1
|
Freedman MA, Huang Q, Pitta KR. Phase Transitions in Organic and Organic/Inorganic Aerosol Particles. Annu Rev Phys Chem 2024; 75:257-281. [PMID: 38382569 DOI: 10.1146/annurev-physchem-083122-115909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The phase state of aerosol particles can impact numerous atmospheric processes, including new particle growth, heterogeneous chemistry, cloud condensation nucleus formation, and ice nucleation. In this article, the phase transitions of inorganic, organic, and organic/inorganic aerosol particles are discussed, with particular focus on liquid-liquid phase separation (LLPS). The physical chemistry that determines whether LLPS occurs, at what relative humidity it occurs, and the resultant particle morphology is explained using both theoretical and experimental methods. The known impacts of LLPS on aerosol processes in the atmosphere are discussed. Finally, potential evidence for LLPS from field and chamber studies is presented. By understanding the physical chemistry of the phase transitions of aerosol particles, we will acquire a better understanding of aerosol processes, which in turn impact human health and climate.
Collapse
Affiliation(s)
- Miriam Arak Freedman
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA; ,
- Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Qishen Huang
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China;
| | - Kiran R Pitta
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA; ,
| |
Collapse
|
2
|
Tong YK, Ye A. Liquid-Liquid Phase Separation in Single Suspended Aerosol Microdroplets. Anal Chem 2023; 95:12200-12208. [PMID: 37556845 DOI: 10.1021/acs.analchem.2c05605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Liquid-liquid phase separation (LLPS) is ubiquitous in ambient aerosols. This specific morphology exerts substantial impacts on the physicochemical properties and atmospheric processes of aerosols, particularly on the gas-particle mass transfer, the interfacial heterogeneous reaction, and the surface albedo. Although there are many studies on the LLPS of aerosols, a clear picture of LLPS in individual aerosols is scarce due to the experimental difficulties of trapping a single particle and mimicking the suspended state of real aerosols. Here, we investigate the phase separation in individual contactless microdroplets by a self-constructed laser tweezer/Raman spectroscopy system. The dynamic transformation of the morphology of optically trapped droplets over the course of humidity cycles is detected by the time-resolved cavity-enhanced Raman spectra. The impacts of pH and inorganic components on LLPS in aerosols are discussed. The results show that the increasing acidity can enhance the miscibility between the hydrophilic and hydrophobic phases and decrease the separation relative humidity of aerosols. Moreover, the inorganic components also have various impacts on the aerosol phase state, whose influence depends on their different salting-out capabilities. It brings possible implications on the morphology of actual atmospheric particles, particularly for those dominated by internal mixtures of inorganic and organic components.
Collapse
Affiliation(s)
- Yu-Kai Tong
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Anpei Ye
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Dommer A, Wauer NA, Angle KJ, Davasam A, Rubio P, Luo M, Morris CK, Prather KA, Grassian VH, Amaro RE. Revealing the Impacts of Chemical Complexity on Submicrometer Sea Spray Aerosol Morphology. ACS CENTRAL SCIENCE 2023; 9:1088-1103. [PMID: 37396863 PMCID: PMC10311664 DOI: 10.1021/acscentsci.3c00184] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 07/04/2023]
Abstract
Sea spray aerosol (SSA) ejected through bursting bubbles at the ocean surface is a complex mixture of salts and organic species. Submicrometer SSA particles have long atmospheric lifetimes and play a critical role in the climate system. Composition impacts their ability to form marine clouds, yet their cloud-forming potential is difficult to study due to their small size. Here, we use large-scale molecular dynamics (MD) simulations as a "computational microscope" to provide never-before-seen views of 40 nm model aerosol particles and their molecular morphologies. We investigate how increasing chemical complexity impacts the distribution of organic material throughout individual particles for a range of organic constituents with varying chemical properties. Our simulations show that common organic marine surfactants readily partition between both the surface and interior of the aerosol, indicating that nascent SSA may be more heterogeneous than traditional morphological models suggest. We support our computational observations of SSA surface heterogeneity with Brewster angle microscopy on model interfaces. These observations indicate that increased chemical complexity in submicrometer SSA leads to a reduced surface coverage by marine organics, which may facilitate water uptake in the atmosphere. Our work thus establishes large-scale MD simulations as a novel technique for interrogating aerosols at the single-particle level.
Collapse
|
4
|
Huang JH, Zhang F, Shi YP, Cai JR, Chuang YH, Hu WP, Lee YY, Wang CC. Water Plays Multifunctional Roles in the Intervening Formation of Secondary Organic Aerosols in Ozonolysis of Limonene: A Valence Photoelectron Spectroscopy and Density Functional Theory Study. J Phys Chem Lett 2023; 14:3765-3776. [PMID: 37052309 DOI: 10.1021/acs.jpclett.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Although water may affect aqueous aerosol chemistry, how it intervenes in the formation of secondary organic aerosols (SOAs) at the molecular level remains elusive. Ozonolysis of limonene is one of the most important sources of indoor SOAs. Here, we report the valence electronic properties of limonene aerosols and SOAs derived from limonene ozonolysis (Lim-SOAs) via aerosol vacuum ultraviolet photoelectron spectroscopy, with a focus on the effects of water on Lim-SOAs. The first vertical ionization energy of limonene aerosols is measured to be 8.79 ± 0.07 eV. While water significantly increases the total photoelectron yield of Lim-SOAs, three photoelectron features attributable to Lim-SOAs each exhibit distinct dependence on the fraction of water in aerosols, implying that different formation pathways and molecular origins are involved in the formation of Lim-SOAs. Combined with density functional theory calculation and mass spectrometry measurements, this study reveals that water, particularly the water dimer, enhances the formation of Lim-SOAs by altering the ozonolysis energetics and pathways by intervening in its Criegee chemistry, acting as both a catalyst and a reactant. The atmospheric implication is discussed.
Collapse
Affiliation(s)
- Jhih-Hong Huang
- Department of Chemistry and Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, R.O.C. 80424
| | - Fuyi Zhang
- Department of Chemistry and Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, R.O.C. 80424
| | - Yan-Pin Shi
- Department of Chemistry and Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, R.O.C. 80424
| | - Jia-Rong Cai
- Department of Chemistry and Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, R.O.C. 80424
| | - Yu-Hsuan Chuang
- Department of Chemistry and Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, R.O.C. 80424
| | - Wei-Ping Hu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan, R.O.C. 62102
| | - Yin-Yu Lee
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan, R.O.C. 30076
| | - Chia C Wang
- Department of Chemistry and Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, R.O.C. 80424
| |
Collapse
|
5
|
Cheng B, Zhong Y, Qiu Y, Vaikuntanathan S, Park J. Giant Gateable Osmotic Power Generation from a Goldilocks Two-Dimensional Polymer. J Am Chem Soc 2023; 145:5261-5269. [PMID: 36848619 DOI: 10.1021/jacs.2c12853] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Generating electricity from a salinity gradient, known as osmotic power, provides a sustainable energy source, but it requires precise nanoscale control of membranes for maximum performance. Here, we report an ultrathin membrane, where molecule-specific short-range interactions enable giant gateable osmotic power with a record high power density (2 kW/m2 for 1 M∥1 mM KCl). Our membranes are charge-neutral two-dimensional polymers synthesized from molecular building blocks and operate in a Goldilocks regime that simultaneously maintains high ionic conductivity and permselectivity. Molecular dynamics simulations quantitatively confirm that the functionalized nanopores are small enough for high selectivity through short-range ion-membrane interactions and large enough for fast cross-membrane transport. The short-range mechanism further enables reversible gateable operation, as demonstrated by polarity switching of osmotic power with additional gating ions.
