1
|
Mauran L, Assailly C, Goudreau SR, Odaert B, Guichard G, Pasco M. Short Oligourea Foldamers as N- or C-Caps for Promoting α-Helix Formation in Water. Chembiochem 2024; 25:e202400427. [PMID: 38943628 DOI: 10.1002/cbic.202400427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
While foldamers have been extensively studied as protein mimics and especially as α-helix mimics, their use as capping motif to enhance α-helix propensity remains comparatively much limited. In this study, we leverage the structural similarities between urea-based helical foldamers and α-helix to investigate the efficacy of oligoureas as N- or C-caps for reinforcing α-helical structures in water. Short oligoureas, comprising 3 to 4 residues, were strategically introduced at the N- or C-terminus of two peptide sequences (S-peptide and an Ala-rich model sequence). The impact of these foldamer insertions on peptide conformation was examined using electronic circular dichroism (ECD) and solution NMR. This research identifies specific foldamer sequences capable of promoting α-helicity when incorporated at either terminus of the peptides. Not only does this work broaden the application scope of foldamers, but it also provides valuable insights into novel strategies for modulating peptide conformation in aqueous environments. The findings presented in this study may have implications for peptide design and the development of bioactive foldamer-based peptide mimics.
Collapse
Affiliation(s)
- Laura Mauran
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, IECB, 2 rue Robert Escarpit, F-33600, Pessac, France
- IMMUPHARMA BIOTECH SAS, 15 rue de Bruxelles, 75009, Paris, France
| | - Coralie Assailly
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, IECB, 2 rue Robert Escarpit, F-33600, Pessac, France
| | | | - Benoît Odaert
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France
| | - Gilles Guichard
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, IECB, 2 rue Robert Escarpit, F-33600, Pessac, France
| | - Morgane Pasco
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, IECB, 2 rue Robert Escarpit, F-33600, Pessac, France
| |
Collapse
|
2
|
Petrovicz VL, Pasztuhov I, Martinek TA, Hegedüs Z. Site-directed allostery perturbation to probe the negative regulation of hypoxia inducible factor-1α. RSC Chem Biol 2024; 5:711-720. [PMID: 39092442 PMCID: PMC11289882 DOI: 10.1039/d4cb00066h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/27/2024] [Indexed: 08/04/2024] Open
Abstract
The interaction between the intrinsically disordered transcription factor HIF-1α and the coactivator proteins p300/CBP is essential in the fast response to low oxygenation. The negative feedback regulator, CITED2, switches off the hypoxic response through a very efficient irreversible mechanism. The negative cooperativity with HIF-1α relies on the formation of a ternary intermediate that leads to allosteric structural changes in p300/CBP, in which the cooperative folding/binding of the CITED2 sequence motifs plays a key role. Understanding the contribution of a binding motif to the structural changes in relation to competition efficiency provides invaluable insights into the molecular mechanism. Our strategy is to site-directedly perturb the p300-CITED2 complex's structure without significantly affecting binding thermodynamics. In this way, the contribution of a sequence motif to the negative cooperativity with HIF-1α would mainly depend on the induced structural changes, and to a lesser extent on binding affinity. Using biophysical assays and NMR measurements, we show here that the interplay between the N-terminal tail and the rest of the binding motifs of CITED2 is crucial for the unidirectional displacement of HIF-1α. We introduce an advantageous approach for evaluating the roles of the different sequence parts with the help of motif-by-motif backbone perturbations.
Collapse
Affiliation(s)
- Vencel L Petrovicz
- University of Szeged, Department of Medical Chemistry 8 Dóm tér Szeged 6720 Hungary
| | - István Pasztuhov
- University of Szeged, Department of Medical Chemistry 8 Dóm tér Szeged 6720 Hungary
| | - Tamás A Martinek
- University of Szeged, Department of Medical Chemistry 8 Dóm tér Szeged 6720 Hungary
- HUN-REN SZTE Biomimetic Systems Research Group 8 Dóm tér Szeged 6720 Hungary
| | - Zsófia Hegedüs
- University of Szeged, Department of Medical Chemistry 8 Dóm tér Szeged 6720 Hungary
| |
Collapse
|
3
|
Miura T, Lee KJ, Katoh T, Suga H. In Vitro Selection of Macrocyclic l-α/d-α/β/γ-Hybrid Peptides Targeting IFN-γ/IFNGR1 Protein-Protein Interaction. J Am Chem Soc 2024; 146:17691-17699. [PMID: 38888290 PMCID: PMC11229689 DOI: 10.1021/jacs.4c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
Nonproteinogenic amino acids, including d-α-, β-, and γ-amino acids, present in bioactive peptides play pivotal roles in their biochemical activities and proteolytic stabilities. d-α-Amino acids (dαAA) are widely used building blocks that can enhance the proteolytic stability. Cyclic β2,3-amino acids (cβAA), for instance, can fold peptides into rigid secondary structures, improving the binding affinity and proteolytic stability. Cyclic γ2,4-amino acids (cγAA) are recently highlighted as rigid residues capable of preventing the proteolysis of flanking residues. Simultaneous incorporation of all dαAA, cβAA, and cγAA into a peptide is expected to yield l-α/d-α/β/γ-hybrid peptides with improved stability and potency. Despite challenges in the ribosomal incorporation of multiple nonproteinogenic amino acids, our engineered tRNAPro1E2 successfully reaches such a difficulty. Here, we report the ribosomal synthesis of macrocyclic l-α/d-α/β/γ-hybrid peptide libraries and their application to in vitro selection against interferon gamma receptor 1 (IFNGR1). One of the resulting l-α/d-α/β/γ-hybrid peptides, IB1, exhibited remarkable inhibitory activity against the IFN-γ/IFNGR1 protein-protein interaction (PPI) (IC50 = 12 nM), primarily attributed to the presence of a cβAA in the sequence. Additionally, cγAAs and dαAAs in the resulting peptides contributed to their serum stability. Furthermore, our peptides effectively inhibit IFN-γ/IFNGR1 PPI at the cellular level (best IC50 = 0.75 μM). Altogether, our platform expands the chemical space available for exploring peptides with high activity and stability, thereby enhancing their potential for drug discovery.
Collapse
Affiliation(s)
- Takashi Miura
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kang Ju Lee
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Zhang C, Yang X, Wu L, Liu F, Dong K, Guo C, Gong L, Dong G, Shi Y, Gu Z, Liu X, Liu S, Wu J, Su F. Site-Specifically Modified Peptide Inhibitors of Protein Tyrosine Phosphatase 1B and T-Cell Protein Tyrosine Phosphatase with Enhanced Stability and Improved In Vivo Long-Acting Activity. ACS Pharmacol Transl Sci 2024; 7:1426-1437. [PMID: 38751623 PMCID: PMC11091969 DOI: 10.1021/acsptsci.4c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) and TC-PTP can function in a coordinated manner to regulate diverse biological processes including insulin and leptin signaling, T-cell activation, and tumor antigen presentation, which makes them potential targets for several therapeutic applications. We have previously demonstrated that the lipidated BimBH3 peptide analogues were a new class of promising PTP1B inhibitors with once-weekly antidiabetic potency. Herein, we chemically synthesized two series of BimBH3 analogues via site-specific modification and studied their structure-activity relationship. The screened analogues S2, S6, A2-14, A2-17, A2-20, and A2-21 exhibited an improved PTP1B/TC-PTP dual inhibitory activity and achieved good stability in the plasma of mice and dogs, which indicated long-acting potential. In mouse models of type 2 diabetes mellitus (T2DM), the selected analogues S6, S7, A2-20, and A2-21 with an excellent target activity and plasma stability generated once-weekly therapeutic potency for T2DM at lower dosage (0.5 μmol/kg). In addition, evidence was provided to confirm the cell permeability and targeted enrichment of the BimBH3 analogues. In summary, we report here that site-specific modification and long fatty acid conjugation afforded cell-permeable peptidomimetic analogues of BimBH3 with enhanced stability, in vivo activity, and long-acting pharmacokinetic profile. Our findings could guide the further optimization of BimBH3 analogues and provide a proof-of-concept for PTP1B/TC-PTP targeting as a new therapeutic approach for T2DM, which may facilitate the discovery and development of alternative once-weekly anti-T2DM drug candidates.
Collapse
Affiliation(s)
- Chuanliang Zhang
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
- School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Marine
Biomedical Research Institute, Ocean University
of China, Qingdao 266003, China
| | - Xianmin Yang
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Lijuan Wu
- School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Marine
Biomedical Research Institute, Ocean University
of China, Qingdao 266003, China
| | - Fei Liu
- Joincare
Pharmaceutical Group Industry Co., Ltd, Shenzhen 518000, China
| | - Kehong Dong
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Chuanlong Guo
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Liyan Gong
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Guozhen Dong
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Yiying Shi
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Zongwen Gu
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Xiaochun Liu
- School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Marine
Biomedical Research Institute, Ocean University
of China, Qingdao 266003, China
| | - Shan Liu
- Marine
Biomedical Research Institute, Ocean University
of China, Qingdao 266003, China
| | - Juan Wu
- Marine
Biomedical Research Institute, Ocean University
of China, Qingdao 266003, China
| | - Feng Su
- State
Key Laboratory Base of Eco-chemical Engineering, College of Chemical
Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| |
Collapse
|
6
|
Liu J, Li S, Wang Q, Feng Y, Xing H, Yang X, Guo Y, Guo Y, Sun H, Liu X, Yang S, Mei Z, Zhu Y, Cheng Z, Chen S, Xu M, Zhang W, Wan N, Wang J, Ma Y, Zhang S, Luan X, Xu A, Li L, Wang H, Yang X, Hong Y, Xue H, Yuan X, Hu N, Song X, Wang Z, Liu X, Wang L, Liu Y. Sonrotoclax overcomes BCL2 G101V mutation-induced venetoclax resistance in preclinical models of hematologic malignancy. Blood 2024; 143:1825-1836. [PMID: 38211332 PMCID: PMC11076911 DOI: 10.1182/blood.2023019706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024] Open
Abstract
ABSTRACT Venetoclax, the first-generation inhibitor of the apoptosis regulator B-cell lymphoma 2 (BCL2), disrupts the interaction between BCL2 and proapoptotic proteins, promoting the apoptosis in malignant cells. Venetoclax is the mainstay of therapy for relapsed chronic lymphocytic leukemia and is under investigation in multiple clinical trials for the treatment of various cancers. Although venetoclax treatment can result in high rates of durable remission, relapse has been widely observed, indicating the emergence of drug resistance. The G101V mutation in BCL2 is frequently observed in patients who relapsed treated with venetoclax and sufficient to confer resistance to venetoclax by interfering with compound binding. Therefore, the development of next-generation BCL2 inhibitors to overcome drug resistance is urgently needed. In this study, we discovered that sonrotoclax, a potent and selective BCL2 inhibitor, demonstrates stronger cytotoxic activity in various hematologic cancer cells and more profound tumor growth inhibition in multiple hematologic tumor models than venetoclax. Notably, sonrotoclax effectively inhibits venetoclax-resistant BCL2 variants, such as G101V. The crystal structures of wild-type BCL2/BCL2 G101V in complex with sonrotoclax revealed that sonrotoclax adopts a novel binding mode within the P2 pocket of BCL2 and could explain why sonrotoclax maintains stronger potency than venetoclax against the G101V mutant. In summary, sonrotoclax emerges as a potential second-generation BCL2 inhibitor for the treatment of hematologic malignancies with the potential to overcome BCL2 mutation-induced venetoclax resistance. Sonrotoclax is currently under investigation in multiple clinical trials.
