1
|
Katogi Y, Okamoto A, Hada M, Fujii H. Characterization and Reactivity of an Incredibly Reactive Intermediate in the Protonation Reaction of Dioxo-Manganese(V) Porphyrin with Acid. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
2
|
Zhang J, Lee YM, Seo MS, Nilajakar M, Fukuzumi S, Nam W. A Contrasting Effect of Acid in Electron Transfer, Oxygen Atom Transfer, and Hydrogen Atom Transfer Reactions of a Nickel(III) Complex. Inorg Chem 2022; 61:19735-19747. [PMID: 36445726 DOI: 10.1021/acs.inorgchem.2c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There have been many examples of the accelerating effects of acids in electron transfer (ET), oxygen atom transfer (OAT), and hydrogen atom transfer (HAT) reactions. Herein, we report a contrasting effect of acids in the ET, OAT, and HAT reactions of a nickel(III) complex, [NiIII(PaPy3*)]2+ (1) in acetone/CH3CN (v/v 19:1). 1 was synthesized by reacting [NiII(PaPy3*)]+ (2) with magic blue or iodosylbenzene in the absence or presence of triflic acid (HOTf), respectively. Sulfoxidation of thioanisole by 1 and H2O occurred in the presence of HOTf, and the reaction rate increased proportionally with increasing concentration of HOTf ([HOTf]). The rate of ET from diacetylferrocene to 1 also increased linearly with increasing [HOTf]. In contrast, HAT from 9,10-dihydroanthracene (DHA) to 1 slowed down with increasing [HOTf], exhibiting an inversely proportional relation to [HOTf]. The accelerating effect of HOTf in the ET and OAT reactions was ascribed to the binding of H+ to the PaPy3* ligand of 2; the one-electron reduction potential (Ered) of 1 was positively shifted with increasing [HOTf]. Such a positive shift in the Ered value resulted in accelerating the ET and OAT reactions that proceeded via the rate-determining ET step. On the other hand, the decelerating effect of HOTf on HAT from DHA to 1 resulted from the inhibition of proton transfer from DHA•+ to 2 due to the binding of H+ to the PaPy3* ligand of 2. The ET reactions of 1 in the absence and presence of HOTf were well analyzed in light of the Marcus theory of ET in comparison with the HAT reactions.
Collapse
Affiliation(s)
- Jisheng Zhang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Madhuri Nilajakar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
3
|
Wan B, Cheng F, Wang HH, Ali A, Sun YM, Liu HY, Chang CK. Manganese corrole catalyzed selective oxidation of styrene to benzaldehyde: sodium nitrite functions as an oxidant and cocatalyst. Org Biomol Chem 2022; 20:7814-7820. [PMID: 36165391 DOI: 10.1039/d2ob01428a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic oxidation using manganese corrole is a hot topic of contemporary porphyrin chemistry, in which PhIO, TBHP, PhI(OAc)2, KHSO5 and m-CPBA are usually used as oxidants. This article reports the first selective oxidation of styrene to benzaldehyde using a manganese(III) corrole catalyst and sodium nitrite (NaNO2) as oxidant and cocatalyst at room temperature. The yield was 158.1% in air and 96.5% under a nitrogen atmosphere, showing oxygen might be involved in the reaction and that NaNO2 is an oxygen source and cocatalyst in the system. The peripheral electron-withdrawing substituents of the manganese corrole were favorable to the catalytic reaction. Radical inhibition and H218O experiments proved that the catalytic reaction was a free radical and hydrolysis-involved reaction.
Collapse
Affiliation(s)
- Bei Wan
- Department of Chemistry, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
| | - Fan Cheng
- Department of Chemistry, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
| | - Hua-Hua Wang
- Department of Chemistry, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
| | - Atif Ali
- Department of Chemistry, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
| | - Yan-Mei Sun
- Department of Chemistry, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
| | - Hai-Yang Liu
- Department of Chemistry, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
| | - Chi-Kwong Chang
- Department of Chemistry, E. Lansing, Michigan State University, MI 48824, USA.
| |
Collapse
|
4
|
Zhang J, Lee YM, Seo MS, Fukuzumi S, Nam W. Acid Catalysis in the Oxidation of Substrates by Mononuclear Manganese(III)-Aqua Complexes. Inorg Chem 2022; 61:6594-6603. [PMID: 35442673 DOI: 10.1021/acs.inorgchem.2c00430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acids are known to enhance the reactivities of metal-oxygen intermediates, such as metal-oxo, -hydroperoxo, -peroxo, and -superoxo complexes, in biomimetic oxidation reactions. Although metal-aqua (and metal-hydroxo) complexes have been shown to be potent oxidants in oxidation reactions, acid effects on the reactivities of metal-aqua complexes have never been investigated previously. In this study, a mononuclear manganese(III)-aqua complex, [(dpaq5NO2)MnIII(OH2)]2+ (1; dpaq5NO2 = 2-[bis(pyridin-2-ylmethyl)]amino-N-quinolin-8-ylacetamidate with an NO2 substituent at the 5 position), which is relatively stable in the presence of triflic acid (HOTf), is used in the investigation of acid-catalyzed oxidation reactions by metal-aqua complexes. As a result, we report a remarkable acid catalysis in the six-electron oxidation of anthracene by 1 in the presence of HOTf; anthraquinone is formed as the product. In the HOTf-catalyzed six-electron oxidation of anthracene by 1, the rate constant increases linearly with an increase of the HOTf concentration. Combined with the observed one-electron oxidation product, anthracene (derivative) radical cation, and the substitution effect at the 5 position of the dpaq ligand in 1 on the rate constants of the oxidation of anthracene, it is concluded that the oxidation of anthracene occurs via an acid-promoted electron transfer (APET) from anthracene to 1. The dependence of the rate constants of the APET from electron donors, including anthracene derivatives, to 1 on the driving force of electron transfer is also shown to be well fitted by the Marcus equation of outer-sphere electron transfer. To the best of our knowledge, this is the first example showing acid catalysis in the oxidation of substrates by metal(III)-aqua complexes.