Collapse
Affiliation(s)
- Baorui Cheng
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Yu Zhong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Yuqing Qiu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Suriyanarayanan Vaikuntanathan
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Jiwoong Park
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Lei Z, Chen Y, Zhang Y, Cooke ME, Ledsky IR, Armstrong NC, Olson NE, Zhang Z, Gold A, Surratt JD, Ault AP. Initial pH Governs Secondary Organic Aerosol Phase State and Morphology after Uptake of Isoprene Epoxydiols (IEPOX). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10596-10607. [PMID: 35834796 DOI: 10.1021/acs.est.2c01579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aerosol acidity increases secondary organic aerosol (SOA) formed from the reactive uptake of isoprene-derived epoxydiols (IEPOX) by enhancing condensed-phase reactions within sulfate-containing submicron particles, leading to low-volatility organic products. However, the link between the initial aerosol acidity and the resulting physicochemical properties of IEPOX-derived SOA remains uncertain. Herein, we show distinct differences in the morphology, phase state, and chemical composition of individual organic-inorganic mixed particles after IEPOX uptake to ammonium sulfate particles with different initial atmospherically relevant acidities (pH = 1, 3, and 5). Physicochemical properties were characterized via atomic force microscopy coupled with photothermal infrared spectroscopy (AFM-PTIR) and Raman microspectroscopy. Compared to less acidic particles (pH 3 and 5), reactive uptake of IEPOX to the most acidic particles (pH 1) resulted in 50% more organosulfate formation, clearer phase separation (core-shell), and more irregularly shaped morphologies, suggesting that the organic phase transitioned to semisolid or solid. This study highlights that initial aerosol acidity may govern the subsequent aerosol physicochemical properties, such as viscosity and morphology, following the multiphase chemical reactions of IEPOX. These results can be used in future studies to improve model parameterizations of SOA formation from IEPOX and its properties, toward the goal of bridging predictions and atmospheric observations.
Collapse
Affiliation(s)
- Ziying Lei
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuzhi Chen
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yue Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Madeline E Cooke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Isabel R Ledsky
- Department of Chemistry, Carleton College, Northfield, Minnesota 55057, United States
| | - N Cazimir Armstrong
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nicole E Olson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhenfa Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Barnett A, Karnes JJ, Lu J, Major DR, Oakdale JS, Grew KN, McClure JP, Molinero V. Exponential Water Uptake in Ionomer Membranes Results from Polymer Plasticization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adam Barnett
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - John J. Karnes
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Jibao Lu
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Dale R. Major
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - James S. Oakdale
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Kyle N. Grew
- DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Joshua P. McClure
- DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
8
|
McGrory MR, Shepherd RH, King MD, Davidson N, Pope FD, Watson IM, Grainger RG, Jones AC, Ward AD. Mie scattering from optically levitated mixed sulfuric acid-silica core-shell aerosols: observation of core-shell morphology for atmospheric science. Phys Chem Chem Phys 2022; 24:5813-5822. [PMID: 35226003 DOI: 10.1039/d1cp04068e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfuric acid is shown to form a core-shell particle on a micron-sized, optically-trapped spherical silica bead. The refractive indices of the silica and sulfuric acid, along with the shell thickness and bead radius were determined by reproducing Mie scattered optical white light as a function of wavelength in Mie spectroscopy. Micron-sized silica aerosols (silica beads were used as a proxy for atmospheric silica minerals) were levitated in a mist of sulfuric acid particles; continuous collection of Mie spectra throughout the collision of sulfuric acid aerosols with the optically trapped silica aerosol demonstrated that the resulting aerosol particle had a core-shell morphology. Contrastingly, the collision of aqueous sulfuric acid aerosols with optically trapped polystyrene aerosol resulted in a partially coated system. The light scattering from the optically levitated aerosols was successfully modelled to determine the diameter of the core aerosol (±0.003 μm), the shell thickness (±0.0003 μm) and the refractive index (±0.007). The experiment demonstrated that the presence of a thin film rapidly changed the light scattering of the original aerosol. When a 1.964 μm diameter silica aerosol was covered with a film of sulfuric acid 0.287 μm thick, the wavelength dependent Mie peak positions resembled sulfuric acid. Thus mineral aerosol advected into the stratosphere would likely be coated with sulfuric acid, with a core-shell morphology, and its light scattering properties would be effectively indistinguishable from a homogenous sulfuric acid aerosol if the film thickness was greater than a few 100 s of nm for UV-visible wavelengths.
Collapse
Affiliation(s)
- Megan R McGrory
- Central Laser Facility, Research Complex, STFC Rutherford Appleton Laboratory, Oxford, OX11 0FA, UK. .,Department of Earth Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Rosalie H Shepherd
- Central Laser Facility, Research Complex, STFC Rutherford Appleton Laboratory, Oxford, OX11 0FA, UK. .,Department of Earth Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Martin D King
- Department of Earth Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Nicholas Davidson
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Francis D Pope
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - I Matthew Watson
- School of Earth Science, University of Bristol, Wills Memorial Building, Bristol, BS8 1RJ, UK
| | - Roy G Grainger
- National Centre for Earth Observation, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Anthony C Jones
- Met Office, Fitzroy Road, Exeter, EX1 3PB, UK.,College of Engineering Maths and Physical Sciences, University of Exeter, Exeter, EX4 4PY, UK
| | - Andrew D Ward
- Central Laser Facility, Research Complex, STFC Rutherford Appleton Laboratory, Oxford, OX11 0FA, UK.
| |
Collapse
|
9
|
Ishizaka S, Yamamoto C, Yamagishi H. Liquid-Liquid Phase Separation of Single Optically Levitated Water-Ionic Liquid Droplets in Air. J Phys Chem A 2021; 125:7716-7722. [PMID: 34431297 DOI: 10.1021/acs.jpca.1c06130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, to investigate the equilibrium morphology of liquid-liquid phase-separated droplets in air, a temperature-responsive ionic liquid (IL) showing lower critical solution temperature behavior was employed. ILs have negligible vapor pressure and do not evaporate from aerosol droplets during dehumidifying processes. We demonstrated that the liquid-liquid phase separation of single optically levitated aqueous droplets containing the temperature-responsive IL can be induced by controlling the air relative humidity. The formation of liquid-liquid phase-separated droplets of partially engulfed morphology was successfully observed under an optical microscope, and their configurations were compared with those calculated by a thermodynamic model based on interfacial tensions and relative volume ratios of two immiscible phases.