Collapse
Affiliation(s)
- Jiuyang Liu
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Shuran Li
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Qin Wang
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Yingcai Feng
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Haimei Xing
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xuefei Yang
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Ying Guo
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Yunhang Guo
- Department of Medicinal Chemistry, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Hanzi Sun
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xiaoxin Liu
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Shasha Yang
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Zhu Mei
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Yutong Zhu
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Zhenzhen Cheng
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Shuaishuai Chen
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Min Xu
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Wenjing Zhang
- Department of Translational Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Nanyan Wan
- Department of Translational Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Jia Wang
- Department of Bioinformatics, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Yanwen Ma
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Shuo Zhang
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xudong Luan
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Aiying Xu
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Lin Li
- Department of Translational Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Haitao Wang
- Department of Translational Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xiaolong Yang
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Yuan Hong
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Hai Xue
- Department of Medicinal Chemistry, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xi Yuan
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Nan Hu
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xiaomin Song
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Zhiwei Wang
- Department of Medicinal Chemistry, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xuesong Liu
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Lai Wang
- Research and Clinical Development, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Ye Liu
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Miura T, Malla TR, Brewitz L, Tumber A, Salah E, Lee KJ, Terasaka N, Owen CD, Strain-Damerell C, Lukacik P, Walsh MA, Kawamura A, Schofield CJ, Katoh T, Suga H. Cyclic β 2,3-amino acids improve the serum stability of macrocyclic peptide inhibitors targeting the SARS-CoV-2 main protease. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2024; 97:uoae018. [PMID: 38828441 PMCID: PMC11141402 DOI: 10.1093/bulcsj/uoae018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/10/2024] [Indexed: 06/05/2024]
Abstract
Due to their constrained conformations, cyclic β2,3-amino acids (cβAA) are key building blocks that can fold peptides into compact and rigid structures, improving peptidase resistance and binding affinity to target proteins, due to their constrained conformations. Although the translation efficiency of cβAAs is generally low, our engineered tRNA, referred to as tRNAPro1E2, enabled efficient incorporation of cβAAs into peptide libraries using the flexible in vitro translation (FIT) system. Here we report on the design and application of a macrocyclic peptide library incorporating 3 kinds of cβAAs: (1R,2S)-2-aminocyclopentane carboxylic acid (β1), (1S,2S)-2-aminocyclohexane carboxylic acid (β2), and (1R,2R)-2-aminocyclopentane carboxylic acid. This library was applied to an in vitro selection against the SARS-CoV-2 main protease (Mpro). The resultant peptides, BM3 and BM7, bearing one β2 and two β1, exhibited potent inhibitory activities with IC50 values of 40 and 20 nM, respectively. BM3 and BM7 also showed remarkable serum stability with half-lives of 48 and >168 h, respectively. Notably, BM3A and BM7A, wherein the cβAAs were substituted with alanine, lost their inhibitory activities against Mpro and displayed substantially shorter serum half-lives. This observation underscores the significant contribution of cβAA to the activity and stability of peptides. Overall, our results highlight the potential of cβAA in generating potent and highly stable macrocyclic peptides with drug-like properties.
Collapse
Affiliation(s)
- Takashi Miura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tika R Malla
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Lennart Brewitz
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Anthony Tumber
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Eidarus Salah
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Kang Ju Lee
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naohiro Terasaka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - C David Owen
- Harwell Science & Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, United Kingdom
- Harwell Science & Innovation Campus, Research Complex at Harwell, Didcot, OX11 0FA, United Kingdom
| | - Claire Strain-Damerell
- Harwell Science & Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, United Kingdom
- Harwell Science & Innovation Campus, Research Complex at Harwell, Didcot, OX11 0FA, United Kingdom
| | - Petra Lukacik
- Harwell Science & Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, United Kingdom
- Harwell Science & Innovation Campus, Research Complex at Harwell, Didcot, OX11 0FA, United Kingdom
| | - Martin A Walsh
- Harwell Science & Innovation Campus, Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, United Kingdom
- Harwell Science & Innovation Campus, Research Complex at Harwell, Didcot, OX11 0FA, United Kingdom
| | - Akane Kawamura
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
- Chemistry—School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Christopher J Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Bian C, Ji S, Xue R, Zhou L, Sun J, Ji H. Molecular cloning and characterization of BNIP3 and NIX1/2 and their role in DHA-induced mitophagy and apoptosis in grass carp (Ctenopharyngodon idellus) adipocytes. Gene 2024; 899:148140. [PMID: 38185291 DOI: 10.1016/j.gene.2024.148140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/23/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
B-cell lymphoma-2 and adenovirus E1B 19-kDa-interacting protein 3 (BNIP3) and BNIP3 like (BNIP3L or NIX) play a vital role in regulating mitophagy and the intrinsic apoptosis in mammals, but their gene characterizations remain unclear in fish. Herein, bnip3, nix1 and nix2 were isolated and characterized from grass carp (Ctenopharyngodon idellus), which encode peptides of 194, 233 and 222 amino acids, respectively. As typical BH3-only proteins, grass carp BNIP3, NIX1 and NIX2 proteins contain BH3 and C-terminal transmembrane domains for inducing apoptosis. Moreover, the LC3-interacting region motif of BNIP3, NIX1 and NIX2 is also conserved in grass carp. Phylogenetic analyses also demonstrated that nix1 and nix2 may have originated from the genome duplication event. Expression pattern analysis indicated that bnip3, nix1 and nix2 were highest expressed in brain, followed by eye (bnip3) and liver (nix1 and nix2). BNIP3, NIX1 and NIX2 localized to the nucleus and the cytoplasm, with a predominant localization to mitochondria within the cytoplasm. In the present study, we found that 200 μM DHA impaired the mitochondrial function, manifested as the decreased antioxidant ability, cellular ATP content and mitochondrial membrane potential in grass carp adipocytes. In addition, the gene expression and enzyme activities of caspase family were significantly increased in 200 μM DHA group, indicating that adipocyte apoptosis was induced. Meanwhile, DHA increased the gene expression of bnip3, nix1 and nix2 in a dose-dependent manner in grass carp adipocytes. The colocalization of mitochondria and lysosomes was promoted by 200 μM DHA treatment, implying that BNIP3/NIX-related mitophagy was activated in adipocytes. Based on these findings, it can be inferred that BNIP3/NIX-related mitophagy may be involved in the adipocyte apoptosis induced by DHA in grass carp.
Collapse
Affiliation(s)
- Chenchen Bian
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Shanghong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Rongrong Xue
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Lu Zhou
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China.
| |
Collapse
|
9
|
Li F, Liu J, Liu C, Liu Z, Peng X, Huang Y, Chen X, Sun X, Wang S, Chen W, Xiong D, Diao X, Wang S, Zhuang J, Wu C, Wu D. Cyclic peptides discriminate BCL-2 and its clinical mutants from BCL-X L by engaging a single-residue discrepancy. Nat Commun 2024; 15:1476. [PMID: 38368459 PMCID: PMC10874388 DOI: 10.1038/s41467-024-45848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Overexpressed pro-survival B-cell lymphoma-2 (BCL-2) family proteins BCL-2 and BCL-XL can render tumor cells malignant. Leukemia drug venetoclax is currently the only approved selective BCL-2 inhibitor. However, its application has led to an emergence of resistant mutations, calling for drugs with an innovative mechanism of action. Herein we present cyclic peptides (CPs) with nanomolar-level binding affinities to BCL-2 or BCL-XL, and further reveal the structural and functional mechanisms of how these CPs target two proteins in a fashion that is remarkably different from traditional small-molecule inhibitors. In addition, these CPs can bind to the venetoclax-resistant clinical BCL-2 mutants with similar affinities as to the wild-type protein. Furthermore, we identify a single-residue discrepancy between BCL-2 D111 and BCL-XL A104 as a molecular "switch" that can differently engage CPs. Our study suggests that CPs may inhibit BCL-2 or BCL-XL by delicately modulating protein-protein interactions, potentially benefiting the development of next-generation therapeutics.
Collapse
Affiliation(s)
- Fengwei Li
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Junjie Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chao Liu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Ziyan Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiangda Peng
- Shanghai Zelixir Biotech Company Ltd., Shanghai, 200030, China
| | - Yinyue Huang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiaoyu Chen
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiangnan Sun
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Sen Wang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Wei Chen
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, 200127, China
| | - Dan Xiong
- Xiamen Lifeint Technology Company Ltd., Xiamen, 361005, China
| | - Xiaotong Diao
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., Shanghai, 200030, China
| | - Jingjing Zhuang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Marine College, Shandong University, Weihai, 264209, China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
10
|
Shah SKH, Modi U, Patel K, James A, N S, De S, Vasita R, Prabhakaran P. Site-selective post-modification of short α/γ hybrid foldamers: a powerful approach for molecular diversification towards biomedical applications. Biomater Sci 2023; 11:6210-6222. [PMID: 37526301 DOI: 10.1039/d3bm00766a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The extensive research work in the exhilarating area of foldamers (artificial oligomers possessing well-defined conformation in solution) has shown them to be promising candidates in biomedical research and materials science. The post-modification approach is successful in peptides, proteins, and polymers to modulate their functions. To the best of our knowledge, site-selective post-modification of a foldamer affording molecules with different pendant functional groups within a molecular scaffold has not yet been reported. We demonstrate for the first time that late-stage site-selective functionalization of short hybrid oligomers is an efficient approach to afford molecules with diverse functional groups. In this article, we report the design and synthesis of hybrid peptides with repeating units of leucine (Leu) and 5-amino salicylic acid (ASA), regioselective post-modification, conformational analyses (based on solution-state NMR, circular dichroism and computational studies) and morphological studies of the peptide nanostructures. As a proof-of-concept, we demonstrate the applications of differently modified peptides as drug delivery agents, imaging probes, and anticancer agents. The novel feature of the work is that the difference in reactivity of two phenolic OH groups in short biomimetic peptides was utilized to achieve site-selective post-modification. It is challenging to apply the same approach to short α-peptides having a poor folding tendency, and their post-functionalization may considerably affect their conformation.
