid capacity decay and low sulfur utilization. Herein, inspired by rough endoplasmic reticulum, a 2D polystyrene (PS)-brush-based (G-g-PS) superhigh-sulfur-content (96 wt%) composite(G-g-sPS@S) is fabricated via the vulcanization reaction. The vulcanized PS side-chains and their S8 composites on the nanosheet surface can efficiently provide sulfur species, and the intersheet interstitial pores can provide rapid mass-transfer channels for redox reactions of sulfur species. Furthermore, the highly sulfophilic vulcanized PS side-chains are able to effectively inhibit the shuttle effect of polysulfides and regulate their redox process. With these merits, the cells with G-g-sPS@S cathodes exhibit an ultralow decay rate of 0.02% per cycle over 400 cycles at 2 C and deliver a superior areal capacity of 12.6 mAh cm-2 even with a high sulfur loading of 10.5 mg cm-2 .
Collapse
Affiliation(s)
- Jinlun Wu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Junlong Huang
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yin Cui
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Dongtian Miao
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xianlan Ke
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yuheng Lu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Dingcai Wu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
22
|
Zhu T, Wu Q, Cao Y, Wang W, Li Y, Meng S, Liu L. Study on the effect of carbon nanotubes loaded with cobalt disulfide modified multifunctional separator on Li-S battery. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
23
|
Sun J, Liu Y, Liu L, Bi J, Wang S, Du Z, Du H, Wang K, Ai W, Huang W. Interface Engineering Toward Expedited Li 2 S Deposition in Lithium-Sulfur Batteries: A Critical Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211168. [PMID: 36756778 DOI: 10.1002/adma.202211168] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Indexed: 06/09/2023]
Abstract
Lithium-sulfur batteries (LSBs) with superior energy density are among the most promising candidates of next-generation energy storage techniques. As the key step contributing to 75% of the overall capacity, Li2 S deposition remains a formidable challenge for LSBs applications because of its sluggish kinetics. The severe kinetic issue originates from the huge interfacial impedances, indicative of the interface-dominated nature of Li2 S deposition. Accordingly, increasing efforts have been devoted to interface engineering for efficient Li2 S deposition, which has attained inspiring success to date. However, a systematic overview and in-depth understanding of this critical field are still absent. In this review, the principles of interface-controlled Li2 S precipitation are presented, clarifying the pivotal roles of electrolyte-substrate and electrolyte-Li2 S interfaces in regulating Li2 S depositing behavior. For the optimization of the electrolyte-substrate interface, efforts on the design of substrates including metal compounds, functionalized carbons, and organic compounds are systematically summarized. Regarding the regulation of electrolyte-Li2 S interface, the progress of applying polysulfides catholytes, redox mediators, and high-donicity/polarity electrolytes is overviewed in detail. Finally, the challenges and possible solutions aiming at optimizing Li2 S deposition are given for further development of practical LSBs. This review would inspire more insightful works and, more importantly, may enlighten other electrochemical areas concerning heterogeneous deposition processes.
Collapse
Affiliation(s)
- Jinmeng Sun
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yuhang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Lei Liu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Jingxuan Bi
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Siying Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Zhuzhu Du
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Hongfang Du
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, 350117, China
| | - Ke Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Wei Ai
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, 350117, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
24
|
Zhao Y, Liu C, Zha C, Li J, Lyu C, Wang K, Li J, Hui KS, Zhang L, Hui KN. Tailoring WB morphology enables d-band centers to be highly active for high-performance lithium-sulfur battery. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Fan Z, Zhu M, Deng S, Chen Y, Zhao Y, Qin M, Ma G, Wu J, Xin X. Co-doped g-C 3N 4 nanotube decorated separators mediate polysulfide redox for high performance lithium sulfur batteries. NANOSCALE ADVANCES 2023; 5:471-478. [PMID: 36756255 PMCID: PMC9846446 DOI: 10.1039/d2na00645f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/18/2022] [Indexed: 06/18/2023]
Abstract
The main issue with lithium-sulfur (Li-S) batteries is the serious irreversible capacity loss caused by the polysulfide shuttle process. In this work, we propose an electro-catalytic strategy for absorbing and transferring long-chain polysulfides during the redox process, which is the key to improving the utilization of S. Reported here is a Co doped tubular g-C3N4 (CN) modified separator (Co-TCN@PP), which successfully inhibited the polysulfide shuttle by physical absorption and catalysis, thus facilitating the high utilization of S. Co-TCN with a tube-like structure ensures the uniform dispersion of Co nanoparticles, which provides abundant active sites to absorb polysulfides. Furthermore, Co-TCN exhibits fast reaction kinetics for polysulfide conversion. A Li-S battery with Co-TCN@PP achieves superior rate capacities and a long cycle life (400 times) with capacity fading as low as 0.07% per cycle at a high Li+ insertion/extraction rate of 2C. Moreover, electrodes with a high sulfur loading of 5.6 mg cm-2 can be realized by adopting the Co-TCN@PP separator.
