1
|
Zheng L, Xu L, Gu P, Chen Y. Lattice engineering of noble metal-based nanomaterials via metal-nonmetal interactions for catalytic applications. NANOSCALE 2024; 16:7841-7861. [PMID: 38563756 DOI: 10.1039/d4nr00561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Noble metal-based nanomaterials possess outstanding catalytic properties in various chemical reactions. However, the increasing cost of noble metals severely hinders their large-scale applications. A cost-effective strategy is incorporating noble metals with light nonmetal elements (e.g., H, B, C, N, P and S) to form noble metal-based nanocompounds, which can not only reduce the noble metal content, but also promote their catalytic performances by tuning their crystal lattices and introducing additional active sites. In this review, we present a concise overview of the recent advancements in the preparation and application of various kinds of noble metal-light nonmetal binary nanocompounds. Besides introducing synthetic strategies, we focus on the effects of introducing light nonmetal elements on the lattice structures of noble metals and highlight notable progress in the lattice strain engineering of representative core-shell nanostructures derived from these nanocompounds. In the meantime, the catalytic applications of the light element-incorporated noble metal-based nanomaterials are discussed. Finally, we discuss current challenges and future perspectives in the development of noble metal-nonmetal based nanomaterials.
Collapse
Affiliation(s)
- Long Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China.
| | - Lei Xu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ping Gu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Bera S, Sahu P, Dutta A, Nobile C, Pradhan N, Cozzoli PD. Partial Chemicalization of Nanoscale Metals: An Intra-Material Transformative Approach for the Synthesis of Functional Colloidal Metal-Semiconductor Nanoheterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305985. [PMID: 37724799 DOI: 10.1002/adma.202305985] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/09/2023] [Indexed: 09/21/2023]
Abstract
Heterostructuring colloidal nanocrystals into multicomponent modular constructs, where domains of distinct metal and semiconductor phases are interconnected through bonding interfaces, is a consolidated approach to advanced breeds of solution-processable hybrid nanomaterials capable of expressing richly tunable and even entirely novel physical-chemical properties and functionalities. To meet the challenges posed by the wet-chemical synthesis of metal-semiconductor nanoheterostructures and to overcome some intrinsic limitations of available protocols, innovative transformative routes, based on the paradigm of partial chemicalization, have recently been devised within the framework of the standard seeded-growth scheme. These techniques involve regiospecific replacement reactions on preformed nanocrystal substrates, thus holding great synthetic potential for programmable configurational diversification. This review article illustrates achievements so far made in the elaboration of metal-semiconductor nanoheterostructures with tailored arrangements of their component modules by means of conversion pathways that leverage on spatially controlled partial chemicalization of mono- and bi-metallic seeds. The advantages and limitations of these approaches are discussed within the context of the most plausible mechanisms underlying the evolution of the nanoheterostructures in liquid media. Representative physical-chemical properties and applications of chemicalization-derived metal-semiconductor nanoheterostructures are emphasized. Finally, prospects for developments in the field are outlined.
Collapse
Affiliation(s)
- Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Sciences (IACS), Kolkata, 700032, India
| | - Puspanjali Sahu
- School of Materials Sciences, Indian Association for the Cultivation of Sciences (IACS), Kolkata, 700032, India
| | - Anirban Dutta
- School of Materials Sciences, Indian Association for the Cultivation of Sciences (IACS), Kolkata, 700032, India
| | - Concetta Nobile
- CNR NANOTEC - Institute of Nanotechnology, UOS di Lecce, Lecce, 73100, Italy
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Sciences (IACS), Kolkata, 700032, India
| | - P Davide Cozzoli
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Lecce, 73100, Italy
- UdR INSTM di Lecce, c/o Università del Salento, Lecce, 73100, Italy
| |
Collapse
|
3
|
Liu K, Qiao Z, Gao C. Preventing the Galvanic Replacement Reaction toward Unconventional Bimetallic Core-Shell Nanostructures. Molecules 2023; 28:5720. [PMID: 37570689 PMCID: PMC10419990 DOI: 10.3390/molecules28155720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/08/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
A bimetallic core-shell nanostructure is a versatile platform for achieving intriguing optical and catalytic properties. For a long time, this core-shell nanostructure has been limited to ones with noble metal cores. Otherwise, a galvanic replacement reaction easily occurs, leading to hollow nanostructures or completely disintegrated ones. In the past few years, great efforts have been devoted to preventing the galvanic replacement reaction, thus creating an unconventional class of core-shell nanostructures, each containing a less-stable-metal core and a noble metal shell. These new nanostructures have been demonstrated to show unique optical and catalytic properties. In this work, we first briefly summarize the strategies for synthesizing this type of unconventional core-shell nanostructures, such as the delicately designed thermodynamic control and kinetic control methods. Then, we discuss the effects of the core-shell nanostructure on the stabilization of the core nanocrystals and the emerging optical and catalytic properties. The use of the nanostructure for creating hollow/porous nanostructures is also discussed. At the end of this review, we discuss the remaining challenges associated with this unique core-shell nanostructure and provide our perspectives on the future development of the field.