Collapse
Affiliation(s)
| | - Unnati Modi
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Karma Patel
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| | - Anjima James
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682022, India
| | - Sreerag N
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| | - Susmita De
- Department of Chemistry, University of Calicut, Calicut 673635, India
| | - Rajesh Vasita
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Panchami Prabhakaran
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| |
Collapse
|
11
|
Katoh T, Suga H. Translation initiation with exotic amino acids using EF-P-responsive artificial initiator tRNA. Nucleic Acids Res 2023; 51:8169-8180. [PMID: 37334856 PMCID: PMC10450175 DOI: 10.1093/nar/gkad496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/10/2023] [Accepted: 06/17/2023] [Indexed: 06/21/2023] Open
Abstract
Translation initiation using noncanonical initiator substrates with poor peptidyl donor activities, such as N-acetyl-l-proline (AcPro), induces the N-terminal drop-off-reinitiation event. Thereby, the initiator tRNA drops-off from the ribosome and the translation reinitiates from the second amino acid to yield a truncated peptide lacking the N-terminal initiator substrate. In order to suppress this event for the synthesis of full-length peptides, here we have devised a chimeric initiator tRNA, referred to as tRNAiniP, whose D-arm comprises a recognition motif for EF-P, an elongation factor that accelerates peptide bond formation. We have shown that the use of tRNAiniP and EF-P enhances the incorporation of not only AcPro but also d-amino, β-amino and γ-amino acids at the N-terminus. By optimizing the translation conditions, e.g. concentrations of translation factors, codon sequence and Shine-Dalgarno sequence, we could achieve complete suppression of the N-terminal drop-off-reinitiation for the exotic amino acids and enhance the expression level of full-length peptide up to 1000-fold compared with the use of the ordinary translation conditions.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Lee TH, Checco JW, Malcolm T, Eller CH, Raines RT, Gellman SH, Lee EF, Fairlie WD, Aguilar MI. Differential membrane binding of α/β-peptide foldamers: implications for cellular delivery and mitochondrial targeting. Aust J Chem 2023; 76:482-492. [PMID: 37780415 PMCID: PMC10540276 DOI: 10.1071/ch23063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The intrinsic pathway of apoptosis is regulated by the Bcl-2 family of proteins. Inhibition of the anti-apoptotic members represents a strategy to induce apoptotic cell death in cancer cells. We have measured the membrane binding properties of a series of peptides, including modified α/β-peptides, designed to exhibit enhanced membrane permeability to allow cell entry and improved access for engagement of Bcl-2 family members. The peptide cargo is based on the pro-apoptotic protein Bim, which interacts with all anti-apoptotic proteins to initiate apoptosis. The α/β-peptides contained cyclic β-amino acid residues designed to increase their stability and membrane-permeability. Dual polarisation interferometry was used to study the binding of each peptide to two different model membrane systems designed to mimic either the plasma membrane or the outer mitochondrial membrane. The impact of each peptide on the model membrane structure was also investigated, and the results demonstrated that the modified peptides had increased affinity for the mitochondrial membrane and significantly altered the structure of the bilayer. The results also showed that the presence of an RRR motif significantly enhanced the ability of the peptides to bind to and insert into the mitochondrial membrane mimic, and provide insights into the role of selective membrane targeting of peptides.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry & Molecular Biology, Monash University, Clayton Vic, 3800, Australia
| | - James W Checco
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Current address: Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- Current address: The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Tess Malcolm
- Department of Biochemistry & Molecular Biology, Monash University, Clayton Vic, 3800, Australia
- Current address: School of Chemistry, University of Melbourne, Parkville, Vic 3052, Australia
| | - Chelcie H Eller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ronald T Raines
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Erinna F Lee
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Cell Death and Survival Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria 3086, Australia
| | - W Douglas Fairlie
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Cell Death and Survival Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry & Molecular Biology, Monash University, Clayton Vic, 3800, Australia
| |
Collapse
|
13
|
Zhang C, Yang X, Meng X, Wu L, Liu X, Gao J, Liu S, Wu J, Huang D, Wang Z, Su X. Discovery of Novel PTP1B Inhibitors with Once-Weekly Therapeutic Potential for Type 2 Diabetes: Design, Synthesis, and In Vitro and In Vivo Investigations of BimBH3 Peptide Analogues. J Med Chem 2023; 66:3030-3044. [PMID: 36749220 DOI: 10.1021/acs.jmedchem.2c02003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Poor medication adherence in patients with type 2 diabetes mellitus has become one of the main causes of suboptimal glycemic control. Once-weekly drugs can markedly improve the convenience, adherence, and quality of life of T2DM patients; thus, they are clinically needed and preferred. PTP1B plays a negative role in both insulin and leptin signaling pathways, which makes it an important target for diabetes. Herein, we design and synthesize 35 analogues of core BimBH3 peptide via lipidation/acylation strategy based on our previous work and evaluate their PTP1B inhibitory activity, obtaining the primary structure-activity relationship. Five compounds with good PPT1B inhibitory activity, target selectivity, and significantly improved stability were selected for molecular docking study and searching candidate molecules with long-acting antidiabetic potential. The in vivo anti-T2DM evaluation validated the once-weekly therapeutic potential of analogues 19, 26, 27, 31, and 33, which were comparable with semaglutide and therefore presented as promising drug candidates.
Collapse
Affiliation(s)
- Chuanliang Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xianmin Yang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xinjia Meng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lijuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Marine Biomedical Research Institute, Ocean University of China, Qingdao 266071, China
| | - Xiaochun Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Marine Biomedical Research Institute, Ocean University of China, Qingdao 266071, China
| | - Jiangming Gao
- Marine Biomedical Research Institute, Ocean University of China, Qingdao 266071, China
| | - Shan Liu
- Marine Biomedical Research Institute, Ocean University of China, Qingdao 266071, China
| | - Juan Wu
- Marine Biomedical Research Institute, Ocean University of China, Qingdao 266071, China
| | - Dingmin Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhenwei Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xianbin Su
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
14
|
Menke FS, Mazzier D, Wicher B, Allmendinger L, Kauffmann B, Maurizot V, Huc I. Molecular torsion springs: alteration of helix curvature in frustrated tertiary folds. Org Biomol Chem 2023; 21:1275-1283. [PMID: 36645374 DOI: 10.1039/d2ob02109a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The first abiotic foldamer tertiary structures have been recently reported in the form of aromatic helix-turn-helix motifs based on oligo-quinolinecarboxamides held together by intramolecular hydrogen bonds. Tertiary folds were predicted by computational modelling of the hydrogen-bonding interfaces between helices and later verified by X-ray crystallography. However, the prognosis of how the conformational preference inherent to each helix influences the tertiary structure warranted further investigation. Several new helix-turn-helix sequences were synthesised in which some hydrogen bonds have been removed. Contrary to expectations, this change did not strongly destabilise the tertiary folds. On closer inspection, a new crystal structure revealed that helices adopt their natural curvature when some hydrogen bonds are missing and undergo some spring torsion upon forming the said hydrogen bonds, thus potentially giving rise to a conformational frustration. This phenomenon sheds light on the aggregation behaviour of the helices when they are not linked by a turn unit.
Collapse
Affiliation(s)
- Friedericke S Menke
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| | - Daniela Mazzier
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| | - Barbara Wicher
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Lars Allmendinger
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| | - Brice Kauffmann
- Institut Européen de Chimie et Biologie (UMS3011/US001), CNRS, Inserm, Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Victor Maurizot
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| |
Collapse
|
15
|
Ur Rahim J, Ahmad SM, Amin T, Chowdhary R, Goswami A, Rai R. Synthesis, conformation and cytotoxic activity of short hybrid peptides containing conformationally constrained 1-(aminomethyl)cyclohexanecarboxylic acid and gabapentin. Peptides 2022; 158:170897. [PMID: 36279986 DOI: 10.1016/j.peptides.2022.170897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
The present work describes the synthesis,conformation and cytotoxic activities of short β/γ hybrid peptides, Boc-β2,2-Ac6c-Gpn-NHMe, BG1; Boc-(β2,2-Ac6c-Gpn)2-OMe, BG2; Boc-(β2,2-Ac6c-Gpn)3-OMe, BG3; H-β2,2-Ac6c-Gpn-NHMe, BG4; H-(β2,2-Ac6c-Gpn)2-OMe, BG5; H-(β2,2-Ac6c-Gpn)3-OMe, BG6, Boc-β2,2-Ac6c-Gpn-OMe, BG7 and H-β2,2-Ac6c-Gpn-OMe, BG8. Mixed C6/C7 conformations were observed for β/γ hybrid peptides. Further, BG1-BG8 were screened against MCF-7 (Breast cancer), A549 (Lung Cancer), PC-3 (Prostate cancer), HCT-116 (Colon cancer), and MDA-MB-231 (Breast cancer) cell lines. Among all, BG6 exhibited potent cytotoxicity against all cancer cell lines with IC50 ranging from 1.6 μM to 6.3 μM with relatively low cytotoxicity against normal epithelial breast cell line fR-2 and human embryonic kidney cell line HEK-293. Minimal hemolytic activity was observed for BG6 against human erythrocytes. Peptide BG6 displayed anti-migratory and anti-invasive potentials showing strong interactions with intrinsic apoptotic markers Bcl-2, Bax, and cleaved-PARP, as well as the induction of the mitochondria maladjustment mediated apoptosis.
Collapse
Affiliation(s)
- Junaid Ur Rahim
- Natural Products and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Mudabir Ahmad
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tanzeeba Amin
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rubina Chowdhary
- Natural Products and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anindya Goswami
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rajkishor Rai
- Natural Products and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Shapovalov G, Ritaine A, Essonghe NC, de Ridder I, Ivanova H, Karamanou S, Economou A, Bultynck G, Skryma R, Prevarskaya N. Allosteric cross-talk between the hydrophobic cleft and the BH4 domain of Bcl-2 in control of inositol 1,4,5-trisphosphate receptor activity. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:375-391. [PMID: 36045908 PMCID: PMC9400710 DOI: 10.37349/etat.2022.00088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
Aim: Inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitous calcium (Ca2+) channel involved in the regulation of cellular fate and motility. Its modulation by anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) plays an important role in cancer progression. Disrupting this interaction could overcome apoptosis avoidance, one of the hallmarks of cancer, and is, thus, of great interest. Earlier reports have shown the involvement of both the Bcl-2 homology 4 (BH4) and the transmembrane domains (TMDs) of Bcl-2 in regulating IP3R activity, while the Bcl-2 hydrophobic cleft was associated primarily with its anti-apoptotic and IP3R-independent action at the mitochondria (Oncotarget. 2016;7:55704–20. doi: 10.18632/oncotarget.11005). The aim of this study was to investigate how targeting the BH3 hydrophobic cleft of Bcl-2 affects IP3R:Bcl-2 interaction. Methods: Organelle membrane-derived (OMD) patch-clamp and circular dichroism (CD) thermal melting experiments were used to elucidate the effects of the ABT-199 (venetoclax) on the IP3R:Bcl-2 interaction. Molecular dynamics (MD) simulations of free and ABT-199 bound Bcl-2 were used to propose a molecular model of such interaction. Results: It was shown that occlusion of Bcl-2’s hydrophobic cleft by the drug ABT-199 finely modulates IP3R gating in the low open probability (Po) regime, characteristic of the basal IP3R activity in non-excited cells. Complementary MD simulations allowed to propose a model of this modulation, involving an allosteric interaction with the BH4 domain on the opposite side of Bcl-2. Conclusions: Bcl-2 is an important regulator of IP3R activity and, thus of Ca2+ release from internal stores and associated processes, including cellular proliferation and death. The presence of multiple regulatory domains in both proteins suggests a complex interaction. Thus, it was found that the occlusion of the hydrophobic cleft of Bcl-2 by ABT-199 disrupts IP3R activity, leading to Bcl-2 rebinding with smaller affinity and lesser inhibitory effect. MDs simulations of free and ABT-199 bound Bcl-2 propose a molecular model of such disruption, involving an allosteric interaction with the BH4 domain on the opposite side of Bcl-2.