Collapse
Affiliation(s)
- Zunhao Fan
- School of Material Science and Chemical Engineering, Ningbo University Ningbo 315211 P. R. China
| | - Mengting Zhu
- School of Material Science and Chemical Engineering, Ningbo University Ningbo 315211 P. R. China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 P. R. China
| | - Shungui Deng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 P. R. China
| | - Yanhua Chen
- Zhejiang Fashion Institute of Technology Ningbo 315211 Zhejiang P. R. China
| | - Yue Zhao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 P. R. China
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University Zhengzhou 450001 China
| | - Mengyuan Qin
- School of Material Science and Chemical Engineering, Ningbo University Ningbo 315211 P. R. China
| | - Guiyuan Ma
- School of Material Science and Chemical Engineering, Ningbo University Ningbo 315211 P. R. China
| | - Jinghua Wu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xing Xin
- School of Material Science and Chemical Engineering, Ningbo University Ningbo 315211 P. R. China
| |
Collapse
|
26
|
Yang Z, Hu Z, Yan G, Li M, Feng Y, Qu X, Zhang X. Multi-function hollow nanorod as an efficient sulfur host accelerates sulfur redox reactions for high-performance Li-S batteries. J Colloid Interface Sci 2023; 629:65-75. [PMID: 36152581 DOI: 10.1016/j.jcis.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022]
Abstract
The "shuttle effect" of lithium polysulfides (LiPSs) leads to loss of active materials and the deterioration of cycle stability, which seriously restricts the practical progress of lithium-sulfur (Li-S) batteries. The diffusion of soluble discharge intermediate is the root cause of the above problems. Herein, we synthesized a porous organic framework material (HUT-8) based on triazine network, the polar groups above the hollow structure can not only adsorb LiPSs through electron donating effect, but also anchored cobalt (II) ions provide a large number of binding sites for the in-situ growth of CoS2. This ensured maximized exposure of catalytic centre and improve their interactions with sulfur redox species under the confinement of mesopores, which can catalytically accelerate capture/diffusion of LiPSs and precipitation/decomposition of Li2S. Based on the synergistic effect of the composite materials, the CoS2-HUT-8/S cathode maintained a capacity of 583 mAh g-1 after 500 cycles at 1 C, and a minimum capacity fading rate of 0.046% per cycle. A freestanding CoS2-HUT-8/S cathode with sulfur loading of 5.2 mg cm-2 delivered a high areal capacity of 4.01 mAh cm-2 under a lean electrolyte, which would provide great potential for the practical progress of Li-S batteries.
Collapse
Affiliation(s)
- Zhipeng Yang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Zongjie Hu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Gaojie Yan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Mengke Li
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Yi Feng
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300130, PR China.
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300130, PR China.
| |
Collapse
|
27
|
N doped FeP nanospheres decorated carbon matrix as an efficient electrocatalyst for durable lithium-sulfur batteries. J Colloid Interface Sci 2023; 630:70-80. [DOI: 10.1016/j.jcis.2022.09.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/13/2022] [Accepted: 09/24/2022] [Indexed: 11/11/2022]
|
28
|
Li H, Meng R, Guo Y, Ye C, Kong D, Johannessen B, Jaroniec M, Qiao SZ. Unraveling the Catalyst-Solvent Interactions in Lean-Electrolyte Sulfur Reduction Electrocatalysis for Li-S Batteries. Angew Chem Int Ed Engl 2022; 61:e202213863. [PMID: 36289045 PMCID: PMC10099598 DOI: 10.1002/anie.202213863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/24/2022]
Abstract
Efficient catalyst design is important for lean-electrolyte sulfur reduction in Li-S batteries. However, most of the reported catalysts were focused on catalyst-polysulfide interactions, and generally exhibit high activity only with a large excess of electrolyte. Herein, we proposed a general rule to boost lean-electrolyte sulfur reduction by controlling the catalyst-solvent interactions. As evidenced by synchrotron-based analysis, in situ spectroscopy and theoretical computations, strong catalyst-solvent interaction greatly enhances the lean-electrolyte catalytic activity and battery stability. Benefitting from the strong interaction between solvent and cobalt catalyst, the Li-S battery achieves stable cycling with only 0.22 % capacity decay per cycle with a low electrolyte/sulfur mass ratio of 4.2. The lean-electrolyte battery delivers 79 % capacity retention compared with the battery with flooded electrolyte, which is the highest among the reported lean-electrolyte Li-S batteries.
Collapse
Affiliation(s)
- Huan Li
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Rongwei Meng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yong Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chao Ye
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Debin Kong
- College of New Energy, China University of Petroleum (East China), Qingdao, 266580, China
| | - Bernt Johannessen
- Australian Synchrotron, ANSTO, 800 Blackburn Rd., Clayton, VIC 3168, Australia
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry & Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| | - Shi-Zhang Qiao
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
29
|
DFT Simulation-Based Design of 1T-MoS 2 Cathode Hosts for Li-S Batteries and Experimental Evaluation. Int J Mol Sci 2022; 23:ijms232415608. [PMID: 36555250 PMCID: PMC9779699 DOI: 10.3390/ijms232415608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The main challenge in lithium sulphur (Li-S) batteries is the shuttling of lithium polysulphides (LiPSs) caused by the rapid LiPSs migration to the anode and the slow reaction kinetics in the chain of LiPSs conversion. In this study, we explore 1T-MoS2 as a cathode host for Li-S batteries by examining the affinity of 1T-MoS2 substrates (pristine 1T-MoS2, defected 1T-MoS2 with one and two S vacancies) toward LiPSs and their electrocatalytic effects. Density functional theory (DFT) simulations are used to determine the adsorption energy of LiPSs to these substrates, the Gibbs free energy profiles for the reaction chain, and the preferred pathways and activation energies for the slow reaction stage from Li2S4 to Li2S. The obtained information highlights the potential benefit of a combination of 1T-MoS2 regions, without or with one and two sulphur vacancies, for an improved Li-S battery performance. The recommendation is implemented in a Li-S battery with areas of pristine 1T-MoS2 and some proportion of one and two S vacancies, exhibiting a capacity of 1190 mAh/g at 0.1C, with 97% capacity retention after 60 cycles in a schedule of different C-rates from 0.1C to 2C and back to 0.1C.