Collapse
Affiliation(s)
| | | | - Chuanbo Gao
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China; (K.L.); (Z.Q.)
| |
Collapse
|
4
|
Guo Z, Yu G, Zhang Z, Han Y, Guan G, Yang W, Han MY. Intrinsic Optical Properties and Emerging Applications of Gold Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206700. [PMID: 36620937 DOI: 10.1002/adma.202206700] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/21/2022] [Indexed: 06/09/2023]
Abstract
The collective oscillation of free electrons at the nanoscale surface of gold nanostructures is closely modulated by tuning the size, shape/morphology, phase, composition, hybridization, assembly, and nanopatterning, along with the surroundings of the plasmonic surface located at a dielectric interface with air, liquid, and solid. This review first introduces the physical origin of the intrinsic optical properties of gold nanostructures and further summarizes stimuli-responsive changes in optical properties, metal-field-enhanced optical signals, luminescence spectral shaping, chiroptical response, and photogenerated hot carriers. The current success in the landscape of nanoscience and nanotechnology mainly originates from the abundant optical properties of gold nanostructures in the thermodynamically stable face-centered cubic (fcc) phase. It has been further extended by crystal phase engineering to prepare thermodynamically unfavorable phases (e.g., kinetically stable) and heterophases to modulate their intriguing phase-dependent optical properties. A broad range of promising applications, including but not limited to full-color displays, solar energy harvesting, photochemical reactions, optical sensing, and microscopic/biomedical imaging, have fostered parallel research on the multitude of physical effects occurring in gold nanostructures.
Collapse
Affiliation(s)
- Zilong Guo
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Guo Yu
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhiguo Zhang
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Yandong Han
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Guijian Guan
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wensheng Yang
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475001, China
| | - Ming-Yong Han
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Singapore, 138634, Singapore
| |
Collapse
|
5
|
Zhai L, Gebre ST, Chen B, Xu D, Chen J, Li Z, Liu Y, Yang H, Ling C, Ge Y, Zhai W, Chen C, Ma L, Zhang Q, Li X, Yan Y, Huang X, Li L, Guan Z, Tao CL, Huang Z, Wang H, Liang J, Zhu Y, Lee CS, Wang P, Zhang C, Gu L, Du Y, Lian T, Zhang H, Wu XJ. Epitaxial growth of highly symmetrical branched noble metal-semiconductor heterostructures with efficient plasmon-induced hot-electron transfer. Nat Commun 2023; 14:2538. [PMID: 37137913 PMCID: PMC10156852 DOI: 10.1038/s41467-023-38237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
Epitaxial growth is one of the most commonly used strategies to precisely tailor heterostructures with well-defined compositions, morphologies, crystal phases, and interfaces for various applications. However, as epitaxial growth requires a small interfacial lattice mismatch between the components, it remains a challenge for the epitaxial synthesis of heterostructures constructed by materials with large lattice mismatch and/or different chemical bonding, especially the noble metal-semiconductor heterostructures. Here, we develop a noble metal-seeded epitaxial growth strategy to prepare highly symmetrical noble metal-semiconductor branched heterostructures with desired spatial configurations, i.e., twenty CdS (or CdSe) nanorods epitaxially grown on twenty exposed (111) facets of Ag icosahedral nanocrystal, albeit a large lattice mismatch (more than 40%). Importantly, a high quantum yield (QY) of plasmon-induced hot-electron transferred from Ag to CdS was observed in epitaxial Ag-CdS icosapods (18.1%). This work demonstrates that epitaxial growth can be achieved in heterostructures composed of materials with large lattice mismatches. The constructed epitaxial noble metal-semiconductor interfaces could be an ideal platform for investigating the role of interfaces in various physicochemical processes.
Collapse
Affiliation(s)
- Li Zhai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Sara T Gebre
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Dan Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Junze Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yawei Liu
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Chongyi Ling
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Changsheng Chen
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuefei Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yujie Yan
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Xinyu Huang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Lujiang Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhiqiang Guan
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Chen-Lei Tao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Hongyi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jinze Liang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Ye Zhu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Chun-Sing Lee
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Peng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yonghua Du
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA.