Collapse
Affiliation(s)
- George Shapovalov
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, 59655 Villeneuve d'Ascq, France
| | - Abigaël Ritaine
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, 59655 Villeneuve d'Ascq, France.,KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000 Leuven, Belgium
| | - Nadege Charlene Essonghe
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, 59655 Villeneuve d'Ascq, France
| | - Ian de Ridder
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000 Leuven, Belgium
| | - Hristina Ivanova
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000 Leuven, Belgium
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute of Medical Research, Laboratory of Molecular Bacteriology, Herestraat 49, B-3000 Leuven, Belgium
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute of Medical Research, Laboratory of Molecular Bacteriology, Herestraat 49, B-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000 Leuven, Belgium
| | - Roman Skryma
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, 59655 Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, 59655 Villeneuve d'Ascq, France
| |
Collapse
|
17
|
Zou J, Zhou M, Xiao X, Liu R. Advance in Hybrid Peptides Synthesis. Macromol Rapid Commun 2022; 43:e2200575. [PMID: 35978269 DOI: 10.1002/marc.202200575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/24/2022] [Indexed: 11/08/2022]
Abstract
Hybrid peptides with heterogeneous backbone are a class of peptide mimics with adjustable proteolytic stability obtained from incorporating unnatural amino acid residues into peptide backbone. α/β-peptides and peptide/peptoid hybrids are two types of hybrid peptides that are widely studied for diverse applications, and several synthetic methods have been developed. In this mini review, the advance in hybrid peptide synthesis is summarized, including solution-phase method, solid-phase method, and novel polymerization method. Conventional solution-phase method and solid-phase method generally result in oligomers with defined sequences, while polymerization methods have advantages in preparing peptide hybrid polymers with high molecular weight with simple operation and low cost. In addition, the future development of polymerization method to realize the control of the peptide hybrid polymer sequence is discussed.
Collapse
Affiliation(s)
- Jingcheng Zou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ximian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
18
|
Boruah A, Roy A. Advances in hybrid peptide-based self-assembly systems and their applications. Biomater Sci 2022; 10:4694-4723. [PMID: 35899853 DOI: 10.1039/d2bm00775d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly of peptides demonstrates a great potential for designing highly ordered, finely tailored supramolecular arrangements enriched with high specificity, improved efficacy and biological activity. Along with natural peptides, hybrid peptide systems composed of natural and chemically diverse unnatural amino acids have been used in various fields, including drug delivery, wound healing, potent inhibition of diseases, and prevention of biomaterial related diseases to name a few. In this review, we provide a brief outline of various methods that have been utilized for obtaining fascinating structures that create an avenue to reproduce a range of functions resulting from these folds. An overview of different self-assembled structures as well as their applications will also be provided. We believe that this review is very relevant to the current scenario and will cover conformations of hybrid peptides and resulting self-assemblies from the late 20th century through 2022. This review aims to be a comprehensive and reliable account of the hybrid peptide-based self-assembly owing to its enormous influence in understanding and mimicking biological processes.
Collapse
Affiliation(s)
- Alpana Boruah
- Applied Organic Chemistry Group, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research-North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Arup Roy
- Applied Organic Chemistry Group, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research-North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
19
|
Katoh T, Suga H. In Vitro Genetic Code Reprogramming for the Expansion of Usable Noncanonical Amino Acids. Annu Rev Biochem 2022; 91:221-243. [PMID: 35729073 DOI: 10.1146/annurev-biochem-040320-103817] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic code reprogramming has enabled us to ribosomally incorporate various nonproteinogenic amino acids (npAAs) into peptides in vitro. The repertoire of usable npAAs has been expanded to include not only l-α-amino acids with noncanonical sidechains but also those with noncanonical backbones. Despite successful single incorporation of npAAs, multiple and consecutive incorporations often suffer from low efficiency or are even unsuccessful. To overcome this stumbling block, engineering approaches have been used to modify ribosomes, EF-Tu, and tRNAs. Here, we provide an overview of these in vitro methods that are aimed at optimal expansion of the npAA repertoire and their applications for the development of de novo bioactive peptides containing various npAAs.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan; ,
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan; ,
| |
Collapse
|
20
|
Helical Foldamers and Stapled Peptides as New Modalities in Drug Discovery: Modulators of Protein-Protein Interactions. Processes (Basel) 2022. [DOI: 10.3390/pr10050924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A “foldamer” is an artificial oligomeric molecule with a regular secondary or tertiary structure consisting of various building blocks. A “stapled peptide” is a peptide with stabilized secondary structures, in particular, helical structures by intramolecular covalent side-chain cross-linking. Helical foldamers and stapled peptides are potential drug candidates that can target protein-protein interactions because they enable multipoint molecular recognition, which is difficult to achieve with low-molecular-weight compounds. This mini-review describes a variety of peptide-based foldamers and stapled peptides with a view to their applications in drug discovery, including our recent progress.
Collapse
|
21
|
Lee JS, Guo P, Klett K, Hall M, Sinha K, Ravuri S, Huard J, Murphy WL. VEGF-attenuated platelet-rich plasma improves therapeutic effect on cartilage repair. Biomater Sci 2022; 10:2172-2181. [PMID: 35348136 PMCID: PMC9622215 DOI: 10.1039/d1bm01873f] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autologous platelet-rich plasma (PRP) has gained popularity as a less invasive treatment for various musculoskeletal tissue injuries and conditions due to its favorable safety profile, minimal manipulation and cost-effectiveness. Although PRP treatment has been clinically used for the treatment of osteoarthritis (OA) and damaged cartilage, evidence on therapeutic efficacy has been inconsistent, which calls for a methodology to achieve consistent and improved treatment outcomes. Given that PRP contains numerous proteins, we hypothesized that attenuation of a growth factor known to be detrimental to the healing tissue would enhance efficacy of PRP treatment. Considering that VEGF-mediated angiogenesis inhibits the repair of articular cartilage, we developed VEGF-attenuated PRP by sequestering VEGF in PRP using VEGF-binding microspheres. We demonstrated that VEGF attenuation in PRP did not inhibit the effect of PRP on chondrogenic differentiation of stem cells in vitro. In addition, healing of rat OA cartilage was significantly improved after treatment with VEGF-attenuated PRP when compared to the PRP treatment group or PBS control group. We expect that attenuation of unwanted biological activity using growth factor-binding microspheres could provide a new PRP customization method broadly applicable to various tissue repair processes.
Collapse
Affiliation(s)
- Jae Sung Lee
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA.
| | - Ping Guo
- Linda & Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - Katarina Klett
- Linda & Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - MacGregor Hall
- Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Krishna Sinha
- Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sudheer Ravuri
- Linda & Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - Johnny Huard
- Linda & Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - William L Murphy
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.,Materials Science Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
22
|
Gupta S, Azadvari N, Hosseinzadeh P. Design of Protein Segments and Peptides for Binding to Protein Targets. BIODESIGN RESEARCH 2022; 2022:9783197. [PMID: 37850124 PMCID: PMC10521657 DOI: 10.34133/2022/9783197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 10/19/2023] Open
Abstract
Recent years have witnessed a rise in methods for accurate prediction of structure and design of novel functional proteins. Design of functional protein fragments and peptides occupy a small, albeit unique, space within the general field of protein design. While the smaller size of these peptides allows for more exhaustive computational methods, flexibility in their structure and sparsity of data compared to proteins, as well as presence of noncanonical building blocks, add additional challenges to their design. This review summarizes the current advances in the design of protein fragments and peptides for binding to targets and discusses the challenges in the field, with an eye toward future directions.
Collapse
Affiliation(s)
- Suchetana Gupta
- Knight Campus Center for Accelerating Scientific Impact, University of Oregon, Eugene OR 97403, USA
| | - Noora Azadvari
- Knight Campus Center for Accelerating Scientific Impact, University of Oregon, Eugene OR 97403, USA
| | - Parisa Hosseinzadeh
- Knight Campus Center for Accelerating Scientific Impact, University of Oregon, Eugene OR 97403, USA
| |
Collapse
|
23
|
Wang Z, Ji H. Characterization of Hydrophilic α-Helical Hot Spots on the Protein-Protein Interaction Interfaces for the Design of α-Helix Mimetics. J Chem Inf Model 2022; 62:1873-1890. [PMID: 35385659 DOI: 10.1021/acs.jcim.1c01556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cooperativity index, Kc, was developed to examine the binding synergy between hot spots of the ligand-protein. For the first time, the convergence of the side-chain spatial arrangements of hydrophilic α-helical hot spots Thr, Tyr, Asp, Asn, Ser, Cys, and His in protein-protein interaction (PPI) complex structures was disclosed and quantified by developing novel clustering models. In-depth analyses revealed the driving force for the protein-protein binding conformation convergence of hydrophilic α-helical hot spots. This observation allows deriving pharmacophore models to design new mimetics for hydrophilic α-helical hot spots. A computational protocol was developed to search amino acid analogues and small-molecule mimetics for each hydrophilic α-helical hot spot. As a pilot study, diverse building blocks of commercially available nonstandard L-type α-amino acids and the phenyl ring-containing small-molecule fragments were obtained, which serve as a fragment collection to mimic hydrophilic α-helical hot spots for the improvement of binding affinity, selectivity, physicochemical properties, and synthesis accessibility of α-helix mimetics.
