1
|
Cen J, Liu W, Xu J, Wang X, Zhang J, Zhang J, Deng Z, Zhou C, Hu J, Liu S. Single-Component High-Resolution Dual-Tone EUV Photoresists Based on Precision Self-Immolative Polymers. Angew Chem Int Ed Engl 2024:e202415588. [PMID: 39305234 DOI: 10.1002/anie.202415588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Indexed: 11/01/2024]
Abstract
Electron beam (EB) and extreme ultraviolet (EUV) lithography are advanced techniques capable of achieving sub-10 nm resolutions, critical for fabricating next-generation nanostructures and semiconductor devices. However, developing EUV photoresists that meet all demands for resolution, line edge roughness (LER), and sensitivity (RLS) remains a significant challenge. Herein, we introduce high-performance photoresists based on single-component self-immolative polymers (SIPs) with inherent signal amplification via cascade degradation. These SIPs function as dual-tone photoresists under both EB and EUV lithography, with performance primarily determined by the exposure dose. Lithographic evaluations show that discrete SIPs provide significant improvements over disperse counterparts, achieving higher resolution and reduced LER. Specifically, a discrete SIP with a DP of 12 produces a line-space pattern with a resolution of approximately 18 nm and an LER of 1.8 nm, compared to 21 nm resolution and 2.5 nm LER for disperse SIPs. Additionally, these SIP-based photoresists, enriched with aromatic structures, exhibit excellent etch resistance. The single-component nature and potential to address the RLS trade-off underscore the promise of discrete SIPs for EUV lithography.
Collapse
Affiliation(s)
- Jie Cen
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui Province, China
| | - Wen Liu
- Center for Micro- and Nanoscale Research and Fabrication, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui Province, China
| | - Jie Xu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui Province, China
| | - Xiuxia Wang
- Center for Micro- and Nanoscale Research and Fabrication, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui Province, China
| | - Jialin Zhang
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui Province, China
| | - Jin Zhang
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui Province, China
| | - Zhengyu Deng
- School of Chemistry and Materials Science, University of Science and Technology of China, and School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui Province, China
- and Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu Province, China
| | - Chenggang Zhou
- Center for Micro- and Nanoscale Research and Fabrication, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui Province, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui Province, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, 230026, Hefei, Anhui Province, China
| |
Collapse
|
2
|
Guo L, Ding Z, Hu J, Liu S. Efficient Encapsulation of β-Lapachone into Self-Immolative Polymer Nanoparticles for Cyclic Amplification of Intracellular Reactive Oxygen Species Stress. ACS NANO 2024. [PMID: 39263977 DOI: 10.1021/acsnano.4c09232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The selective upregulation of intracellular oxidative stress in cancer cells presents a promising approach for effective cancer treatment. In this study, we report the integration of enzyme catalytic amplification and chemical amplification reactions in β-lapachone (Lap)-loaded micellar nanoparticles (NPs), which are self-assembled from reactive oxygen species (ROS)-responsive self-immolative polymers (SIPs). This integration enables cyclic amplification of intracellular oxidative stress in cancer cells. Specifically, we have developed ROS-responsive SIPs with phenylboronic ester triggering motifs and hexafluoroisopropanol moieties in the side chains, significantly enhancing Lap loading efficiency (98%) and loading capacity (33%) through multiple noncovalent interactions. Upon ROS activation in tumor cells, the Lap-loaded micellar NPs disassemble, releasing Lap and generating additional ROS via enzyme catalytic amplification. This process elevates intracellular oxidative stress and triggers polymer depolymerization in a positive feedback loop. Furthermore, the degradation of SIPs via chemical amplification produces azaquinone methide intermediates, which consume intracellular thiol-related substrates, disrupt intracellular redox hemostasis, further intensify oxidative stress, and promote cancer cell apoptosis. This work introduces a strategy to enhance intracellular oxidative stress by combining enzymatic and chemical amplification reactions, providing a potential pathway for the development of highly efficient anticancer agents.
Collapse
Affiliation(s)
- Lingxiao Guo
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Zexuan Ding
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| |
Collapse
|
3
|
Su H, Rong G, Li L, Cheng Y. Subcellular targeting strategies for protein and peptide delivery. Adv Drug Deliv Rev 2024; 212:115387. [PMID: 38964543 DOI: 10.1016/j.addr.2024.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Cytosolic delivery of proteins and peptides provides opportunities for effective disease treatment, as they can specifically modulate intracellular processes. However, most of protein-based therapeutics only have extracellular targets and are cell-membrane impermeable due to relatively large size and hydrophilicity. The use of organelle-targeting strategy offers great potential to overcome extracellular and cell membrane barriers, and enables localization of protein and peptide therapeutics in the organelles. Although progresses have been made in the recent years, organelle-targeted protein and peptide delivery is still challenging and under exploration. We reviewed recent advances in subcellular targeted delivery of proteins/peptides with a focus on targeting mechanisms and strategies, and highlight recent examples of active and passive organelle-specific protein and peptide delivery systems. This emerging platform could open a new avenue to develop more effective protein and peptide therapeutics.
Collapse
Affiliation(s)
- Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Guangyu Rong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
4
|
Pathan S, Jayakannan M. Zwitterionic Strategy to Stabilize Self-Immolative Polymer Nanoarchitecture under Physiological pH for Drug Delivery In Vitro and In Vivo. Adv Healthc Mater 2024; 13:e2304599. [PMID: 38574242 DOI: 10.1002/adhm.202304599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/29/2024] [Indexed: 04/06/2024]
Abstract
The major bottleneck in using polymer nanovectors for biomedical application, particularly those based on self-immolative poly(amino ester) (PAE), lies in their uncontrolled autodegradation at physiological pH before they can reach the intended target. Here, an elegant triblock-copolymer strategy is designed to stabilize the unstable PAE chains via zwitterionic interactions under physiological pH (pH 7.4) and precisely program their enzyme-responsive biodegradation specifically within the intracellular compartments, ensuring targeted delivery of the cargoes. To achieve this goal, biodegradable polycaprolactone (PCL) platform is chosen, and structure-engineered several di- and triblock architectures to arrive the precise macromolecular geometry. The hydrophobic-PCL core and hydrophilic anionic-PCL block at the periphery shield PAEs against autodegradation, thereby ensuring stability under physiological pH in PBS, FBS, cell culture medium and bloodstream. The clinical anticancer drug doxorubicin and deep-tissue penetrable near-infrared IR-780 biomarker is encapsulated to study their biological actions by in vitro live cancer cells and in vivo bioimaging in live animals. These zwitterions are biocompatible, nonhemolytic, and real-time in vitro live-cell confocal studies have confirmed their internalization and enzymatic biodegradation in the endo-lysosomal compartments to deliver the payload. In vivo bioimaging establishes their prolonged blood circulation for over 72 h, and the biodistribution analysis reveals the accumulation of nanoparticles predominantly in the excretory organs.