Collapse
Affiliation(s)
- Shoji Ishizaka
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Chihiro Yamamoto
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Himeka Yamagishi
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
10
|
Binyaminov H, Abdullah F, Zargarzadeh L, Elliott JAW. Thermodynamic Investigation of Droplet-Droplet and Bubble-Droplet Equilibrium in an Immiscible Medium. J Phys Chem B 2021; 125:8636-8651. [PMID: 34310143 DOI: 10.1021/acs.jpcb.1c02877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the absence of external fields, interfacial tensions between different phases dictate the equilibrium morphology of a multiphase system. Depending on the relative magnitudes of these interfacial tensions, a composite system made up of immiscible fluids in contact with one another can exhibit contrasting behavior: the formation of lenses in one case and complete encapsulation in another. Relatively simple concepts such as the spreading coefficient (SC) have been extensively used by many researchers to make predictions. However, these qualitative methods are limited to determining the nature of the equilibrium states and do not provide enough information to calculate the exact equilibrium geometries. Moreover, due to the assumptions made, their validity is questionable at smaller scales where pressure forces due to curvature of the interfaces become significant or in systems where a compressible gas phase is present. Here we investigate equilibrium configurations of two fluid drops suspended in another fluid, which can be seen as a simple building block of more complicated systems. We use Gibbsian composite-system thermodynamics to derive equilibrium conditions and the equation acting as the free energy (thermodynamic potential) for this system. These equations are then numerically solved for an example system consisting of a dodecane drop and an air bubble surrounded by water, and the relative stability of distinct equilibrium shapes is investigated based on free-energy comparisons. Quantitative effects of system parameters such as interfacial tensions, volumes, and the scale of the system on geometry and stability are further explored. Multiphase systems similar to the ones analyzed here have broad applications in microfluidics, atmospheric physics, soft photonics, froth flotation, oil recovery, and some biological phenomena.
Collapse
Affiliation(s)
- Hikmat Binyaminov
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 1H9
| | - Fahim Abdullah
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 1H9
| | - Leila Zargarzadeh
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 1H9
| | - Janet A W Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 1H9
| |
Collapse
|
11
|
Sun X, Yang D, Zhang H, Zeng H, Tang T. Unraveling the Interaction of Water-in-Oil Emulsion Droplets via Molecular Simulations and Surface Force Measurements. J Phys Chem B 2021; 125:7556-7567. [PMID: 34229441 DOI: 10.1021/acs.jpcb.1c04227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water-in-oil emulsions widely exist in various chemical and petroleum engineering processes, and their stabilization and destabilization behaviors have attracted much attention. In this work, molecular dynamic (MD) simulations were conducted on the water-in-oil emulsion droplets with the presence of surface-active components, including a polycyclic aromatic compound (VO-79) and two nonionic surfactants: the PEO5PPO10PEO5 triblock copolymer and Brij-93. At the surface of water droplets, films were formed by the adsorbate molecules that redistributed during the approaching of the droplets. The redistribution of PEO5PPO10PEO5 was more pronounced than that of Brij-93 and VO-79, which contributed to lower repulsion during coalescence. The interaction forces during droplet coalescence were also measured using atomic force microscopy. Jump-in phenomenon and coalescence were observed for systems with VO-79, Brij-93, and a low concentration of Pluronic P123. The critical force before jump-in was lowest for the low concentration of Pluronic P123, consistent with the MD results. Adhesion was measured when separating water droplets with a high concentration of Pluronic P123. By correlating theoretical simulations and experimental force measurements, this work improves the fundamental understanding on the interaction behaviors of water droplets in an oil medium in the presence of interface-active species and provides atomic-level insights into the stabilization and destabilization mechanisms of water-in-oil emulsion.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Diling Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
12
|
Metya AK, Molinero V. Is Ice Nucleation by Organic Crystals Nonclassical? An Assessment of the Monolayer Hypothesis of Ice Nucleation. J Am Chem Soc 2021; 143:4607-4624. [PMID: 33729789 DOI: 10.1021/jacs.0c12012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Potent ice nucleating organic crystals display an increase in nucleation efficiency with pressure and memory effect after pressurization that set them apart from inorganic nucleants. These characteristics were proposed to arise from an ordered water monolayer at the organic-water interface. It was interpreted that ordering of the monolayer is the limiting step for ice nucleation on organic crystals, rendering their mechanism of nucleation nonclassical. Despite the importance of organics in atmospheric ice nucleation, that explanation has never been investigated. Here we elucidate the structure of interfacial water and its role in ice nucleation at ambient pressure on phloroglucinol dihydrate, the paradigmatic example of outstanding ice nucleating organic crystal, using molecular simulations. The simulations confirm the existence of an interfacial monolayer that orders on cooling and becomes fully ordered upon ice formation. The monolayer does not resemble any ice face but seamlessly connects the distinct hydrogen-bonding orders of ice and the organic surface. Although large ordered patches develop in the monolayer before ice nucleates, we find that the critical step is the formation of the ice crystallite, indicating that the mechanism is classical. We predict that the fully ordered, crystalline monolayer nucleates ice above -2 °C and could be responsible for the exceptional ice nucleation by the organic crystal at high pressures. The lifetime of the fully ordered monolayer around 0 °C, however, is too short to account for the memory effect reported in the experiments. The latter could arise from an increase in the melting temperature of ice confined by strongly ice-binding surfaces.
Collapse
Affiliation(s)
- Atanu K Metya
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
13
|
Naullage PM, Metya AK, Molinero V. Computationally efficient approach for the identification of ice-binding surfaces and how they bind ice. J Chem Phys 2020; 153:174106. [DOI: 10.1063/5.0021631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Pavithra M. Naullage
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, USA
| | - Atanu K. Metya
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, USA
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, USA
| |
Collapse
|
14
|
Wang M, Falke S, Schubert R, Lorenzen K, Cheng QD, Exner C, Brognaro H, Mudogo CN, Betzel C. Pulsed electric fields induce modulation of protein liquid-liquid phase separation. SOFT MATTER 2020; 16:8547-8553. [PMID: 32909579 DOI: 10.1039/d0sm01478h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The time-resolved dynamic assembly and the structures of protein liquid dense clusters (LDCs) were analyzed under pulsed electric fields (EFs) applying complementary polarized and depolarized dynamic light scattering (DLS/DDLS), optical microscopy, and transmission electron microscopy (TEM). We discovered that pulsed EFs substantially affected overall morphologies and spatial distributions of protein LDCs and microcrystals, and affected the phase diagrams of LDC formation, including enabling protein solutions to overcome the diffusive flux energy barrier to phase separate. Data obtained from DLS/DDLS and TEM showed that LDCs appeared as precursors of protein crystal nuclei, followed by the formation of ordered structures within LDCs applying a pulsed EF. Experimental results of circular dichroism spectroscopy provided evidence that the protein secondary structure content is changing under EFs, which may consequently modulate protein-protein interactions, and the morphology, dimensions, and internal structure of LDCs. Data and results obtained unveil options to modulate the phase diagram of crystallization, and physical morphologies of protein LDCs and microcrystals by irradiating sample suspensions with pulsed EFs.
