1
|
Fatima S, Olshansky L. Conformational control over proton-coupled electron transfer in metalloenzymes. Nat Rev Chem 2024; 8:762-775. [PMID: 39223400 PMCID: PMC11531298 DOI: 10.1038/s41570-024-00646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
From the reduction of dinitrogen to the oxidation of water, the chemical transformations catalysed by metalloenzymes underlie global geochemical and biochemical cycles. These reactions represent some of the most kinetically and thermodynamically challenging processes known and require the complex choreography of the fundamental building blocks of nature, electrons and protons, to be carried out with utmost precision and accuracy. The rate-determining step of catalysis in many metalloenzymes consists of a protein structural rearrangement, suggesting that nature has evolved to leverage macroscopic changes in protein molecular structure to control subatomic changes in metallocofactor electronic structure. The proton-coupled electron transfer mechanisms operative in nitrogenase, photosystem II and ribonucleotide reductase exemplify this interplay between molecular and electronic structural control. We present the culmination of decades of study on each of these systems and clarify what is known regarding the interplay between structural changes and functional outcomes in these metalloenzyme linchpins.
Collapse
Affiliation(s)
- Saman Fatima
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lisa Olshansky
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Materials Research Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Cook BD, Narehood SM, McGuire KL, Li Y, Tezcan FA, Herzik MA. Preparation of oxygen-sensitive proteins for high-resolution cryoEM structure determination using (an)aerobic blot-free vitrification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604374. [PMID: 39091810 PMCID: PMC11291078 DOI: 10.1101/2024.07.19.604374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
High-quality grid preparation for single-particle cryogenic electron microscopy (cryoEM) remains a bottleneck for routinely obtaining high-resolution structures. The issues that arise from traditional grid preparation workflows are particularly exacerbated for oxygen-sensitive proteins, including metalloproteins, whereby oxygen-induced damage and alteration of oxidation states can result in protein inactivation, denaturation, and/or aggregation. Indeed, 99% of the current structures in the EMBD were prepared aerobically and limited successes for anaerobic cryoEM grid preparation exist. Current practices for anaerobic grid preparation involve a vitrification device located in an anoxic chamber, which presents significant challenges including temperature and humidity control, optimization of freezing conditions, costs for purchase and operation, as well as accessibility. Here, we present a streamlined approach that allows for the (an)aerobic vitrification of oxygen-sensitive proteins using an automated aerobic blot-free grid vitrification device - the SPT Labtech chameleon. This robust workflow allows for high-resolution structure determination of dynamic, oxygen-sensitive proteins, of varying complexity and molecular weight.
Collapse
Affiliation(s)
- Brian D. Cook
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Sarah M. Narehood
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Kelly L. McGuire
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Yizhou Li
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Mark A. Herzik
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| |
Collapse
|
3
|
Schmidt FV, Schulz L, Zarzycki J, Prinz S, Oehlmann NN, Erb TJ, Rebelein JG. Structural insights into the iron nitrogenase complex. Nat Struct Mol Biol 2024; 31:150-158. [PMID: 38062208 PMCID: PMC10803253 DOI: 10.1038/s41594-023-01124-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/12/2023] [Indexed: 01/24/2024]
Abstract
Nitrogenases are best known for catalyzing the reduction of dinitrogen to ammonia at a complex metallic cofactor. Recently, nitrogenases were shown to reduce carbon dioxide (CO2) and carbon monoxide to hydrocarbons, offering a pathway to recycle carbon waste into hydrocarbon products. Among the three nitrogenase isozymes, the iron nitrogenase has the highest wild-type activity for the reduction of CO2, but the molecular architecture facilitating these activities has remained unknown. Here, we report a 2.35-Å cryogenic electron microscopy structure of the ADP·AlF3-stabilized iron nitrogenase complex from Rhodobacter capsulatus, revealing an [Fe8S9C-(R)-homocitrate] cluster in the active site. The enzyme complex suggests that the iron nitrogenase G subunit is involved in cluster stabilization and substrate channeling and confers specificity between nitrogenase reductase and catalytic component proteins. Moreover, the structure highlights a different interface between the two catalytic halves of the iron and the molybdenum nitrogenase, potentially influencing the intrasubunit 'communication' and thus the nitrogenase mechanism.