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China.
| | - Xue-Jun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
6
|
Liu F, Fan Z. Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chem Soc Rev 2023; 52:1723-1772. [PMID: 36779475 DOI: 10.1039/d2cs00931e] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
In the global trend towards carbon neutrality, sustainable energy conversion and storage technologies are of vital significance to tackle the energy crisis and climate change. However, traditional electrode materials gradually reach their property limits. Two-dimensional (2D) materials featuring large aspect ratios and tunable surface properties exhibit tremendous potential for improving the performance of energy conversion and storage devices. To rationally control the physical and chemical properties for specific applications, defect engineering of 2D materials has been investigated extensively, and is becoming a versatile strategy to promote the electrode reaction kinetics. Simultaneously, exploring the in-depth mechanisms underlying defect action in electrode reactions is crucial to provide profound insight into structure tailoring and property optimization. In this review, we highlight the cutting-edge advances in defect engineering in 2D materials as well as their considerable effects in energy-related applications. Moreover, the confronting challenges and promising directions are discussed for the development of advanced energy conversion and storage systems.
Collapse
Affiliation(s)
- Fu Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China. .,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
7
|
Xu H, Li J, Chu X. Intensifying Hydrogen Spillover for Boosting Electrocatalytic Hydrogen Evolution Reaction. CHEM REC 2023; 23:e202200244. [PMID: 36482015 DOI: 10.1002/tcr.202200244] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Indexed: 12/13/2022]
Abstract
Hydrogen spillover has attracted increasing interests in the field of electrocatalytic hydrogen evolution reaction (HER) in recent years because of their distinct reaction mechanism and beneficial terms for simultaneously weakening the strong hydrogen adsorption on metal and strengthening the weak hydrogen adsorption on support. By taking advantageous merits of efficient hydrogen transfer, hydrogen spillover-based binary catalysts have been widely investigated, which paves a new way for boosting the development of hydrogen production by water electrolysis. In this paper, we summarize the recent progress of this interesting field by focusing on the advanced strategies for intensifying the hydrogen spillover towards HER. In addition, the challenging issues and some perspective insights in the future development of hydrogen spillover-based electrocatalysts are also systematically discussed.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province, 213164, China.,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Junru Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Xianxu Chu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China.,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
8
|
Tian L, Liu Y, He C, Tang S, Li J, Li Z. Hollow Heterostructured Nanocatalysts for Boosting Electrocatalytic Water Splitting. CHEM REC 2023; 23:e202200213. [PMID: 36193962 DOI: 10.1002/tcr.202200213] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Indexed: 11/07/2022]
Abstract
The implementation of electrochemical water splitting demands the development and application of electrocatalysts to overcome sluggish reaction kinetics of hydrogen/oxygen evolution reaction (HER/OER). Hollow nanostructures, particularly for hollow heterostructured nanomaterials can provide multiple solutions to accelerate the HER/OER kinetics owing to their advantageous merit. Herein, the recent advances of hollow heterostructured nanocatalysts and their excellent performance for water splitting are systematically summarized. Starting by illustrating the intrinsically advantageous features of hollow heterostructures, achievements in engineering hollow heterostructured electrocatalysts are also highlighted with the focus on structural design, interfacial engineering, composition regulation, and catalytic evaluation. Finally, some perspective insights and future challenges of hollow heterostructured nanocatalysts for electrocatalytic water splitting are also discussed.
Collapse
Affiliation(s)
- Lin Tian
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Yuanyuan Liu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Changchun He
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Shirong Tang
- School of Food Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Jing Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| |
Collapse
|
9
|
Chu X, Wang K, Qian W, Xu H. Surface and interfacial engineering of 1D Pt-group nanostructures for catalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Yin PF, Fu J, Yun Q, Chen B, Liu G, Li L, Huang Z, Ge Y, Zhang H. Preparation of Amorphous SnO 2 -Encapsulated Multiphased Crystalline Cu Heterostructures for Highly Efficient CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201114. [PMID: 35448914 DOI: 10.1002/adma.202201114] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Controlling the architectures and crystal phases of metal@semiconductor heterostructures is very important for modulating their physicochemical properties and enhancing their application performances. Here, a facile one-pot wet-chemical method to synthesize three types of amorphous SnO2 -encapsulated crystalline Cu heterostructures, i.e., hemicapsule, yolk-shell, and core-shell nanostructures, in which unconventional crystal phases (e.g., 2H, 4H, and 6H) and defects (e.g., stacking faults and twin boundaries) are observed in the crystalline Cu cores, is reported. The hemicapsule Cu@SnO2 heterostructures, with voids that not only expose the Cu core with unconventional phases but also retain the interface between Cu and SnO2 , show an excellent electrocatalytic CO2 reduction reaction (CO2 RR) selectivity toward the production of CO and formate with high Faradaic efficiency (FE) above 90% in a wide potential window from -1.05 to -1.55 V (vs reversible hydrogen electrode (RHE)), and the highest FE of CO2 RR (95.3%) is obtained at -1.45 V (vs RHE). This work opens up a new way for the synthesis of new heterostructured nanomaterials with promising catalytic application.