Collapse
Affiliation(s)
- Mengying Wang
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany.
| | - Sven Falke
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany.
| | - Robin Schubert
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Qing-di Cheng
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany.
| | - Christian Exner
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany.
| | - Hévila Brognaro
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany.
| | - Célestin Nzanzu Mudogo
- Department of Basic Sciences, School of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany.
| |
Collapse
|
15
|
Freedman MA. Liquid-Liquid Phase Separation in Supermicrometer and Submicrometer Aerosol Particles. Acc Chem Res 2020; 53:1102-1110. [PMID: 32432453 DOI: 10.1021/acs.accounts.0c00093] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusThe interactions of aerosol particles with light and clouds are among the most uncertain aspects of anthropogenic climate forcings. The effects of aerosol particles on climate depend on their optical properties, heterogeneous chemistry, water uptake behavior, and ice nucleation activity. These properties in turn depend on aerosol physics and chemistry including composition, size, shape, internal structure (morphology), and phase state. The greatest numbers of particles are found at small, submicrometer sizes, and the properties of aerosol particles can differ on the nanoscale compared with measurements of bulk materials. As a result, our focus has been on characterizing the phase transitions of aerosol particles in both supermicrometer and submicrometer particles. The phase transition of particular interest for us has been liquid-liquid phase separation (LLPS), which occurs when components of a solution phase separate due to a difference in solubilities. For example, organic compounds can have limited solubility in salt solutions especially as the water content decreases, increasing the concentration of the salt solution, and causing phase separation between organic-rich and inorganic-rich phases. To characterize the systems of interest, we primarily use optical microscopy for supermicrometer particles and cryogenic-transmission microscopy for submicrometer particles.This Account details our main results to date for the phase transitions of supermicrometer particles and the morphology of submicrometer aerosol. We have found that the relative humidity (RH) at which LLPS occurs (separation RH; SRH) is highly sensitive to the composition of the particles. For supermicrometer particles, SRH decreases as the pH is lowered to atmospherically relevant values. SRH also decreases when non-phase-separating organic compounds are added to the particles. For submicrometer particles, a size dependence of morphology is observed in systems that undergo LLPS in supermicrometer particles. In the limit of slow drying rates, particles <30 nm are homogeneous and larger particles are phase-separated. This size dependence of aerosol morphology arises because small particles cannot overcome the activation barrier needed to form a new phase when phase separation occurs by a nucleation and growth mechanism. The inhibition of LLPS in small particles is observed for mixtures of ammonium sulfate with single organic compounds as well as complex organics like α-pinene secondary organic matter. The morphology of particles affects activation diameters for the formation of cloud condensation nuclei. These results more generally have implications for aerosol properties that affect the climate system. In addition, LLPS is also widely studied in materials and biological chemistry, and our results could potentially translate to implications for these fields.
Collapse
Affiliation(s)
- Miriam Arak Freedman
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
16
|
Li Z, Yang J, Hollingsworth JV, Zhao J. Lateral diffusion of single polymer molecules at interfaces between water and oil. RSC Adv 2020; 10:16565-16569. [PMID: 35498844 PMCID: PMC9052869 DOI: 10.1039/d0ra02630a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/14/2020] [Indexed: 11/21/2022] Open
Abstract
Lateral diffusion of polymer molecules at the interfaces between immiscible oil and water is investigated at the single molecular level. The interfaces between water and alkanes are chosen as the model systems and polyethylene oxide (PEO) is the model polymer. Fluorescence correlation spectroscopy is used to measure the interfacial diffusion of fluorescence-labeled PEO with its molecular weight ranging over more than an order of magnitude. It is discovered that the interfacial diffusion coefficient scales with the molecular weight by the exponent of -0.5. Detailed analysis shows that the PEO chain takes an ideal two-dimensional random coil conformation at these fluidic interfaces and the bigger contribution from water's hydrodynamic friction is discovered.
Collapse
Affiliation(s)
- Zhuo Li
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Jingfa Yang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | | | - Jiang Zhao
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China .,University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
17
|
Naullage PM, Molinero V. Slow Propagation of Ice Binding Limits the Ice-Recrystallization Inhibition Efficiency of PVA and Other Flexible Polymers. J Am Chem Soc 2020; 142:4356-4366. [DOI: 10.1021/jacs.9b12943] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pavithra M. Naullage
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
18
|
Upshur MA, Vega MM, Bé AG, Chase HM, Zhang Y, Tuladhar A, Chase ZA, Fu L, Ebben CJ, Wang Z, Martin ST, Geiger FM, Thomson RJ. Synthesis and surface spectroscopy of α-pinene isotopologues and their corresponding secondary organic material. Chem Sci 2019; 10:8390-8398. [PMID: 31803417 PMCID: PMC6844218 DOI: 10.1039/c9sc02399b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/21/2019] [Indexed: 12/02/2022] Open
Abstract
The synthesis and surface-specific spectroscopic analysis of α-pinene isotopologues and their corresponding secondary organic material is reported.
Atmospheric aerosol–cloud interactions remain among the least understood processes within the climate system, leaving large uncertainties in the prediction of future climates. In particular, the nature of the surfaces of aerosol particles formed from biogenic terpenes, such as α-pinene, is poorly understood despite the importance of surface phenomena in their formation, growth, radiative properties, and ultimate fate. Herein we report the coupling of a site-specific deuterium labeling strategy with vibrational sum frequency generation (SFG) spectroscopy to probe the surface C–H oscillators in α-pinene-derived secondary organic aerosol material (SOM) generated in an atmospheric flow tube reactor. Three α-pinene isotopologues with methylene bridge, bridgehead methine, allylic, and vinyl deuteration were synthesized and their vapor phase SFG spectra were compared to that of unlabeled α-pinene. Subsequent analysis of the SFG spectra of their corresponding SOM revealed that deuteration of the bridge methylene C–H oscillators present on the cyclobutane ring in α-pinene leads to a considerable signal intensity decrease (ca. 30–40%), meriting speculation that the cyclobutane moiety remains largely intact within the surface bound species present in the SOM formed upon α-pinene oxidation. These insights provide further clues as to the complexity of aerosol particle surfaces, and establish a framework for future investigations of the heterogeneous interactions between precursor terpenes and particle surfaces that lead to aerosol particle growth under dynamically changing conditions in the atmosphere.