Collapse
Affiliation(s)
- Frederik V Schmidt
- Microbial Metalloenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Luca Schulz
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jan Zarzycki
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Simone Prinz
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Niels N Oehlmann
- Microbial Metalloenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Johannes G Rebelein
- Microbial Metalloenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
4
|
Tokmina-Lukaszewska M, Huang Q, Berry L, Kallas H, Peters JW, Seefeldt LC, Raugei S, Bothner B. Fe protein docking transduces conformational changes to MoFe nitrogenase active site in a nucleotide-dependent manner. Commun Chem 2023; 6:254. [PMID: 37980448 PMCID: PMC10657360 DOI: 10.1038/s42004-023-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023] Open
Abstract
The reduction of dinitrogen to ammonia catalyzed by nitrogenase involves a complex series of events, including ATP hydrolysis, electron transfer, and activation of metal clusters for N2 reduction. Early evidence shows that an essential part of the mechanism involves transducing information between the nitrogenase component proteins through conformational dynamics. Here, millisecond time-resolved hydrogen-deuterium exchange mass spectrometry was used to unravel peptide-level protein motion on the time scale of catalysis of Mo-dependent nitrogenase from Azotobacter vinelandii. Normal mode analysis calculations complemented this data, providing insights into the specific signal transduction pathways that relay information across protein interfaces at distances spanning 100 Å. Together, these results show that conformational changes induced by protein docking are rapidly transduced to the active site, suggesting a specific mechanism for activating the metal cofactor in the enzyme active site.
Collapse
Affiliation(s)
| | - Qi Huang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Luke Berry
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Hayden Kallas
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - John W Peters
- Institute of Biological Chemistry, The University of Oklahoma, Norman, OK, USA
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Simone Raugei
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
5
|
Rutledge HL, Cook BD, Nguyen HPM, Herzik MA, Tezcan FA. Structures of the nitrogenase complex prepared under catalytic turnover conditions. Science 2022; 377:865-869. [PMID: 35901182 PMCID: PMC9949965 DOI: 10.1126/science.abq7641] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The enzyme nitrogenase couples adenosine triphosphate (ATP) hydrolysis to the multielectron reduction of atmospheric dinitrogen into ammonia. Despite extensive research, the mechanistic details of ATP-dependent energy transduction and dinitrogen reduction by nitrogenase are not well understood, requiring new strategies to monitor its structural dynamics during catalytic action. Here, we report cryo-electron microscopy structures of the nitrogenase complex prepared under enzymatic turnover conditions. We observe that asymmetry governs all aspects of the nitrogenase mechanism, including ATP hydrolysis, protein-protein interactions, and catalysis. Conformational changes near the catalytic iron-molybdenum cofactor are correlated with the nucleotide-hydrolysis state of the enzyme.
Collapse
Affiliation(s)
- Hannah L. Rutledge
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA
| | - Brian D. Cook
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA
| | - Hoang P. M. Nguyen
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA
| | - Mark A. Herzik
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA,Corresponding author. (FAT), (MAH)
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA,Corresponding author. (FAT), (MAH)
| |
Collapse
|
6
|
Yuan C, Jin WT, Zhou ZH. Statistical analysis of P N clusters in Mo/VFe protein crystals using a bond valence method toward their electronic structures. RSC Adv 2022; 12:5214-5224. [PMID: 35425536 PMCID: PMC8981338 DOI: 10.1039/d1ra08507g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/26/2022] [Indexed: 11/21/2022] Open
Abstract
Nowadays, large numbers of MoFe proteins have been reported and their crystal data obtained by X-ray crystallography and uploaded to the Protein Data Bank (PDB). By big data analysis using a bond valence method, we make conclusions based on 79 selected PN in all 119 P-clusters of 53 MoFe proteins and 10 P-clusters of 5 VFe proteins from all deposited crystallographic data of the PDB. In the condition of MoFe protein crystals, the resting state PN clusters are proposed to have the formal oxidation state of 2Fe(iii)6Fe(ii), hiding two oxidized electron holes with high electron delocalization. The calculations show that Fe1, Fe2, Fe5, Fe6 and Fe7 perform unequivocally as Fe2+, and Fe3 is remarkably prone to Fe(iii), while Fe4 and Fe8 have different degrees of mixed valences. For PN clusters in VFe protein crystals, Fe1, Fe2, Fe4, Fe5 and Fe6 tend to be Fe2+, but the electron distributions rearrange with Fe7 and Fe8 being more oxidized mixed valences, and Fe3 presenting a little more reductive mixed valence than that in MoFe proteins. In terms of spatial location, Fe3 and Fe6 in P-clusters of MoFe proteins are calculated as the most oxidized and reduced irons, which have the shortest distances from homocitrate in the FeMo-cofactor and [Fe4S4] cluster, respectively, and thus could function as potential electron transport sites. This work shows different electron distributions of PN clusters in Mo/VFe protein crystals, from those obtained from previous data from solution with excess reducing agent from which it was concluded that PN clusters are all ferrous according to Mössbauer and electron paramagnetic resonance spectra.
Collapse
Affiliation(s)
- Chang Yuan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Wan-Ting Jin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Zhao-Hui Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
7
|
Yuan C, Jin WT, Zhou ZH. Comparisons of bond valences and distances for CO- and N 2-bound clusters of FeMo-cofactors. NEW J CHEM 2022. [DOI: 10.1039/d2nj00754a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By comparisons of N2 and isoelectronic substrate CO bound FeMo-cofactors (FeMo-cos) in nitrogenases, we have used a classical bond valence method to calculate the oxidation states of the iron and molybdenum atoms in FeMo-cos.