Collapse
Affiliation(s)
- Peng-Fei Yin
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiaju Fu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Guigao Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Lujiang Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
11
|
Sun P, Tang X, Yang W, Wang X, Zhou R, Chen N, Yuan SF. N-Heterocyclic Thione-Protected Ag 4 Tetrahedra and Ag 8 Cubes Cocrystallized in a Single Crystal. Inorg Chem 2022; 61:9251-9256. [PMID: 35723507 DOI: 10.1021/acs.inorgchem.2c00900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polynuclear silver clusters have attracted intensive attention in the academic community owing to their rich physicochemical properties. The development of thione-protected silver clusters has been lagging behind the well-explored thiolate-protected silver-sulfide clusters. Herein, we report two N-heterocyclic thione-protected silver clusters: [Ag4(2-TBI)6(SO4)3]2- (Ag4) and [Br@Ag8(2-TBI)12(SO4)2]3+ (Ag8) (2-TBI = 2-thiobenzimidazol), which cocrystallize to form cluster-based molecular crystals with a CaF2-type structure. The cocrystal shows high thermal stability in air. Notably, the two cluster-based layers are alternately assembled to exhibit a unique k-vector-differential crystallographic arrangement. This work may lay a foundation for synthesis of atomically precise and stable silver clusters using readily available N-heterocyclic thione ligands.
Collapse
Affiliation(s)
- Peipei Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiongkai Tang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Weijie Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Rui Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.,College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shang-Fu Yuan
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
12
|
Zhang Q, Zhang M, Chen T, Li L, Shi S, Jiang R. Unconventional Phase Engineering of Fuel-Cell Electrocatalysts. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116363] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Li P, Kang Z, Rao F, Lu Y, Zhang Y. Nanowelding in Whole-Lifetime Bottom-Up Manufacturing: From Assembly to Service. SMALL METHODS 2021; 5:e2100654. [PMID: 34927947 DOI: 10.1002/smtd.202100654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Indexed: 06/14/2023]
Abstract
The continuous miniaturization of microelectronics is pushing the transformation of nanomanufacturing modes from top-down to bottom-up. Bottom-up manufacturing is essentially the way of assembling nanostructures from atoms, clusters, quantum dots, etc. The assembly process relies on nanowelding which also existed in the synthesis process of nanostructures, construction and repair of nanonetworks, interconnects, integrated circuits, and nanodevices. First, many kinds of novel nanomaterials and nanostructures from 0D to 1D, and even 2D are synthesized by nanowelding. Second, the connection of nanostructures and interfaces between metal/semiconductor-metal/semiconductor is realized through low-temperature heat-assisted nanowelding, mechanical-assisted nanowelding, or cold welding. Finally, 2D and 3D interconnects, flexible transparent electrodes, integrated circuits, and nanodevices are constructed, functioned, or self-healed by nanowelding. All of the three nanomanufacturing stages follow the rule of "oriented attachment" mechanisms. Thus, the whole-lifetime bottom-up manufacturing process from the synthesis and connection of nanostructures to the construction and service of nanodevices can be organically integrated by nanowelding. The authors hope this review can bring some new perspective in future semiconductor industrialization development in the expansion of multi-material systems, technology pathway for the refined design, controlled synthesis and in situ characterization of complex nanostructures, and the strategies to develop and repair novel nanodevices in service.
Collapse
Affiliation(s)
- Peifeng Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhuo Kang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Feng Rao
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Nanomanufacturing Laboratory (NML), Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Yue Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
14
|
Li J, Liang X, Cai L, Zhao C. Surfactant-Free Synthesis of Three-Dimensional Metallic Nanonetworks via Nanobubble-Assisted Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8323-8330. [PMID: 34210124 DOI: 10.1021/acs.langmuir.1c01153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Three-dimensional metallic nanonetworks (3D-MNWs) demonstrate unique performances across a wide range of fields, and their facile and green synthetic method is of high significance. Herein, we report a self-generated-nanobubble scaffolding strategy for the fabrication of 3D-MNWs, which employs aqua ammonia (AA) as a nanobubble reservoir and avoids the use of any surfactants or polymeric capping agents. Benefiting from the interaction between ammonia and metallic nanoparticles, finely interlocked nanonetworks (Au, Pt, Ag, and Cu) with curved geometry and abundant pores are obtained by precisely controlling the anisotropic kinetic growth using a strong reducing agent and a high concentration of AA. As a demonstration, the methanol oxidation reaction (MOR) is tested to assess the electrocatalytic performance of the Pt 3D-MNWs. The peak current of Pt 3D-MNWs reaches 152 mA/mgPt, which is 2.5 times higher than that of commercial Pt black. This unique nanobubble-assisted strategy has great potential in the basic synthetic prototype for polyporous nanomaterials.