Collapse
Affiliation(s)
- Zhen Wang
- Drug Discovery Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612-9497, United States.,Departments of Chemistry and Oncologic Sciences, University of South Florida, Tampa, Florida 33620-9497, United States
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612-9497, United States.,Departments of Chemistry and Oncologic Sciences, University of South Florida, Tampa, Florida 33620-9497, United States
| |
Collapse
|
24
|
Shin YH, Yang H. Exploration of α/β/γ-peptidomimetics design for BH3 helical domains. Chem Commun (Camb) 2022; 58:945-948. [PMID: 34985060 DOI: 10.1039/d1cc05758h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systematic incorporation of ring-constrained β- and γ-amino acid residues into α-helix mimetics engenders stable helical secondary structures. In this paper, functional α/β/γ-helical peptidomimetics were explored for mimicry of BH3 helical domains, Bim as a pioneering study. The Bim-based α/β/γ-peptides in an αγααβα-hexad repeat with five helical turns inhibited the interaction between Bak and Bcl-xL with excellent resistance towards proteolytic digestion. Further optimization of the α/β/γ-backbone strategy will considerably expand the utility of functional α/β/γ-peptidomimetics, in particular due to its prominent stability against proteolysis.
Collapse
Affiliation(s)
- Young-Hee Shin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Chemical Engineering & Biotechnology, Korea Polytechnic University, Siheung 15073, South Korea.
| | - Hyunjun Yang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.,Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
25
|
Moazzam A, Stanojlovic V, Hinterholzer A, Holzner C, Roschger C, Zierer A, Wiederstein M, Schubert M, Cabrele C. Backbone distortions in lactam-bridged helical peptides. J Pept Sci 2022; 28:e3400. [PMID: 34984761 PMCID: PMC9285742 DOI: 10.1002/psc.3400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/11/2022]
Abstract
Side‐chain‐to‐side‐chain cyclization is frequently used to stabilize the α‐helical conformation of short peptides. In a previous study, we incorporated a lactam bridge between the side chains of Lys‐i and Asp‐i+4 in the nonapeptide 1Y, cyclo‐(2,6)‐(Ac‐VKRLQDLQY‐NH2), an artificial ligand of the inhibitor of DNA binding and cell differentiation (ID) protein with antiproliferative activity on cancer cells. Herein, we show that only the cyclized five‐residue segment adopts a helical turn whereas the C‐terminal residues remain flexible. Moreover, we present nine 1Y analogs arising from different combinations of hydrophobic residues (leucine, isoleucine, norleucine, valine, and tyrosine) at positions 1, 4, 7, and 9. All cyclopeptides except one build a lactam‐bridged helical turn; however, residue‐4 reveals less helix character than the neighboring Arg‐3 and Gln‐5, especially with residue‐4 being isoleucine, valine, and tyrosine. Surprisingly, only two cyclopeptides exhibit helix propagation until the C‐terminus, whereas the others share a remarkable outward tilting of the backbone carbonyl of the lactam‐bridged Asp‐6 (>40° deviation from the orientation parallel to the helix axis), which prevents the formation of the H‐bond between Arg‐3 CO and residue‐7 NH: As a result, the propagation of the helix beyond the lactam‐bridged sequence becomes unfavorable. We conclude that, depending on the amino‐acid sequence, the lactam bridge between Lys‐i and Asp‐i+4 can stabilize a helical turn but deviations from the ideal helix geometry are possible: Indeed, besides the outward tilting of the backbone carbonyls, the residues per turn increased from 3.6 (typical of a regular α‐helix) to 4.2, suggesting a partial helix unwinding.
Collapse
Affiliation(s)
- Ali Moazzam
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria.,Current address: School of Chemistry, College of Science, University of Tehran, Tehran
| | - Vesna Stanojlovic
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Arthur Hinterholzer
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Christoph Holzner
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Cornelia Roschger
- Department for Cardiac-, Vascular- and Thoracic Surgery, Johannes Kepler University Linz and Kepler University Hospital GmbH, Linz, Austria
| | - Andreas Zierer
- Department for Cardiac-, Vascular- and Thoracic Surgery, Johannes Kepler University Linz and Kepler University Hospital GmbH, Linz, Austria
| | - Markus Wiederstein
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Mario Schubert
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Chiara Cabrele
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
26
|
Lee EF, Fairlie WD. Discovery, development and application of drugs targeting BCL-2 pro-survival proteins in cancer. Biochem Soc Trans 2021; 49:2381-2395. [PMID: 34515749 PMCID: PMC8589430 DOI: 10.1042/bst20210749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
The discovery of a new class of small molecule compounds that target the BCL-2 family of anti-apoptotic proteins is one of the great success stories of basic science leading to translational outcomes in the last 30 years. The eponymous BCL-2 protein was identified over 30 years ago due to its association with cancer. However, it was the unveiling of the biochemistry and structural biology behind it and its close relatives' mechanism(s)-of-action that provided the inspiration for what are now known as 'BH3-mimetics', the first clinically approved drugs designed to specifically inhibit protein-protein interactions. Herein, we chart the history of how these drugs were discovered, their evolution and application in cancer treatment.
Collapse
Affiliation(s)
- Erinna F. Lee
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Cell Death and Survival Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
| | - W. Douglas Fairlie
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Cell Death and Survival Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
27
|
Zhang C, Wu L, Liu X, Gao J, Liu S, Wu J, Huang D, Wang Z, Su X. Discovery of Novel PTP1B Inhibitors Derived from the BH3 Domain of Proapoptotic Bcl-2 Proteins with Antidiabetic Potency. ACS Med Chem Lett 2021; 12:1017-1023. [PMID: 34141087 DOI: 10.1021/acsmedchemlett.1c00174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 01/13/2023] Open
Abstract
BH3 peptide analogues are generally believed to exhibit great potency as cancer therapeutics via targeting antiapoptotic Bcl-2 proteins. Here, we describe the synthesis and identification of a new class of palmitoylated peptide BH3 analogues derived from the core region (h1-h4) of BH3 domains of proapoptotic Bcl-2 proteins and as alternative PTP1B inhibitors with antidiabetic potency in vitro and in vivo. PTP1B inhibitors are attractive for treatment of type 2 diabetes. We design the analogues using a simple lipidation approach and discovered novel lead analogues with promising antidiabetic potency in vitro and in vivo. The results presented here expanded the alternative target and function for the BH3 peptide analogues from one member Bim to other members of the proapoptotic Bcl-2 proteins and emphasize their therapeutic potential in T2DM. Furthermore, our findings may provide new proof of the regulatory function of Bcl-2 family proteins in mitochondrial nutrient and energy metabolism.
Collapse
Affiliation(s)
- Chuanliang Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Marine Biomedical Research Institute, Qingdao 266071, China
| | - Lijuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Marine Biomedical Research Institute, Qingdao 266071, China
| | - Xiaochun Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Marine Biomedical Research Institute, Qingdao 266071, China
| | - Jiangming Gao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Marine Biomedical Research Institute, Qingdao 266071, China
| | - Shan Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Marine Biomedical Research Institute, Qingdao 266071, China
| | - Juan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Marine Biomedical Research Institute, Qingdao 266071, China
| | - Dingmin Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhenwei Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xianbin Su
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
28
|
Abstract
N,N'-linked oligoureas are a class of enantiopure, sequence-defined peptidomimetic oligomers without amino acids that form well-defined and predictable helical structures akin to the peptide α-helix. Oligourea-based foldamers combine a number of features-such as synthetic accessibility, sequence modularity, and folding fidelity-that bode well for their use in a range of applications from medicinal chemistry to catalysis. Moreover, it was recently recognized that this synthetic helical backbone can be combined with regular peptides to generate helically folded peptide-oligourea hybrids that display additional features in terms of helix mimicry and protein-surface recognition properties. Here we provide detailed protocols for the preparation of requested monomers and for the synthesis and purification of homo-oligoureas and peptide-oligourea hybrids.
Collapse
|
29
|
Katoh T, Suga H. Development of Bioactive Foldamers Using Ribosomally Synthesized Nonstandard Peptide Libraries. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
30
|
Wu Y, Williams J, Calder EDD, Walport LJ. Strategies to expand peptide functionality through hybridisation with a small molecule component. RSC Chem Biol 2021; 2:151-165. [PMID: 34458778 PMCID: PMC8341444 DOI: 10.1039/d0cb00167h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/09/2020] [Indexed: 02/04/2023] Open
Abstract
Combining different compound classes gives molecular hybrids that can offer access to novel chemical space and unique properties. Peptides provide ideal starting points for such molecular hybrids, which can be easily modified with a variety of molecular entities. The addition of small molecules can improve the potency, stability and cell permeability of therapeutically relevant peptides. Furthermore, they are often applied to create peptide-based tools in chemical biology. In this review, we discuss general methods that allow the discovery of this compound class and highlight key examples of peptide-small molecule hybrids categorised by the application and function of the small molecule entity.
Collapse
Affiliation(s)
- Yuteng Wu
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| | - Jack Williams
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| | - Ewen D D Calder
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| | - Louise J Walport
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| |
Collapse
|
31
|
González-Muñiz R, Bonache MÁ, Pérez de Vega MJ. Modulating Protein-Protein Interactions by Cyclic and Macrocyclic Peptides. Prominent Strategies and Examples. Molecules 2021; 26:445. [PMID: 33467010 PMCID: PMC7830901 DOI: 10.3390/molecules26020445] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Cyclic and macrocyclic peptides constitute advanced molecules for modulating protein-protein interactions (PPIs). Although still peptide derivatives, they are metabolically more stable than linear counterparts, and should have a lower degree of flexibility, with more defined secondary structure conformations that can be adapted to imitate protein interfaces. In this review, we analyze recent progress on the main methods to access cyclic/macrocyclic peptide derivatives, with emphasis in a few selected examples designed to interfere within PPIs. These types of peptides can be from natural origin, or prepared by biochemical or synthetic methodologies, and their design could be aided by computational approaches. Some advances to facilitate the permeability of these quite big molecules by conjugation with cell penetrating peptides, and the incorporation of β-amino acid and peptoid structures to improve metabolic stability, are also commented. It is predicted that this field of research could have an important future mission, running in parallel to the discovery of new, relevant PPIs involved in pathological processes.
Collapse
Affiliation(s)
- Rosario González-Muñiz
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (M.Á.B.); (M.J.P.d.V.)
| | | | | |
Collapse
|
32
|
Zwillinger M, Reddy PS, Wicher B, Mandal PK, Csékei M, Fischer L, Kotschy A, Huc I. Aromatic Foldamer Helices as α-Helix Extended Surface Mimetics. Chemistry 2020; 26:17366-17370. [PMID: 32910480 PMCID: PMC7839445 DOI: 10.1002/chem.202004064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 12/15/2022]
Abstract
Helically folded aromatic oligoamide foldamers have a size and geometrical parameters very distinct from those of α-helices and are not obvious candidates for α-helix mimicry. Nevertheless, they offer multiple sites for attaching side chains. It was found that some arrays of side chains at the surface of an aromatic helix make it possible to mimic extended α-helical surfaces. Synthetic methods were developed to produce quinoline monomers suitably functionalized for solid phase synthesis. A dodecamer was prepared. Its crystal structure validated the initial design and showed helix bundling involving the α-helix-like interface. These results open up new uses of aromatic helices to recognize protein surfaces and to program helix bundling in water.