Collapse
|
30
|
Song Z, Jiang W, Jian X, Hu F. Advanced Nanostructured Materials for Electrocatalysis in Lithium-Sulfur Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4341. [PMID: 36500964 PMCID: PMC9736453 DOI: 10.3390/nano12234341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Lithium-sulfur (Li-S) batteries are considered as among the most promising electrochemical energy storage devices due to their high theoretical energy density and low cost. However, the inherently complex electrochemical mechanism in Li-S batteries leads to problems such as slow internal reaction kinetics and a severe shuttle effect, which seriously affect the practical application of batteries. Therefore, accelerating the internal electrochemical reactions of Li-S batteries is the key to realize their large-scale applications. This article reviews significant efforts to address the above problems, mainly the catalysis of electrochemical reactions by specific nanostructured materials. Through the rational design of homogeneous and heterogeneous catalysts (including but not limited to strategies such as single atoms, heterostructures, metal compounds, and small-molecule solvents), the chemical reactivity of Li-S batteries has been effectively improved. Here, the application of nanomaterials in the field of electrocatalysis for Li-S batteries is introduced in detail, and the advancement of nanostructures in Li-S batteries is emphasized.
Collapse
Affiliation(s)
- Zihui Song
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Key Laboratory of Energy Materials and Devices (Liaoning Province), Dalian University of Technology, Dalian 116024, China
| | - Wanyuan Jiang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Key Laboratory of Energy Materials and Devices (Liaoning Province), Dalian University of Technology, Dalian 116024, China
| | - Xigao Jian
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Key Laboratory of Energy Materials and Devices (Liaoning Province), Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Key Laboratory of Energy Materials and Devices (Liaoning Province), Dalian University of Technology, Dalian 116024, China
| | - Fangyuan Hu
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Key Laboratory of Energy Materials and Devices (Liaoning Province), Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
31
|
Zhang Z, Fan X, Wu M, Zhong Y, Ding X, Luo C, Chen Y, Huang X. A Nickel-decorated porous graphitized carbon/sulfur cathode enabling excellent cycling stability of all-solid-state lithium-sulfur batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Zeng P, Yuan C, Liu G, Gao J, Li Y, Zhang L. Recent progress in electronic modulation of electrocatalysts for high-efficient polysulfide conversion of Li-S batteries. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Xiao R, Luo D, Wang J, Lu H, Ma H, Akinoglu EM, Jin M, Wang X, Zhang Y, Chen Z. Oxidation States Regulation of Cobalt Active Sites through Crystal Surface Engineering for Enhanced Polysulfide Conversion in Lithium-Sulfur Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202352. [PMID: 36109171 PMCID: PMC9631056 DOI: 10.1002/advs.202202352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/31/2022] [Indexed: 06/15/2023]
Abstract
In this work, unique Co3 O4 /N-doped reduced graphene oxide (Co3 O4 /N-rGO) composites as favorable sulfur immobilizers and promoters for lithium-sulfur (Li-S) batteries are developed. The prepared Co3 O4 nanopolyhedrons (Co3 O4 -NP) and Co3 O4 nanocubes mainly expose (112) and (001) surfaces, respectively, with different atomic configurations of Co2+ /Co3+ sites. Experiments and theoretical calculations confirm that the octahedral coordination Co3+ (Co3+ Oh ) sites with different oxidation states from tetrahedral coordination Co2+ sites optimize the adsorption and catalytic conversion of lithium polysulfides. Specially, the Co3 O4 -NP crystals loaded on N-rGO expose (112) planes with ample Co3+ Oh active sites, exhibiting stronger adsorbability and superior catalytic activity for polysulfides, thus inhibiting the shuttle effect. Therefore, the S@Co3 O4 -NP/N-rGO cathodes deliver excellent electrochemical properties, for example, stable cyclability at 1 C with a low capacity decay rate of 0.058% over 500 cycles, superb rate capability up to 3 C, and high areal capacity of 4.1 mAh cm-2 . This catalyst's design incorporating crystal surface engineering and oxidation state regulation strategies also provides new approaches for addressing the complicated issues of Li-S batteries.