Collapse
Affiliation(s)
- Chang Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Wan-Ting Jin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhao-Hui Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
8
|
Medina MS, Bretzing KO, Aviles RA, Chong KM, Espinoza A, Garcia CNG, Katz BB, Kharwa RN, Hernandez A, Lee JL, Lee TM, Lo Verde C, Strul MW, Wong EY, Owens CP. CowN sustains nitrogenase turnover in the presence of the inhibitor carbon monoxide. J Biol Chem 2021; 296:100501. [PMID: 33667548 PMCID: PMC8047169 DOI: 10.1016/j.jbc.2021.100501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022] Open
Abstract
Nitrogenase is the only enzyme capable of catalyzing nitrogen fixation, the reduction of dinitrogen gas (N2) to ammonia (NH3). Nitrogenase is tightly inhibited by the environmental gas carbon monoxide (CO). Nitrogen-fixing bacteria rely on the protein CowN to grow in the presence of CO. However, the mechanism by which CowN operates is unknown. Here, we present the biochemical characterization of CowN and examine how CowN protects nitrogenase from CO. We determine that CowN interacts directly with nitrogenase and that CowN protection observes hyperbolic kinetics with respect to CowN concentration. At a CO concentration of 0.001 atm, CowN restores nearly full nitrogenase activity. Our results further indicate that CowN's protection mechanism involves decreasing the binding affinity of CO to nitrogenase's active site approximately tenfold without interrupting substrate turnover. Taken together, our work suggests CowN is an important auxiliary protein in nitrogen fixation that engenders CO tolerance to nitrogenase.
Collapse
Affiliation(s)
- Michael S Medina
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Kevin O Bretzing
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Richard A Aviles
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Kiersten M Chong
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Alejandro Espinoza
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Chloe Nicole G Garcia
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Benjamin B Katz
- Department of Chemistry, University of California, Irvine, Irvine, California, USA
| | - Ruchita N Kharwa
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Andrea Hernandez
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Justin L Lee
- Department of Chemistry, University of California, Irvine, Irvine, California, USA
| | - Terrence M Lee
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Christine Lo Verde
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Max W Strul
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Emily Y Wong
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Cedric P Owens
- Schmid College of Science and Technology, Chapman University, Orange, California, USA.
| |
Collapse
|
9
|
Mechanical coupling in the nitrogenase complex. PLoS Comput Biol 2021; 17:e1008719. [PMID: 33661889 PMCID: PMC7963043 DOI: 10.1371/journal.pcbi.1008719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/16/2021] [Accepted: 01/18/2021] [Indexed: 11/19/2022] Open
Abstract
The enzyme nitrogenase reduces dinitrogen to ammonia utilizing electrons, protons, and energy obtained from the hydrolysis of ATP. Mo-dependent nitrogenase is a symmetric dimer, with each half comprising an ATP-dependent reductase, termed the Fe Protein, and a catalytic protein, known as the MoFe protein, which hosts the electron transfer P-cluster and the active-site metal cofactor (FeMo-co). A series of synchronized events for the electron transfer have been characterized experimentally, in which electron delivery is coupled to nucleotide hydrolysis and regulated by an intricate allosteric network. We report a graph theory analysis of the mechanical coupling in the nitrogenase complex as a key step to understanding the dynamics of allosteric regulation of nitrogen reduction. This analysis shows that regions near the active sites undergo large-scale, large-amplitude correlated motions that enable communications within each half and between the two halves of the complex. Computational predictions of mechanically regions were validated against an analysis of the solution phase dynamics of the nitrogenase complex via hydrogen-deuterium exchange. These regions include the P-loops and the switch regions in the Fe proteins, the loop containing the residue β-188Ser adjacent to the P-cluster in the MoFe protein, and the residues near the protein-protein interface. In particular, it is found that: (i) within each Fe protein, the switch regions I and II are coupled to the [4Fe-4S] cluster; (ii) within each half of the complex, the switch regions I and II are coupled to the loop containing β-188Ser; (iii) between the two halves of the complex, the regions near the nucleotide binding pockets of the two Fe proteins (in particular the P-loops, located over 130 Å apart) are also mechanically coupled. Notably, we found that residues next to the P-cluster (in particular the loop containing β-188Ser) are important for communication between the two halves.