Collapse
Affiliation(s)
- Mary Alice Upshur
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Marvin M Vega
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Ariana Gray Bé
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Hilary M Chase
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Yue Zhang
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , MA 02138 , USA
| | - Aashish Tuladhar
- William R. Wiley Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99352 , USA
| | - Zizwe A Chase
- William R. Wiley Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99352 , USA
| | - Li Fu
- William R. Wiley Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99352 , USA
| | - Carlena J Ebben
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Zheming Wang
- William R. Wiley Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99352 , USA
| | - Scot T Martin
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , MA 02138 , USA.,Department of Earth and Planetary Sciences , Harvard University , Cambridge , MA 02138 , USA
| | - Franz M Geiger
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Regan J Thomson
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| |
Collapse
|
19
|
Perez Sirkin YA, Gadea ED, Scherlis DA, Molinero V. Mechanisms of Nucleation and Stationary States of Electrochemically Generated Nanobubbles. J Am Chem Soc 2019; 141:10801-10811. [DOI: 10.1021/jacs.9b04479] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yamila A. Perez Sirkin
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Esteban D. Gadea
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Damian A. Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
20
|
Naullage P, Bertolazzo AA, Molinero V. How Do Surfactants Control the Agglomeration of Clathrate Hydrates? ACS CENTRAL SCIENCE 2019; 5:428-439. [PMID: 30937370 PMCID: PMC6439454 DOI: 10.1021/acscentsci.8b00755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Indexed: 05/14/2023]
Abstract
Clathrate hydrates can spontaneously form under typical conditions found in oil and gas pipelines. The agglomeration of clathrates into large solid masses plugs the pipelines, posing adverse safety, economic, and environmental threats. Surfactants are customarily used to prevent the aggregation of clathrate particles and their coalescence with water droplets. It is generally assumed that a large contact angle between the surfactant-covered clathrate and water is a key predictor of the antiagglomerant performance of the surfactant. Here we use molecular dynamic simulations to investigate the structure and dynamics of surfactant films at the clathrate-oil interface, and their impact on the contact angle and coalescence between water droplets and hydrate particles. In agreement with the experiments, the simulations predict that surfactant-covered clathrate-oil interfaces are oil wet but super-hydrophobic to water. Although the water contact angle determines the driving force for coalescence, we find that a large contact angle is not sufficient to predict good antiagglomerant performance of a surfactant. We conclude that the length of the surfactant molecules, the density of the interfacial film, and the strength of binding of its molecules to the clathrate surface are the main factors in preventing the coalescence and agglomeration of clathrate particles with water droplets in oil. Our analysis provides a molecular foundation to guide the molecular design of effective clathrate antiagglomerants.
Collapse
Affiliation(s)
- Pavithra
M. Naullage
- Department
of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Andressa A. Bertolazzo
- Department
of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
- Departamento
de Ciências Exatas e Educação, Universidade Federal de Santa Catarina, Blumenau, Santa Catarina, Brazil
| | - Valeria Molinero
- Department
of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
- E-mail:
| |
Collapse
|
21
|
Enami S, Ishizuka S, Colussi AJ. Chemical signatures of surface microheterogeneity on liquid mixtures. J Chem Phys 2019; 150:024702. [PMID: 30646725 DOI: 10.1063/1.5055684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Many chemical reactions in Nature, the laboratory, and chemical industry occur in solvent mixtures that bring together species of dissimilar solubilities. Solvent mixtures are visually homogeneous, but are not randomly mixed at the molecular scale. In the all-important binary water-hydrotrope mixtures, small-angle neutron and dynamic light scattering experiments reveal the existence of short-lived (<50 ps), short-ranged (∼1 nm) concentration fluctuations. The presence of hydrophobic solutes stabilizes and extends such fluctuations into persistent, mesoscopic (10-100 nm) inhomogeneities. While the existence of inhomogeneities is well established, their impacts on reactivity are not fully understood. Here, we search for chemical signatures of inhomogeneities on the surfaces of W:X mixtures (W = water; X = acetonitrile, tetrahydrofuran, or 1,4-dioxane) by studying the reactions of Criegee intermediates (CIs) generated in situ from O3(g) addition to a hydrophobic olefin (OL) solute. Once formed, CIs isomerize to functionalized carboxylic acids (FC) or add water to produce α-hydroxy-hydroperoxides (HH), as detected by surface-specific, online pneumatic ionization mass spectrometry. Since only the formation of HH requires the presence of water, the dependence of the R = HH/FC ratio on water molar fraction x w expresses the accessibility of water to CIs on the surfaces of mixtures. The finding that R increases quasi-exponentially with x w in all solvent mixtures is consistent with CIs being preferentially produced (from their OL hydrophobic precursor) in X-rich, long-lived OL:X m W n interfacial clusters, rather than randomly dispersed on W:X surfaces. R vs x w dependences therefore reflect the average ⟨m, n⟩ composition of OL:X m W n interfacial clusters, as weighted by cluster reorganization dynamics. Water in large, rigid clusters could be less accessible to CIs than in smaller but more flexible clusters of lower water content. Since mesoscale inhomogeneities are intrinsic to most solvent mixtures, these phenomena should be quite general.
Collapse
Affiliation(s)
- Shinichi Enami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Shinnosuke Ishizuka
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Agustín J Colussi
- Linde Center for Global Environmental Science, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
22
|
Schiffer J, Mael LE, Prather KA, Amaro RE, Grassian VH. Sea Spray Aerosol: Where Marine Biology Meets Atmospheric Chemistry. ACS CENTRAL SCIENCE 2018; 4:1617-1623. [PMID: 30648145 PMCID: PMC6311946 DOI: 10.1021/acscentsci.8b00674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 05/25/2023]
Abstract
Atmospheric aerosols have long been known to alter climate by scattering incoming solar radiation and acting as seeds for cloud formation. These processes have vast implications for controlling the chemistry of our environment and the Earth's climate. Sea spray aerosol (SSA) is emitted over nearly three-quarters of our planet, yet precisely how SSA impacts Earth's radiation budget remains highly uncertain. Over the past several decades, studies have shown that SSA particles are far more complex than just sea salt. Ocean biological and physical processes produce individual SSA particles containing a diverse array of biological species including proteins, enzymes, bacteria, and viruses and a diverse array of organic compounds including fatty acids and sugars. Thus, a new frontier of research is emerging at the nexus of chemistry, biology, and atmospheric science. In this Outlook article, we discuss how current and future aerosol chemistry research demands a tight coupling between experimental (observational and laboratory studies) and computational (simulation-based) methods. This integration of approaches will enable the systematic interrogation of the complexity within individual SSA particles at a level that will enable prediction of the physicochemical properties of real-world SSA, ultimately illuminating the detailed mechanisms of how the constituents within individual SSA impact climate.
Collapse
Affiliation(s)
- Jamie
M. Schiffer
- Department of Chemistry and Biochemistry and Department of Nanoengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States
| | - Liora E. Mael
- Department of Chemistry and Biochemistry and Department of Nanoengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States
| | - Kimberly A. Prather
- Department of Chemistry and Biochemistry and Department of Nanoengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States
- Scripps
Institution of Oceanography, University
of California, San Diego, La Jolla, California 92093, United States
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry and Department of Nanoengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States
| | - Vicki H. Grassian
- Department of Chemistry and Biochemistry and Department of Nanoengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States
- Scripps
Institution of Oceanography, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
23
|
Metya AK, Singh JK. Ice adhesion mechanism on lubricant-impregnated surfaces using molecular dynamics simulations. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1513649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Atanu K. Metya
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Jayant K. Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
24
|
Bertolazzo AA, Naullage PM, Peters B, Molinero V. The Clathrate-Water Interface Is Oleophilic. J Phys Chem Lett 2018; 9:3224-3231. [PMID: 29812945 DOI: 10.1021/acs.jpclett.8b01210] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The slow nucleation of clathrate hydrates is a central challenge for their use in the storage and transportation of natural gas. Molecules that strongly adsorb to the clathrate-water interface decrease the crystal-water surface tension, lowering the barrier for clathrate nucleation. Surfactants are widely used to promote the nucleation and growth of clathrate hydrates. It has been proposed that these amphiphilic molecules bind to the clathrate surface via hydrogen bonding. However, recent studies reveal that PVCap, an amphiphilic polymer, binds to clathrates through hydrophobic moieties. Here we use molecular dynamic simulations and theory to investigate the mode and strength of binding of surfactants to the clathrate-water interface and their effect on the nucleation rate. We find that the surfactants bind to the clathrate-water interface exclusively through their hydrophobic tails. The binding is strong, driven by the entropy of dehydration of the alkyl chain, as it penetrates empty cavities at the hydrate surface. The hydrophobic attraction of alkyl groups to the clathrate surface also results in strong adsorption of alkanes. We identify two regimes for the binding of surfactants as a function of their density at the hydrate surface, which we interpret to correspond to the two steps of the Langmuir adsorption isotherm observed in experiments. Our results indicate that hydrophobic attraction to the clathrate-water interface is key for the design of soluble additives that promote the nucleation of hydrates. We use the calculated adsorption coefficients to estimate the concentration of sodium dodecyl sulfate (SDS) required to reach nucleation rates for methane hydrate consistent with those measured in experiments. To our knowledge, this study is the first to quantify the effect of surfactant concentration in the nucleation rate of clathrate hydrates.