Collapse
Affiliation(s)
- Jun Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- College of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Xiaosi Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Liying Cai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chenyang Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
15
|
Li P, Liao W, Yue L, Fan Z, Rao F. Key factors affecting Rayleigh instability of ultrathin 4H hexagonal gold nanoribbons. NANOSCALE ADVANCES 2020; 2:3027-3032. [PMID: 36132405 PMCID: PMC9419477 DOI: 10.1039/d0na00186d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/22/2020] [Indexed: 06/15/2023]
Abstract
Rayleigh instability was originally used to describe the phenomenon of a cylindrical fluid jet that transforms into a chain of droplets. Very recently, it has been extended to metallic nanostructures like gold (Au) and silver (Ag) nanowires (NWs), as well as mixed alloy NWs by some thermodynamic processes. To date, the key factors affecting the Rayleigh instability have not been well studied. To clarify this, we systematically investigate the features of Rayleigh instability in ultrathin 4H hexagonal Au nanoribbons (NRBs) under electron beam (E-beam) irradiation. We prove that by decreasing the initial widths of 4H Au NRBs and the E-beam current density, as well as the irradiation time and intensity per unit area, the Rayleigh instability can be effectively restrained. Our work thus sheds light on how to effectively reduce or even eliminate the Rayleigh instability of one dimensional nanomaterials.
Collapse
Affiliation(s)
- Peifeng Li
- College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
| | - Weibing Liao
- College of Physics and Energy, Shenzhen University Shenzhen 518060 China
| | - Lijie Yue
- School of Materials Science and Engineering, Shandong University of Science and Technology Qingdao 266590 China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong Kowloon 999077 Hong Kong China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong Hong Kong China
| | - Feng Rao
- College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
| |
Collapse
|
16
|
Affiliation(s)
- Chuanbo Gao
- Center for Materials Chemistry, Frontier Institute of Science and Technology, and State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, China
| | - Fenglei Lyu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
17
|
Zhang Y, Li N, Zhang Z, Li S, Cui M, Ma L, Zhou H, Su D, Zhang S. Programmable Synthesis of Multimetallic Phosphide Nanorods Mediated by Core/Shell Structure Formation and Conversion. J Am Chem Soc 2020; 142:8490-8497. [DOI: 10.1021/jacs.0c02584] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yulu Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Na Li
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Zhiyong Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Shuang Li
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Meiyang Cui
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Dong Su
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sen Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
18
|
Liu J, Zhang J. Nanointerface Chemistry: Lattice-Mismatch-Directed Synthesis and Application of Hybrid Nanocrystals. Chem Rev 2020; 120:2123-2170. [DOI: 10.1021/acs.chemrev.9b00443] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jia Liu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| |
Collapse
|
19
|
Zhang Y, Wang K, Yang Y, Xu J, Sun B, Zhu L. Impacts of sulfidation of silver nanowires on the degradation of bisphenol A in water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109739. [PMID: 31586847 DOI: 10.1016/j.ecoenv.2019.109739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Silver nanowires (AgNWs) are widely produced in many electronic and optical products, and could be inevitably discharged into the aquatic environments. Sulfidation is one of the most important transformation processes of AgNWs, and could significantly affect their fate and interactions with other pollutants in aquatic environment. In the present study, the sulfidation products of AgNWs with different atomic ratio of Ag and S were prepared under environmentally relevant conditions. The crystal structure, elemental composition, morphology and size of the sulfidation products were comprehensively characterized by powder X-ray diffraction, UV-vis spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscope. The products were heterostructured nanowires and the Ag2S/Ag molar ratio increased with extension of the reaction time. The produced Ag2S-Ag nanowires displayed a good photocatalytic activity and facilitated the degradation of the copresent organic pollutant bisphenol A (BPA) under simulated sunlight irradiation. As sulfidation time increased, more Ag2S was generated and the Ag2S-Ag composites displayed high promotion effect on BPA degradation. This effect could be ascribed to the favorable synergistic effects between Ag2S and AgNWs, such as high electron-hole separation efficiency and low charge transfer resistance. The chemical scavenger experiments demonstrated that superoxide anion radicals and photogenerated holes in the sulfidation products of AgNWs could be the main reactive species for photocatalytic degradation.