Collapse
Affiliation(s)
- Shahidkhan Pathan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| |
Collapse
|
5
|
Kędra K, Oledzka E, Sobczak M. Self-Immolative Domino Dendrimers as Anticancer-Drug Delivery Systems: A Review. Pharmaceutics 2024; 16:668. [PMID: 38794329 PMCID: PMC11125333 DOI: 10.3390/pharmaceutics16050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Worldwide cancer statistics have indicated about 20 million new cancer cases and over 10 million deaths in 2022 (according to data from the International Agency for Research on Cancer). One of the leading cancer treatment strategies is chemotherapy, using innovative drug delivery systems (DDSs). Self-immolative domino dendrimers (SIDendr) for triggered anti-cancer drugs appear to be a promising type of DDSs. The present review provides an up-to-date survey on the contemporary advancements in the field of SIDendr-based anti-cancer drug delivery systems (SIDendr-ac-DDSs) through an exhaustive analysis of the discovery and application of these materials in improving the pharmacological effectiveness of both novel and old drugs. In addition, this article discusses the designing, chemical structure, and targeting techniques, as well as the properties, of several SIDendr-based DDSs. Approaches for this type of targeted DDSs for anti-cancer drug release under a range of stimuli are also explored.
Collapse
Affiliation(s)
- Karolina Kędra
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Str., 01-224 Warsaw, Poland;
| | - Ewa Oledzka
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry and Biomaterials, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| | - Marcin Sobczak
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry and Biomaterials, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| |
Collapse
|
6
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
7
|
Deng Z, Liang X, Gillies ER. Click to Self-immolation: A "Click" Functionalization Strategy towards Triggerable Self-Immolative Homopolymers and Block Copolymers. Angew Chem Int Ed Engl 2024; 63:e202317063. [PMID: 38029347 DOI: 10.1002/anie.202317063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Self-immolative polymers (SIPs) are a class of degradable macromolecules that undergo stimuli-triggered head-to-tail depolymerization. However, a general approach to readily end-functionalize SIP precursors for programmed degradation remains elusive, restricting access to complex, functional SIP-based materials. Here we present a "click to self-immolation" strategy based on aroyl azide-capped SIP precursors, enabling the facile construction of diverse SIPs with different trigger units through a Curtius rearrangement and alcohol/thiol-isocyanate "click" reaction. This strategy is also applied to polymer-polymer coupling to access fully depolymerizable block copolymer amphiphiles, even combining different SIP backbones. Our results demonstrate that the depolymerization can be actuated efficiently under physiologically-relevant conditions by the removal of the trigger units and ensuing self-immolation of the p-aminobenzyl carbonate linkage, indicating promise for controlled release applications involving nanoparticles and hydrogels.
Collapse
Affiliation(s)
- Zhengyu Deng
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Xiaoli Liang
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Elizabeth R Gillies
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, N6A 5B9, Canada
| |
Collapse
|
8
|
Liu H, Lu HH, Alp Y, Wu R, Thayumanavan S. Structural Determinants of Stimuli-Responsiveness in Amphiphilic Macromolecular Nano-assemblies. Prog Polym Sci 2024; 148:101765. [PMID: 38476148 PMCID: PMC10927256 DOI: 10.1016/j.progpolymsci.2023.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Stimuli-responsive nano-assemblies from amphiphilic macromolecules could undergo controlled structural transformations and generate diverse macroscopic phenomenon under stimuli. Due to the controllable responsiveness, they have been applied for broad material and biomedical applications, such as biologics delivery, sensing, imaging, and catalysis. Understanding the mechanisms of the assembly-disassembly processes and structural determinants behind the responsive properties is fundamentally important for designing the next generation of nano-assemblies with programmable responsiveness. In this review, we focus on structural determinants of assemblies from amphiphilic macromolecules and their macromolecular level alterations under stimuli, such as the disruption of hydrophilic-lipophilic balance (HLB), depolymerization, decrosslinking, and changes of molecular packing in assemblies, which eventually lead to a series of macroscopic phenomenon for practical purposes. Applications of stimuli-responsive nano-assemblies in delivery, sensing and imaging were also summarized based on their structural features. We expect this review could provide readers an overview of the structural considerations in the design and applications of nanoassemblies and incentivize more explorations in stimuli-responsive soft matters.
Collapse
Affiliation(s)
- Hongxu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 P. R. China
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hung-Hsun Lu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Yasin Alp
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ruiling Wu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
9
|
Deng Z, Gillies ER. Emerging Trends in the Chemistry of End-to-End Depolymerization. JACS AU 2023; 3:2436-2450. [PMID: 37772181 PMCID: PMC10523501 DOI: 10.1021/jacsau.3c00345] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/30/2023]
Abstract
Over the past couple of decades, polymers that depolymerize end-to-end upon cleavage of their backbone or activation of a terminal functional group, sometimes referred to as "self-immolative" polymers, have been attracting increasing attention. They are of growing interest in the context of enhancing polymer degradability but also in polymer recycling as they allow monomers to be regenerated in a controlled manner under mild conditions. Furthermore, they are highly promising for applications as smart materials due to their ability to provide an amplified response to a specific signal, as a single sensing event is translated into the generation of many small molecules through a cascade of reactions. From a chemistry perspective, end-to-end depolymerization relies on the principles of self-immolative linkers and polymer ceiling temperature (Tc). In this article, we will introduce the key chemical concepts and foundations of the field and then provide our perspective on recent exciting developments. For example, over the past few years, new depolymerizable backbones, including polyacetals, polydisulfides, polyesters, polythioesters, and polyalkenamers, have been developed, while modern approaches to depolymerize conventional backbones such as polymethacrylates have also been introduced. Progress has also been made on the topological evolution of depolymerizable systems, including the introduction of fully depolymerizable block copolymers, hyperbranched polymers, and polymer networks. Furthermore, precision sequence-defined oligomers have been synthesized and studied for data storage and encryption. Finally, our perspectives on future opportunities and challenges in the field will be discussed.
Collapse
Affiliation(s)
- Zhengyu Deng
- Department
of Chemistry, The University of Western
Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Elizabeth R. Gillies
- Department
of Chemistry, The University of Western
Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B9, Canada
| |
Collapse
|
10
|
Song C, Chen M, Tan J, Xu J, Zhang Y, Zhang G, Hu X, Liu S. Self-Amplified Cascade Degradation and Oxidative Stress Via Rational pH Regulation of Oxidation-Responsive Poly(ferrocene) Aggregates. J Am Chem Soc 2023; 145:17755-17766. [PMID: 37527404 DOI: 10.1021/jacs.3c04454] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Precise activation of polymer nanoparticles at lesion sites is crucial to achieve favorable therapeutic efficacy. However, conventional endogenous stimuli-responsive polymer nanoparticles probably suffer from few triggers to stimulate the polymer degradation and subsequent functions. Here, we describe oxidation-responsive poly(ferrocene) amphiphiles containing phenylboronic acid ester and ferrocene as the repeating backbone units. Upon triggering by hydrogen peroxide inside the tumor cells, the phenylboronic acid ester bonds are broken and poly(ferrocene) units are degraded to afford free ferrocene and noticeable hydroxide ions. The released hydroxide ions can immediately improve the pH value within the poly(ferrocene) aggregates, and the degradation rate of the phenylboronic acid ester backbone is further promoted by the upregulated pH; thereupon, the accelerated degradation can release much more additional hydroxide ions to improve the pH, thus achieving a positive self-amplified cascade degradation of poly(ferrocene) aggregates accompanied by oxidative stress boosting and efficient cargo release. Specifically, the poly(ferrocene) aggregates can be degraded up to ∼90% within 12 h when triggered by H2O2, while ferrocene-free control nanoparticles are degraded by only 30% within 12 days. In addition, the maleimide moieties tethered in the hydrophilic corona can capture blood albumin to form an albumin-rich protein corona and significantly improve favorable tumor accumulation. The current oxidation-responsive poly(ferrocene) amphiphiles can efficiently inhibit tumors in vitro and in vivo. This work provides a proof-of-concept paradigm for self-amplified polymer degradation and concurrent oxidative stress, which is promising in actively regulated precision medicine.