Collapse
Affiliation(s)
- Jisheng Zhang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.,Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.,Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Vaillard VA, Nieres PD, Vaillard SE, Doctorovich F, Sarkar B, Neuman NI. Cobalt, Iron, and Manganese Metallocorroles in Catalytic Oxidation of Water. An Overview of the Synthesis, Selected Redox and Electronic Properties, and Catalytic Activities. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Victoria A. Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC UNL-CONICET Predio CONICET Santa Fe Dr. Alberto Cassano Ruta Nacional N° 168, Km 0 Paraje El Pozo S3000ZAA Santa Fe Argentina
| | - Pablo D. Nieres
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC UNL-CONICET Predio CONICET Santa Fe Dr. Alberto Cassano Ruta Nacional N° 168, Km 0 Paraje El Pozo S3000ZAA Santa Fe Argentina
| | - Santiago E. Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC UNL-CONICET Predio CONICET Santa Fe Dr. Alberto Cassano Ruta Nacional N° 168, Km 0 Paraje El Pozo S3000ZAA Santa Fe Argentina
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria, Pabellón II Buenos Aires C1428EHA Argentina
| | - Biprajit Sarkar
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Nicolás I. Neuman
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC UNL-CONICET Predio CONICET Santa Fe Dr. Alberto Cassano Ruta Nacional N° 168, Km 0 Paraje El Pozo S3000ZAA Santa Fe Argentina
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
6
|
Mechanistic Insight into the O–O Bond Activation by Manganese Corrole Complexes. Top Catal 2021. [DOI: 10.1007/s11244-021-01525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Choi Y, Pandey B, Li X, Lee Y, Cho K, Nam W. How does Lewis acid affect the reactivity of mononuclear
high‐valent chromium–oxo
species? A theoretical study. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yunhee Choi
- Department of Chemistry Jeonbuk National University Jeonju Republic of Korea
| | - Bhawana Pandey
- Department of Chemistry and Nano Science Ewha Womans University Seoul Republic of Korea
| | - Xiao‐Xi Li
- Department of Chemistry and Nano Science Ewha Womans University Seoul Republic of Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul Republic of Korea
| | - Kyung‐Bin Cho
- Department of Chemistry Jeonbuk National University Jeonju Republic of Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul Republic of Korea
| |
Collapse
|
8
|
Li X, Zhang XP, Guo M, Lv B, Guo K, Jin X, Zhang W, Lee YM, Fukuzumi S, Nam W, Cao R. Identifying Intermediates in Electrocatalytic Water Oxidation with a Manganese Corrole Complex. J Am Chem Soc 2021; 143:14613-14621. [PMID: 34469154 DOI: 10.1021/jacs.1c05204] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water nucleophilic attack (WNA) on high-valent terminal Mn-oxo species is proposed for O-O bond formation in natural and artificial water oxidation. Herein, we report an electrocatalytic water oxidation reaction with MnIII tris(pentafluorophenyl)corrole (1) in propylene carbonate (PC). O2 was generated at the MnV/IV potential with hydroxide, but a more anodic potential was required to evolve O2 with only water. With a synthetic MnV(O) complex of 1, a second-order rate constant, k2(OH-), of 7.4 × 103 M-1 s-1 was determined in the reaction of the MnV(O) complex of 1 with hydroxide, whereas its reaction with water occurred much more slowly with a k2(H2O) value of 4.4 × 10-3 M-1 s-1. This large reactivity difference of MnV(O) with hydroxide and water is consistent with different electrocatalytic behaviors of 1 with these two substrates. Significantly, during the electrolysis of 1 with water, a MnIV-peroxo species was identified with various spectroscopic methods, including UV-vis, electron paramagnetic resonance, and infrared spectroscopy. Isotope-labeling experiments confirmed that both O atoms of this peroxo species are derived from water, suggesting the involvement of the WNA mechanism in water oxidation by a Mn complex. Density functional theory calculations suggested that the nucleophilic attack of hydroxide on MnV(O) and also WNA to 1e--oxidized MnV(O) are feasibly involved in the catalytic cycles but that direct WNA to MnV(O) is not likely to be the main O-O bond formation pathway in the electrocatalytic water oxidation by 1.
Collapse
Affiliation(s)
- Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Xue-Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Mian Guo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Bin Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Xiaotong Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China.,Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
9
|
Mayfield JR, Grotemeyer EN, Jackson TA. Concerted proton-electron transfer reactions of manganese-hydroxo and manganese-oxo complexes. Chem Commun (Camb) 2020; 56:9238-9255. [PMID: 32578605 PMCID: PMC7429365 DOI: 10.1039/d0cc01201g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The enzymes manganese superoxide dismutase and manganese lipoxygenase use MnIII-hydroxo centres to mediate proton-coupled electron transfer (PCET) reactions with substrate. As manganese is earth-abundant and inexpensive, manganese catalysts are of interest for synthetic applications. Recent years have seen exciting reports of enantioselective C-H bond oxidation by Mn catalysts supported by aminopyridyl ligands. Such catalysts offer economic and environmentally-friendly alternatives to conventional reagents and catalysts. Mechanistic studies of synthetic catalysts highlight the role of Mn-oxo motifs in attacking substrate C-H bonds, presumably by a concerted proton-electron transfer (CPET) step. (CPET is a sub-class of PCET, where the proton and electron are transferred in the same step.) Knowledge of geometric and electronic influences for CPET reactions of Mn-hydroxo and Mn-oxo adducts enhances our understanding of biological and synthetic manganese centers and informs the design of new catalysts. In this Feature article, we describe kinetic, spectroscopic, and computational studies of MnIII-hydroxo and MnIV-oxo complexes that provide insight into the basis for the CPET reactivity of these species. Systematic perturbations of the ligand environment around MnIII-hydroxo and MnIV-oxo motifs permit elucidation of structure-activity relationships. For MnIII-hydroxo centers, electron-deficient ligands enhance oxidative reactivity. However, ligand perturbations have competing consequences, as changes in the MnIII/II potential, which represents the electron-transfer component for CPET, is offset by compensating changes in the pKa of the MnII-aqua product, which represents the proton-transfer component for CPET. For MnIV-oxo systems, a multi-state reactivity model inspired the development of significantly more reactive complexes. Weakened equatorial donation to the MnIV-oxo unit results in large rate enhancements for C-H bond oxidation and oxygen-atom transfer reactions. These results demonstrate that the local coordination environment can be rationally changed to enhance reactivity of MnIII-hydroxo and MnIV-oxo adducts.
Collapse
Affiliation(s)
- Jaycee R Mayfield
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS 66045, USA.
| | | | | |
Collapse
|
10
|
Larson VA, Battistella B, Ray K, Lehnert N, Nam W. Iron and manganese oxo complexes, oxo wall and beyond. Nat Rev Chem 2020; 4:404-419. [PMID: 37127969 DOI: 10.1038/s41570-020-0197-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 11/09/2022]
Abstract
High-valent metal-oxo species with multiply-bonded M-O groups have been proposed as key intermediates in many biological and abiological catalytic oxidation reactions. These intermediates are implicated as active oxidants in alkane hydroxylation, olefin epoxidation and other oxidation reactions. For example, [FeivO(porphyrinato•-)]+ cofactors bearing π-radical porphyrinato•- ligands oxidize organic substrates in cytochrome P450 enzymes, which are common to many life forms. Likewise, high-valent Mn-oxo species are active for H2O oxidation in photosystem II. The chemistry of these native reactive species has inspired chemists to prepare highly oxidized transition-metal complexes as functional mimics. Although many synthetic Fe-O and Mn-O complexes now exist, the analogous oxo complexes of the late transition metals (groups 9-11) are rare. Indeed, late-transition-metal-oxo complexes of tetragonal (fourfold) symmetry should be electronically unstable, a rule commonly referred to as the 'oxo wall'. A few late metal-oxos have been prepared by targeting other symmetries or unusual spin states. These complexes have been studied using spectroscopic and theoretical methods. This Review describes mononuclear non-haem Fe-O and Mn-O species, the nature of the oxo wall and recent advances in the preparation of oxo complexes of Co, Ni and Cu beyond the oxo wall.