Collapse
|
10
|
Pence N, Lewis N, Alleman AB, Seefeldt LC, Peters JW. Revealing a role for the G subunit in mediating interactions between the nitrogenase component proteins. J Inorg Biochem 2020; 214:111273. [PMID: 33086169 DOI: 10.1016/j.jinorgbio.2020.111273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/16/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Azotobacter vinelandii contains three forms of nitrogenase known as the Mo-, V-, and Fe-nitrogenases. They are all two-component enzyme systems, where the catalytic component, referred to as NifDK, VnfDGK, and AnfDGK, associates with the reductase component, the Fe protein or NifH, VnfH, and AnfH respectively. AnfDGK and VnfDGK have an additional subunit compared to NifDK, termed gamma or AnfG and VnfG, whose role is unknown. The expression of each nitrogenase is tightly regulated by metal availability, however it is known that there is crosstalk between the Mo- and V‑nitrogenases but the Fe‑nitrogenase components cannot support substrate reduction with its Mo‑nitrogenase counterparts. Here, docking models for the nitrogenase complexes were generated in ClusPro 2.0 based on the crystal structure of the Mo‑nitrogenase and refined using the HADDOCK 2.2 refinement interface to identify structural determinants that enable crosstalk between the Mo- and V‑nitrogenase but not the Fe‑nitrogenase. Differing salt bridge interactions were identified at the binding interface of each complex. Specifically, positively charged residues of VnfG enable complementary interactions with NifH and VnfH but not AnfH. Similarly, negatively charged residues of AnfG enable interactions with AnfH but not NifH or VnfH. A role for the G subunit is revealed where VnfG could be mediating crosstalk between the Mo- and V‑nitrogenases while the AnfG subunit on AnfDGK makes interactions with NifH and VnfH unfavorable, reducing competition with NifDK and funneling electrons to the most efficient nitrogenase.
Collapse
Affiliation(s)
- Natasha Pence
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, United States of America; Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States of America
| | - Nathan Lewis
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, United States of America
| | - Alexander B Alleman
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, United States of America
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, United States of America
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, United States of America.
| |
Collapse
|
11
|
Artificial, Photoinduced Activation of Nitrogenase Using Directed and Mediated Electron Transfer Processes. Catalysts 2020. [DOI: 10.3390/catal10090979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nitrogenase, a bacteria-based enzyme, is the sole enzyme that is able to generate ammonia by atmospheric nitrogen fixation. Thus, improved understanding of its utilization and developing methods to artificially activate it may contribute to basic research, as well as to the design of future artificial systems. Here, we present methods to artificially activate nitrogenase using photoinduced reactions. Two nitrogenase variants originating from Azotobacter vinelandii were examined using photoactivated CdS nanoparticles (NPs) capped with thioglycolic acid (TGA) or 2-mercaptoethanol (ME) ligands. The effect of methyl viologen (MV) as a redox mediator of hydrogen and ammonia generation was tested and analyzed. We further determined the NPs conductive band edges and their effect on the nitrogenase photoactivation. The nano-biohybrid systems comprising CdS NPs and nitrogenase were further imaged by transmission electron microscopy, visualizing their formation for the first time. Our results show that the ME-capped CdS NPs–nitrogenase enzyme biohybrid system with added MV as a redox mediator leads to a five-fold increase in the production of ammonia compared with the non-mediated biohybrid system; nevertheless, it stills lag behind the natural process rate. On the contrary, a maximal hydrogen generation amount was achieved by the αL158C MoFe-P and the ME-capped CdS NPs.
Collapse
|
12
|
Abstract
Nitrogenase is the only enzyme capable of reducing N2 to NH3. This challenging reaction requires the coordinated transfer of multiple electrons from the reductase, Fe-protein, to the catalytic component, MoFe-protein, in an ATP-dependent fashion. In the last two decades, there have been significant advances in our understanding of how nitrogenase orchestrates electron transfer (ET) from the Fe-protein to the catalytic site of MoFe-protein and how energy from ATP hydrolysis transduces the ET processes. In this review, we summarize these advances, with focus on the structural and thermodynamic redox properties of nitrogenase component proteins and their complexes, as well as on new insights regarding the mechanism of ET reactions during catalysis and how they are coupled to ATP hydrolysis. We also discuss recently developed chemical, photochemical, and electrochemical methods for uncoupling substrate reduction from ATP hydrolysis, which may provide new avenues for studying the catalytic mechanism of nitrogenase.
Collapse
Affiliation(s)
- Hannah L Rutledge
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
13
|
Jasper J, Ramos JV, Trncik C, Jahn D, Einsle O, Layer G, Moser J. Chimeric Interaction of Nitrogenase-Like Reductases with the MoFe Protein of Nitrogenase. Chembiochem 2020; 21:1733-1741. [PMID: 31958206 PMCID: PMC7317204 DOI: 10.1002/cbic.201900759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/17/2020] [Indexed: 11/24/2022]
Abstract
The engineering of transgenic organisms with the ability to fix nitrogen is an attractive possibility. However, oxygen sensitivity of nitrogenase, mainly conferred by the reductase component (NifH)2 , is an imminent problem. Nitrogenase-like enzymes involved in coenzyme F430 and chlorophyll biosynthesis utilize the highly homologous reductases (CfbC)2 and (ChlL)2 , respectively. Chimeric protein-protein interactions of these reductases with the catalytic component of nitrogenase (MoFe protein) did not support nitrogenase activity. Nucleotide-dependent association and dissociation of these complexes was investigated, but (CfbC)2 and wild-type (ChlL)2 showed no modulation of the binding affinity. By contrast, the interaction between the (ChlL)2 mutant Y127S and the MoFe protein was markedly increased in the presence of ATP (or ATP analogues) and reduced in the ADP state. Upon formation of the octameric (ChlL)2 MoFe(ChlL)2 complex, the ATPase activity of this variant is triggered, as seen in the homologous nitrogenase system. Thus, the described reductase(s) might be an attractive tool for further elucidation of the diverse functions of (NifH)2 and the rational design of a more robust reductase.