Collapse
Affiliation(s)
- Chengzhou Song
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Minglong Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jiajia Tan
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jie Xu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yuben Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Guoying Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xianglong Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
11
|
Yan J, Yang G, Zhu B, Zheng R, Cheng S, He K, Yin J. Deformable and Disintegrable Multifunctional Integrated Polyprodrug Amphiphiles for Synergistic Phototherapy and Chemotherapy. Biomacromolecules 2023; 24:400-412. [PMID: 36475673 DOI: 10.1021/acs.biomac.2c01215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multimodal collaborative therapy has been recognized as one of the more effective means to eliminate tumors in the current biomedicine research field as compared with monotherapy. Among them, by taking advantage of its high-precision and controllability, phototherapy has become a mainstay of treatment. However, physical encapsulation of free photosensitive units within nanocarriers was one of the main implementations, which might inevitably result in the photosensitizer leakage and side effect. For this purpose, a kind of multifunctional integrated polyprodrug amphiphiles, P(PFO-IG-CPT)-PEG, were prepared by reversible addition-fragmentation chain transfer polymerization from polymerizable pentadecafluorooctan monomers, indocyanine green monomers, reduction-responsive camptothecin monomers, and acid-responsive PEG based methacrylate monomers (GMA(-OH/-PEG)). The resultant copolymers could self-assemble into spherical nanoparticles in water, performing size-deformability in acidic conditions and subsequent disintegration in reduction environment as demonstrated by in vitro experiments. Furthermore, an enhanced CPT release ratio and rate from nanoparticles could be achieved by a NIR irradiation due to the hyperthermia induced by the covalently linked IG moieties. Not only that, because of the sufficient O2 content brought by PFO, the NIR light-triggered generation of 1O2 was also detected in cells. With the combination of CPT-guided chemotherapy as well as NIR light-guided photo-thermal and photodynamic therapies, fatal and irreversible damage to cancer cells was observed by cell experiments; the implanted tumor size in the mouse model was obviously shrunk upon receiving multimodal collaborative therapy. We speculate that such fabricated nanodiagnosis and treatment systems could meet the growing emergency for effective drug delivery, programmed and on-demand drug release, and multimodal integrated therapy.
Collapse
Affiliation(s)
- Jinhao Yan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei, Anhui 230009, P. R. China
| | - Guangwei Yang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei, Anhui 230009, P. R. China
| | - Benshun Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei, Anhui 230009, P. R. China
| | - Ruifu Zheng
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei, Anhui 230009, P. R. China
| | - Sheng Cheng
- Instrumental Analysis Center, Hefei University of Technology Hefei, Anhui 230009, P. R. China
| | - Kewu He
- Imaging Center of the Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, P. R. China
| | - Jun Yin
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei, Anhui 230009, P. R. China
| |
Collapse
|
12
|
Effects of macromonomer chain length, solvent and concentration on the cyclization kinetics during AB-type step-growth polymerization. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Zong Q, Li J, Xiao X, Du X, Yuan Y. Self-amplified chain-shattering cinnamaldehyde-based poly(thioacetal) boosts cancer chemo-immunotherapy. Acta Biomater 2022; 154:97-107. [PMID: 36210042 DOI: 10.1016/j.actbio.2022.09.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/03/2022] [Accepted: 09/26/2022] [Indexed: 12/14/2022]
Abstract
The selective activation of stimuli-responsive polymers in the tumor microenvironment is a great concern to achieve intelligent cancer therapy, but most of them show inadequate response due to insufficient endogenous triggering agents. Herein, we rationally designed a reactive oxygen species (ROS)-responsive cinnamaldehyde (CA)-based poly(thioacetal), consisting of ROS-responsive thioacetal (TA) and ROS-generating agent CA, with self-amplified chain-shattering polymer degradation. The mechanism of self-amplified chain-shattering is that endogenous ROS as a triggering agent facilitates chain cleavage of TA with the release of CA, which in turn produces more ROS through mitochondrial dysfunction, resulting in an exponential polymer degradation cascade. The polymer can be further modified with anticancer drug doxorubicin (DOX) for cooperative amplification of oxidative stress and immunogenic cell death (ICD) of tumor cells, thereby boosting the effect of chemo-immunotherapy. The self-amplified chain-shattering polymer designed in this work holds great promise in developing stimuli-responsive polymers for efficient drug delivery. STATEMENT OF SIGNIFICANCE: This study presented an approach to utilize self-amplified chain-shattering cinnamaldehyde-based poly (thioacetal) as a drug delivery system to restrain tumor growth and boost chemo-immunotherapy. The endogenous ROS as a triggering agent initiates the chain cleavage with the release of CA, which in turn produces ROS through mitochondria dysfunction, resulting in an exponential polymer degradation cascade and rapid drug release.
Collapse
Affiliation(s)
- Qingyu Zong
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China
| | - Jisi Li
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| | - Xuan Xiao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Xiaojiao Du
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China.
| | - Youyong Yuan
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
14
|
Blocher McTigue WC, Sing CE. Competing Time Scales in Surface-Driven Solution Depolymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Whitney C. Blocher McTigue
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania18015, United States
| | - Charles E. Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois61801, United States
| |
Collapse
|
15
|
Wang K, Xiao X, Liu Y, Zong Q, Tu Y, Yuan Y. Self-immolative polyprodrug-based tumor-specific cascade amplificated drug release nanosystem for orchestrated synergistic cancer therapy. Biomaterials 2022; 289:121803. [PMID: 36150300 DOI: 10.1016/j.biomaterials.2022.121803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 12/07/2022]
Abstract
Reactive oxygen species (ROS)-activated prodrugs can potentially improve the selectivity of chemotherapeutics. However, the inability to release sufficient drugs at tumor sites due to the paucity of ROS, which is required for prodrug activation usually limits the antitumor potency. Herein, a delivery nanosystem with self-amplifiable drug release pattern is constructed by encapsulating a tumor specificity ROS inducer NAD(P)H: quinone oxidoreductase-1 (NQO1)-responsive hemicyanine fluorescent dye (NCyNH2) in a ROS-responsive self-immolative polyprodrug nanoparticle for orchestrated oxidation-chemotherapy. In response to ROS stimulation, the self-immolative polyprodrug can degrade and release doxorubicin (DOX) through a domino-like fragmentation, which can impart advanced attributes of this nanosystem such as minimum cleavage events required and maximum cleavage speed for disintegration. Thus, the NCyNH2-loaded self-immolative polyprodrug nanoparticle (SIPN) could be dissociated in response to endogenous ROS, triggering the release of DOX and NCyNH2. Subsequently, the NCyNH2 could be activated by intratumoral overexpressed NQO1 to generate additional ROS, which further induces the amplifiable degradation of self-immolative polyprodrug to release sufficient drugs. The in vitro and in vivo studies consistently demonstrate that SIPN amplifies the drug release efficiency of ROS-responsive polyprodrug by specifically upregulating intratumoral ROS levels, resulting in significant antitumor efficacy with minimal side effects.