Collapse
Affiliation(s)
- Márton Zwillinger
- Servier Research Institute of Medicinal ChemistryZáhony utca 7.Budapest1031Hungary
- Hevesy György PhD School of ChemistryEötvös Loránd UniversityBudapestHungary
| | - Post Sai Reddy
- CNRS, Bordeaux Institut National PolytechniqueCBMN (UMR 5248)IECBUniversité de Bordeaux2 rue Robert Escarpit33600PessacFrance
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| | - Barbara Wicher
- Department of Chemical Technology of DrugsPoznan University of Medical SciencesGrunwaldzka 660780PoznanPoland
| | - Pradeep K. Mandal
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| | - Márton Csékei
- Servier Research Institute of Medicinal ChemistryZáhony utca 7.Budapest1031Hungary
| | - Lucile Fischer
- CNRS, Bordeaux Institut National PolytechniqueCBMN (UMR 5248)IECBUniversité de Bordeaux2 rue Robert Escarpit33600PessacFrance
| | - András Kotschy
- Servier Research Institute of Medicinal ChemistryZáhony utca 7.Budapest1031Hungary
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| |
Collapse
|
33
|
Miller SE, Tsuji K, Abrams RPM, Burke TR, Schneider JP. Uncoupling the Folding-Function Paradigm of Lytic Peptides to Deliver Impermeable Inhibitors of Intracellular Protein-Protein Interactions. J Am Chem Soc 2020; 142:19950-19955. [PMID: 33175531 PMCID: PMC8916162 DOI: 10.1021/jacs.0c07921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, we describe the use of peptide backbone N-methylation as a new strategy to transform membrane-lytic peptides (MLPs) into cytocompatible intracellular delivery vehicles. The ability of lytic peptides to engage with cell membranes has been exploited for drug delivery to carry impermeable cargo into cells, but their inherent toxicity results in narrow therapeutic windows that limit their clinical translation. For most linear MLPs, a prerequisite for membrane activity is their folding at cell surfaces. Modification of their backbone with N-methyl amides inhibits folding, which directly correlates to a reduction in lytic potential but only minimally affects cell entry. We synthesized a library of N-methylated peptides derived from MLPs and conducted structure-activity studies that demonstrated the broad utility of this approach across different secondary structures, including both β-sheet and helix-forming peptides. Our strategy is highlighted by the delivery of a notoriously difficult class of protein-protein interaction inhibitors that displayed on-target activity within cells.
Collapse
Affiliation(s)
- Stephen E Miller
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702 United States
| | - Kohei Tsuji
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702 United States
| | - Rachel P M Abrams
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda Maryland 20892, United States
| | - Terrence R Burke
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702 United States
| | - Joel P Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702 United States
| |
Collapse
|
34
|
Chu W, Prodromou R, Day KN, Schneible JD, Bacon KB, Bowen JD, Kilgore RE, Catella CM, Moore BD, Mabe MD, Alashoor K, Xu Y, Xiao Y, Menegatti S. Peptides and pseudopeptide ligands: a powerful toolbox for the affinity purification of current and next-generation biotherapeutics. J Chromatogr A 2020; 1635:461632. [PMID: 33333349 DOI: 10.1016/j.chroma.2020.461632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
Following the consolidation of therapeutic proteins in the fight against cancer, autoimmune, and neurodegenerative diseases, recent advancements in biochemistry and biotechnology have introduced a host of next-generation biotherapeutics, such as CRISPR-Cas nucleases, stem and car-T cells, and viral vectors for gene therapy. With these drugs entering the clinical pipeline, a new challenge lies ahead: how to manufacture large quantities of high-purity biotherapeutics that meet the growing demand by clinics and biotech companies worldwide. The protein ligands employed by the industry are inadequate to confront this challenge: while featuring high binding affinity and selectivity, these ligands require laborious engineering and expensive manufacturing, are prone to biochemical degradation, and pose safety concerns related to their bacterial origin. Peptides and pseudopeptides make excellent candidates to form a new cohort of ligands for the purification of next-generation biotherapeutics. Peptide-based ligands feature excellent target biorecognition, low or no toxicity and immunogenicity, and can be manufactured affordably at large scale. This work presents a comprehensive and systematic review of the literature on peptide-based ligands and their use in the affinity purification of established and upcoming biological drugs. A comparative analysis is first presented on peptide engineering principles, the development of ligands targeting different biomolecular targets, and the promises and challenges connected to the industrial implementation of peptide ligands. The reviewed literature is organized in (i) conventional (α-)peptides targeting antibodies and other therapeutic proteins, gene therapy products, and therapeutic cells; (ii) cyclic peptides and pseudo-peptides for protein purification and capture of viral and bacterial pathogens; and (iii) the forefront of peptide mimetics, such as β-/γ-peptides, peptoids, foldamers, and stimuli-responsive peptides for advanced processing of biologics.
Collapse
Affiliation(s)
- Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kevin N Day
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kaitlyn B Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Ryan E Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Carly M Catella
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Brandyn D Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Matthew D Mabe
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kawthar Alashoor
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642
| | - Yiman Xu
- College of Material Science and Engineering, Donghua University, 201620 Shanghai, People's Republic of China
| | - Yuanxin Xiao
- College of Textile, Donghua University, Songjiang District, Shanghai, 201620, People's Republic of China
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606.
| |
Collapse
|
35
|
Ding Y, Ting JP, Liu J, Al-Azzam S, Pandya P, Afshar S. Impact of non-proteinogenic amino acids in the discovery and development of peptide therapeutics. Amino Acids 2020; 52:1207-1226. [PMID: 32945974 PMCID: PMC7544725 DOI: 10.1007/s00726-020-02890-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022]
Abstract
With the development of modern chemistry and biology, non-proteinogenic amino acids (NPAAs) have become a powerful tool for developing peptide-based drug candidates. Drug-like properties of peptidic medicines, due to the smaller size and simpler structure compared to large proteins, can be changed fundamentally by introducing NPAAs in its sequence. While peptides composed of natural amino acids can be used as drug candidates, the majority have shown to be less stable in biological conditions. The impact of NPAA incorporation can be extremely beneficial in improving the stability, potency, permeability, and bioavailability of peptide-based therapies. Conversely, undesired effects such as toxicity or immunogenicity should also be considered. The impact of NPAAs in the development of peptide-based therapeutics is reviewed in this article. Further, numerous examples of peptides containing NPAAs are presented to highlight the ongoing development in peptide-based therapeutics.
Collapse
Affiliation(s)
- Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA, 17605, USA
| | - Priyanka Pandya
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA.
| |
Collapse
|
36
|
Ribosomal synthesis and de novo discovery of bioactive foldamer peptides containing cyclic β-amino acids. Nat Chem 2020; 12:1081-1088. [PMID: 32839601 DOI: 10.1038/s41557-020-0525-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/15/2020] [Indexed: 02/05/2023]
Abstract
Peptides that contain β-amino acids display stable secondary structures, such as helices and sheets, and are often referred to as foldamers. Cyclic β2,3-amino acids (cβAAs), such as 2-aminocyclohexanecarboxylic acid (2-ACHC), are strong helix/turn inducers due to their restricted conformations. Here we report the ribosomal synthesis of foldamer peptides that contain multiple, up to ten, consecutive cβAAs via genetic code reprogramming. We also report the de novo discovery of macrocyclic cβAA-containing peptides capable of binding to a protein target. As a demonstration, potent binders with low-to-subnanomolar KD values were identified for human factor XIIa (hFXIIa) and interferon-gamma receptor 1, from a library of their 1012 members. One of the anti-hFXIIa macrocyclic peptides that exhibited a high inhibitory activity and serum stability was co-crystallized with hFXIIa. The X-ray structure revealed that it adopts an antiparallel β-sheet structure induced by a (1S,2S)-2-ACHC residue via the formation of two γ-turns. This work demonstrates the potential of this platform to explore the previously inaccessible sequence space of cβAA-containing peptides.
Collapse
|
37
|
Lajoie MJ, Boyken SE, Salter AI, Bruffey J, Rajan A, Langan RA, Olshefsky A, Muhunthan V, Bick MJ, Gewe M, Quijano-Rubio A, Johnson J, Lenz G, Nguyen A, Pun S, Correnti CE, Riddell SR, Baker D. Designed protein logic to target cells with precise combinations of surface antigens. Science 2020; 369:1637-1643. [PMID: 32820060 DOI: 10.1126/science.aba6527] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/28/2020] [Indexed: 02/02/2023]
Abstract
Precise cell targeting is challenging because most mammalian cell types lack a single surface marker that distinguishes them from other cells. A solution would be to target cells using specific combinations of proteins present on their surfaces. In this study, we design colocalization-dependent protein switches (Co-LOCKR) that perform AND, OR, and NOT Boolean logic operations. These switches activate through a conformational change only when all conditions are met, generating rapid, transcription-independent responses at single-cell resolution within complex cell populations. We implement AND gates to redirect T cell specificity against tumor cells expressing two surface antigens while avoiding off-target recognition of single-antigen cells, and three-input switches that add NOT or OR logic to avoid or include cells expressing a third antigen. Thus, de novo designed proteins can perform computations on the surface of cells, integrating multiple distinct binding interactions into a single output.
Collapse
Affiliation(s)
- Marc J Lajoie
- Institute for Protein Design, University of Washington, Seattle, WA, USA. .,Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Scott E Boyken
- Institute for Protein Design, University of Washington, Seattle, WA, USA.,Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Alexander I Salter
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jilliane Bruffey
- Institute for Protein Design, University of Washington, Seattle, WA, USA.,Department of Biochemistry, University of Washington, Seattle, WA, USA.,Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Anusha Rajan
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Robert A Langan
- Institute for Protein Design, University of Washington, Seattle, WA, USA.,Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Audrey Olshefsky
- Institute for Protein Design, University of Washington, Seattle, WA, USA.,Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Vishaka Muhunthan
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Matthew J Bick
- Institute for Protein Design, University of Washington, Seattle, WA, USA.,Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Mesfin Gewe
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alfredo Quijano-Rubio
- Institute for Protein Design, University of Washington, Seattle, WA, USA.,Department of Biochemistry, University of Washington, Seattle, WA, USA.,Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - JayLee Johnson
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Garreck Lenz
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alisha Nguyen
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Suzie Pun
- Department of Bioengineering, University of Washington, Seattle, WA, USA.,Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Colin E Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stanley R Riddell
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA. .,Department of Biochemistry, University of Washington, Seattle, WA, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
Szigyártó IC, Mihály J, Wacha A, Bogdán D, Juhász T, Kohut G, Schlosser G, Zsila F, Urlacher V, Varga Z, Fülöp F, Bóta A, Mándity I, Beke-Somfai T. Membrane active Janus-oligomers of β 3-peptides. Chem Sci 2020; 11:6868-6881. [PMID: 33042513 PMCID: PMC7504880 DOI: 10.1039/d0sc01344g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/12/2020] [Indexed: 11/21/2022] Open
Abstract
Self-assembly of an acyclic β3-hexapeptide with alternating side chain chirality, into nanometer size oligomeric bundles showing membrane activity and hosting capacity for hydrophobic small molecules.