Collapse
Affiliation(s)
- Jan Jasper
- Institut für MikrobiologieTechnische Universität BraunschweigSpielmannstrasse 738106BraunschweigGermany
| | - José V. Ramos
- Institut für Pharmazeutische WissenschaftenPharmazeutische Biologie und BiotechnologieAlbert-Ludwigs-Universität FreiburgStefan-Meier-Str. 1979104FreiburgGermany
| | - Christian Trncik
- Institut für BiochemieAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Dieter Jahn
- Institut für MikrobiologieTechnische Universität BraunschweigSpielmannstrasse 738106BraunschweigGermany
| | - Oliver Einsle
- Institut für BiochemieAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179104FreiburgGermany
| | - Gunhild Layer
- Institut für Pharmazeutische WissenschaftenPharmazeutische Biologie und BiotechnologieAlbert-Ludwigs-Universität FreiburgStefan-Meier-Str. 1979104FreiburgGermany
| | - Jürgen Moser
- Institut für MikrobiologieTechnische Universität BraunschweigSpielmannstrasse 738106BraunschweigGermany
| |
Collapse
|
14
|
Jin WT, Yang M, Zhu SS, Zhou ZH. Bond-valence analyses of the crystal structures of FeMo/V cofactors in FeMo/V proteins. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:428-437. [PMID: 32355039 DOI: 10.1107/s2059798320003952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
The bond-valence method has been used for valence calculations of FeMo/V cofactors in FeMo/V proteins using 51 crystallographic data sets of FeMo/V proteins from the Protein Data Bank. The calculations show molybdenum(III) to be present in MoFe7S9C(Cys)(HHis)[R-(H)homocit] (where H4homocit is homocitric acid, HCys is cysteine and HHis is histidine) in FeMo cofactors, while vanadium(III) with a more reduced iron complement is obtained for FeV cofactors. Using an error analysis of the calculated valences, it was found that in FeMo cofactors Fe1, Fe6 and Fe7 can be unambiguously assigned as iron(III), while Fe2, Fe3, Fe4 and Fe5 show different degrees of mixed valences for the individual Fe atoms. For the FeV cofactors in PDB entry 5n6y, Fe4, Fe5 and Fe6 correspond to iron(II), iron(II) and iron(III), respectively, while Fe1, Fe2, Fe3 and Fe7 exhibit strongly mixed valences. Special situations such as CO-bound and selenium-substituted FeMo cofactors and O(N)H-bridged FeV cofactors are also discussed and suggest rearrangement of the electron configuration on the substitution of the bridging S atoms.
Collapse
Affiliation(s)
- Wan Ting Jin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Min Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shuang Shuang Zhu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhao Hui Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
15
|
Seefeldt LC, Yang ZY, Lukoyanov DA, Harris DF, Dean DR, Raugei S, Hoffman BM. Reduction of Substrates by Nitrogenases. Chem Rev 2020; 120:5082-5106. [PMID: 32176472 DOI: 10.1021/acs.chemrev.9b00556] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nitrogenase is the enzyme that catalyzes biological N2 reduction to NH3. This enzyme achieves an impressive rate enhancement over the uncatalyzed reaction. Given the high demand for N2 fixation to support food and chemical production and the heavy reliance of the industrial Haber-Bosch nitrogen fixation reaction on fossil fuels, there is a strong need to elucidate how nitrogenase achieves this difficult reaction under benign conditions as a means of informing the design of next generation synthetic catalysts. This Review summarizes recent progress in addressing how nitrogenase catalyzes the reduction of an array of substrates. New insights into the mechanism of N2 and proton reduction are first considered. This is followed by a summary of recent gains in understanding the reduction of a number of other nitrogenous compounds not considered to be physiological substrates. Progress in understanding the reduction of a wide range of C-based substrates, including CO and CO2, is also discussed, and remaining challenges in understanding nitrogenase substrate reduction are considered.