Collapse
Affiliation(s)
- Kewei Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| | - Xuan Xiao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| | - Ye Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Qingyu Zong
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Yalan Tu
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
16
|
Tu Y, Xiao X, Dong Y, Li J, Liu Y, Zong Q, Yuan Y. Cinnamaldehyde-based poly(thioacetal): A ROS-awakened self-amplifying degradable polymer for enhanced cancer immunotherapy. Biomaterials 2022; 289:121795. [PMID: 36108580 DOI: 10.1016/j.biomaterials.2022.121795] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022]
Abstract
Although stimuli-responsive polymers have emerged as promising strategies for intelligent cancer therapy, limited polymer degradation and insufficient drug release remain a challenge. Here, we report a novel reactive oxygen species (ROS)-awakened self-amplifying degradable cinnamaldehyde (CA)-based poly(thioacetal) polymer. The polymer consists of ROS responsive thioacetal (TA) group and CA as the ROS generation agent. The self-amplified polymer degradation process is triggered by endogenous ROS-induced cleavage of the TA group to release CA. The CA released then promotes the generation of more ROS through mitochondrial dysfunction, resulting in amplified polymer degradation. More importantly, poly(thioacetal) itself can trigger immunogenic cell death (ICD) of the tumor cells and its side chains can be conjugated with indoleamine 2,3-dioxygenase 1 (IDO-1) inhibitor to reverse the immunosuppressive tumor microenvironment for synergistic cancer immunotherapy. The self-amplified degradable poly(thioacetal) developed in this work provides insights into the development of novel stimulus-responsive polymers for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Yalan Tu
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China
| | - Xuan Xiao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Yansong Dong
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China
| | - Jisi Li
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Ye Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China
| | - Qingyu Zong
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China
| | - Youyong Yuan
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
17
|
Montasell MC, Monge P, Carmali S, Dias Loiola LM, Andersen DG, Løvschall KB, Søgaard AB, Kristensen MM, Pütz JM, Zelikin AN. Chemical zymogens for the protein cysteinome. Nat Commun 2022; 13:4861. [PMID: 35982075 PMCID: PMC9388531 DOI: 10.1038/s41467-022-32609-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/08/2022] [Indexed: 12/18/2022] Open
Abstract
We present three classes of chemical zymogens established around the protein cysteinome. In each case, the cysteine thiol group was converted into a mixed disulfide: with a small molecule, a non-degradable polymer, or with a fast-depolymerizing fuse polymer (ZLA). The latter was a polydisulfide based on naturally occurring molecule, lipoic acid. Zymogen designs were applied to cysteine proteases and a kinase. In each case, enzymatic activity was successfully masked in full and reactivated by small molecule reducing agents. However, only ZLA could be reactivated by protein activators, demonstrating that the macromolecular fuse escapes the steric bulk created by the protein globule, collects activation signal in solution, and relays it to the active site of the enzyme. This afforded first-in-class chemical zymogens that are activated via protein-protein interactions. We also document zymogen exchange reactions whereby the polydisulfide is transferred between the interacting proteins via the "chain transfer" bioconjugation mechanism.
Collapse
Affiliation(s)
| | - Pere Monge
- Department of Chemistry, Aarhus University, 8000, Aarhus, Denmark
| | - Sheiliza Carmali
- Department of Chemistry, Aarhus University, 8000, Aarhus, Denmark.,School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | - Dante Guldbrandsen Andersen
- Department of Chemistry, Aarhus University, 8000, Aarhus, Denmark.,iNano Interdisciplinary Nanoscience Centre, Aarhus University, 8000, Aarhus, Denmark
| | | | - Ane Bretschneider Søgaard
- Department of Chemistry, Aarhus University, 8000, Aarhus, Denmark.,iNano Interdisciplinary Nanoscience Centre, Aarhus University, 8000, Aarhus, Denmark
| | | | | | - Alexander N Zelikin
- Department of Chemistry, Aarhus University, 8000, Aarhus, Denmark. .,iNano Interdisciplinary Nanoscience Centre, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
18
|
Seidi F, Zhong Y, Xiao H, Jin Y, Crespy D. Degradable polyprodrugs: design and therapeutic efficiency. Chem Soc Rev 2022; 51:6652-6703. [PMID: 35796314 DOI: 10.1039/d2cs00099g] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prodrugs are developed to increase the therapeutic properties of drugs and reduce their side effects. Polyprodrugs emerged as highly efficient prodrugs produced by the polymerization of one or several drug monomers. Polyprodrugs can be gradually degraded to release therapeutic agents. The complete degradation of polyprodrugs is an important factor to guarantee the successful disposal of the drug delivery system from the body. The degradation of polyprodrugs and release rate of the drugs can be controlled by the type of covalent bonds linking the monomer drug units in the polymer structure. Therefore, various types of polyprodrugs have been developed based on polyesters, polyanhydrides, polycarbonates, polyurethanes, polyamides, polyketals, polymetallodrugs, polyphosphazenes, and polyimines. Furthermore, the presence of stimuli-responsive groups, such as redox-responsive linkages (disulfide, boronate ester, metal-complex, and oxalate), pH-responsive linkages (ester, imine, hydrazone, acetal, orthoester, P-O and P-N), light-responsive (metal-complex, o-nitrophenyl groups) and enzyme-responsive linkages (ester, peptides) allow for a selective degradation of the polymer backbone in targeted tumors. We envision that new strategies providing a more efficient synergistic therapy will be developed by combining polyprodrugs with gene delivery segments and targeting moieties.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yajie Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
19
|
Multicyclic Topology-Enhanced Micelle Stability and pH-Sensitivity. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Yang J, Chen L, Zhu M, Ishaq MW, Chen S, Li L. Investigation of the Multimer Cyclization Effect during Click Step-Growth Polymerization of AB-Type Macromonomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jinxian Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lunliang Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mo Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Waqas Ishaq
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Shengqi Chen
- Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
| | - Lianwei Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
21
|
Lin J, Xue J, Xu Q, Liu Z, Zhao C, Tang J, Han J, A S, Wang W, Zhuo Y, Li Y. In situ-crosslinked hydrogel-induced experimental glaucoma model with persistent ocular hypertension and neurodegeneration. Biomater Sci 2022; 10:5006-5017. [PMID: 35815806 DOI: 10.1039/d2bm00552b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reliable animal model providing chronic and persistent ocular hypertension and characteristic neurodegeneration is essential to recapitulate human glaucoma and understand the underlying pathophysiological mechanisms behind this disease. Many approaches have been tried to establish persistently elevated intraocular pressure (IOP), while no efficient model and no systematic evaluation has been widely accepted yet. Herein, we developed a novel approach to reliably induce persistent IOP elevation using an injectable hydrogel formulated by hyperbranched macromolecular poly(ethylene glycol) (HB-PEG) and thiolated hyaluronic acid (HA-SH) under physiological conditions and established a systematic system for model evaluation. By formulation screening, an appropriate hydrogel with proper mechanical property, non-swelling profile and cytocompatibility was selected for further experiment. By intracameral injection, a persistent IOP elevation over 50% above baseline was obtained and it led to progressive retinal ganglion cell loss and ganglion cell complex thickness reduction. The evaluation of the efficacy of the model was thoroughly analyzed by whole-mounts retina immunostaining, optical coherence tomography, and hematoxylin-eosin staining for histological changes and by electroretinography for visual function changes. The N35-P50 amplitude of the pattern electroretinography and the N2-P2 amplitude of the flash visual-evoked potential were decreased, while the scotopic electroretinography showed no statistically significant changes. The in situ-forming HB-PEG/HA-SH hydrogel system could be an appropriate strategy for developing a reliable experimental glaucoma model without any confounding factors. We expect this model would be conducive to the development of neuroprotective and neuro-regenerative therapies.