Collapse
|
11
|
Rice DB, Grotemeyer EN, Donovan AM, Jackson TA. Effect of Lewis Acids on the Structure and Reactivity of a Mononuclear Hydroxomanganese(III) Complex. Inorg Chem 2020; 59:2689-2700. [PMID: 32045220 DOI: 10.1021/acs.inorgchem.9b02980] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The addition of Sc(OTf)3 and Al(OTf)3 to the mononuclear MnIII-hydroxo complex [MnIII(OH)(dpaq)]+ (1) gives rise to new intermediates with spectroscopic properties and chemical reactivity distinct from those of [MnIII(OH)(dpaq)]+. The electronic absorption spectra of [MnIII(OH)(dpaq)]+ in the presence of Sc(OTf)3 (1-ScIII) and Al(OTf)3 (1-AlIII) show modest perturbations in electronic transition energies, consistent with moderate changes in the MnIII geometry. A comparison of 1H NMR data for 1 and 1-ScIII confirm this conclusion, as the 1H NMR spectrum of 1-ScIII shows the same number of hyperfine-shifted peaks as the 1H NMR spectrum of 1. These 1H NMR spectra, and that of 1-AlIII, share a similar chemical-shift pattern, providing firm evidence that these Lewis acids do not cause gross distortions to the structure of 1. Mn K-edge X-ray absorption data for 1-ScIII provide evidence of elongation of the axial Mn-OH and Mn-N(amide) bonds relative to those of 1. In contrast to these modest spectroscopic perturbations, 1-ScIII and 1-AlIII show greatly enhanced reactivity toward hydrocarbons. While 1 is unreactive toward 9,10-dihydroanthracene (DHA), 1-ScIII and 1-AlIII react rapidly with DHA (k2 = 0.16(1) and 0.25(2) M-1 s-1 at 50 °C, respectively). The 1-ScIII species is capable of attacking the much stronger C-H bond of ethylbenzene. The basis for these perturbations to the spectroscopic properties and reactivity of 1 in the presence of these Lewis acids was elucidated by comparing properties of 1-ScIII and 1-AlIII with the recently reported MnIII-aqua complex [MnIII(OH2)(dpaq)]2+ ( J. Am. Chem. Soc. 2018, 140, 12695-12699). Because 1-ScIII and 1-AlIII show 1H NMR spectra essentially identical to that of [MnIII(OH2)(dpaq)]2+, the primary effect of these Lewis acids on 1 is protonation of the hydroxo ligand caused by an increase in the Brønsted acidity of the solution.
Collapse
Affiliation(s)
- Derek B Rice
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Elizabeth N Grotemeyer
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Anna M Donovan
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
12
|
Mondal S, Sahu K, Patra B, Jena S, Biswal HS, Kar S. A new synthesis of porphyrins via a putative trans-manganese(iv)-dihydroxide intermediate. Dalton Trans 2020; 49:1424-1432. [PMID: 31915769 DOI: 10.1039/c9dt03573g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new method for the synthesis of meso-substituted porphyrins was developed. In this two-step methodology, the first step involves the condensation of pyrroles/dipyrromethanes with aldehydes in a water-methanol mixture under acidic conditions. The second step involves manganese induced cyclization followed by oxidation via PhIO/O2. This methodology has been useful for the synthesis of a wide range of trans-A2B2 porphyrins and also symmetric porphyrins in moderate to good yields. A detailed investigation of the manganese induced cyclization reaction has allowed us to characterize a Mn-porphyrinogen complex. A series of analytical and spectroscopic techniques and DFT calculations have led us to the conclusion that the putative intermediate species are trans-manganese(iv)-dihydroxide complexes. EPR and magnetic susceptibility measurements helped us to assign the oxidation state of the manganese complexes in their native state. The assumption of trans-manganese(iv)-dihydroxide as the true intermediate for this porphyrin synthesis has been authenticated via in situ UV-Vis experiments. This new methodology is certainly different from other previously reported methodologies in many aspects and most importantly these reactions can be easily performed on a gram scale for the synthesis of porphyrins.
Collapse
Affiliation(s)
- Sruti Mondal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India.
| | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Dominique Luneau
- CNRS Laboratoire des Multimatériaux et Interfaces Univ Lyon Université Claude Bernard Lyon 1 69622 Villeurbanne France
| |
Collapse
|
14
|
Krzystek J, Schnegg A, Aliabadi A, Holldack K, Stoian SA, Ozarowski A, Hicks SD, Abu-Omar MM, Thomas KE, Ghosh A, Caulfield KP, Tonzetich ZJ, Telser J. Advanced Paramagnetic Resonance Studies on Manganese and Iron Corroles with a Formal d 4 Electron Count. Inorg Chem 2020; 59:1075-1090. [PMID: 31909979 DOI: 10.1021/acs.inorgchem.9b02635] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metallocorroles wherein the metal ion is MnIII and formally FeIV are studied here using field- and frequency-domain electron paramagnetic resonance techniques. The MnIII corrole, Mn(tpfc) (tpfc = 5,10,15-tris(pentafluorophenyl)corrole trianion), exhibits the following S = 2 zero-field splitting (zfs) parameters: D = -2.67(1) cm-1, |E| = 0.023(5) cm-1. This result and those for other MnIII tetrapyrroles indicate that when D ≈ - 2.5 ± 0.5 cm-1 for 4- or 5-coordinate and D ≈ - 3.5 ± 0.5 cm-1 for 6-coordinate complexes, the ground state description is [MnIII(Cor3-)]0 or [MnIII(P2-)]+ (Cor = corrole, P = porphyrin). The situation for formally FeIV corroles is more complicated, and it has been shown that for Fe(Cor)X, when X = Ph (phenyl), the ground state is a spin triplet best described by [FeIV(Cor3-)]+, but when X = halide, the ground state corresponds to [FeIII(Cor•2-)]+, wherein an intermediate spin (S = 3/2) FeIII is antiferromagnetically coupled to a corrole radical dianion (S = 1/2) to also give an S = 1 ground state. These two valence isomers can be distinguished by their zfs parameters, as determined here for Fe(tpc)X, X = Ph, Cl (tpc = 5,10,15-triphenylcorrole trianion). The complex with axial phenyl gives D = 21.1(2) cm-1, while that with axial chloride gives D = 14.6(1) cm-1. The D value for Fe(tpc)Ph is in rough agreement with the range of values reported for other FeIV complexes. In contrast, the D value for Fe(tpc)Cl is inconsistent with an FeIV description and represents a different type of iron center. Computational studies corroborate the zfs for the two types of iron corrole complexes. Thus, the zfs of metallocorroles can be diagnostic as to the electronic structure of a formally high oxidation state metallocorrole, and by extension to metalloporphyrins, although such studies have yet to be performed.