Collapse
Affiliation(s)
- Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Kunkun Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Jinliang Xu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| |
Collapse
|
20
|
Wang H, Zhao W, Xu CH, Chen HY, Xu JJ. Electrochemical synthesis of Au@semiconductor core-shell nanocrystals guided by single particle plasmonic imaging. Chem Sci 2019; 10:9308-9314. [PMID: 32110293 PMCID: PMC7006628 DOI: 10.1039/c9sc02804h] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/12/2019] [Indexed: 11/21/2022] Open
Abstract
Plasmonic photocatalysts have opened up a new direction in utilization of visible light and promoting photocatalytic efficiency. An electrochemical deposition method is reported to synthesise metal@semiconductor (M@SC) core-shell nanocrystals. Due to the strong affinity of Au atoms to S2- and Se2- reduced at negative potential, CdS, CdSe and ZnS were selectively deposited on the surface of the Au core to form a uniform shell with a clear metal/semiconductor interface, which conquered the barrier caused by the large lattice mismatch between the two components. Plasmonic effects increased the photocatalytic performance, as well as provided a chance to in situ monitor the surface nucleation and growth. The structure formation process could be observed under dark-field microscopy (DFM) in real-time and precisely controlled via the scattering color, intensity and wavelength. The proof-of-concept strategy combines the electrochemical deposition and plasmonic imaging, which provides a universal approach in controllable synthesis of core-shell heterostructures, and leads to the improvement of plasmonic photocatalysts.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . ;
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . ;
| | - Cong-Hui Xu
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . ;
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . ;
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science , Collaborative Innovation Center of Chemistry for Life Sciences , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China . ;
| |
Collapse
|
21
|
Bao H, Zhang H, Zhou L, Fu H, Liu G, Li Y, Cai W. Ultrathin and Isotropic Metal Sulfide Wrapping on Plasmonic Metal Nanoparticles for Surface Enhanced Ram Scattering-Based Detection of Trace Heavy-Metal Ions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28145-28153. [PMID: 31290313 DOI: 10.1021/acsami.9b05878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A facile and general strategy is presented for homogenous and ultrathin metal sulfide wrapping on plasmonic metal (PM) nanoparticles (NPs) based on a thiourea-induced isotropic shell growth. This strategy is typically implemented just via adding the thiourea into pre-formed PM colloidal solutions containing target metal ions. The validity of this strategy is demonstrated by taking the wrapped NPs with Au core and CuS shell or Au@CuS NPs as an example. They are successfully fabricated via adding the thiourea and Cu2+ solutions into pre-formed Au NP colloidal solution. The CuS shell layer is highly homogenous (<10% in relative standard deviation of shell thickness), regardless of the NPs' shape or curvature. The shell thickness can be controlled from tens down to 0.5 nm just by the addition of different amounts of shell precursors. The formation of the shell layer on the Au NPs can be attributed to the alternative deposition of Cu2+ and S2- ions on the thiourea-modified surface of Au NPs in the solution, which induces the isotropic shell growth. Further, this strategy is of good universality. Many other sulfide-wrapped PM NPs, such as Ag@CuS, Au@PtS2, Au@HgS, Ag@Ag2S NPs, and Ag@CuS nanorods, have been successfully obtained with homogeneous and ultrathin shells. Importantly, such ultrathin sulfide-wrapped PM NPs can be used for surface enhanced Raman scattering (SERS)-based detection of trace heavy-metal ions with strong anti-interference via the ion exchange process between the metal sulfide shell and heavy-metal ions. This study provides a simple and controllable route for wrapping the homogenous and ultrathin sulfide layers on the PM NPs, and such wrapped NPs have good practical applications in the SERS-based detection of trace heavy-metal ions.
Collapse
Affiliation(s)
- Haoming Bao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics , Chinese Academy of Sciences , Hefei 230031 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Hongwen Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics , Chinese Academy of Sciences , Hefei 230031 , P. R. China
| | - Le Zhou
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics , Chinese Academy of Sciences , Hefei 230031 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Hao Fu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics , Chinese Academy of Sciences , Hefei 230031 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Guangqiang Liu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics , Chinese Academy of Sciences , Hefei 230031 , P. R. China
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics , Chinese Academy of Sciences , Hefei 230031 , P. R. China
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics , Chinese Academy of Sciences , Hefei 230031 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| |
Collapse
|
22
|
Liu J, Ma Q, Huang Z, Liu G, Zhang H. Recent Progress in Graphene-Based Noble-Metal Nanocomposites for Electrocatalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1800696. [PMID: 30256461 DOI: 10.1002/adma.201800696] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/22/2018] [Indexed: 06/08/2023]
Abstract
The fast industrialization process has led to global challenges in the energy crisis and environmental pollution, which might be solved with clean and renewable energy. Highly efficient electrochemical systems for clean-energy collection require high-performance electrocatalysts, including Au, Pt, Pd, Ru, etc. Graphene, a single-layer 2D carbon nanosheet, possesses many intriguing properties, and has attracted tremendous research attention. Specifically, graphene and graphene derivatives have been utilized as templates for the synthesis of various noble-metal nanocomposites, showing excellent performance in electrocatalytic-energy-conversion applications, such as the hydrogen evolution reaction and CO2 reduction. Herein, the recent progress in graphene-based noble-metal nanocomposites is summarized, focusing on their synthetic methods and electrocatalytic applications. Furthermore, some personal insights on the challenges and possible future work in this research field are proposed.