Collapse
Affiliation(s)
- Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Jingfei Xue
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Qian Xu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zhe Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Chunyu Zhao
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jiahui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Jiaxu Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
22
|
Zong Q, Xiao X, Li J, Yuan Y. Self-boosting stimulus activation of a polyprodrug with cascade amplification for enhanced antitumor efficacy. Biomater Sci 2022; 10:4228-4234. [PMID: 35758299 DOI: 10.1039/d2bm00647b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of polyprodrugs, which bind drugs to polymer chains through responsive linkers, is a potential technique for cancer therapy; however, a lack of endogenous triggering factors limits drug activation in tumor tissue. Herein, we rationally created a reactive oxygen species (ROS)-sensitive polyprodrug (TSCA/DOX) with cascade amplification of triggering agents and drug activation by incorporating both an ROS signal amplifier (TACA) and a drug activation amplifier (SIPDOX) into a delivery system. Endogenous ROS as a triggering mechanism kicked off the initial circulation phase to increase intracellular ROS signals. Subsequently, the enhanced ROS initiated the second degradation step, allowing the polyprodrug SIPDOX to fracture spontaneously in a domino-like fashion, resulting in self-accelerated drug activation in tumor tissue. Therefore, the polyprodrug created in this study with cascade amplification of drug activation holds great promise for effective cancer treatment.
Collapse
Affiliation(s)
- Qingyu Zong
- School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China.
| | - Xuan Xiao
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P.R. China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Jisi Li
- School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China. .,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Youyong Yuan
- School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China. .,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P.R. China.,School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| |
Collapse
|
23
|
Liu G, Sun X, Li X, Wang Z. The Bioanalytical and Biomedical Applications of Polymer Modified Substrates. Polymers (Basel) 2022; 14:826. [PMID: 35215740 PMCID: PMC8878960 DOI: 10.3390/polym14040826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 01/11/2023] Open
Abstract
Polymers with different structures and morphology have been extensively used to construct functionalized surfaces for a wide range of applications because the physicochemical properties of polymers can be finely adjusted by their molecular weights, polydispersity and configurations, as well as the chemical structures and natures of monomers. In particular, the specific functions of polymers can be easily achieved at post-synthesis by the attachment of different kinds of active molecules such as recognition ligand, peptides, aptamers and antibodies. In this review, the recent advances in the bioanalytical and biomedical applications of polymer modified substrates were summarized with subsections on functionalization using branched polymers, polymer brushes and polymer hydrogels. The review focuses on their applications as biosensors with excellent analytical performance and/or as nonfouling surfaces with efficient antibacterial activity. Finally, we discuss the perspectives and future directions of polymer modified substrates in the development of biodevices for the diagnosis, treatment and prevention of diseases.
Collapse
Affiliation(s)
- Guifeng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun 130033, China; (G.L.); (X.L.)
| | - Xudong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Hefei 230026, China
| | - Xiaodong Li
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun 130033, China; (G.L.); (X.L.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Hefei 230026, China
| |
Collapse
|
24
|
Liu G, Tan J, Cen J, Zhang G, Hu J, Liu S. Oscillating the local milieu of polymersome interiors via single input-regulated bilayer crosslinking and permeability tuning. Nat Commun 2022; 13:585. [PMID: 35102153 PMCID: PMC8803951 DOI: 10.1038/s41467-022-28227-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/31/2021] [Indexed: 11/09/2022] Open
Abstract
The unique permselectivity of cellular membranes is of crucial importance to maintain intracellular homeostasis while adapting to microenvironmental changes. Although liposomes and polymersomes have been widely engineered to mimic microstructures and functions of cells, it still remains a considerable challenge to synergize the stability and permeability of artificial cells and to imitate local milieu fluctuations. Herein, we report concurrent crosslinking and permeabilizing of pH-responsive polymersomes containing Schiff base moieties within bilayer membranes via enzyme-catalyzed acid production. Notably, this synergistic crosslinking and permeabilizing strategy allows tuning of the mesh sizes of the crosslinked bilayers with subnanometer precision, showing discriminative permeability toward maltooligosaccharides with molecular sizes of ~1.4-2.6 nm. The permselectivity of bilayer membranes enables intravesicular pH oscillation, fueled by a single input of glucose. This intravesicular pH oscillation can further drive the dissipative self-assembly of pH-sensitive dipeptides. Moreover, the permeabilization of polymersomes can be regulated by intracellular pH gradient as well, enabling the controlled release of encapsulated payloads.
Collapse
Affiliation(s)
- Guhuan Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Jiajia Tan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Jie Cen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
| |
Collapse
|
25
|
Sirianni QEA, Wang TD, Borecki A, Deng Z, Ronald J, Gillies ER. Self-immolative Polyplexes for DNA Delivery. Biomater Sci 2022; 10:2557-2567. [DOI: 10.1039/d1bm01684a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleic acids have immense potential for the treatment and prevention of a wide range of diseases, but delivery vehicles are needed to assist with their entry into cells. Polycations can...
Collapse
|
26
|
Hansen-Felby M, Sommerfeldt A, Henriksen ML, Pedersen SU, Daasbjerg K. Synthesis and depolymerization of self-immolative poly(disulfide)s with saturated aliphatic backbones. Polym Chem 2022. [DOI: 10.1039/d1py01412a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-immolative polymers (SIPs) are a class of degradable stimuli-responsive polymers, which, upon removal of labile end-caps, depolymerize selectively and stepwise to small molecules.
Collapse
Affiliation(s)
- Magnus Hansen-Felby
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Andreas Sommerfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Martin Lahn Henriksen
- Department of Engineering, Plastic and Polymer Engineering, Aabogade 40a, 8200 Aarhus N, Denmark
| | - Steen Uttrup Pedersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Kim Daasbjerg
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
27
|
Gavriel A, Sambrook M, Russell AT, Hayes W. Recent advances in self-immolative linkers and their applications in polymeric reporting systems. Polym Chem 2022. [DOI: 10.1039/d2py00414c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interest in self-immolative chemistry has grown over the past decade with more research groups harnessing the versatility to control the release of a compound from a larger chemical entity, given...
Collapse
|
28
|
Shelef O, Gnaim S, Shabat D. Self-Immolative Polymers: An Emerging Class of Degradable Materials with Distinct Disassembly Profiles. J Am Chem Soc 2021; 143:21177-21188. [PMID: 34898203 PMCID: PMC8704185 DOI: 10.1021/jacs.1c11410] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 12/16/2022]
Abstract
Self-immolative polymers are an emerging class of macromolecules with distinct disassembly profiles that set them apart from other general degradable materials. These polymers are programmed to disassemble spontaneously from head to tail, through a domino-like fragmentation, upon response to extremal stimuli. In the time since we first reported this unique type of molecule, several groups around the world have developed new, creative molecular structures that perform analogously to our pioneering polymers. Self-immolative polymers are now widely recognized as an important class of stimuli-responsive materials for a wide range of applications such as signal amplification, biosensing, drug delivery, and materials science. The quinone-methide elimination was shown to be an effective tool to achieve rapid domino-like fragmentation of polymeric molecules. Thus, numerous applications of self-immolative polymers are based on this disassembly chemistry. Although several other fragmentation reactions achieved the function requested for sequential disassembly, we predominantly focused in this Perspective on examples of self-immolative polymers that disassemble through the quinone-methide elimination. Selected examples of self-immolative polymers that disassembled through other chemistries are briefly described. The growing demand for stimuli-responsive degradable materials with novel molecular backbones and enhanced properties guarantees the future interest of the scientific community in this unique class of polymers.