Collapse
Affiliation(s)
- J Krzystek
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Alexander Schnegg
- EPR Research Group , Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , D-45470 Mülheim Ruhr , Germany.,Berlin Joint EPR Laboratory , Helmholtz-Zentrum Berlin , Kekulestraße 5 , D-12489 Berlin , Germany
| | - Azar Aliabadi
- Berlin Joint EPR Laboratory , Helmholtz-Zentrum Berlin , Kekulestraße 5 , D-12489 Berlin , Germany
| | - Karsten Holldack
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung am Elektronenspeicherring BESSY II , Albert-Einstein-Straße 15 , D-12489 Berlin , Germany
| | - Sebastian A Stoian
- Department of Chemistry , University of Idaho , Moscow , Idaho 83844 , United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Scott D Hicks
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Mahdi M Abu-Omar
- Departments of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106-9510 , United States
| | - Kolle E Thomas
- Department of Chemistry , UiT-The Arctic University of Norway , N-9037 Tromsø , Norway
| | - Abhik Ghosh
- Department of Chemistry , UiT-The Arctic University of Norway , N-9037 Tromsø , Norway
| | - Kenneth P Caulfield
- Department of Chemistry , University of Texas at San Antonio (UTSA) , One UTSA Circle , San Antonio , Texas 78249 , United States
| | - Zachary J Tonzetich
- Department of Chemistry , University of Texas at San Antonio (UTSA) , One UTSA Circle , San Antonio , Texas 78249 , United States
| | - Joshua Telser
- Department of Biological, Physical, and Health Sciences , Roosevelt University , Chicago , Illinois 60605 , United States
| |
Collapse
|
15
|
Lecourt C, Izumi Y, Khrouz L, Toche F, Chiriac R, Bélanger-Desmarais N, Reber C, Fabelo O, Inoue K, Desroches C, Luneau D. Thermally-induced hysteretic valence tautomeric conversions in the solid state via two-step labile electron transfers in manganese-nitronyl nitroxide 2D-frameworks. Dalton Trans 2020; 49:15646-15662. [PMID: 33156311 DOI: 10.1039/d0dt03243c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Near room temperature hysteretic thermo-induced valence tautomerism was discovered in a layered 2D-coordination polymer of manganese(ii) with nitronyl nitroxide radicals separated by ClO4- anions (1). This opens a novel approach towards switchable materials with hysteresis and under ambient conditions with prospects for applications and for investigating solid-state intramolecular electron transfers. Herein, two new compounds with similar layered structures where the anions (X) are BF4- (2) or PF6- (3) are presented. Their magnetic behaviors also reveal hysteretic thermo-induced valence tautomeric conversions but in two steps and evidencing a strong effect of the anion. This occurs near room temperature (278-220 K) for 2 and higher for 3 (380-330 K). Their single crystal structures at different temperatures show that this involves two successive thermally-triggered electron transfers with switching between three redox tautomers formulated as {[MnII2-yMnIIIy(NITIm)3-y(NITRed)y]X}n, where y is temperature dependent. Upon cooling from the high-temperature redox-tautomer (y = 0) to the intermediate one (y = 1), half of the manganese(ii) centers are oxidized to manganese(iii) and 1/3 of the nitronyl nitroxide radicals (NITIm-) are reduced to the aminoxyl form (NITRed2-). On further cooling, the second half of the manganese(ii) centers are oxidized and another 1/3 of the radicals are reduced to reach the low-temperature redox-tautomer (y = 2). Upon reheating, reverse electron transfers occur. This is complementarily supported by X-ray powder measurements, differential scanning calorimetry, and electron paramagnetic resonance and Raman spectroscopies. These multi-stable compounds in which manganese ions exchange reversibly their electron with the nitronyl nitroxide radical are outstanding rare examples of two-step valence tautomerism in the solid state promoted by the polymeric structure.
Collapse
Affiliation(s)
- Constance Lecourt
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France.
| | - Yuuta Izumi
- Department of Chemistry, Graduate School of Science and Chirality Research Center (CResCent), Hiroshima University, 1-3-1, Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8526, Japan
| | - Lhoussain Khrouz
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - François Toche
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France.
| | - Rodica Chiriac
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France.
| | | | - Christian Reber
- Département de chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Oscar Fabelo
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Katsuya Inoue
- Department of Chemistry, Graduate School of Science and Chirality Research Center (CResCent), Hiroshima University, 1-3-1, Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8526, Japan
| | - Cédric Desroches
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France.
| | - Dominique Luneau
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France.
| |
Collapse
|
16
|
Affiliation(s)
- Vishakha Kaim
- Department of Chemistry; University of Delhi; 110007 Delhi India
| | | |
Collapse
|
17
|
Tahara K, Terashita N, Tokunaga K, Yabumoto S, Kikuchi JI, Ozawa Y, Abe M. Zwitterionic Mixed Valence: Internalizing Counteranions into a Biferrocenium Framework toward Molecular Expression of Half-Cells in Quantum Cellular Automata. Chemistry 2019; 25:13728-13738. [PMID: 31376186 DOI: 10.1002/chem.201902840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/26/2019] [Indexed: 01/26/2023]
Abstract
Realization of molecular quantum cellular automata (QCA), a promising architecture for molecular computing through current-free processes, requires improved understanding and application of mixed-valence (MV) molecules. In this report, we present an electrostatic approach to creating MV subspecies through internalizing opposite charges in close proximity to MV ionic moieties. This approach is demonstrated by unsymmetrically attaching a charge-responsive boron substituent to a well-known organometallic MV complex, biferrocenium. Guest anions (CN- and F- ) bind to the Lewis acidic boron center, leading to unusual blue-shifts of the intervalence charge-transfer (IVCT) bands. To the best of our knowledge, this is the first reported example of a zwitterionic MV series in which the degree of positive charge delocalization can be varied by changing the bound anions, and serves to clarify the interplay between IVCT parameters. The key underlying factor is the variable zero-level energy difference in the MV states. This work provides new insight into imbuing MV molecules with external charge-responsiveness, a prerequisite of molecular QCA techniques.
Collapse
Affiliation(s)
- Keishiro Tahara
- Department of Material Science, Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| | - Nazuna Terashita
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Ken Tokunaga
- Division of Liberal Arts, Centre for Promotion of Higher Education, Kogakuin University, 2665-1, Nakano, Hachioji, Tokyo, 192-0015, Japan
| | - Shiomi Yabumoto
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Jun-Ichi Kikuchi
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Yoshiki Ozawa
- Department of Material Science, Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| | - Masaaki Abe
- Department of Material Science, Graduate School of Material Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| |
Collapse
|
18
|
Shi H, Xie J, Lam WWY, Man WL, Mak CK, Yiu SM, Lee HK, Lau TC. Generation and Reactivity of a One-Electron-Oxidized Manganese(V) Imido Complex with a Tetraamido Macrocyclic Ligand. Chemistry 2019; 25:12895-12899. [PMID: 31325369 DOI: 10.1002/chem.201902405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/13/2019] [Indexed: 11/11/2022]
Abstract
The synthesis and X-ray structure of a new manganese(V) mesitylimido complex with a tetraamido macrocyclic ligand (TAML), [MnV (TAML)(N-Mes)]- (1), are reported. Compound 1 is oxidized by [(p-BrC6 H4 )3 N]+. [SbCl6 ]- and the resulting MnVI species readily undergoes H-atom transfer and nitrene transfer reactions.
Collapse
Affiliation(s)
- Huatian Shi
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Jianhui Xie
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - William W Y Lam
- Department of Food and Health Sciences, Technological and Higher Education Institute of Hong Kong, Tsing Yi Road, Hong Kong SAR, P. R. China
| | - Wai-Lun Man
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Chi-Keung Mak
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| |
Collapse
|
19
|
Zwettler N, Mösch-Zanetti NC. Interaction of Metal Oxido Compounds with B(C 6 F 5 ) 3. Chemistry 2019; 25:6064-6076. [PMID: 30707470 DOI: 10.1002/chem.201805148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 11/07/2022]
Abstract
Lewis acid-base pair chemistry has been placed on a new level with the discovery that adduct formation between an electron donor (Lewis base) and acceptor (Lewis acid) can be inhibited by the introduction of steric demand, thus preserving the reactivity of both Lewis centers, resulting in highly unusual chemistry. Some of these highly versatile frustrated Lewis pairs (FLP) are capable of splitting a variety of small molecules, such as dihydrogen, in a heterolytic and even catalytic manner. This is in sharp contrast to classical reactions where the inert substrate must be activated by a metal-based catalyst. Very recently, research has emerged combining the two concepts, namely the formation of FLPs in which a metal compound represents the Lewis base, allowing for novel chemistry by using the heterolytic splitting power of both together with the redox reactivity of the metal. Such reactivity is not restricted to the metal center itself being a Lewis acid or base, also ancillary ligands can be used as part of the Lewis pair, still with the benefit of the redox-active metal center nearby. This Minireview is designed to highlight the novel reactions arising from the combination of metal oxido transition-metal or rare-earth-metal compounds with the Lewis acid B(C6 F5 )3 . It covers a wide area of chemistry including small molecule activation, hydrogenation and hydrosilylation catalysis, and olefin metathesis, substantiating the broad influence of the novel concept. Future goals of this young and exciting area are briefly discussed.