Collapse
Affiliation(s)
- Andressa A Bertolazzo
- Department of Chemistry , The University of Utah , Salt Lake City , Utah 84112-0580 , United States
- Departamento de Ciências Exatas e Educação , Universidade Federal de Santa Catarina , Blumenau , State of Santa Catarina 88040-900 , Brazil
| | - Pavithra M Naullage
- Department of Chemistry , The University of Utah , Salt Lake City , Utah 84112-0580 , United States
| | - Baron Peters
- Department of Chemical Engineering , University of California , Santa Barbara , California 93106 , United States
| | - Valeria Molinero
- Department of Chemistry , The University of Utah , Salt Lake City , Utah 84112-0580 , United States
| |
Collapse
|
25
|
Naullage PM, Qiu Y, Molinero V. What Controls the Limit of Supercooling and Superheating of Pinned Ice Surfaces? J Phys Chem Lett 2018; 9:1712-1720. [PMID: 29544050 DOI: 10.1021/acs.jpclett.8b00300] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Cold-adapted organisms produce antifreeze proteins and glycoproteins to control the growth, melting and recrystallization of ice. It has been proposed that these molecules pin the crystal surface, creating a curvature that arrests the growth and melting of the crystal. Here we use thermodynamic modeling and molecular simulations to demonstrate that the curvature of the superheated or supercooled surface depends on the temperature and distances between ice-binding molecules, but not the details of their interactions with ice. We perform simulations of ice pinned with the antifreeze protein TmAFP, polyvinyl alcohol with different degrees of polymerization, and model ice-binding molecules to determine the thermal hystereses on melting and freezing, i.e. the maximum curvature that can be attained before, respectively, ice melts or grows irreversibly over the ice-binding molecules. We find that the thermal hysteresis is controlled by the bulkiness of the ice-binding molecules and their footprint at the ice surface. We elucidate the origin of the asymmetry between freezing and melting hysteresis found in experiments and propose guidelines to design synthetic antifreeze molecules with potent thermal hysteresis activity.
Collapse
Affiliation(s)
- Pavithra M Naullage
- Department of Chemistry , The University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Yuqing Qiu
- Department of Chemistry , The University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Valeria Molinero
- Department of Chemistry , The University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|
26
|
Shardt N, Elliott JAW. Model for the Surface Tension of Dilute and Concentrated Binary Aqueous Mixtures as a Function of Composition and Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11077-11085. [PMID: 28975797 DOI: 10.1021/acs.langmuir.7b02587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface tension dictates fluid behavior, and predicting its magnitude is vital in many applications. Equations have previously been derived to describe how the surface tension of pure liquids changes with temperature, and other models have been derived to describe how the surface tension of mixtures changes with liquid-phase composition. However, the simultaneous dependence of surface tension on temperature and composition for liquid mixtures has been less studied. Past approaches have required extensive experimental data to which models have been fit, yielding a distinct set of fitting parameters at each temperature or composition. Herein, we propose a model that requires only three fitting procedures to predict surface tension as a function of temperature and composition. We achieve this by analyzing and extending the Shereshefsky (J. Colloid Interface Sci. 1967, 24 (3), 317-322), Li et al. (Fluid Phase Equilib. 2000, 175, 185-196), and Connors-Wright (Anal. Chem. 1989, 61 (3), 194-198) models to high temperatures for 15 aqueous systems. The best extensions of the Shereshefsky, Li et al., and Connors-Wright models achieve average relative deviations of 2.11%, 1.20%, and 0.62%, respectively, over all systems. We thus recommend the extended Connors-Wright model for predicting the surface tension of aqueous mixtures at different temperatures with the tabulated coefficients herein. An additional outcome of this study is the previously unreported equivalence of the Li et al. and Connors-Wright models in describing experimental data of surface tension as a function of composition at a single temperature.
Collapse
Affiliation(s)
- Nadia Shardt
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 1H9, Canada
| | - Janet A W Elliott
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
27
|
Hrahsheh F, Sani Wudil Y, Wilemski G. Confined phase separation of aqueous-organic nanodroplets. Phys Chem Chem Phys 2017; 19:26839-26845. [PMID: 28951895 DOI: 10.1039/c7cp04531j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nano-confined supercooled water occurs frequently in aqueous-organic aerosol nanodroplets that are ubiquitous in the atmosphere and in many industrial processes such as natural gas refining. The structure of these nanodroplets is important because it influences droplet growth and evaporation rates, nucleation rates, and radiative properties. We used classical molecular dynamics (MD) simulations to study the structures of binary water-butanol nanodroplets for several temperatures and droplet sizes. Water-butanol cross interactions are calculated using a Lennard-Jones (LJ) potential with non-bonded specific parameters adjusted to reproduce the experimentally observed mutual solubilities of water-butanol at 295 K. To compare with the results of the density functional theory (DFT) of aqueous-organic nanodroplets [Phys. Chem. Chem. Phys., 2006, 8, 1266-1270], we focus on T = 250 K. Our simulations show three different nanodroplet structures depending on the butanol concentration. For low concentrations, we observe a core-shell (CS) structure in which a butanol shell completely wets a water-rich core. For high concentrations, a well-mixed (WM) structure occurs as the water and the butanol become fully miscible. For intermediate concentrations of butanol, we find a distinct phase-separated Russian Doll-Shell (RDS) structure. This RDS structure consists of a roughly ellipsoidal water-rich droplet partially wetted by a well-mixed water/butanol convex lens (RD) and this lens-on-sphere structure is coated by a thin shell of butanol. We also examined the stability of our RDS structure at a higher temperature and found that at 295 K, the RDS structure had transformed into a well-mixed droplet, presumably due to the increase in the mutual solubility of water and butanol. Finally, we performed calculations using classical density functional theory for conditions that should favor the RDS structure. The results closely resembled those found using MD.