Collapse
Affiliation(s)
- Rujian Xiao
- South China Academy of Advanced OptoelectronicsSchool of Information and Optoelectronic Science and EngineeringSouth China Normal UniversityGuangdong510006China
| | - Dan Luo
- South China Academy of Advanced OptoelectronicsSchool of Information and Optoelectronic Science and EngineeringSouth China Normal UniversityGuangdong510006China
- Department of Chemical EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Jiayi Wang
- South China Academy of Advanced OptoelectronicsSchool of Information and Optoelectronic Science and EngineeringSouth China Normal UniversityGuangdong510006China
| | - Han Lu
- International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityZhaoqing526060China
| | - Heng Ma
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| | - Eser Metin Akinoglu
- International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityZhaoqing526060China
| | - Mingliang Jin
- South China Academy of Advanced OptoelectronicsSchool of Information and Optoelectronic Science and EngineeringSouth China Normal UniversityGuangdong510006China
- International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityZhaoqing526060China
| | - Xin Wang
- South China Academy of Advanced OptoelectronicsSchool of Information and Optoelectronic Science and EngineeringSouth China Normal UniversityGuangdong510006China
- International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityZhaoqing526060China
| | - Yongguang Zhang
- International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityZhaoqing526060China
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| | - Zhongwei Chen
- Department of Chemical EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| |
Collapse
|
34
|
Yi R, Zhao Y, Liu C, Sun Y, Zhao C, Li Y, Yang L, Zhao C. A Ti 3C 2T x-Based Composite as Separator Coating for Stable Li-S Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3770. [PMID: 36364547 PMCID: PMC9658629 DOI: 10.3390/nano12213770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The nitrogen-doped MXene carbon nanosheet-nickel (N-M@CNi) powder was successfully prepared by a combined process of electrostatic attraction and annealing strategy, and then applied as the separator coating in lithium-sulfur batteries. The morphology and structure of the N-M@CNi were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectrum, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption method. The strong LiPS adsorption ability and high conductivity are associated with the N-doped carbon nanosheet-Ni modified surface. The modified separator offers the cathode of Li-S cell with greater sulfur utilization, better high-rate adaptability, and more stable cycling performance compared with the pristine separator. At 0.2 C the cell with N-M@CNi separator delivers an initial capacity of 1309 mAh g-1. More importantly, the N-M@CNi separator is able to handle a cathode with 3.18 mg cm-2 sulfur loading, delivering a capacity decay rate of 0.043% with a high capacity retention of 95.8%. Therefore, this work may provide a feasible approach to separator modification materials towards improved Li-S cells with improved stability.
Collapse
Affiliation(s)
- Ruowei Yi
- Department of Chemistry, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- Stephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK
| | - Yinchao Zhao
- Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| | - Chenguang Liu
- Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| | - Yi Sun
- Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| | - Chun Zhao
- Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yinqing Li
- Dongguan Hongde Battery Co., Ltd., Dongguan 523649, China
| | - Li Yang
- Department of Chemistry, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Cezhou Zhao
- Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
35
|
Wu J, Ye T, Wang Y, Yang P, Wang Q, Kuang W, Chen X, Duan G, Yu L, Jin Z, Qin J, Lei Y. Understanding the Catalytic Kinetics of Polysulfide Redox Reactions on Transition Metal Compounds in Li-S Batteries. ACS NANO 2022; 16:15734-15759. [PMID: 36223201 DOI: 10.1021/acsnano.2c08581] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Because of their high energy density, low cost, and environmental friendliness, lithium-sulfur (Li-S) batteries are one of the potential candidates for the next-generation energy-storage devices. However, they have been troubled by sluggish reaction kinetics for the insoluble Li2S product and capacity degradation because of the severe shuttle effect of polysulfides. These problems have been overcome by introducing transition metal compounds (TMCs) as catalysts into the interlayer of modified separator or sulfur host. This review first introduces the mechanism of sulfur redox reactions. The methods for studying TMC catalysts in Li-S batteries are provided. Then, the recent advances of TMCs (such as metal oxides, metal sulfides, metal selenides, metal nitrides, metal phosphides, metal carbides, metal borides, and heterostructures) as catalysts and some helpful design and modulation strategies in Li-S batteries are highlighted and summarized. At last, future opportunities toward TMC catalysts in Li-S batteries are presented.
Collapse
Affiliation(s)
- Jiao Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
- School of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tong Ye
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
- School of Material and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Yuchao Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Peiyao Yang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Qichen Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Wenyu Kuang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Xiaoli Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Gaohan Duan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Lingmin Yu
- School of Material and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Zhaoqing Jin
- Military Power Sources Research and Development Center, Research Institute of Chemical Defense, Beijing 100191, China
| | - Jiaqian Qin
- Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yongpeng Lei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| |
Collapse
|
36
|
Cheng R, Xian X, Manasa P, Liu J, Xia Y, Guan Y, Wei S, Li Z, Li B, Xu F, Sun L. Carbon Coated Metal-Based Composite Electrode Materials for Lithium Sulfur Batteries: A Review. CHEM REC 2022; 22:e202200168. [PMID: 36240459 DOI: 10.1002/tcr.202200168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/31/2022] [Indexed: 11/08/2022]
Abstract
Lithium-sulfur battery is one of the most promising secondary battery systems due to their high energy density and low material cost. During the past decade, great progress has been achieved in promoting the performances of Li-S batteries by addressing the challenges at the laboratory-level model systems. With growing attention paid to the application of Li-S batteries, new challenges at practical cell scales emerge as the bottleneck. However, challenges remain for the commercialization of lithium-sulfur batteries. The current review mainly focused on metal-based catalysts decorated-carbon materials for enhanced lithium sulfur battery performance. Firstly, the synthesis methods of various carbon-sulfur composites are discussed, as well as the influence of different material structures on the electrochemical performance. Secondly, a variety of catalysts, including metal atoms, metal oxides, sulfides, phosphides, nitrides, and carbide-decorated carbon nanomaterials, are systematically introduced to determine how lithium can be enhanced by suppressing polysulfides and promoting redox conversion reactions. Also, analyzed the multi-step electrochemical reaction mechanism of the battery during the charging and discharging process, and provide a feasible path for the practical application of high energy density lithium-sulfur batteries.