Collapse
Affiliation(s)
- Niklas Zwettler
- Institute of Chemistry/Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010, Graz, Austria
| | - Nadia C Mösch-Zanetti
- Institute of Chemistry/Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010, Graz, Austria
| |
Collapse
|
20
|
Liu Y, Lau TC. Activation of Metal Oxo and Nitrido Complexes by Lewis Acids. J Am Chem Soc 2019; 141:3755-3766. [DOI: 10.1021/jacs.8b13100] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yingying Liu
- Department of Chemistry and Institute of Molecular Functional Materials, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Tai-Chu Lau
- Department of Chemistry and Institute of Molecular Functional Materials, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| |
Collapse
|
21
|
Karmalkar DG, Li XX, Seo MS, Sankaralingam M, Ohta T, Sarangi R, Hong S, Nam W. A Manganese(V)-Oxo Tetraamido Macrocyclic Ligand (TAML) Cation Radical Complex: Synthesis, Characterization, and Reactivity Studies. Chemistry 2018; 24:17927-17931. [PMID: 30267428 DOI: 10.1002/chem.201804898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Indexed: 11/06/2022]
Abstract
A mononuclear manganese(V)-oxo complex with tetraamido macrocyclic ligand (TAML), [MnV (O)(TAML)]- (1), is a sluggish oxidant in oxidation reactions. Herein, a mononuclear manganese(V)-oxo TAML cation radical complex, [MnV (O)(TAML+. )] (2), is reported. It was synthesized by reacting [MnIII (TAML)]- with 3.0 equivalents of [RuIII (bpy)3 ]3+ or upon addition of one-electron oxidant to 1 and then characterized thoroughly with various spectroscopic techniques along with DFT calculations. Although 1 is a sluggish oxidant, 2 is a strong oxidant capable of activating C-H bonds of hydrocarbons (i.e., hydrogen atom transfer reaction) and transferring its oxygen atom to thioanisoles and olefins (i.e., oxygen atom transfer reaction).
Collapse
Affiliation(s)
- Deepika G Karmalkar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | | | - Takehiro Ohta
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH LP Center, Hyogo, 679-5148, Japan
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, California, 94025, USA
| | - Seungwoo Hong
- Department of Chemistry, Sookmyung Women's University, Seoul, 04310, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
22
|
Sacramento JJD, Goldberg DP. Factors Affecting Hydrogen Atom Transfer Reactivity of Metal-Oxo Porphyrinoid Complexes. Acc Chem Res 2018; 51:2641-2652. [PMID: 30403479 DOI: 10.1021/acs.accounts.8b00414] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There has been considerable interest in hydrogen atom transfer (HAT) reactions mediated by metal/oxygen species because of their central role in metalloenzyme function as well as synthetic catalysts. This Account focuses on our progress in synthesizing high-valent metal-oxo and metal-hydroxo porphyrinoid complexes and determining their reactivities in a range of HAT processes. For these studies we have utilized corrolazine and corrole ligands, which are a ring-contracted subclass of porphyrinoid compounds designed to stabilize high-valent metal complexes. The high-valent manganese complex MnV(O)(TBP8Cz) (TBP8Cz = octakis(4- tert-butylphenyl)corrolazine3-) provided an early example of a well-characterized low-potential oxidant that can still be effective at abstracting H atoms from certain C-H/O-H bonds. Approximating the thermodynamics of the HAT reactivity of the MnV(O) complex and related species with the help of a square scheme approach, in which HAT can be formally separated into proton (p Ka) and electron transfers ( E°), indicates that affinity for the proton (i.e., the basicity) is a key factor in promoting HAT. Anionic axial ligands have a profound influence on the HAT reactivity of MnV(O)(TBP8Cz), supporting the conclusion that basicity is a critical parameter in determining the reactivity. The influence of Lewis acids on MnV(O)(TBP8Cz) was examined, and it was shown that both the electronic structure and reactivity toward HAT were significantly altered. High-valent Cr(O), Re(O), and Fe(O) corrolazines were prepared, and a range of HAT reactions were studied with these complexes. The chromium and manganese complexes form a rare pair of structurally characterized CrV(O) and MnV(O) species in identical ligand environments, allowing for a direct comparison of their HAT reactivities. Although the CrV(O) species was the better oxidant as measured by redox potentials, the MnV(O) species was significantly more reactive in HAT oxidations, pointing again to basicity as a key determinant of HAT reactivity. The iron complex, FeIV(O)(TBP8Cz+•), is an analogue of the heme enzyme Compound I intermediate, and was found to be mildly reactive toward H atom abstraction from C-H bonds. In contrast, ReV(O)(TBP8Cz) was inert toward HAT, although one-electron oxidation to ReV(O)(TBP8Cz+•) led to some interesting reactivity mediated by the π-radical-cation ligand alone. Other ligand modifications, including peripheral substitution as well as novel alkylation of the meso position on the Cz core, were examined for their influence on HAT. A highly sterically encumbered corrole, tris(2,4,6-triphenylphenyl)corrole (ttppc), was employed for the isolation and structural characterization of the first MnIV(OH) complex in a porphyrinoid environment, MnIV(OH)(ttppc). This complex was highly reactive in HAT with O-H substrates and was found to be much more reactive than its higher-oxidation-state counterpart MnV(O)(ttppc), providing important mechanistic insights. These studies provided fundamental knowledge on the relationship between structure and function in high-valent M(O) and M(OH) models of heme enzyme reactivity.
Collapse
Affiliation(s)
- Jireh Joy D. Sacramento
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
23
|
Kotani H, Kaida S, Ishizuka T, Mieda K, Sakaguchi M, Ogura T, Shiota Y, Yoshizawa K, Kojima T. Importance of the Reactant-State Potentials of Chromium(V)–Oxo Complexes to Determine the Reactivity in Hydrogen-Atom Transfer Reactions. Inorg Chem 2018; 57:13929-13936. [DOI: 10.1021/acs.inorgchem.8b02453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hiroaki Kotani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Suzue Kaida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Kaoru Mieda
- Graduate School of Life Science, University of Hyogo, Kouto, Hyogo 678-1297, Japan
| | - Miyuki Sakaguchi
- Graduate School of Life Science, University of Hyogo, Kouto, Hyogo 678-1297, Japan
| | - Takashi Ogura
- Graduate School of Life Science, University of Hyogo, Kouto, Hyogo 678-1297, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
- Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Nishi-ku, Kyoto 615-8520, Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
24
|
Reed CJ, Agapie T. Thermodynamics of Proton and Electron Transfer in Tetranuclear Clusters with Mn-OH 2/OH Motifs Relevant to H 2O Activation by the Oxygen Evolving Complex in Photosystem II. J Am Chem Soc 2018; 140:10900-10908. [PMID: 30064207 DOI: 10.1021/jacs.8b06426] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We report the synthesis of site-differentiated heterometallic clusters with three Fe centers and a single Mn site that binds water and hydroxide in multiple cluster oxidation states. Deprotonation of FeIII/II3MnII-OH2 clusters leads to internal reorganization resulting in formal oxidation at Mn to generate FeIII/II3MnIII-OH. 57Fe Mössbauer spectroscopy reveals that oxidation state changes (three for FeIII/II3Mn-OH2 and four for FeIII/II3Mn-OH clusters) occur exclusively at the Fe centers; the Mn center is formally MnII when water is bound and MnIII when hydroxide is bound. Experimentally determined p Ka (17.4) of the [FeIII2FeIIMnII-OH2] cluster and the reduction potentials of the [Fe3Mn-OH2] and [Fe3Mn-OH] clusters were used to analyze the O-H bond dissociation enthalpies (BDEO-H) for multiple cluster oxidation states. BDEO-H increases from 69 to 78 and 85 kcal/mol for the [FeIIIFeII2MnII-OH2], [FeIII2FeIIMnII-OH2], and [FeIII3MnII-OH2] clusters, respectively. Further insight of the proton and electron transfer thermodynamics of the [Fe3Mn-OH x] system was obtained by constructing a potential-p Ka diagram; the shift in reduction potentials of the [Fe3Mn-OH x] clusters in the presence of different bases supports the BDEO-H values reported for the [Fe3Mn-OH2] clusters. A lower limit of the p Ka for the hydroxide ligand of the [Fe3Mn-OH] clusters was estimated for two oxidation states. These data suggest BDEO-H values for the [FeIII2FeIIMnIII-OH] and [FeIII3MnIII-OH] clusters are greater than 93 and 103 kcal/mol, which hints to the high reactivity expected of the resulting [Fe3Mn═O] in this and related multinuclear systems.