Collapse
Affiliation(s)
- Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Dmitriy A Lukoyanov
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Derek F Harris
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Dennis R Dean
- Biochemistry Department, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Simone Raugei
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
16
|
Harris AW, Harguindey A, Patalano RE, Roy S, Yehezkeli O, Goodwin AP, Cha JN. Investigating Protein–Nanocrystal Interactions for Photodriven Activity. ACS APPLIED BIO MATERIALS 2020; 3:1026-1035. [DOI: 10.1021/acsabm.9b01025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | | | | | | | - Omer Yehezkeli
- Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | | | | |
Collapse
|
17
|
Zanello P. Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part V. Nitrogenases. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Seefeldt LC, Hoffman BM, Peters JW, Raugei S, Beratan DN, Antony E, Dean DR. Energy Transduction in Nitrogenase. Acc Chem Res 2018; 51:2179-2186. [PMID: 30095253 DOI: 10.1021/acs.accounts.8b00112] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nitrogenase is a complicated two-component enzyme system that uses ATP binding and hydrolysis energy to achieve one of the most difficult chemical reactions in nature, the reduction of N2 to NH3. One component of the Mo-based nitrogenase system, Fe protein, delivers electrons one at a time to the second component, the catalytic MoFe protein. This process occurs through a series of synchronized events collectively called the "Fe protein cycle". Elucidating details of the events associated with this cycle has constituted an important challenge in understanding the nitrogenase mechanism. Electron delivery is a multistep process involving three metal clusters with intra- and interprotein events. It is proposed that the first electron transfer event is a gated intraprotein transfer of one electron from the MoFe protein P-cluster to the FeMo cofactor. Measurement of the effect of osmotic pressure on the rate of this electron transfer process revealed that it is gated by protein conformational changes. This first electron transfer is activated by binding of the Fe protein containing two bound ATP molecules. The mechanism of how this protein-protein association triggers electron transfer remains unknown. The second electron transfer event is proposed to be a rapid interprotein "backfill" with transfer of one electron from the reduced Fe protein 4Fe-4S cluster to the oxidized P-cluster. In this way, electron delivery can be viewed as a case of "deficit spending". Such a deficit-spending electron transfer process can be envisioned as a way to achieve one-direction electron flow, limiting the potential for back electron flow. Hydrolysis of two ATP molecules associated with the Fe protein occurs after the electron transfer and therefore is not used to directly drive the electron transfer. Rather, ATP hydrolysis is proposed to contribute to relaxation of the "activated" conformational state associated with the ATP form of the complex, with the free energy from ATP hydrolysis being used to pay back energy associated with component protein association and electron transfer. Release of inorganic phosphate (Pi) and protein-protein dissociation follow electron transfer and ATP hydrolysis. The rate-limiting step for the Fe protein cycle is not dissociation of the two proteins, as previously believed, but rather is release of Pi after ATP hydrolysis, which is then followed by rapid protein-protein complex dissociation. Nitrogenase is composed of two catalytic halves that do not function independently but rather exhibit anticooperative nuclear motion in which electron transfer in one-half of the complex partially inhibits electron transfer and ATP hydrolysis in the other half. Calculations indicated the existence of anticooperative interactions across the entire nitrogenase complex, suggesting a mechanism for the control of events on opposite ends of this large complex. The mechanistic necessity for this anticooperative process remains unknown. This Account presents a working model for how all of these processes work together in the nitrogenase "machine" to transduce the energy from ATP binding and hydrolysis to drive N2 reduction.
Collapse
Affiliation(s)
- Lance C. Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - John W. Peters
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Simone Raugei
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - David N. Beratan
- Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| | - Edwin Antony
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Dennis R. Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
19
|
Seefeldt LC, Peters JW, Beratan DN, Bothner B, Minteer SD, Raugei S, Hoffman BM. Control of electron transfer in nitrogenase. Curr Opin Chem Biol 2018; 47:54-59. [PMID: 30205289 DOI: 10.1016/j.cbpa.2018.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/06/2018] [Accepted: 08/21/2018] [Indexed: 11/30/2022]
Abstract
The bacterial enzyme nitrogenase achieves the reduction of dinitrogen (N2) to ammonia (NH3) utilizing electrons, protons, and energy from the hydrolysis of ATP. Building on earlier foundational knowledge, recent studies provide molecular-level details on how the energy of ATP hydrolysis is utilized, the sequencing of multiple electron transfer events, and the nature of energy transduction across this large protein complex. Here, we review the state of knowledge about energy transduction in nitrogenase.
Collapse
Affiliation(s)
- Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, USA.
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, 287 Clark Hall, Pullman, WA 99164, USA
| | - David N Beratan
- Departments of Chemistry, Physics, and Biochemistry, Duke University, Durham, NC 27708 and 27710, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Shelley D Minteer
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, USA
| | - Simone Raugei
- Physical and Computational Sciences, Pacific Northwestern National Laboratory, 602 Battelle Blvd, Richland, WA 99352, USA
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
20
|
Crystal structure of VnfH, the iron protein component of vanadium nitrogenase. J Biol Inorg Chem 2018; 23:1049-1056. [DOI: 10.1007/s00775-018-1602-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/08/2018] [Indexed: 01/08/2023]
|
21
|
Wang SY, Jin WT, Chen HB, Zhou ZH. Comparison of hydroxycarboxylato imidazole molybdenum(iv) complexes and nitrogenase protein structures: indirect evidence for the protonation of homocitrato FeMo-cofactors. Dalton Trans 2018; 47:7412-7421. [DOI: 10.1039/c8dt00278a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycolato and lactato imidazole molybdenum(iv) complexes are used for structural comparison with FeMo-cofactors of MoFe-protein structures.