Collapse
Affiliation(s)
- Riguang Cheng
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin, 541004, PR China.,School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Xinyi Xian
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Pantrangi Manasa
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Jiaxi Liu
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin, 541004, PR China.,School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Yongpeng Xia
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Yanxun Guan
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Sheng Wei
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin, 541004, PR China.,School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Zengyi Li
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Bin Li
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Fen Xu
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Lixian Sun
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin, 541004, PR China.,School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin, 541004, PR China
| |
Collapse
|
37
|
Wang J, Zhang J, Duan S, Jia L, Xiao Q, Liu H, Hu H, Cheng S, Zhang Z, Li L, Duan W, Zhang Y, Lin H. Lithium Atom Surface Diffusion and Delocalized Deposition Propelled by Atomic Metal Catalyst toward Ultrahigh-Capacity Dendrite-Free Lithium Anode. NANO LETTERS 2022; 22:8008-8017. [PMID: 36018258 DOI: 10.1021/acs.nanolett.2c02611] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lithium metal anode possesses overwhelming capacity and low potential but suffers from dendrite growth and pulverization, causing short lifespan and low utilization. Here, a fundamental novel insight of using single-atomic catalyst (SAC) activators to boost lithium atom diffusion is proposed to realize delocalized deposition. By combining electronic microscopies, time-of-flight secondary ion mass spectrometry, theoretical simulations, and electrochemical analyses, we have unambiguously depicted that the SACs serve as kinetic activators in propelling the surface spreading and lateral redistribution of the lithium atoms for achieving dendrite-free plating morphology. Under the impressive capacity of 20 mA h cm-2, the Li modified with SAC-activator exhibits a low overpotential of ∼50 mV at 5 mA cm-2, a long lifespan of 900 h, and high Coulombic efficiencies during 150 cycles, much better than most literature reports. The so-coupled lithium-sulfur full battery delivers high cycling and rate performances, showing great promise toward the next-generation lithium metal batteries.
Collapse
Affiliation(s)
- Jian Wang
- i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Helmholtz Institute Ulm (HIU), Ulm D89081, Germany
| | - Jing Zhang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Shaorong Duan
- Department of Physics, Tsinghua University, Beijing 100084, China
| | - Lujie Jia
- i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qingbo Xiao
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Haitao Liu
- Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Huimin Hu
- i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shuang Cheng
- i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhiyang Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Linge Li
- i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Wenhui Duan
- Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yuegang Zhang
- Department of Physics, Tsinghua University, Beijing 100084, China
| | - Hongzhen Lin
- i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
38
|
Deng DR, Li C, Weng JC, Fan XH, Chen ZJ, Yang G, Li Y, Wu QH, Zheng MS, Dong QF. Thin Nano Cages with Limited Hollow Space for Ultrahigh Sulfur Loading Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45414-45422. [PMID: 36183261 DOI: 10.1021/acsami.2c12841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Owning to its various advantages, the lithium-sulfur battery is one of the research hot spots for new energy storage systems. Diverse hollow structures with specific morphologies have been used as the sulfur host materials to adsorb or/and catalyze the polysulfides, and can in particular concurrently inhibit the volume expansion during electrochemical processes in lithium-sulfur batteries. However, hollow space with a large volume will restrict the performance of the cell under high sulfur area loading, which is a very important indicator for the practical applications of the lithium-sulfur battery. Here, we report a nano thin cage cobalt acid zinc (ZnCo2O4) with limited hollow space as the cathode catalyst for lithium-sulfur batteries, which greatly reduces the electrode volume occupied by the hollow structure. The hollow volume of these thin cages is much smaller than those of the normally reported hollow materials in the literatue. The electrochemical performance of lithium-sulfur batteries with ZnCo2O4 thin cages could greatly improve due to the unique structure and the synergistic adsorption/catalytic effect of Zn/Co sites, especially at an ultrahigh S area load. Under a high S loading of 8 mg cm-2, the cell could keep a reversible capacity of 600 mAh g-1 after 500 cycles. Even at a sulfur loading of 10 mg cm-2, the cell still releases a discharge capacity of 1000 mAh g-1 which is equivalent of an area capacity of 10 mAh cm-2. This work provides a feasible way to develop lithium sulfur batteries with a high area sulfur load. This idea provides a possible solution to develop a Li-S battery at high area S loading and move one step closer to the practical applications.