Collapse
Affiliation(s)
- Christopher J Reed
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
25
|
Lim JH, Engelmann X, Corby S, Ganguly R, Ray K, Soo HS. C-H activation and nucleophilic substitution in a photochemically generated high valent iron complex. Chem Sci 2018; 9:3992-4002. [PMID: 29862004 PMCID: PMC5944818 DOI: 10.1039/c7sc05378a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/22/2018] [Indexed: 12/15/2022] Open
Abstract
The (photo) chemical oxidation of a (TAML)FeIII complex using outer-sphere oxidants results in valence tautomerisation and C–H activation governed by exogenous anions.
The photochemical oxidation of a (TAML)FeIII complex 1 using visible light generated Ru(bpy)33+ produces valence tautomers (TAML)FeIV (1+) and (TAML˙+)FeIII (1-TAML˙+), depending on the exogenous anions. The presence of labile Cl– or Br– results in a ligand-based oxidation and stabilisation of a radical-cationic (TAML˙+)FeIII complex, which subsequently leads to unprecedented C–H activation followed by nucleophilic substitution on the TAML aryl ring. In contrast, exogenous cyanide culminates in metal-based oxidation, yielding the first example of a crystallographically characterised S = 1 [(TAML)FeIV(CN)2]2– species. This is a rare report of an anion-dependent valence tautomerisation in photochemically accessed high valent (TAML)Fe systems with potential applications in the oxidation of pollutants, hydrocarbons, and water. Furthermore, the nucleophilic aromatic halogenation reaction mediated by (TAML˙+)FeIII represents a novel domain for high-valent metal reactivity and highlights the possible intramolecular ligand or substrate modification pathways under highly oxidising conditions. Our findings therefore shine light on high-valent metal oxidants based on TAMLs and other potential non-innocent ligands and open new avenues for oxidation catalyst design.
Collapse
Affiliation(s)
- Jia Hui Lim
- Energy Research Institute@NTU (ERI@N) , Nanyang Technological University , Interdisciplinary Graduate School , Research Techno Plaza , Singapore 63755.,Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 .
| | - Xenia Engelmann
- Humboldt-Universität zu Berlin , Institut für Chemie , Brook-Taylor-Straβe 2 , 12489 Berlin , Germany .
| | - Sacha Corby
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 . .,Imperial College London , Department of Chemistry , South Kensington Campus , London , SW7 2AZ , UK
| | - Rakesh Ganguly
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 .
| | - Kallol Ray
- Humboldt-Universität zu Berlin , Institut für Chemie , Brook-Taylor-Straβe 2 , 12489 Berlin , Germany .
| | - Han Sen Soo
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 . .,Singapore-Berkeley Research Initiative for Sustainable Energy , 1 Create Way , Singapore 138602.,Solar Fuels Laboratory , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| |
Collapse
|
26
|
Kojima T, Ogishima F, Nishibu T, Kotani H, Ishizuka T, Okajima T, Nozawa S, Shiota Y, Yoshizawa K, Ohtsu H, Kawano M, Shiga T, Oshio H. Intermediate-Spin Iron(III) Complexes Having a Redox-Noninnocent Macrocyclic Tetraamido Ligand. Inorg Chem 2018; 57:9683-9695. [DOI: 10.1021/acs.inorgchem.8b00037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
- CREST, Japan Science and Technology Agency, 4 Chome-1-8, Kawaguchi, Honcho, Saitama 332-0012, Japan
| | - Fumiya Ogishima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takahisa Nishibu
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Hiroaki Kotani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Toshihiro Okajima
- Kyushu Synchrotron Light Research Center, 8-7 Yayoigaoka, Tosu, Saga 841-0005, Japan
| | - Shunsuke Nozawa
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- CREST, Japan Science and Technology Agency, 4 Chome-1-8, Kawaguchi, Honcho, Saitama 332-0012, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Hiroyoshi Ohtsu
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masaki Kawano
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takuya Shiga
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Hiroki Oshio
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
27
|
Zaragoza JPT, Siegler MA, Goldberg DP. A Reactive Manganese(IV)-Hydroxide Complex: A Missing Intermediate in Hydrogen Atom Transfer by High-Valent Metal-Oxo Porphyrinoid Compounds. J Am Chem Soc 2018. [PMID: 29542921 DOI: 10.1021/jacs.8b00350] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-valent metal-hydroxide species are invoked as critical intermediates in both catalytic, metal-mediated O2 activation (e.g., by Fe porphyrin in Cytochrome P450) and O2 production (e.g., by the Mn cluster in Photosystem II). However, well-characterized mononuclear MIV(OH) complexes remain a rarity. Herein we describe the synthesis of MnIV(OH)(ttppc) (3) (ttppc = tris(2,4,6-triphenylphenyl) corrole), which has been characterized by X-ray diffraction (XRD). The large steric encumbrance of the ttppc ligand allowed for isolation of 3. The complexes MnV(O)(ttppc) (4) and MnIII(H2O)(ttppc) (1·H2O) were also synthesized and structurally characterized, providing a series of Mn complexes related only by the transfer of hydrogen atoms. Both 3 and 4 abstract an H atom from the O-H bond of 2,4-di- tert-butylphenol (2,4-DTBP) to give a radical coupling product in good yield (3 = 90(2)%, 4 = 91(5)%). Complex 3 reacts with 2,4-DTBP with a rate constant of k2 = 2.73(12) × 104 M-1 s-1, which is ∼3 orders of magnitude larger than 4 ( k2 = 17.4(1) M-1 s-1). Reaction of 3 with a series of para-substituted 2,6-di- tert-butylphenol derivatives (4-X-2,6-DTBP; X = OMe, Me, tBu, H) gives rate constants in the range k2 = 510(10)-36(1.4) M-1 s-1 and led to Hammett and Marcus plot correlations. Together with kinetic isotope effect measurements, it is concluded that O-H cleavage occurs by a concerted H atom transfer (HAT) mechanism and that the MnIV(OH) complex is a much more powerful H atom abstractor than the higher-valent MnV(O) complex, or even some FeIV(O) complexes.
Collapse
Affiliation(s)
- Jan Paulo T Zaragoza
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Maxime A Siegler
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - David P Goldberg
- Department of Chemistry , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
28
|
Joslin EE, Zaragoza JPT, Siegler MA, Goldberg DP. meso-N-Methylation of a porphyrinoid complex: activating the H-atom transfer capability of an inert Re V(O) corrolazine. Chem Commun (Camb) 2018; 53:1961-1964. [PMID: 28119963 DOI: 10.1039/c6cc09341h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective alkylation of a single meso-N atom of a corrolazine macrocycle is reported. Alkylation has a dramatic impact on the physicochemical properties of ReV(O)(TBP8Cz). New electron-transfer and hydrogen-atom-transfer reactivity is also seen for this complex, including one-electron reduction, which gives an air-stable 19π-electron aromatic radical complex.