Collapse
Affiliation(s)
- Fawaz Hrahsheh
- Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Kingdom of Saudi Arabia.
| | | | | |
Collapse
|
28
|
Gyawali G, Sternfield S, Kumar R, Rick SW. Coarse-Grained Models of Aqueous and Pure Liquid Alkanes. J Chem Theory Comput 2017. [DOI: 10.1021/acs.jctc.7b00389] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gaurav Gyawali
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, United States
| | - Samuel Sternfield
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, United States
| | - Revati Kumar
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70808, United States
| | - Steven W. Rick
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, United States
| |
Collapse
|
29
|
Cochran RE, Ryder OS, Grassian VH, Prather KA. Sea Spray Aerosol: The Chemical Link between the Oceans, Atmosphere, and Climate. Acc Chem Res 2017; 50:599-604. [PMID: 28945390 DOI: 10.1021/acs.accounts.6b00603] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The oceans, atmosphere, and clouds are all interconnected through the release and deposition of chemical species, which provide critical feedback in controlling the composition of our atmosphere and climate. To better understand the couplings between the ocean and atmosphere, it is critical to improve our understanding of the processes that control sea spray aerosol (SSA) composition and which ones plays the dominate role in regulating atmospheric chemistry and climate.
Collapse
Affiliation(s)
- Richard E. Cochran
- Department
of Chemistry and Biochemistry and ‡Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093-0314, United States
| | - Olivia S. Ryder
- Department
of Chemistry and Biochemistry and ‡Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093-0314, United States
| | - Vicki H. Grassian
- Department
of Chemistry and Biochemistry and ‡Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093-0314, United States
| | - Kimberly A. Prather
- Department
of Chemistry and Biochemistry and ‡Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093-0314, United States
| |
Collapse
|
30
|
Strength of Alkane–Fluid Attraction Determines the Interfacial Orientation of Liquid Alkanes and Their Crystallization through Heterogeneous or Homogeneous Mechanisms. CRYSTALS 2017. [DOI: 10.3390/cryst7030086] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Qiu Y, Odendahl N, Hudait A, Mason R, Bertram AK, Paesani F, DeMott PJ, Molinero V. Ice Nucleation Efficiency of Hydroxylated Organic Surfaces Is Controlled by Their Structural Fluctuations and Mismatch to Ice. J Am Chem Soc 2017; 139:3052-3064. [PMID: 28135412 DOI: 10.1021/jacs.6b12210] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heterogeneous nucleation of ice induced by organic materials is of fundamental importance for climate, biology, and industry. Among organic ice-nucleating surfaces, monolayers of long chain alcohols are particularly effective, while monolayers of fatty acids are significantly less so. As these monolayers expose to water hydroxyl groups with an order that resembles the one in the basal plane of ice, it was proposed that lattice matching between ice and the surface controls their ice-nucleating efficiency. Organic monolayers are soft materials and display significant fluctuations. It has been conjectured that these fluctuations assist in the nucleation of ice. Here we use molecular dynamic simulations and laboratory experiments to investigate the relationship between the structure and fluctuations of hydroxylated organic surfaces and the temperature at which they nucleate ice. We find that these surfaces order interfacial water to form domains with ice-like order that are the birthplace of ice. Both mismatch and fluctuations decrease the size of the preordered domains and monotonously decrease the ice freezing temperature. The simulations indicate that fluctuations depress the freezing efficiency of monolayers of alcohols or acids to half the value predicted from lattice mismatch alone. The model captures the experimental trend in freezing efficiencies as a function of chain length and predicts that alcohols have higher freezing efficiency than acids of the same chain length. These trends are mostly controlled by the modulation of the structural mismatch to ice. We use classical nucleation theory to show that the freezing efficiencies of the monolayers are directly related to their free energy of binding to ice. This study provides a general framework to relate the equilibrium thermodynamics of ice binding to a surface and the nonequilibrium ice freezing temperature and suggests that these could be predicted from the structure of interfacial water.
Collapse
Affiliation(s)
- Yuqing Qiu
- Department of Chemistry, The University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Nathan Odendahl
- Department of Chemistry, The University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Arpa Hudait
- Department of Chemistry, The University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Ryan Mason
- Department of Chemistry, University of British Columbia , Vancouver, British Columbia V6T 1Z1, Canada
| | - Allan K Bertram
- Department of Chemistry, University of British Columbia , Vancouver, British Columbia V6T 1Z1, Canada
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Paul J DeMott
- Department of Atmospheric Science, Colorado State University , Fort Collins, Colorado 80523-1371, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
32
|
Bzdek BR, Collard L, Sprittles JE, Hudson AJ, Reid JP. Dynamic measurements and simulations of airborne picolitre-droplet coalescence in holographic optical tweezers. J Chem Phys 2017; 145:054502. [PMID: 27497560 DOI: 10.1063/1.4959901] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We report studies of the coalescence of pairs of picolitre aerosol droplets manipulated with holographic optical tweezers, probing the shape relaxation dynamics following coalescence by simultaneously monitoring the intensity of elastic backscattered light (EBL) from the trapping laser beam (time resolution on the order of 100 ns) while recording high frame rate camera images (time resolution <10 μs). The goals of this work are to: resolve the dynamics of droplet coalescence in holographic optical traps; assign the origin of key features in the time-dependent EBL intensity; and validate the use of the EBL alone to precisely determine droplet surface tension and viscosity. For low viscosity droplets, two sequential processes are evident: binary coalescence first results from the overlap of the optical traps on the time scale of microseconds followed by the recapture of the composite droplet in an optical trap on the time scale of milliseconds. As droplet viscosity increases, the relaxation in droplet shape eventually occurs on the same time scale as recapture, resulting in a convoluted evolution of the EBL intensity that inhibits quantitative determination of the relaxation time scale. Droplet coalescence was simulated using a computational framework to validate both experimental approaches. The results indicate that time-dependent monitoring of droplet shape from the EBL intensity allows for robust determination of properties such as surface tension and viscosity. Finally, the potential of high frame rate imaging to examine the coalescence of dissimilar viscosity droplets is discussed.
Collapse
Affiliation(s)
- Bryan R Bzdek
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Liam Collard
- Department of Mathematics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - James E Sprittles
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Andrew J Hudson
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Jonathan P Reid
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
33
|
Lu J, Miller C, Molinero V. Parameterization of a coarse-grained model with short-ranged interactions for modeling fuel cell membranes with controlled water uptake. Phys Chem Chem Phys 2017; 19:17698-17707. [PMID: 28653074 DOI: 10.1039/c7cp02281f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coarse-grained model FFpvap reproduces the experimental activity coefficient of water in tetramethylammonium chloride solutions over a wide range of concentrations, with a hundred-fold gain in computing efficiency with respect to atomistic models.
Collapse
Affiliation(s)
- Jibao Lu
- Department of Chemistry
- The University of Utah
- Salt Lake City
- USA
| | - Chance Miller
- Department of Chemistry
- The University of Utah
- Salt Lake City
- USA
| | | |
Collapse
|
34
|
Abstract
Liquid–liquid phase separation is prevalent in aerosol particles composed of organic compounds and salts and may impact aerosol climate effects.