Collapse
Affiliation(s)
| | | | - Doron Shabat
- School of Chemistry, Raymond
and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
29
|
Sirianni QEA, Liang X, Such GK, Gillies ER. Polyglyoxylamides with a pH-Mediated Solubility and Depolymerization Switch. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Quinton E. A. Sirianni
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
- The Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Xiaoli Liang
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
- The Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Georgina K. Such
- The School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Elizabeth R. Gillies
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
- The Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario, Canada N6A 5B7
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada N6A 5B9
| |
Collapse
|
30
|
Li L, Cen J, Pan W, Zhang Y, Leng X, Tan Z, Yin H, Liu S. Synthesis of Polypeptides with High-Fidelity Terminal Functionalities under NCA Monomer-Starved Conditions. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9826046. [PMID: 34877538 PMCID: PMC8617576 DOI: 10.34133/2021/9826046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/22/2021] [Indexed: 01/01/2023]
Abstract
Controlled polypeptide synthesis via α-amino acid N-carboxylic anhydride (NCA) polymerization using conventional primary amine initiators encounters two major obstacles: (i) normal amine mechanism (NAM) and activated monomer mechanism (AMM) coexist due to amine basicity and nucleophilicity and (ii) NCA is notoriously sensitive towards moisture and heat and unstable upon storage. We serendipitously discover that N-phenoxycarbonyl-functionalized α-amino acid (NPCA), a latent NCA precursor, could be polymerized solely based on NAM with high initiating efficiency by using primary amine hydrochloride as an initiator. The polymerization affords well-defined polypeptides with narrow polydispersity and high-fidelity terminal functionalities, as revealed by the clean set of MALDI-TOF MS patterns. We further demonstrate successful syntheses of random and block copolypeptides, even under open-vessel conditions. Overall, the integration of moisture-insensitive and air-tolerant NPCA precursors with stable primary amine hydrochloride initiators represents a general strategy for controlled synthesis of high-fidelity polypeptides with sophisticated functions.
Collapse
Affiliation(s)
- Lei Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jie Cen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenhao Pan
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuben Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xuanxi Leng
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengqi Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hao Yin
- Mass Spectrometry Lab, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
31
|
Chen J, Xu Y, Xu F, Zhang Q, Li S, Lu X. Detection of hydrogen peroxide and glucose with a novel fluorescent probe by the enzymatic reaction of amino functionalized MOF nanosheets. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4228-4237. [PMID: 34523622 DOI: 10.1039/d1ay00190f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Amino-functionalized two-dimensional (2D) MOFs have great potential in biosensors due to their excellent water solubility, high fluorescence, large specific surface area, good adsorption properties and good ability to enrich the target analytes. Fluorescence detection of hydrogen peroxide and glucose mostly relies on monitoring the single fluorescence intensity changes in a single excitation wavelength. Here, a ratiometric fluorescence sensor based on NH2-MIL-53(Al) nanosheets to sensitively detect H2O2 and glucose through enzymatic reactions was developed. o-Phenylenediamine (OPD) was oxidized by H2O2 in the presence of horseradish peroxidase (HRP). Then, the oxidation product could be self-assembled on NH2-MIL-53(Al) nanosheets by hydrogen bonding and π-π stacking. The orbital interaction or the fluorescence resonance energy transfer (FRET) between the nanosheets and the oxidation product could effectively quench the fluorescence of the nanosheets at 433 nm. At the same time, the oxidation product provided a new emission peak at 564 nm. The fluorescence ratio signal changes generated by this oxidation process were used to stably and sensitively detect H2O2 and glucose. Structural and mechanistic analysis was carried out by calculation methods such as AICD and ORCA to explore the π electron structure characteristics, the hole/electron orbitals and the quenching phenomenon. The detection limit was 26.9 nM for H2O2 and 0.041 μM for glucose. The detection of glucose in human serum has a satisfactory recovery of 97.4-102.8%. It is clear that the sensor has a good application prospect in real sample analysis.
Collapse
Affiliation(s)
- Jing Chen
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Yali Xu
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Fanghong Xu
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Qian Zhang
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Shuying Li
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Xiaoquan Lu
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
32
|
Tan J, Deng Z, Song C, Xu J, Zhang Y, Yu Y, Hu J, Liu S. Coordinating External and Built-In Triggers for Tunable Degradation of Polymeric Nanoparticles via Cycle Amplification. J Am Chem Soc 2021; 143:13738-13748. [PMID: 34411484 DOI: 10.1021/jacs.1c05617] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The selective activation of nanovectors in pathological tissues is of crucial importance to achieve optimized therapeutic outcomes. However, conventional stimuli-responsive nanovectors lack sufficient sensitivity because of the slight difference between pathological and normal tissues. To this end, the development of nanovectors capable of responding to weak pathological stimuli is of increasing interest. Herein, we report the fabrication of amphiphilic polyurethane nanoparticles containing both external and built-in triggers. The activation of external triggers leads to the liberation of highly reactive primary amines, which subsequently activates the built-in triggers with the release of more primary amines in a positive feedback manner, thereby triggering the degradation of micellar nanoparticles in a cycle amplification model. The generality and versatility of the cycle amplification concept have been successfully verified using three different triggers including reductive milieu, light irradiation, and esterase. We demonstrate that these stimuli-responsive nanoparticles show self-propagating degradation performance even in the presence of trace amounts of external stimuli. Moreover, we confirm that the esterase-responsive nanoparticles can discriminate cancer cells from normal ones by amplifying the esterase stimulus that is overexpressed in cancer cells, thereby enabling the selective release of encapsulated payloads and killing cancer cells. This work presents a robust strategy to fabricate stimuli-responsive nanocarriers with highly sensitive property toward external stimuli, showing promising applications in cancer therapy with minimized side effects.
Collapse
Affiliation(s)
- Jiajia Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Zhengyu Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Chengzhou Song
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jie Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yuben Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yong Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jinming Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Shiyong Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
33
|
Saadati A, Hasanzadeh M, Seidi F. Biomedical application of hyperbranched polymers: Recent Advances and challenges. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116308] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
34
|
Liu H, Lionello C, Westley J, Cardellini A, Huynh U, Pavan GM, Thayumanavan S. Understanding functional group and assembly dynamics in temperature responsive systems leads to design principles for enzyme responsive assemblies. NANOSCALE 2021; 13:11568-11575. [PMID: 34190280 DOI: 10.1039/d1nr02000e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the molecular rules behind the dynamics of supramolecular assemblies is fundamentally important for the rational design of responsive assemblies with tunable properties. Herein, we report that the dynamics of temperature-sensitive supramolecular assemblies is not only affected by the dehydration of oligoethylene glycol (OEG) motifs, but also by the thermally-promoted molecular motions. These counteracting features set up a dynamics transition point (DTP) that can be modulated with subtle variations in a small hydrophobic patch on the hydrophilic face of the amphiphilic assembly. Understanding the structural factors that control the dynamics of the assemblies leads to rational design of enzyme-responsive assemblies with tunable temperature responsive profiles.