Collapse
Affiliation(s)
- Evan E Joslin
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| | - Jan Paulo T Zaragoza
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
29
|
Affiliation(s)
- Paolo Pirovano
- School of Chemistry and CRANN/AMBER Nanoscience Institute; Trinity College Dublin; The University of Dublin; College Green 2 Dublin Ireland
| | - Aidan R. McDonald
- School of Chemistry and CRANN/AMBER Nanoscience Institute; Trinity College Dublin; The University of Dublin; College Green 2 Dublin Ireland
| |
Collapse
|
30
|
Kurahashi T. Drastic Redox Shift and Electronic Structural Changes of a Manganese(III)-Salen Oxidation Catalyst upon Reaction with Hydroxide and Cyanide Ion. Inorg Chem 2018; 57:1066-1078. [DOI: 10.1021/acs.inorgchem.7b02474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takuya Kurahashi
- Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
31
|
Guo M, Lee YM, Gupta R, Seo MS, Ohta T, Wang HH, Liu HY, Dhuri SN, Sarangi R, Fukuzumi S, Nam W. Dioxygen Activation and O-O Bond Formation Reactions by Manganese Corroles. J Am Chem Soc 2017; 139:15858-15867. [PMID: 29056043 PMCID: PMC5711437 DOI: 10.1021/jacs.7b08678] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Activation of dioxygen (O2) in enzymatic and biomimetic reactions has been intensively investigated over the past several decades. More recently, O-O bond formation, which is the reverse of the O2-activation reaction, has been the focus of current research. Herein, we report the O2-activation and O-O bond formation reactions by manganese corrole complexes. In the O2-activation reaction, Mn(V)-oxo and Mn(IV)-peroxo intermediates were formed when Mn(III) corroles were exposed to O2 in the presence of base (e.g., OH-) and hydrogen atom (H atom) donor (e.g., THF or cyclic olefins); the O2-activation reaction did not occur in the absence of base and H atom donor. Moreover, formation of the Mn(V)-oxo and Mn(IV)-peroxo species was dependent on the amounts of base present in the reaction solution. The role of the base was proposed to lower the oxidation potential of the Mn(III) corroles, thereby facilitating the binding of O2 and forming a Mn(IV)-superoxo species. The putative Mn(IV)-superoxo species was then converted to the corresponding Mn(IV)-hydroperoxo species by abstracting a H atom from H atom donor, followed by the O-O bond cleavage of the putative Mn(IV)-hydroperoxo species to form a Mn(V)-oxo species. We have also shown that addition of hydroxide ion to the Mn(V)-oxo species afforded the Mn(IV)-peroxo species via O-O bond formation and the resulting Mn(IV)-peroxo species reverted to the Mn(V)-oxo species upon addition of proton, indicating that the O-O bond formation and cleavage reactions between the Mn(V)-oxo and Mn(IV)-peroxo complexes are reversible. The present study reports the first example of using the same manganese complex in both O2-activation and O-O bond formation reactions.
Collapse
Affiliation(s)
- Mian Guo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Ranjana Gupta
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Takehiro Ohta
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH LP Center, Hyogo 679-5148, Japan
| | - Hua-Hua Wang
- Department of Chemistry, South China University of Technology, Guangzhou 510641, China
| | - Hai-Yang Liu
- Department of Chemistry, South China University of Technology, Guangzhou 510641, China
| | - Sunder N. Dhuri
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Department of Chemistry, Goa University, Goa 403 206, India
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
32
|
Baglia RA, Zaragoza JPT, Goldberg DP. Biomimetic Reactivity of Oxygen-Derived Manganese and Iron Porphyrinoid Complexes. Chem Rev 2017; 117:13320-13352. [PMID: 28991451 PMCID: PMC6058703 DOI: 10.1021/acs.chemrev.7b00180] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Heme proteins utilize the heme cofactor, an iron porphyrin, to perform a diverse range of reactions including dioxygen binding and transport, electron transfer, and oxidation/oxygenations. These reactions share several key metalloporphyrin intermediates, typically derived from dioxygen and its congeners such as hydrogen peroxide. These species are composed of metal-dioxygen, metal-superoxo, metal-peroxo, and metal-oxo adducts. A wide variety of synthetic metalloporphyrinoid complexes have been synthesized to generate and stabilize these intermediates. These complexes have been studied to determine the spectroscopic features, structures, and reactivities of such species in controlled and well-defined environments. In this Review, we summarize recent findings on the reactivity of these species with common porphyrinoid scaffolds employed for biomimetic studies. The proposed mechanisms of action are emphasized. This Review is organized by structural type of metal-oxygen intermediate and broken into subsections based on the metal (manganese and iron) and porphyrinoid ligand (porphyrin, corrole, and corrolazine).
Collapse
Affiliation(s)
- Regina A. Baglia
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jan Paulo T. Zaragoza
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
33
|
Lu G, He C, Wang K, Sun J, Qi D, Gong L, Wang C, Ou Z, Yan S, Zeng S, Zhu W. Dysprosium Heteroleptic Corrole-Phthalocyanine Triple-Decker Complexes: Synthesis, Crystal Structure, and Electrochemical and Magnetic Properties. Inorg Chem 2017; 56:11503-11512. [DOI: 10.1021/acs.inorgchem.7b01060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guifen Lu
- School of Chemistry
and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Cheng He
- School of Chemistry
and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Kang Wang
- Department
of Chemistry, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| | - Junshan Sun
- College of Chemistry and Chemical Engineering, TaiShan University, Taian 271000, People’s Republic of China
| | - Dongdong Qi
- Department
of Chemistry, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| | - Lei Gong
- Department
of Chemistry, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| | - Chiming Wang
- Department
of Chemistry, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| | - Zhongping Ou
- School of Chemistry
and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Sen Yan
- School of Chemistry
and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Suyuan Zeng
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People’s Republic of China
| | - Weihua Zhu
- School of Chemistry
and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| |
Collapse
|
34
|
Lee NF, Malone J, Jeddi H, Kwong KW, Zhang R. Visible-light photolysis of corrole-manganese(IV) nitrites to generate corrole-manganese(V)-oxo complexes. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Li XX, Postils V, Sun W, Faponle AS, Solà M, Wang Y, Nam W, de Visser SP. Reactivity Patterns of (Protonated) Compound II and Compound I of Cytochrome P450: Which is the Better Oxidant? Chemistry 2017; 23:6406-6418. [PMID: 28295741 DOI: 10.1002/chem.201700363] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Indexed: 01/27/2023]
Abstract
The cytochromes P450 are versatile enzymes in human physiology that perform substrate hydroxylation reactions extremely efficiently. In this work, we present results of a computational study on the reactivity patterns of Compound I, Compound II, and protonated Compound II with model substrates, and we address the question of which of these compounds is the most effective oxidant? All calculations, regardless of the substrate, implicated that Compound I is the superior oxidant of the three. However, Compound II and protonated Compound II were found to react with free energies of activation that are only a few kcal mol-1 higher in energy than those obtained with Compound I. Therefore, Compound II and protonated Compound II should be able to react with aliphatic groups with moderate C-H bond strengths. We have analysed all results in detail and have given electronic, thermochemical, valence bond, and molecular orbital rationalizations on the reactivity differences and explained experimental product distributions. Overall, the findings implied that alternative oxidants could operate alongside Compound I in complex reaction mechanisms of enzymatic and synthetic iron porphyrinoid complexes.