Collapse
Affiliation(s)
- Ding-Rong Deng
- College of Marine Equipment and Mechanical Engineering, Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen, Fujian 361021, China
| | - Chen Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChem, Xiamen University, Xiamen 361005, China
| | - Jian-Chun Weng
- College of Marine Equipment and Mechanical Engineering, Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen, Fujian 361021, China
| | - Xiao-Hong Fan
- College of Marine Equipment and Mechanical Engineering, Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen, Fujian 361021, China
| | - Zhi-Jie Chen
- College of Marine Equipment and Mechanical Engineering, Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen, Fujian 361021, China
| | - Guang Yang
- College of Marine Equipment and Mechanical Engineering, Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen, Fujian 361021, China
| | - Yi Li
- Jiangsu Key Lab of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qi-Hui Wu
- College of Marine Equipment and Mechanical Engineering, Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, Jimei University, Xiamen, Fujian 361021, China
| | - Ming-Sen Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChem, Xiamen University, Xiamen 361005, China
| | - Quan-Feng Dong
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChem, Xiamen University, Xiamen 361005, China
| |
Collapse
|
39
|
Li X, Yuan L, Liu D, Xiang J, Li Z, Huang Y. Solid/Quasi-Solid Phase Conversion of Sulfur in Lithium-Sulfur Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106970. [PMID: 35218289 DOI: 10.1002/smll.202106970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Indexed: 06/14/2023]
Abstract
The lithium-sulfur (Li-S) battery is considered as one of the most promising options because the redox couple has almost the highest theoretical specific energy (2600 Wh kg-1 ) among all solid anode-cathode candidates for rechargeable batteries. The "solid-liquid-solid" mechanism has become a dominating phase transformation process since it was first reported, although this cathode mode suffers from a tough "shuttle" phenomenon due to the dissolution of the soluble intermediate polysulfides generated during the charging-discharging process, which causes rapid loss of energy-bearing material and shortened lifespan. For decades, tremendous efforts have been made to restrict the shuttle effect. Changing sulfur conversion to "solid-solid" mode or "quasi-solid" mode, which successfully exceed the limit of the dissolution of the intermediates, and may address the root of the problem. In this review, the main focus is on the fundamental chemistry of the "solid-solid" and "quasi-solid" phase transformation of the sulfur cathode. First, the strategies of sulfur immobilization in "solid-liquid-solid" multi-phase conversions as well as the pivotal influence factors for the electrochemical conversion process are briefly introduced. Then, the different routes are summarized to realize the "solid-solid" and "quasi-solid" redox mechanisms. Finally, a perspectives on building high-energy-density Li-S batteries are provided.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lixia Yuan
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dezhong Liu
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jingwei Xiang
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhen Li
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
40
|
Liang S, Dong R, Lu S, Hu L, Liu L, Dong Q, Deng C, Qin G, Xu M, Liang C. Green synthesis of fig–like Li2S–Mo@C nanocomposites for advanced lithium–sulfur batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Qi Y, Li N, Zhang K, Yang Y, Ren Z, You J, Hou Q, Shen C, Jin T, Peng Z, Xie K. Dynamic Liquid Metal Catalysts for Boosted Lithium Polysulfides Redox Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204810. [PMID: 35953449 DOI: 10.1002/adma.202204810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Designing efficient electrocatalysts with high electroconductivity, strong chemisorption, and superior catalytical efficiency to realize rapid kinetics of the lithium polysulfides (LiPSs) conversion process is crucial for practical lithium-sulfur (Li-S) battery applications. Unfortunately, most current electrocatalysts cannot maintain long-term stability due to the possible failure of catalytic sites. Herein, a novel dynamic electrocatalytic strategy with the liquid metal (i.e., gallium-tin, EGaSn) to facilitate LiPSs redox reaction is reported. The combined theoretical simulations and microstructure experiment analysis reveal that Sn atoms dynamically distributed in the liquid Ga matrix act as the main active catalytic center. Meanwhile, Ga provides a uniquely dynamic environment to maintain the long-term integrity of the catalytic system. With the participation of EGaSn, a tailor-made 2 Ah Li-S pouch cell with a specific energy density of 307.7 Wh kg-1 is realized. This work opens up new opportunities for liquid-phase binary alloys as electrocatalysts for high-specific-energy Li-S batteries.
Collapse
Affiliation(s)
- Yaqin Qi
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Nan Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Kun Zhang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Yong Yang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Zengying Ren
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Jingyuan You
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Qian Hou
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Chao Shen
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Ting Jin
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Zuling Peng
- CALB Technology Co., Ltd., No.1 Jiangdong Avenue, Jintan District, Changzhou, 213200, China
| | - Keyu Xie
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| |
Collapse
|
42
|
Xu C, Ding B, Fan Z, Xu C, Xia Q, Li P, Dou H, Zhang X. Theoretical and Experimental Understanding of Metal Single-Atom Electrocatalysts for Accelerating the Electrochemical Reaction of Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38750-38757. [PMID: 35976077 DOI: 10.1021/acsami.2c09430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal single-atom materials have attracted tremendous attention in the research field of lithium-sulfur (Li-S) batteries because they can effectively improve the reaction kinetics of sulfur cathodes. However, it is still difficult to determine the best metal single-atom catalyst for Li-S batteries, due to the lack of a unified measurement and evaluation method. Herein, a series of metal single-atom- and nitrogen-doped graphene materials (M-NG, M = Fe, Co, Ni, Ir, Ru) have been prepared as the catalysts for promoting the reaction kinetics of the sulfur reduction reaction process. Using rotating disk electrode measurements and density functional theory-based theoretical calculations, Ni-NG was screened out to be the best catalyst. It is found that Ni-NG materials can provide a kinetically favorable pathway for the reversible conversion of polysulfide conversion, thus increasing the utilization of sulfur. By coating the Ni-NG materials on the separator as a multifunctional interlayer, a commercially available sulfur cathode presents a stable specific capacity of 701.8 mAh g-1 at a current rate of 0.5C over 400 cycles. Even with a high sulfur loading of 3.8 mg cm-2, a high areal capacity of 4.58 mAh cm-2 can be achieved. This work will provide a fundamental understanding of efficient single-atom catalyst materials for Li-S batteries.