Collapse
Affiliation(s)
- Hongxu Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| | - Chiara Lionello
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy.
| | - Jenna Westley
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| | - Annalisa Cardellini
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy.
| | - Uyen Huynh
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy. and Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, CH-6962 Lugano-Viganello, Switzerland
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
35
|
Forder TN, Maschmeyer PG, Zeng H, Roberts DA. Post‐synthetic ‘Click’ Synthesis of RAFT Polymers with Pendant Self‐immolative Triazoles. Chem Asian J 2021; 16:287-291. [DOI: 10.1002/asia.202001443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/31/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Timothy N. Forder
- Key Centre for Polymers and Colloids School of Chemistry The University of Sydney 2006 Sydney NSW Australia
| | - Peter G. Maschmeyer
- Key Centre for Polymers and Colloids School of Chemistry The University of Sydney 2006 Sydney NSW Australia
| | - Haoxiang Zeng
- Key Centre for Polymers and Colloids School of Chemistry The University of Sydney 2006 Sydney NSW Australia
| | - Derrick A. Roberts
- Key Centre for Polymers and Colloids School of Chemistry The University of Sydney 2006 Sydney NSW Australia
- Sydney Nano Institute The University of Sydney 2006 Sydney NSW Australia
| |
Collapse
|
36
|
Xiao X, Wang K, Zong Q, Tu Y, Dong Y, Yuan Y. Polyprodrug with glutathione depletion and cascade drug activation for multi-drug resistance reversal. Biomaterials 2021; 270:120649. [PMID: 33588139 DOI: 10.1016/j.biomaterials.2020.120649] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/13/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
High intracellular glutathione (GSH) levels play an important role in multidrug resistance (MDR) in cancer cells. It remains challenging to develop a drug delivery system that is simultaneously capable of GSH depletion and drug activation for multidrug resistance reversal. Herein, we designed a polyprodrug (denoted as PSSD) based on poly(disulfide) conjugated with doxorubicin (DOX) on the polymer side chains that exhibits GSH depletion and cascade DOX activation for drug resistance reversal. The poly(disulfide) backbone with a high disulfide density depletes intracellular antioxidant GSH via the disulfide-thiol exchange reaction to disrupt intracellular redox homeostasis in cells. Simultaneously, DOX can be activated through a cascade reaction, and degradation of the poly(disulfide) backbone further facilitates its drug release. Therefore, poly(disulfide) can be used as a GSH scavenger to reverse MDR as well as a prodrug backbone to target high intracellular GSH levels in cancer cells, providing a general strategy for drug resistance reversal.
Collapse
Affiliation(s)
- Xuan Xiao
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| | - Kewei Wang
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, PR China
| | - Qingyu Zong
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| | - Yalan Tu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| | - Yansong Dong
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| | - Youyong Yuan
- Guangzhou First People's Hospital, School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, PR China.
| |
Collapse
|
37
|
Maschmeyer PG, Liang X, Hung A, Ahmadzai O, Kenny AL, Luong YC, Forder TN, Zeng H, Gillies ER, Roberts DA. Post-polymerization ‘click’ end-capping of polyglyoxylate self-immolative polymers. Polym Chem 2021. [DOI: 10.1039/d1py01169c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Post-polymerization CuAAC reactions are used to ‘click’ stimuli-cleavable triazole end-caps onto self-immolative poly(ethyl glyoxylate).
Collapse
Affiliation(s)
- Peter G. Maschmeyer
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xiaoli Liang
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research. The University of Western Ontario, 1151 Richmond St., London, Canada N6A 5B7
| | - Allison Hung
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research. The University of Western Ontario, 1151 Richmond St., London, Canada N6A 5B7
| | - Oksana Ahmadzai
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Annmaree L. Kenny
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yuan C. Luong
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Timothy N. Forder
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Haoxiang Zeng
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth R. Gillies
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research. The University of Western Ontario, 1151 Richmond St., London, Canada N6A 5B7
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario, Canada N6A 5B9
| | - Derrick A. Roberts
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
38
|
Tan J, Hu J, Liu S. Designing self-propagating polymers with ultrasensitivity through feedback signal amplification. Polym Chem 2021. [DOI: 10.1039/d1py01095f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Stimuli-responsive polymers with self-propagating degradation capacity being sensitive to acids, bases, fluoride ions, and hydrogen peroxide are reviewed, exhibiting self-accelerated degradation behavior.
Collapse
Affiliation(s)
- Jiajia Tan
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinming Hu
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
39
|
Li J, Kataoka K. Chemo-physical Strategies to Advance the in Vivo Functionality of Targeted Nanomedicine: The Next Generation. J Am Chem Soc 2020; 143:538-559. [PMID: 33370092 DOI: 10.1021/jacs.0c09029] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The past few decades have witnessed an evolution of nanomedicine from biologically inert entities to more smart systems, aimed at advancing in vivo functionality. However, we should recognize that most systems still rely on reasonable explanation-including some over-explanation-rather than definitive evidence, which is a watershed radically determining the speed and extent of advancing nanomedicine. Probing nano-bio interactions and desirable functionality at the tissue, cellular, and molecular levels is most frequently overlooked. Progress toward answering these questions will provide instructive insight guiding more effective chemo-physical strategies. Thus, in the next generation, we argue that much effort should be made to provide definitive evidence for proof-of-mechanism, in lieu of creating many new and complicated systems for similar proof-of-concept.
Collapse
Affiliation(s)
- Junjie Li
- Innovation Center of NanoMedicne, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicne, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.,Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
40
|
|
41
|
Wang M, Xie JL, Li J, Fan YY, Deng X, Duan HL, Zhang ZQ. 3-Aminophenyl Boronic Acid Functionalized Quantum-Dot-Based Ratiometric Fluorescence Sensor for the Highly Sensitive Detection of Tyrosinase Activity. ACS Sens 2020; 5:1634-1640. [PMID: 32486639 DOI: 10.1021/acssensors.0c00122] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Using the commercially available and economical 6-hydroxycoumarin (6-HC) as the substrate, a dual-emission ratiometric fluorescence sensor was developed to detect tyrosinase (TYR) activity based on 3-aminophenyl boronic acid functionalized quantum dots (APBA-QDs). TYR can catalyze 6-HC, a monohydroxy compound, to form a fluorescence-enhancing o-hydroxy compound, 6,7-dihydroxycoumarin. Owing to the special covalent binding between the o-hydroxyl and boric acid groups, APBA-QDs react with 6,7-dihydroxycoumarin to form a five-membered ring ester dual-emission fluorescence probe for TYR. With an increase in TYR activity, the fluorescence at 675 nm originating from the QDs is gradually quenched, whereas that at 465 nm owing to 6,7-dihydroxycoumarin increases. Referencing the decreasing signal of the dual-emission probe at 675 nm to measure the increasing signal at 465 nm, a ratiometric fluorescence method was established to detect the TYR activity with high sensitivity and selectivity. Under the conditions optimized via response surface methodology, a linear range of 0-0.05 U/mL was obtained for the TYR activity. The detection limit was as low as 0.003 U/mL. This sensing strategy can also be adopted for the rapid screening of the TYR inhibitors.