Self-assembling peptides offer a versatile set of tools for bottom-up construction of supramolecular biomaterials. Among these compounds, non-natural peptidic foldamers experience increased focus due to their structural variability and lower sensitivity to enzymatic degradation. However, very little is known about their membrane properties and complex oligomeric assemblies – key areas for biomedical and technological applications. Here we designed short, acyclic β3-peptide sequences with alternating amino acid stereoisomers to obtain non-helical molecules having hydrophilic charged residues on one side, and hydrophobic residues on the other side, with the N-terminus preventing formation of infinite fibrils. Our results indicate that these β-peptides form small oligomers both in water and in lipid bilayers and are stabilized by intermolecular hydrogen bonds. In the presence of model membranes, they either prefer the headgroup regions or they insert between the lipid chains. Molecular dynamics (MD) simulations suggest the formation of two-layered bundles with their side chains facing opposite directions when compared in water and in model membranes. Analysis of the MD calculations showed hydrogen bonds inside each layer, however, not between the layers, indicating a dynamic assembly. Moreover, the aqueous form of these oligomers can host fluorescent probes as well as a hydrophobic molecule similarly to e.g. lipid transfer proteins. For the tested, peptides the mixed chirality pattern resulted in similar assemblies despite sequential differences. Based on this, it is hoped that the presented molecular framework will inspire similar oligomers with diverse functionality.
Collapse
Affiliation(s)
- Imola Cs Szigyártó
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - András Wacha
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Dóra Bogdán
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ; .,Department of Organic Chemistry , Faculty of Pharmacy , Semmelweis University , H-1092 Budapest , Hungary
| | - Tünde Juhász
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Gergely Kohut
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ; .,Institute of Chemistry , Eötvös Loránd University , H-1117 Budapest , Hungary
| | - Gitta Schlosser
- Institute of Chemistry , Eötvös Loránd University , H-1117 Budapest , Hungary
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Vlada Urlacher
- Institute of Biochemistry , Heinrich-Heine University , 40225 Düsseldorf , Germany
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Ferenc Fülöp
- MTA-SZTE Stereochemistry Research Group , Institute of Pharmaceutical Chemistry , University of Szeged , H-6720 Szeged , Hungary
| | - Attila Bóta
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - István Mándity
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ; .,Department of Organic Chemistry , Faculty of Pharmacy , Semmelweis University , H-1092 Budapest , Hungary
| | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ; .,Department of Chemistry and Chemical Engineering , Physical Chemistry , Chalmers University of Technology , SE-41296 Göteborg , Sweden
| |
Collapse
|
39
|
Hetherington K, Hegedus Z, Edwards TA, Sessions RB, Nelson A, Wilson AJ. Stapled Peptides as HIF-1α/p300 Inhibitors: Helicity Enhancement in the Bound State Increases Inhibitory Potency. Chemistry 2020; 26:7638-7646. [PMID: 32307728 PMCID: PMC7318359 DOI: 10.1002/chem.202000417] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/13/2020] [Indexed: 12/17/2022]
Abstract
Protein-protein interactions (PPIs) control virtually all cellular processes and have thus emerged as potential targets for development of molecular therapeutics. Peptide-based inhibitors of PPIs are attractive given that they offer recognition potency and selectivity features that are ideal for function, yet, they do not predominantly populate the bioactive conformation, frequently suffer from poor cellular uptake and are easily degraded, for example, by proteases. The constraint of peptides in a bioactive conformation has emerged as a promising strategy to mitigate against these liabilities. In this work, using peptides derived from hypoxia-inducible factor 1 (HIF-1α) together with dibromomaleimide stapling, we identify constrained peptide inhibitors of the HIF-1α/p300 interaction that are more potent than their unconstrained sequences. Contrary to expectation, the increased potency does not correlate with an increased population of an α-helical conformation in the unbound state as demonstrated by experimental circular dichroism analysis. Rather, the ability of the peptide to adopt a bioactive α-helical conformation in the p300 bound state is better supported in the constrained variant as demonstrated by molecular dynamics simulations and circular dichroism difference spectra.
Collapse
Affiliation(s)
- Kristina Hetherington
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Zsofia Hegedus
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Thomas A. Edwards
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Richard B. Sessions
- School of BiochemistryUniversity of BristolMedical Sciences Building, University WalkBristolBS8 1TDUK
- BrisSynBioUniversity of Bristol, Life Sciences BuildingTyndall AvenueBristolBS8 1TQUK
| | - Adam Nelson
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Andrew J. Wilson
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| |
Collapse
|
40
|
Datta LP, Manchineella S, Govindaraju T. Biomolecules-derived biomaterials. Biomaterials 2020; 230:119633. [DOI: 10.1016/j.biomaterials.2019.119633] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022]
|
41
|
Zhou W, Xiao Q, Chang Y, Liu Q, Zang X, Hu M, Zeng X, Du Z, Zhong G. Substrate-controlled Diastereoselective Michael Addition of Alkylidene Malonates by Grignard Reagents. HETEROCYCL COMMUN 2019. [DOI: 10.1515/hc-2019-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractHerein is described a diastereoselective Michael addition of Grignard reagents to α, β- unsaturated diethyl malonates incorporated with a 2-oxazolidone chiral auxiliary. The catalyst-free Michael addition proceeds with good chemical efficiency and excellent stereoselectivity; and it provides new thoughts to the asymmetric synthesis of β-substituted β3 amino acid derivatives.
Collapse
Affiliation(s)
- Wei Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou510006, PR China
| | - Qingwei Xiao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou510006, PR China
| | - Yuanyuan Chang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou510006, PR China
| | - Qifa Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou510006, PR China
| | - Xiaohao Zang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou510006, PR China
| | - Mengmeng Hu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou510006, PR China
| | - Xi Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou510006, PR China
| | - Zhiyun Du
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou Higher Education Mega Center, Guangzhou510006, PR China
| | - Guifa Zhong
- Drug Discovery Pipeline, Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou510530, PR China
| |
Collapse
|
42
|
Goto C, Hirano M, Hayashi K, Kikuchi Y, Hara-Kudo Y, Misawa T, Demizu Y. Development of Amphipathic Antimicrobial Peptide Foldamers Based on Magainin 2 Sequence. ChemMedChem 2019; 14:1911-1916. [PMID: 31667994 DOI: 10.1002/cmdc.201900460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/27/2019] [Indexed: 11/07/2022]
Abstract
Magainin 2 (Mag 2), which is isolated from the skin of frogs, is a representative antimicrobial peptide (AMP), exerts its antimicrobial activity via microbial membrane disruption. It has been reported that both the amphipathicity and helical structure of Mag 2 play an important role in its antimicrobial activity. In this study, we revealed that the sequence of 17 amino acid residues in Mag 2 (peptide 7) is required to exert sufficient activity. We also designed a set of Mag 2 derivatives, based on enhancement of helicity and/or amphipathicity, by incorporation of α,α-disubstituted amino acid residues into the Mag 2 fragment, and evaluated their preferred secondary structures and their antimicrobial activities against both Gram-positive and Gram-negative bacteria. As a result, peptide 11 formed a stable helical structure in solution, and possessed potent antimicrobial activities against both Gram-positive and Gram-negative bacteria without significant cytotoxicity.
Collapse
Affiliation(s)
- Chihiro Goto
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.,Graduate School of Medical Health Sciences, Yokohama City University, Yokohama-shi, Kanagawa, 230-0045, Japan
| | - Motoharu Hirano
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Katsuhiko Hayashi
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Yutaka Kikuchi
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.,Department of Nutrition, Chiba Prefectural University of Health Sciences University, 2-10-1 Wakaba, Mihama-ku, Chiba, 261-0014, Japan
| | - Yukiko Hara-Kudo
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Takashi Misawa
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Yosuke Demizu
- National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.,Graduate School of Medical Health Sciences, Yokohama City University, Yokohama-shi, Kanagawa, 230-0045, Japan
| |
Collapse
|
43
|
Wang Z, Ji H. Targeting the Side-Chain Convergence of Hydrophobic α-Helical Hot Spots To Design Small-Molecule Mimetics: Key Binding Features for i, i + 3, and i + 7. J Med Chem 2019; 62:9906-9917. [PMID: 31593458 DOI: 10.1021/acs.jmedchem.9b01324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conformational convergence of hydrophobic α-helical hot spots was revealed by analyzing α-helix-mediated protein-protein interaction (PPI) complex structures. The pharmacophore models were derived for hydrophobic α-helical hot spots at positions i, i + 3, and i + 7. These provide the foundation for designing generalizable scaffolds that can directly mimic the binding mode of the side chains of α-helical hot spots, offering a new class of small-molecule α-helix mimetics. For the first time, the protocol was developed to identify the PPI targets that have similar binding pockets, allowing evaluation of inhibitor selectivities between α-helix-mediated PPIs. The mimicry efficiency of the previously designed scaffold 1 was disclosed. The close positioning of this small molecule to the additional α-helical hot spots suggests that the decoration of this series of generalizable scaffolds can conveniently reach the binding pockets of additional α-helical hot spots to produce potent small-molecule inhibitors for α-helix-mediated PPIs.