Collapse
Affiliation(s)
- Chong Xu
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Bing Ding
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Shenzhen Research Institute, Nanjing University of Aeronautics and Astronautics, Shenzhen 518000, China
| | - Zengjie Fan
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chengyang Xu
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Qizhen Xia
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Peng Li
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hui Dou
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Shenzhen Research Institute, Nanjing University of Aeronautics and Astronautics, Shenzhen 518000, China
| |
Collapse
|
43
|
Qi X, Huang L, Luo Y, Chen Q, Chen Y. Ni 3Sn 2/nitrogen-doped graphene composite with chemisorption and electrocatalysis as advanced separator modifying material for lithium sulfur batteries. J Colloid Interface Sci 2022; 628:896-910. [PMID: 36030715 DOI: 10.1016/j.jcis.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
Lithium-sulfur batteries have been widely studied because of their advantages of abundant reserves, environmental friendliness, low cost andhighspecific capacity. However, the volume expansionand the low electrical conductivity of sulfur, and the shuttle effect of polysulfides limit their application. Herein,wesynthesizea two-dimensional layered Ni3Sn2/nitrogen-doped graphene (NG) composite asseparator modifying material for lithium-sulfur batteries. The Ni3Sn2formed by dual metal salts Ni(NO3)2·6H2O and SnCl2·2H2O can adsorb polysulfide and catalyze its transformation to improve the electrochemical reaction kinetics. Moreover, the layered NG can not only disperse the Ni3Sn2particles, but alsoensure rapid electron transfer. Therefore, the lithium-sulfur battery with the Ni3Sn2/NG modified separator shows excellent electrochemical performance. At a current rate of 1 C, the lithium-sulfur battery with the Ni3Sn2/NG modified separator can provide a high initial discharge capacity of 1022.1 mAh g-1and maintain a reversible specific capacity of 758.3 mAh g-1after 400 cycles.
Collapse
Affiliation(s)
- Xinmei Qi
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Liwu Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China; Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, PR China.
| | - Yiteng Luo
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Qinghao Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yungui Chen
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, PR China; Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, PR China
| |
Collapse
|
44
|
Ge HL, Wang ZY, Li GR, Liu S, Gao XP. La2NiO4 nanoparticles as a core host of sulfur to enhance cathode volumetric capacity for lithium–sulfur battery. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Cheng H, Zhang S, Li S, Gao C, Zhao S, Lu Y, Wang M. Engineering Fe and V Coordinated Bimetallic Oxide Nanocatalyst Enables Enhanced Polysulfides Mediation for High Energy Density Li-S Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202557. [PMID: 35718880 DOI: 10.1002/smll.202202557] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Lithium sulfur (Li-S) batteries are expected to become the next-generation rechargeable energy storage devices owing to their high theoretical energy density, environmental benignity, and economic benefits. However, the undesirable lithium polysulfides (LiPSs) shuttling and sluggish redox kinetics of sulfur electrochemistry severely degenerate the wide-ranging electrochemical performances, hindering the commercialization process of Li-S batteries. Herein, a Fe and V coordinated bimetallic oxide FeVO4 (denote FVO) nanocatalyst with three-dimensional (3D) ordered structure is thoughtfully tailored and cooperated with the commercialized carbon nanotubes (CNT) to modify polypropylene (PP) separator for achieving high efficiencies of restraining the LiPSs shuttling and boosting the redox conversion of sulfur species. The Fe and V coordinated bimetallic oxide demonstrates enhanced anchoring and catalyzing activities toward sulfur species than single metal oxides of Fe and V with homometallic valence states due to the reconfiguration of the 3d-band. Impressively, the Li-S pouch cell with the FVO/CNT@PP separator achieves an energy density up to 341 Wh kg-1 . The bimetallic oxide nanocatalyst used in this work enlightens a new designing route toward the separator modification for the development of high energy density Li-S batteries.