Collapse
Affiliation(s)
- Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qinglang Ma
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhiqi Huang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Guigao Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hua Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
23
|
Lim SC, Lo WF, Yang PY, Lu SC, Joplin A, Link S, Chang WS, Tuan HY. Au@CdSe heteroepitaxial nanorods: An example of metal nanorods fully covered by a semiconductor shell with strong photo-induced interfacial charge transfer effects. J Colloid Interface Sci 2018; 532:143-152. [DOI: 10.1016/j.jcis.2018.07.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/14/2018] [Accepted: 07/20/2018] [Indexed: 11/30/2022]
|
24
|
Liu D, Liu Y, Huang P, Zhu C, Kang Z, Shu J, Chen M, Zhu X, Guo J, Zhuge L, Bu X, Feng P, Wu T. Highly Tunable Heterojunctions from Multimetallic Sulfide Nanoparticles and Silver Nanowires. Angew Chem Int Ed Engl 2018; 57:5374-5378. [DOI: 10.1002/anie.201800848] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/12/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Dongliang Liu
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Yong Liu
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Peng Huang
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Cheng Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou 215123 China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou 215123 China
| | - Jie Shu
- Testing & Analysis Center Soochow University Suzhou 215123 China
| | - Muzi Chen
- Testing & Analysis Center Soochow University Suzhou 215123 China
| | - Xing Zhu
- Testing & Analysis Center Soochow University Suzhou 215123 China
| | - Jun Guo
- Testing & Analysis Center Soochow University Suzhou 215123 China
| | - Lanjian Zhuge
- Testing & Analysis Center Soochow University Suzhou 215123 China
| | - Xianhui Bu
- Department of Chemistry and Biochemistry California State University Long Beach CA 90840 USA
| | - Pingyun Feng
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Tao Wu
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| |
Collapse
|
25
|
Liu D, Liu Y, Huang P, Zhu C, Kang Z, Shu J, Chen M, Zhu X, Guo J, Zhuge L, Bu X, Feng P, Wu T. Highly Tunable Heterojunctions from Multimetallic Sulfide Nanoparticles and Silver Nanowires. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dongliang Liu
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Yong Liu
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Peng Huang
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Cheng Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou 215123 China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou 215123 China
| | - Jie Shu
- Testing & Analysis Center Soochow University Suzhou 215123 China
| | - Muzi Chen
- Testing & Analysis Center Soochow University Suzhou 215123 China
| | - Xing Zhu
- Testing & Analysis Center Soochow University Suzhou 215123 China
| | - Jun Guo
- Testing & Analysis Center Soochow University Suzhou 215123 China
| | - Lanjian Zhuge
- Testing & Analysis Center Soochow University Suzhou 215123 China
| | - Xianhui Bu
- Department of Chemistry and Biochemistry California State University Long Beach CA 90840 USA
| | - Pingyun Feng
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Tao Wu
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| |
Collapse
|
26
|
Yan C, Wang T. A new view for nanoparticle assemblies: from crystalline to binary cooperative complementarity. Chem Soc Rev 2018; 46:1483-1509. [PMID: 28059420 DOI: 10.1039/c6cs00696e] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Studies on nanoparticle assemblies and their applications have been research frontiers in nanoscience in the past few decades and remarkable progress has been made in the synthetic strategies and techniques. Recently, the design and fabrication of the nanoparticle-based nanomaterials or nanodevices with integrated and enhanced properties compared to those of the individual components have gradually become the mainstream. However, a systematic solution to provide a big picture for future development and guide the investigation of different aspects of the study of nanoparticle assemblies remains a challenge. The binary cooperative complementary principle could be an answer. The binary cooperative complementary principle is a universal discipline and can describe the fundamental properties of matter from the subatomic particles to the universe. According to its definition, a variety of nanoparticle assemblies, which represent the cutting-edge work in the nanoparticle studies, are naturally binary cooperative complementary materials. Therefore, the introduction of the binary cooperative complementary principle in the studies of nanoparticle assemblies could provide a unique perspective for reviewing this field and help in the design and fabrication of novel functional nanoparticle assemblies.