Collapse
Affiliation(s)
- Man Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Jia-Ling Xie
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710062, China
| | - Jun Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Yao-Yao Fan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Xu Deng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Hui-Ling Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), Ministry of Education, Xi’an 710062, China
| |
Collapse
|
42
|
Pan Q, Deng X, Gao W, Chang J, Pu Y, He B. ROS triggered cleavage of thioketal moiety to dissociate prodrug nanoparticles for chemotherapy. Colloids Surf B Biointerfaces 2020; 194:111223. [PMID: 32615519 DOI: 10.1016/j.colsurfb.2020.111223] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
With the utilization of high concentration reactive oxygen species (ROS) in tumor microenvironment, PEG-doxorubicin (PEG-DOX) prodrug was synthesized via a thioketal moiety as the linker, which was ROS cleavable to trigger DOX release from the self-assembled prodrug nanoparticles. The in vitro ROS sensitivity of prodrug nanoparticles (NPs) was investigated in Fenton agent and H2O2, and the disassembly of NPs was more sensitive to Fenton reagent. After internalized in HepG2 cells via endocytosis, the cellular ROS consuming test revealed intracellular DOX release. The pharmacokinetics and biodistribution study demonstrated that the in vivo elimination of NPs was significantly improved and the NPs were passively targeted to tumor tissues via EPR effect. The ROS-responsive prodrug NPs exhibited excellent antitumor activity in HepG2 tumor-bearing nude mice, remarkably induced tumor cells apoptosis and reduced the systemic toxicity of DOX. Our study revealed the ROS responsive prodrug nanoparticle is an effective strategy to fabricate nanomedicine for cancer chemotherapy.
Collapse
Affiliation(s)
- Qingqing Pan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xin Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Wenxia Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China.
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
43
|
Tian T, Qian T, Sui X, Yu Q, Liu Y, Liu X, Chen Y, Wang YX, Hu W. Aggregation-Dependent Photoreactive Hemicyanine Assembly as a Photobactericide. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22552-22559. [PMID: 32345006 DOI: 10.1021/acsami.0c03894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic materials that show substantial reactivity under visible light have received considerable attention due to their wide applications in chemical and biological systems. Hemicyanine pigments possess a strong intramolecular donor-acceptor structure and thereby display intense absorption in the visible spectral region. However, most excitons are consumed via the twisted intramolecular charge-transfer (TICT) process, making hemicyanines generally inert to light. Herein, we describe the development of an amphiphilic hemicyanine dye whose aggregation could be easily regulated using salt or counterions. More importantly, its intrinsic photoreactivity was successfully induced by steric restriction and cofacial arrangement within the H-aggregate, thus creating an effective photobactericide. This strategy could be extended to the development of photocatalysts for photosynthesis and a photosensitizer for photodynamic therapy.
Collapse
Affiliation(s)
- Tian Tian
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Tingjuan Qian
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Xinyu Sui
- Division of Nanophotonics CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qilin Yu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yingxin Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Xinfeng Liu
- Division of Nanophotonics CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yulan Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yi-Xuan Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
44
|
Kim H, Brooks AD, DiLauro AM, Phillips ST. Poly(carboxypyrrole)s That Depolymerize from Head to Tail in the Solid State in Response to Specific Applied Signals. J Am Chem Soc 2020; 142:9447-9452. [PMID: 32330033 DOI: 10.1021/jacs.0c02774] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This Article describes the design, synthesis, and analysis of a new class of polymer that is capable of depolymerizing continuously, completely, and cleanly from head to tail when a detection unit on the head of the polymer is exposed to a specific applied signal. The backbone of this polymer consists of 1,3-disubstituted pyrroles and carboxy linkages similar to polyurethanes. Diverse side chains or reactive end-groups can be introduced readily, which provides modular design of polymer structure. The designed depolymerization mechanism proceeds through spontaneous release of carbon dioxide and azafulvene in response to a single triggering reaction with the detection unit. These poly(carboxypyrrole)s depolymerize readily in nonpolar environments, and even in the bulk as solid-state plastics.
Collapse
Affiliation(s)
- Hyungwoo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Adam D Brooks
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Drive, Boise, Idaho 83725-2090, United States
| | - Anthony M DiLauro
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Drive, Boise, Idaho 83725-2090, United States
| | - Scott T Phillips
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Drive, Boise, Idaho 83725-2090, United States
| |
Collapse
|
45
|
Cuneo T, Gao H. Recent advances on synthesis and biomaterials applications of hyperbranched polymers. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1640. [DOI: 10.1002/wnan.1640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/14/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Timothy Cuneo
- Department of Chemistry and Biochemistry University of Notre Dame Indiana USA
| | - Haifeng Gao
- Department of Chemistry and Biochemistry University of Notre Dame Indiana USA
| |
Collapse
|
46
|
Kavand A, Anton N, Vandamme T, Serra CA, Chan-Seng D. Synthesis and functionalization of hyperbranched polymers for targeted drug delivery. J Control Release 2020; 321:285-311. [DOI: 10.1016/j.jconrel.2020.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
|
47
|
A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates. Nat Chem 2020; 12:381-390. [DOI: 10.1038/s41557-020-0426-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
|
48
|
Roberts DA, Pilgrim BS, Dell TN, Stevens MM. Dynamic pH responsivity of triazole-based self-immolative linkers. Chem Sci 2020; 11:3713-3718. [PMID: 34094059 PMCID: PMC8152797 DOI: 10.1039/d0sc00532k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Gating the release of chemical payloads in response to transient signals is an important feature of ‘smart’ delivery systems. Herein, we report a triazole-based self-immolative linker that can be reversibly paused or slowed and restarted throughout its elimination cascade in response to pH changes in both organic and organic-aqueous solvents. The linker is conveniently prepared using the alkyne–azide cycloaddition reaction, which introduces a 1,4-triazole ring that expresses a pH-sensitive intermediate during its elimination sequence. Using a series of model compounds, we demonstrate that this intermediate can be switched between active and dormant states depending on the presence of acid or base, cleanly gating the release of payload in response to a fluctuating external stimulus. Triazole-based self-immolative linkers can be reversibly paused and restarted throughout their elimination cascades in response to environmental pH changes.![]()
Collapse
Affiliation(s)
- Derrick A Roberts
- Key Center for Polymers and Colloids, School of Chemistry, The University of Sydney Sydney NSW 2006 Australia .,Department of Medical Biochemistry and Biophysics, Karolinska Institutet 171 77 Stockholm Sweden
| | - Ben S Pilgrim
- School of Chemistry, The University of Nottingham Nottingham NG7 2RD UK
| | - Tristan N Dell
- Department of Materials, Department of Bioengineering, Institute for Biomedical Engineering, Imperial College London London SW7 2AZ UK
| | - Molly M Stevens
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet 171 77 Stockholm Sweden.,Department of Materials, Department of Bioengineering, Institute for Biomedical Engineering, Imperial College London London SW7 2AZ UK
| |
Collapse
|
49
|
Hu J, Liu S. Modulating intracellular oxidative stress via engineered nanotherapeutics. J Control Release 2020; 319:333-343. [DOI: 10.1016/j.jconrel.2019.12.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
|
50
|
Recent advances of smart acid‐responsive gold nanoparticles in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1619. [DOI: 10.1002/wnan.1619] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
|