Collapse
Affiliation(s)
- Hao Cheng
- Zhejiang Province key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Shichao Zhang
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Siyuan Li
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Cheng Gao
- Zhejiang Province key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Sihan Zhao
- Zhejiang Province key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310027, China
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Yingying Lu
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Miao Wang
- Zhejiang Province key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
46
|
Shen Z, Jin X, Tian J, Li M, Yuan Y, Zhang S, Fang S, Fan X, Xu W, Lu H, Lu J, Zhang H. Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries. Nat Catal 2022. [DOI: 10.1038/s41929-022-00804-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
47
|
Mahankali K, Gottumukkala SV, Masurkar N, Thangavel NK, Jayan R, Sawas A, Nagarajan S, Islam MM, Arava LMR. Unveiling the Electrocatalytic Activity of 1T'-MoSe 2 on Lithium-Polysulfide Conversion Reactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24486-24496. [PMID: 35583340 DOI: 10.1021/acsami.2c05508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The dissolution of intermediate lithium polysulfides (LiPS) into an electrolyte and their shuttling between the electrodes have been the primary bottlenecks for the commercialization of high-energy density lithium-sulfur (Li-S) batteries. While several two-dimensional (2D) materials have been deployed in recent years to mitigate these issues, their activity is strictly restricted to their edge-plane-based active sites. Herein, for the first time, we have explored a phase transformation phenomenon in a 2D material to enhance the number of active sites and electrocatalytic activity toward LiPS redox reactions. Detailed theoretical calculations demonstrate that phase transformation from the 2H to 1T' phase in a MoSe2 material activates the basal planes that allow for LiPS adsorption. The corresponding transformation mechanism and LiPS adsorption capabilities of the as-formed 1T'-MoSe2 were elucidated experimentally using microscopic and spectroscopic techniques. Further, the electrochemical evaluation of phase-transformed MoSe2 revealed its strong electrocatalytic activity toward LiPS reduction and their oxidation reactions. The 1T'-MoSe2-based cathode hosts for sulfur later provide a superior cycling performance of over 250 cycles with a capacity loss of only 0.15% per cycle along with an excellent Coulombic efficiency of 99.6%.
Collapse
Affiliation(s)
- Kiran Mahankali
- Department of Mechanical Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| | - Sundeep Varma Gottumukkala
- Department of Electrical and Computer Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| | - Nirul Masurkar
- Department of Mechanical Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| | - Naresh Kumar Thangavel
- Department of Mechanical Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| | - Rahul Jayan
- Department of Mechanical Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| | - Abdulrazzag Sawas
- Department of Mechanical Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| | - Sudhan Nagarajan
- Department of Mechanical Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| | - Md Mahbubul Islam
- Department of Mechanical Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| | - Leela Mohana Reddy Arava
- Department of Mechanical Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| |
Collapse
|
48
|
Wang Q, Yang L, Li H, Chen D, Sun Y, Liu Y, Liu Y, Zhao X, Wu Z, Guo X. Tuning the Delithiation State of LiNi 0.5Co 0.2Mn 0.3O 2 Enabling the Electronic Structure Modification to Enhance the Conversion of Polysulfides in a Lithium–Sulfur Battery. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qianwen Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Liwen Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Haoyu Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Dequan Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yan Sun
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Yang Liu
- School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuxia Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xuhong Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhenguo Wu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xiaodong Guo
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
- Institute for Advanced Study, Chengdu University, Chengdu 610065, China
| |
Collapse
|
49
|
Xie S, Chen X, Wang C, Lu YR, Chan TS, Chuang CH, Zhang J, Yan W, Jin S, Jin H, Wu X, Ji H. Role of the Metal Atom in a Carbon-Based Single-Atom Electrocatalyst for LiS Redox Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200395. [PMID: 35384295 DOI: 10.1002/smll.202200395] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Carbon-based single metal atom catalysts (SACs) are being extensively investigated to improve the kinetics of the Li-S redox reaction, which is greatly important for batteries with cell-level energy densities >500 W h kg-1 . However, there are contradictory reports regarding the electrocatalytic activities of the different metal atoms and the role of the metal atom in LiS chemistry still remains unclear. This is due to the complex relationship between the catalytic behavior and the structure of carbon-based SACs. Here, the catalytic behavior and active-site geometry, oxidation state, and the electronic structure of different metal centers (Fe/Co/Ni) embedded in nitrogen-doped graphene, and having similar physicochemical characteristics, are studied. Combining X-ray absorption spectroscopy, density functional theory calculations, and electrochemical analysis, it is revealed that the coordination-geometry and oxidation state of the metal atoms are modified when interacting with sulfur species. This interaction is strongly dependent on the hybridization of metal 3d and S p-orbitals. A moderate hybridization with the Fermi level crossing the metal 3d band is more favorable for LiS redox reactions. This study thus provides a fundamental understanding of how metal atoms in SACs impact LiS redox behavior and offers new guidelines to develop highly active catalytic materials for high-performance LiS batteries.
Collapse
Affiliation(s)
- Shuai Xie
- School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, China
| | - Xingjia Chen
- School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, and CAS Center for Excellence in Nanoscience and Synergetic Innovation of Quantum Information and Quantum Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Yin-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - Cheng-Hao Chuang
- Department of Physics, Tamkang University, Tamsui 251, New Taipei City, 251301, Taiwan
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing, 100049, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Song Jin
- School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, China
| | - Hongchang Jin
- School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaojun Wu
- School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, and CAS Center for Excellence in Nanoscience and Synergetic Innovation of Quantum Information and Quantum Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Hengxing Ji
- School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
50
|
Emerging multifunctional iron-based nanomaterials as polysulfides adsorbent and sulfur species catalyst for lithium-sulfur batteries——a minireview. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|