Collapse
Affiliation(s)
- Si-Yuan Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- China
| | - Wan-Ting Jin
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- China
| | - Hong-Bin Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- China
| | - Zhao-Hui Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- China
| |
Collapse
|
22
|
Conformationally Gated Electron Transfer in Nitrogenase. Isolation, Purification, and Characterization of Nitrogenase From Gluconacetobacter diazotrophicus. Methods Enzymol 2017. [PMID: 29746246 DOI: 10.1016/bs.mie.2017.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Nitrogenase is a complex, bacterial enzyme that catalyzes the ATP-dependent reduction of dinitrogen (N2) to ammonia (NH3). In its most prevalent form, it consists of two proteins, the catalytic molybdenum-iron protein (MoFeP) and its specific reductase, the iron protein (FeP). A defining feature of nitrogenase is that electron and proton transfer processes linked to substrate reduction are synchronized by conformational changes driven by ATP-dependent FeP-MoFeP interactions. Yet, despite extensive crystallographic, spectroscopic, and biochemical information on nitrogenase, the structural basis of the ATP-dependent synchronization mechanism is not understood in detail. In this chapter, we summarize some of our efforts toward obtaining such an understanding. Experimental investigations of the structure-function relationships in nitrogenase are challenged by the fact that it cannot be readily expressed heterologously in nondiazotrophic bacteria, and the purification protocols for nitrogenase are only known for a small number of diazotrophic organisms. Here, we present methods for purifying and characterizing nitrogenase from a new model organism, Gluconacetobacter diazotrophicus. We also describe procedures for observing redox-dependent conformational changes in G. diazotrophicus nitrogenase by X-ray crystallography and electron paramagnetic resonance spectroscopy, which have provided new insights into the redox-dependent conformational gating processes in nitrogenase.
Collapse
|
23
|
Determination of nucleoside triphosphatase activities from measurement of true inorganic phosphate in the presence of labile phosphate compounds. Anal Biochem 2016; 520:62-67. [PMID: 28017740 DOI: 10.1016/j.ab.2016.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/10/2016] [Accepted: 12/14/2016] [Indexed: 11/24/2022]
Abstract
One of the most common assays for nucleoside triphosphatase (NTPase) activity entails the quantification of inorganic phosphate (Pi) as a colored phosphomolybdate complex at low pH. While this assay is very sensitive, it is not selective for Pi in the presence of labile organic phosphate compounds (OPCs). Since NTPase activity assays typically require a large excess of OPCs, such as nucleotides, selectivity for Pi in the presence of OPCs is often critical in evaluating enzyme activity. Here we present an improved method for the measurement of enzymatic nucleotide hydrolysis as Pi released, which achieves selectivity for Pi in the presence of OPCs while also avoiding the costs and hazards inherent in other methods for measuring nucleotide hydrolysis. We apply this method to the measurement of ATP hydrolysis by nitrogenase and GTP hydrolysis by elongation factor G (EF-G) in order to demonstrate the broad applicability of our method for the determination of nucleotide hydrolysis in the presence of interfering OPCs.
Collapse
|
24
|
Katz FEH, Owens CP, Tezcan FA. Electron Transfer Reactions in Biological Nitrogen Fixation. Isr J Chem 2016. [DOI: 10.1002/ijch.201600020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Faith E. H. Katz
- Department of Chemistry and Biochemistry; University of California, San Diego; 9500 Gilman Drive San Diego CA 92093 USA
| | - Cedric P. Owens
- Department of Chemistry and Biochemistry; University of California, San Diego; 9500 Gilman Drive San Diego CA 92093 USA
| | - F. A. Tezcan
- Department of Chemistry and Biochemistry; University of California, San Diego; 9500 Gilman Drive San Diego CA 92093 USA
| |
Collapse
|
25
|
Liu J, Kelley MS, Wu W, Banerjee A, Douvalis AP, Wu J, Zhang Y, Schatz GC, Kanatzidis MG. Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Proc Natl Acad Sci U S A 2016; 113:5530-5. [PMID: 27140630 PMCID: PMC4878479 DOI: 10.1073/pnas.1605512113] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A nitrogenase-inspired biomimetic chalcogel system comprising double-cubane [Mo2Fe6S8(SPh)3] and single-cubane (Fe4S4) biomimetic clusters demonstrates photocatalytic N2 fixation and conversion to NH3 in ambient temperature and pressure conditions. Replacing the Fe4S4 clusters in this system with other inert ions such as Sb(3+), Sn(4+), Zn(2+) also gave chalcogels that were photocatalytically active. Finally, molybdenum-free chalcogels containing only Fe4S4 clusters are also capable of accomplishing the N2 fixation reaction with even higher efficiency than their Mo2Fe6S8(SPh)3-containing counterparts. Our results suggest that