Collapse
|
35
|
Lu J, Jacobson LC, Perez Sirkin YA, Molinero V. High-Resolution Coarse-Grained Model of Hydrated Anion-Exchange Membranes that Accounts for Hydrophobic and Ionic Interactions through Short-Ranged Potentials. J Chem Theory Comput 2016; 13:245-264. [PMID: 28068769 DOI: 10.1021/acs.jctc.6b00874] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jibao Lu
- Department
of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Liam C. Jacobson
- Department
of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Yamila A. Perez Sirkin
- Departamento
de Química Inorgánica, Analítica y Química
Física, and INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| | - Valeria Molinero
- Department
of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
36
|
Joswiak MN, Do R, Doherty MF, Peters B. Energetic and entropic components of the Tolman length for mW and TIP4P/2005 water nanodroplets. J Chem Phys 2016; 145:204703. [DOI: 10.1063/1.4967875] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mark N. Joswiak
- Department of Chemical Engineering, University of California-Santa Barbara, Santa Barbara, California 93106,
USA
| | - Ryan Do
- Department of Chemical Engineering, University of California-Santa Barbara, Santa Barbara, California 93106,
USA
| | - Michael F. Doherty
- Department of Chemical Engineering, University of California-Santa Barbara, Santa Barbara, California 93106,
USA
| | - Baron Peters
- Department of Chemical Engineering, University of California-Santa Barbara, Santa Barbara, California 93106,
USA
- Department of Chemistry and Biochemistry,
University of California-Santa Barbara, Santa Barbara,
California 93106, USA
| |
Collapse
|
37
|
Iwamatsu M. Size-dependent contact angle and the wetting and drying transition of a droplet adsorbed onto a spherical substrate: Line-tension effect. Phys Rev E 2016; 94:042803. [PMID: 27841462 DOI: 10.1103/physreve.94.042803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Indexed: 06/06/2023]
Abstract
The size-dependent contact angle and the drying and wetting morphological transition are studied with respect to the volume change for a spherical cap-shaped droplet placed on a spherical substrate. The line-tension effect is included using the rigorous formula for the Helmholtz free energy in the droplet capillary model. A morphological drying transition from a cap-shaped to a spherical droplet occurs when the substrate is hydrophobic and the droplet volume is small, similar to the transition predicted on a flat substrate. In addition, a morphological wetting transition from a cap-shaped to a wrapped spherical droplet occurs for a hydrophilic substrate and a large droplet volume. The contact angle depends on the droplet size: it decreases as the droplet volume increases when the line tension is positive, whereas it increases when the line tension is negative. The spherical droplets and wrapped droplets are stable when the line tension is positive and large.
Collapse
Affiliation(s)
- Masao Iwamatsu
- Department of Physics, Faculty of Liberal Arts and Sciences, Tokyo City University, Setagaya-ku, Tokyo 158-8557, Japan
| |
Collapse
|
38
|
Perez Sirkin YA, Factorovich MH, Molinero V, Scherlis DA. Vapor Pressure of Aqueous Solutions of Electrolytes Reproduced with Coarse-Grained Models without Electrostatics. J Chem Theory Comput 2016; 12:2942-9. [DOI: 10.1021/acs.jctc.6b00291] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yamila A. Perez Sirkin
- Departamento
de Química Inorgánica, Analítica y Quimíca
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Matías H. Factorovich
- Departamento
de Química Inorgánica, Analítica y Quimíca
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Valeria Molinero
- Department
of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Damian A. Scherlis
- Departamento
de Química Inorgánica, Analítica y Quimíca
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
39
|
Deng Y, Chen L, Liu Q, Yu J, Wang H. Nanoscale View of Dewetting and Coating on Partially Wetted Solids. J Phys Chem Lett 2016; 7:1763-1768. [PMID: 27115464 DOI: 10.1021/acs.jpclett.6b00620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There remain significant gaps in our ability to predict dewetting and wetting despite the extensive study over the past century. An important reason is the absence of nanoscopic knowledge about the processes near the moving contact line. This experimental study for the first time obtained the liquid morphology within 10 nm of the contact line, which was receding at low speed (U < 50 nm/s). The results put an end to long-standing debate about the microscopic contact angle, which turned out to be varying with the speed as opposed to the constant-angle assumption that has been frequently employed in modeling. Moreover, a residual film of nanometer thickness ubiquitously remained on the solid after the receding contact line passed. This microscopic residual film modified the solid surface and thus made dewetting far from a simple reverse of wetting. A complete scenario for dewetting and coating is provided.
Collapse
Affiliation(s)
- Yajun Deng
- Laboratory of Heat and Mass Transport at Micro-Nano Scale, College of Engineering, Peking University, and Key Lab of Theory and Technology for Advanced Batteries Materials , Beijing 100871, China
| | - Lei Chen
- Laboratory of Heat and Mass Transport at Micro-Nano Scale, College of Engineering, Peking University, and Key Lab of Theory and Technology for Advanced Batteries Materials , Beijing 100871, China
| | - Qiao Liu
- Laboratory of Heat and Mass Transport at Micro-Nano Scale, College of Engineering, Peking University, and Key Lab of Theory and Technology for Advanced Batteries Materials , Beijing 100871, China
| | - Jiapeng Yu
- Laboratory of Heat and Mass Transport at Micro-Nano Scale, College of Engineering, Peking University, and Key Lab of Theory and Technology for Advanced Batteries Materials , Beijing 100871, China
| | - Hao Wang
- Laboratory of Heat and Mass Transport at Micro-Nano Scale, College of Engineering, Peking University, and Key Lab of Theory and Technology for Advanced Batteries Materials , Beijing 100871, China
| |
Collapse
|
40
|
Iwamatsu M. Line tension and morphology of a droplet and a bubble attached to the inner wall of a spherical cavity. J Chem Phys 2016; 144:144704. [DOI: 10.1063/1.4945763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Metcalf AR, Boyer HC, Dutcher CS. Interfacial Tensions of Aged Organic Aerosol Particle Mimics Using a Biphasic Microfluidic Platform. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1251-9. [PMID: 26713671 DOI: 10.1021/acs.est.5b04880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Secondary organic aerosol (SOA) particles are a major component of atmospheric particulate matter, yet their formation processes and ambient properties are not well understood. These complex particles often contain multiple interfaces due to internal aqueous- and organic-phase partitioning. Aerosol interfaces can profoundly affect the fate of condensable organic compounds emitted into the atmosphere by altering the way in which ambient organic vapors interact with suspended particles. To accurately predict the evolution of SOA in the atmosphere, we must improve our understanding of aerosol interfaces. In this work, biphasic microscale flows are used to measure interfacial tension of reacting methylglyoxal, formaldehyde, and ammonium sulfate aqueous mixtures with a surrounding oil phase. Our experiments show a suppression of interfacial tension as a function of organic content that remains constant with reaction time for methylglyoxal-ammonium sulfate systems. We also reveal an unexpected time dependence of interfacial tension over a period of 48 h for ternary solutions of both methylglyoxal and formaldehyde in aqueous ammonium sulfate, indicating a more complicated behavior of surface activity where there is competition among dissolved organics. From these interfacial tension measurements, the morphology of aged atmospheric aerosols with internal liquid-liquid phase separation is inferred.
Collapse
Affiliation(s)
- Andrew R Metcalf
- Department of Mechanical Engineering, University of Minnesota, Twin Cities , Minneapolis, Minnesota, 55455 United States
| | - Hallie C Boyer
- Department of Mechanical Engineering, University of Minnesota, Twin Cities , Minneapolis, Minnesota, 55455 United States
| | - Cari S Dutcher
- Department of Mechanical Engineering, University of Minnesota, Twin Cities , Minneapolis, Minnesota, 55455 United States
| |
Collapse
|