Collapse
Affiliation(s)
- Cong Yan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
27
|
Huang JL, Li Z, Duan HH, Cheng ZY, Li YD, Zhu J, Yu R. Formation of Hexagonal-Close Packed (HCP) Rhodium as a Size Effect. J Am Chem Soc 2017; 139:575-578. [DOI: 10.1021/jacs.6b09730] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jing Lu Huang
- National
Center for Electron Microscopy in Beijing, School of Materials Science
and Engineering, Key Laboratory of Advanced Materials of Ministry
of Education of China, State Key Laboratory of New Ceramics and Fine
Processing, Tsinghua University, Beijing 100084, China
| | - Zhi Li
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hao Hong Duan
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhi Ying Cheng
- National
Center for Electron Microscopy in Beijing, School of Materials Science
and Engineering, Key Laboratory of Advanced Materials of Ministry
of Education of China, State Key Laboratory of New Ceramics and Fine
Processing, Tsinghua University, Beijing 100084, China
| | | | - Jing Zhu
- National
Center for Electron Microscopy in Beijing, School of Materials Science
and Engineering, Key Laboratory of Advanced Materials of Ministry
of Education of China, State Key Laboratory of New Ceramics and Fine
Processing, Tsinghua University, Beijing 100084, China
| | - Rong Yu
- National
Center for Electron Microscopy in Beijing, School of Materials Science
and Engineering, Key Laboratory of Advanced Materials of Ministry
of Education of China, State Key Laboratory of New Ceramics and Fine
Processing, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals. Front Chem Sci Eng 2016. [DOI: 10.1007/s11705-016-1576-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Wang X, Cao D, Tang X, Yang J, Jiang D, Liu M, He N, Wang Z. Coating Carbon Nanosphere with Patchy Gold for Production of Highly Efficient Photothermal Agent. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19321-19332. [PMID: 27351062 DOI: 10.1021/acsami.6b05550] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gold- or carbon-based photothermal therapy (PTT) agents have shown encouraging therapeutic effects of PTT in the near-infrared region (NIR) in many preclinical animal experiments. It is expected that gold/carbon hybrid nanomaterial will possess combinational NIR light absorption and can achieve further improvement in photothermal conversion efficiency. In this work, we design and construct a novel PTT agent by coating a carbon nanosphere with patchy gold. To synthesize this composite particle with Janus structure, a new versatile approach based on a facile adsorption-reduction method was presented. Different from the conventional fabrication procedures, the formation of patchy gold in this approach is mainly a thermodynamics-driven spontaneous process. The results show that when compared with the conventional PTT agent gold nanorod the obtained nanocomposites not only have higher photothermal conversion efficiency but also perform more thermally stable. On the basis of these outstanding photothermal effects, the in vitro and in vivo photothermal performances in a MCF-7 cells (human breast adenocarcinoma cell line) and mice were investigated separately. Additionally, to further illustrate the advantage of this asymmetric structure, their potential was explored by selective surface functionalization, taking advantage of the affinity of both patchy gold and carbon domain to different functional molecules. These results suggest that this new hybrid nanomaterial can be used as an effective PTT agent for cancer treatment in the future.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Dongwei Cao
- Department of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University , Nanjing, 210008, China
| | - Xuejiao Tang
- School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Jingjing Yang
- School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Daoyong Jiang
- School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Mei Liu
- School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Nongyue He
- School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| |
Collapse
|
30
|
Xiong J, Han C, Li W, Sun Q, Chen J, Chou S, Li Z, Dou S. Ambient synthesis of a multifunctional 1D/2D hierarchical Ag–Ag2S nanowire/nanosheet heterostructure with diverse applications. CrystEngComm 2016. [DOI: 10.1039/c5ce02134k] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A new type of unique 1D/2D hierarchical Ag–Ag2S hybrids is fabricated by an extremely simple solution route under ambient conditions. The diffusion and Ostwald ripening processes dominate the evolution of heterostructure.
Collapse
Affiliation(s)
- Jinyan Xiong
- Institute for Superconducting & Electronic Materials
- The University of Wollongong
- , Australia
| | - Chao Han
- Institute for Superconducting & Electronic Materials
- The University of Wollongong
- , Australia
| | - Weijie Li
- Institute for Superconducting & Electronic Materials
- The University of Wollongong
- , Australia
| | - Qiao Sun
- School of Radiation Medicine and Radiation Protection
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou 215123, China
| | - Jun Chen
- Intelligent Polymer Research Institute
- The University of Wollongong
- , Australia
| | - Shulei Chou
- Institute for Superconducting & Electronic Materials
- The University of Wollongong
- , Australia
| | - Zhen Li
- Institute for Superconducting & Electronic Materials
- The University of Wollongong
- , Australia
- School of Radiation Medicine and Radiation Protection
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
| | - Shixue Dou
- Institute for Superconducting & Electronic Materials
- The University of Wollongong
- , Australia
| |
Collapse
|
31
|
Liao L, Chen J, Wang C, Zhuang S, Yan N, Yao C, Xia N, Li L, Bao X, Wu Z. Transition-sized Au92nanoparticle bridging non-fcc-structured gold nanoclusters and fcc-structured gold nanocrystals. Chem Commun (Camb) 2016; 52:12036-12039. [DOI: 10.1039/c6cc06108g] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the intriguing internal structure, crystallographic arrangement, optical absorption and electrochemical properties of a transition-sized Au92nanoparticle.
Collapse
|
32
|
Zhang W, Yang LP, Wu ZX, Piao JY, Cao AM, Wan LJ. Controlled formation of uniform CeO2 nanoshells in a buffer solution. Chem Commun (Camb) 2016; 52:1420-3. [DOI: 10.1039/c5cc08422a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uniform CeO2 nanoshells were successfully prepared by using MOPS buffer solution as a unique growth medium.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Li-Ping Yang
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Zi-Xiao Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Jun-Yu Piao
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - An-Min Cao
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
| | - Li-Jun Wan
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
| |
Collapse
|