redox-active iron-sulfide-containing materials can activate the N2 molecule upon visible light excitation, which can be reduced all of the way to NH3 using protons and sacrificial electrons in aqueous solution. Evidently, whereas the Mo2Fe6S8(SPh)3 is capable of N2 fixation, Mo itself is not necessary to carry out this process. The initial binding of N2 with chalcogels under illumination was observed with in situ diffuse-reflectance Fourier transform infrared spectroscopy (DRIFTS). (15)N2 isotope experiments confirm that the generated NH3 derives from N2 Density functional theory (DFT) electronic structure calculations suggest that the N2 binding is thermodynamically favorable only with the highly reduced active clusters. The results reported herein contribute to ongoing efforts of mimicking nitrogenase in fixing nitrogen and point to a promising path in developing catalysts for the reduction of N2 under ambient conditions.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, Evanston, IL 60208; Argonne-Northwestern Solar Energy Research Center, Northwestern University, Evanston, IL 60208
| | - Matthew S Kelley
- Department of Chemistry, Northwestern University, Evanston, IL 60208; Argonne-Northwestern Solar Energy Research Center, Northwestern University, Evanston, IL 60208
| | - Weiqiang Wu
- Department of Chemistry, Northwestern University, Evanston, IL 60208; Argonne-Northwestern Solar Energy Research Center, Northwestern University, Evanston, IL 60208
| | - Abhishek Banerjee
- Department of Chemistry, Northwestern University, Evanston, IL 60208; Argonne-Northwestern Solar Energy Research Center, Northwestern University, Evanston, IL 60208
| | | | - Jinsong Wu
- Department of Chemistry, Northwestern University, Evanston, IL 60208; Argonne-Northwestern Solar Energy Research Center, Northwestern University, Evanston, IL 60208
| | - Yongbo Zhang
- Department of Chemistry, Northwestern University, Evanston, IL 60208; Argonne-Northwestern Solar Energy Research Center, Northwestern University, Evanston, IL 60208
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, IL 60208; Argonne-Northwestern Solar Energy Research Center, Northwestern University, Evanston, IL 60208;
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, IL 60208; Argonne-Northwestern Solar Energy Research Center, Northwestern University, Evanston, IL 60208;
| |
Collapse
|
26
|
Eady RR, Antonyuk SV, Hasnain SS. Fresh insight to functioning of selected enzymes of the nitrogen cycle. Curr Opin Chem Biol 2016; 31:103-12. [DOI: 10.1016/j.cbpa.2016.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/18/2016] [Indexed: 11/26/2022]
|
27
|
Schlesier J, Rohde M, Gerhardt S, Einsle O. A Conformational Switch Triggers Nitrogenase Protection from Oxygen Damage by Shethna Protein II (FeSII). J Am Chem Soc 2015; 138:239-47. [PMID: 26654855 DOI: 10.1021/jacs.5b10341] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The two-component metalloprotein nitrogenase catalyzes the reductive fixation of atmospheric dinitrogen into bioavailable ammonium in diazotrophic prokaryotes. The process requires an efficient energy metabolism, so that although the metal clusters of nitrogenase rapidly decompose in the presence of dioxygen, many free-living diazotrophs are obligate aerobes. In order to retain the functionality of the nitrogen-fixing enzyme, some of these are able to rapidly "switch-off" nitrogenase, by shifting the enzyme into an inactive but oxygen-tolerant state. Under these conditions the two components of nitrogenase form a stable, ternary complex with a small [2Fe:2S] ferredoxin termed FeSII or the "Shethna protein II". Here we have produced and isolated Azotobacter vinelandii FeS II and have determined its three-dimensional structure to 2.1 Å resolution by X-ray diffraction. In the crystals, the dimeric protein was present in two distinct states that differ in the conformation of an extended loop in close proximity to the iron-sulfur cluster. We show that this rearrangement is redox-dependent and forms the molecular basis for oxygen-dependent conformational protection of nitrogenase. Protection assays highlight that FeSII binds to a preformed complex of MoFe and Fe protein upon activation, primarily through electrostatic interactions. The surface properties and known complexes of nitrogenase component proteins allow us to propose a model of the conformationally protected ternary complex of nitrogenase.
Collapse
Affiliation(s)
- Julia Schlesier
- Institute for Biochemistry, Albert-Ludwigs-Universität Freiburg , Albertstrasse 21, 79104 Freiburg, Germany
| | - Michael Rohde
- Institute for Biochemistry, Albert-Ludwigs-Universität Freiburg , Albertstrasse 21, 79104 Freiburg, Germany
| | - Stefan Gerhardt
- Institute for Biochemistry, Albert-Ludwigs-Universität Freiburg , Albertstrasse 21, 79104 Freiburg, Germany
| | - Oliver Einsle
- Institute for Biochemistry, Albert-Ludwigs-Universität Freiburg , Albertstrasse 21, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies , Schänzlestr.1, 79104 Freiburg, Germany
| |
Collapse
|