Collapse
Affiliation(s)
- Zhen Wang
- Drug Discovery Department , H. Lee Moffitt Cancer Center & Research Institute , 12902 Magnolia Drive , Tampa , Florida 33612-9497 , United States.,Departments of Chemistry and Oncologic Sciences , University of South Florida , Tampa , Florida 33620-9497 , United States
| | - Haitao Ji
- Drug Discovery Department , H. Lee Moffitt Cancer Center & Research Institute , 12902 Magnolia Drive , Tampa , Florida 33612-9497 , United States.,Departments of Chemistry and Oncologic Sciences , University of South Florida , Tampa , Florida 33620-9497 , United States
| |
Collapse
|
44
|
Ferrazzano L, Corbisiero D, Greco R, Potenza E, De Seriis G, Garelli A, Tolomelli A. Synthesis of α/β dipeptides containing linear or cyclic α-dehydro-β-amino acids as scaffolds for bioactive compounds. Amino Acids 2019; 51:1475-1483. [DOI: 10.1007/s00726-019-02782-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/29/2019] [Indexed: 01/14/2023]
|
45
|
Sarojini V, Cameron AJ, Varnava KG, Denny WA, Sanjayan G. Cyclic Tetrapeptides from Nature and Design: A Review of Synthetic Methodologies, Structure, and Function. Chem Rev 2019; 119:10318-10359. [PMID: 31418274 DOI: 10.1021/acs.chemrev.8b00737] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small cyclic peptides possess a wide range of biological properties and unique structures that make them attractive to scientists working in a range of areas from medicinal to materials chemistry. However, cyclic tetrapeptides (CTPs), which are important members of this family, are notoriously difficult to synthesize. Various synthetic methodologies have been developed that enable access to natural product CTPs and their rationally designed synthetic analogues having novel molecular structures. These methodologies include the use of reversible protecting groups such as pseudoprolines that restrict conformational freedom, ring contraction strategies, on-resin cyclization approaches, and optimization of coupling reagents and reaction conditions such as temperature and dilution factors. Several fundamental studies have documented the impacts of amino acid configurations, N-alkylation, and steric bulk on both synthetic success and ensuing conformations. Carefully executed retrosynthetic ring dissection and the unique structural features of the linear precursor sequences that result from the ring dissection are crucial for the success of the cyclization step. Other factors that influence the outcome of the cyclization step include reaction temperature, solvent, reagents used as well as dilution levels. The purpose of this review is to highlight the current state of affairs on naturally occurring and rationally designed cyclic tetrapeptides, including strategies investigated for their syntheses in the literature, the conformations adopted by these molecules, and specific examples of their function. Using selected examples from the literature, an in-depth discussion of the synthetic techniques and reaction parameters applied for the successful syntheses of 12-, 13-, and 14-membered natural product CTPs and their novel analogues are presented, with particular focus on the cyclization step. Selected examples of the three-dimensional structures of cyclic tetrapeptides studied by NMR, and X-ray crystallography are also included.
Collapse
Affiliation(s)
- Vijayalekshmi Sarojini
- School of Chemical Sciences and the Centre for Green Chemical Science , University of Auckland , Auckland 1142 , New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6140 , New Zealand
| | - Alan J Cameron
- School of Chemical Sciences and the Centre for Green Chemical Science , University of Auckland , Auckland 1142 , New Zealand
| | - Kyriakos G Varnava
- School of Chemical Sciences and the Centre for Green Chemical Science , University of Auckland , Auckland 1142 , New Zealand
| | | | - Gangadhar Sanjayan
- Division of Organic Chemistry , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411 008 , India
| |
Collapse
|
46
|
John-White M, Gardiner J, Johanesen P, Lyras D, Dumsday G. β-Aminopeptidases: Insight into Enzymes without a Known Natural Substrate. Appl Environ Microbiol 2019; 85:e00318-19. [PMID: 31126950 PMCID: PMC6643246 DOI: 10.1128/aem.00318-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 02/05/2023] Open
Abstract
β-Aminopeptidases have the unique capability to hydrolyze N-terminal β-amino acids, with varied preferences for the nature of β-amino acid side chains. This unique capability makes them useful as biocatalysts for synthesis of β-peptides and to kinetically resolve β-peptides and amides for the production of enantiopure β-amino acids. To date, six β-aminopeptidases have been discovered and functionally characterized, five from Gram-negative bacteria and one from a fungus, Aspergillus Here we report on the purification and characterization of an additional four β-aminopeptidases, one from a Gram-positive bacterium, Mycolicibacterium smegmatis (BapAMs), one from a yeast, Yarrowia lipolytica (BapAYlip), and two from Gram-negative bacteria isolated from activated sludge identified as Burkholderia spp. (BapABcA5 and BapABcC1). The genes encoding β-aminopeptidases were cloned, expressed in Escherichia coli, and purified. The β-aminopeptidases were produced as inactive preproteins that underwent self-cleavage to form active enzymes comprised of two different subunits. The subunits, designated α and β, appeared to be tightly associated, as the active enzyme was recovered after immobilized-metal affinity chromatography (IMAC) purification, even though only the α-subunit was 6-histidine tagged. The enzymes were shown to hydrolyze chromogenic substrates with the N-terminal l-configurations β-homo-Gly (βhGly) and β3-homo-Leu (β3hLeu) with high activities. These enzymes displayed higher activity with H-βhGly-p-nitroanilide (H-βhGly-pNA) than previously characterized enzymes from other microorganisms. These data indicate that the new β-aminopeptidases are fully functional, adding to the toolbox of enzymes that could be used to produce β-peptides. Overexpression studies in Pseudomonas aeruginosa also showed that the β-aminopeptidases may play a role in some cellular functions.IMPORTANCE β-Aminopeptidases are unique enzymes found in a diverse range of microorganisms that can utilize synthetic β-peptides as a sole carbon source. Six β-aminopeptidases have been previously characterized with preferences for different β-amino acid substrates and have demonstrated the capability to catalyze not only the degradation of synthetic β-peptides but also the synthesis of short β-peptides. Identification of other β-aminopeptidases adds to this toolbox of enzymes with differing β-amino acid substrate preferences and kinetics. These enzymes have the potential to be utilized in the sustainable manufacture of β-amino acid derivatives and β-peptides for use in biomedical and biomaterial applications. This is important, because β-amino acids and β-peptides confer increased proteolytic resistance to bioactive compounds and form novel structures as well as structures similar to α-peptides. The discovery of new enzymes will also provide insight into the biological importance of these enzymes in nature.
Collapse
Affiliation(s)
- Marietta John-White
- CSIRO Manufacturing, Clayton, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | - Priscilla Johanesen
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
47
|
Cicaloni V, Trezza A, Pettini F, Spiga O. Applications of in Silico Methods for Design and Development of Drugs Targeting Protein-Protein Interactions. Curr Top Med Chem 2019; 19:534-554. [PMID: 30836920 DOI: 10.2174/1568026619666190304153901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/02/2019] [Accepted: 01/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Identification of Protein-Protein Interactions (PPIs) is a major challenge in modern molecular biology and biochemistry research, due to the unquestionable role of proteins in cells, biological process and pathological states. Over the past decade, the PPIs have evolved from being considered a highly challenging field of research to being investigated and examined as targets for pharmacological intervention. OBJECTIVE Comprehension of protein interactions is crucial to known how proteins come together to build signalling pathways, to carry out their functions, or to cause diseases, when deregulated. Multiplicity and great amount of PPIs structures offer a huge number of new and potential targets for the treatment of different diseases. METHODS Computational techniques are becoming predominant in PPIs studies for their effectiveness, flexibility, accuracy and cost. As a matter of fact, there are effective in silico approaches which are able to identify PPIs and PPI site. Such methods for computational target prediction have been developed through molecular descriptors and data-mining procedures. RESULTS In this review, we present different types of interactions between protein-protein and the application of in silico methods for design and development of drugs targeting PPIs. We described computational approaches for the identification of possible targets on protein surface and to detect of stimulator/ inhibitor molecules. CONCLUSION A deeper study of the most recent bioinformatics methodologies for PPIs studies is vital for a better understanding of protein complexes and for discover new potential PPI modulators in therapeutic intervention.
Collapse
Affiliation(s)
- Vittoria Cicaloni
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy.,Toscana Life Sciences Foundation, via Fiorentina 1, 53100 Siena, Italy
| | - Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy
| | - Francesco Pettini
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
48
|
Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations. Nat Commun 2019; 10:2385. [PMID: 31160589 PMCID: PMC6547681 DOI: 10.1038/s41467-019-10363-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022] Open
Abstract
Venetoclax is a first-in-class cancer therapy that interacts with the cellular apoptotic machinery promoting apoptosis. Treatment of patients suffering chronic lymphocytic leukaemia with this BCL-2 antagonist has revealed emergence of a drug-selected BCL-2 mutation (G101V) in some patients failing therapy. To understand the molecular basis of this acquired resistance we describe the crystal structures of venetoclax bound to both BCL-2 and the G101V mutant. The pose of venetoclax in its binding site on BCL-2 reveals small but unexpected differences as compared to published structures of complexes with venetoclax analogues. The G101V mutant complex structure and mutant binding assays reveal that resistance is acquired by a knock-on effect of V101 on an adjacent residue, E152, with venetoclax binding restored by a E152A mutation. This provides a framework for considering analogues of venetoclax that might be effective in combating this mutation. The BCL-2 mutation G101V reduces venetoclax affinity and confers drug resistance in patients with chronic lymphocytic leukaemia. Here, the authors present crystal structures and biochemical analyses of venetoclax bound to BCL-2 and the G101V mutant, revealing the structural basis for venetoclax resistance.
Collapse
|
49
|
Arrata I, Grison CM, Coubrough HM, Prabhakaran P, Little MA, Tomlinson DC, Webb ME, Wilson AJ. Control of conformation in α-helix mimicking aromatic oligoamide foldamers through interactions between adjacent side-chains. Org Biomol Chem 2019; 17:3861-3867. [PMID: 30938392 DOI: 10.1039/c9ob00123a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design, synthesis and structural characterization of non-natural oligomers that adopt well-defined conformations, so called foldamers, is a key objective in developing biomimetic 3D functional architectures. For the aromatic oligoamide foldamer family, use of interactions between side-chains to control conformation is underexplored. The current manuscript addresses this objective through the design, synthesis and conformational analyses of model dimers derived from 3-O-alkylated para-aminobenzoic acid monomers. The O-alkyl groups on these foldamers are capable of adopting syn- or anti-conformers through rotation around the Ar-CO/NH axes. In the syn-conformation this allows the foldamer to act as a topographical mimic of the α-helix whereby the O-alkyl groups mimic the spatial orientation of the i and i + 4 side-chains from the α-helix. Using molecular modelling and 2D NMR analyses, this work illustrates that covalent links and hydrogen-bonding interactions between side-chains can bias the conformation in favour of the α-helix mimicking syn-conformer, offering insight that may be more widely applied to control secondary structure in foldamers.
Collapse
Affiliation(s)
- Irene Arrata
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Iqbal ES, Dods KK, Hartman MCT. Ribosomal incorporation of backbone modified amino acids via an editing-deficient aminoacyl-tRNA synthetase. Org Biomol Chem 2019; 16:1073-1078. [PMID: 29367962 DOI: 10.1039/c7ob02931d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to incorporate non-canonical amino acids (ncAA) using translation offers researchers the ability to extend the functionality of proteins and peptides for many applications including synthetic biology, biophysical and structural studies, and discovery of novel ligands. Here we describe the high promiscuity of an editing-deficient valine-tRNA synthetase (ValRS T222P). Using this enzyme, we demonstrate ribosomal translation of 11 ncAAs including those with novel side chains, α,α-disubstitutions, and cyclic β-amino acids.
Collapse
Affiliation(s)
- Emil S Iqbal
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, Virginia 23284, USA.
| | | | | |
Collapse
|