Collapse
Affiliation(s)
- Xiao-Xi Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Verònica Postils
- Institut de Química Computacional i Catàlisi (IQCC) and Department de Química, Universitat de Girona, Campus de Montilivi, C/ Maria Aurèlia Capmany 6, 17003, Girona, Catalonia, Spain.,The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Abayomi S Faponle
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi (IQCC) and Department de Química, Universitat de Girona, Campus de Montilivi, C/ Maria Aurèlia Capmany 6, 17003, Girona, Catalonia, Spain
| | - Yong Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Wonwoo Nam
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
36
|
Nasrollahi R, Zakavi S. Evidence on the Nature of the Active Oxidants Involved in the Oxidation of Alcohols with Oxone Catalyzed by an Electron‐Deficient Manganese Porphyrin: A Combined Kinetic and Mechanistic Study. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rahele Nasrollahi
- Institute for Advanced Studies in Basic Sciences (IASBS) 45137‐66731 Zanjan Iran
| | - Saeed Zakavi
- Institute for Advanced Studies in Basic Sciences (IASBS) 45137‐66731 Zanjan Iran
| |
Collapse
|
37
|
Vaddypally S, Kondaveeti SK, Karki S, Van Vliet MM, Levis RJ, Zdilla MJ. Reactive Pendant Mn═O in a Synthetic Structural Model of a Proposed S4 State in the Photosynthetic Oxygen Evolving Complex. J Am Chem Soc 2017; 139:4675-4681. [DOI: 10.1021/jacs.6b05906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shivaiah Vaddypally
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Sandeep K. Kondaveeti
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Santosh Karki
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Megan M. Van Vliet
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Robert J. Levis
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Michael J. Zdilla
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
38
|
Peters GM, Winegrad JB, Gau MR, Imler GH, Xu B, Ren S, Wayland BB, Zdilla MJ. Synthesis and Structure of 2,5-Bis[N-(2,6-mesityl)iminomethyl]pyrrolylcobalt(II): Evidence for One-Electron-Oxidized, Redox Noninnocent Ligand Behavior. Inorg Chem 2017; 56:3377-3385. [DOI: 10.1021/acs.inorgchem.6b02898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Garvin M. Peters
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Jacob B. Winegrad
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Michael R. Gau
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Gregory H. Imler
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Beibei Xu
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Shenqiang Ren
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Bradford B. Wayland
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Michael J. Zdilla
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
39
|
Ghosh A. Electronic Structure of Corrole Derivatives: Insights from Molecular Structures, Spectroscopy, Electrochemistry, and Quantum Chemical Calculations. Chem Rev 2017; 117:3798-3881. [PMID: 28191934 DOI: 10.1021/acs.chemrev.6b00590] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Presented herein is a comprehensive account of the electronic structure of corrole derivatives. Our knowledge in this area derives from a broad range of methods, including UV-vis-NIR absorption and MCD spectroscopies, single-crystal X-ray structure determination, vibrational spectroscopy, NMR and EPR spectroscopies, electrochemistry, X-ray absorption spectroscopy, and quantum chemical calculations, the latter including both density functional theory and ab initio multiconfigurational methods. The review is organized according to the Periodic Table, describing free-base and main-group element corrole derivatives, then transition-metal corroles, and finally f-block element corroles. Like porphyrins, corrole derivatives with a redox-inactive coordinated atom follow the Gouterman four-orbital model. A key difference from porphyrins is the much wider prevalence of noninnocent electronic structures as well as full-fledged corrole•2- radicals among corrole derivatives. The most common orbital pathways mediating ligand noninnocence in transition-metal corroles are the metal(dz2)-corrole("a2u") interaction (most commonly observed in Mn and Fe corroles) and the metal(dx2-y2)-corrole(a2u) interaction in coinage metal corroles. Less commonly encountered is the metal(dπ)-corrole("a1u") interaction, a unique feature of formal d5 metallocorroles. Corrole derivatives exhibit a rich array of optical properties, including substituent-sensitive Soret maxima indicative of ligand noninnocence, strong fluorescence in the case of lighter main-group element complexes, and room-temperature near-IR phosphorescence in the case of several 5d metal complexes. The review concludes with an attempt at identifying gaps in our current knowledge and potential future directions of electronic-structural research on corrole derivatives.
Collapse
Affiliation(s)
- Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-The Arctic University of Norway , 9037 Tromsø, Norway
| |
Collapse
|
40
|
Ziegler JA, Buckley HL, Arnold J. Synthesis and reactivity of tantalum corrole complexes. Dalton Trans 2017; 46:780-785. [PMID: 27996068 DOI: 10.1039/c6dt04265a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of the free base corrole (Mes2(p-OMePh)corrole)H3 with tantalum trialkyl precursors TaMe3Cl2 and TaBn3NtBu resulted in the formation of the tantalum dichloride (1) and tantalum imido (4) corrole complexes via alkane elimination. The X-ray crystal structures of these two compounds have been determined and the structural parameters are discussed. The Ta centre of 1 was found to sit out of the plane of the corrole ring by 0.903 Å and is cis-ligated, similarly to what has been reported for group 4 porphyrin complexes. From complex 1 we synthesized the dimethyl derivative (2), the reactivity of which is compared to an analogous tantalum dimethyl porphyrin cation. The imido complex 4 reacted with triphenylmethanol and 4-methylbenzyl alcohol, resulting in different extents of protonation of the imido group.
Collapse
Affiliation(s)
- Jessica A Ziegler
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Heather L Buckley
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| |
Collapse
|
41
|
Lannes A, Suffren Y, Tommasino JB, Chiriac R, Toche F, Khrouz L, Molton F, Duboc C, Kieffer I, Hazemann JL, Reber C, Hauser A, Luneau D. Room Temperature Magnetic Switchability Assisted by Hysteretic Valence Tautomerism in a Layered Two-Dimensional Manganese-Radical Coordination Framework. J Am Chem Soc 2016; 138:16493-16501. [DOI: 10.1021/jacs.6b10544] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Anthony Lannes
- Univ Lyon, Université
Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces,
UMR CNRS 5615, F-69622, Villeurbanne, France
| | - Yan Suffren
- Département
de Chimie Physique, Université de Genève, 30 Quai
Ernest-Ansermet, 1211 Genève 4, Switzerland
| | - Jean Bernard Tommasino
- Univ Lyon, Université
Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces,
UMR CNRS 5615, F-69622, Villeurbanne, France
| | - Rodica Chiriac
- Univ Lyon, Université
Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces,
UMR CNRS 5615, F-69622, Villeurbanne, France
| | - François Toche
- Univ Lyon, Université
Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces,
UMR CNRS 5615, F-69622, Villeurbanne, France
| | - Lhoussain Khrouz
- Univ Lyon, ENS de Lyon,
CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire
de Chimie, F69342, Lyon, France
| | - Florian Molton
- Département de Chimie
Moléculaire (UMR 5250), Université Joseph Fourier, Grenoble, France
| | - Carole Duboc
- Département de Chimie
Moléculaire (UMR 5250), Université Joseph Fourier, Grenoble, France
| | - Isabelle Kieffer
- BM30B/FAME Beamline, European Synchrotron for Research Facility (ESRF), Grenoble, France
- Observatoire des Sciences de l’Univers
de Grenoble (OSUG), CNRS UMS 832, 414
rue de la piscine, 38400 Saint Martin d’Hères, France
| | - Jean-Louis Hazemann
- BM30B/FAME Beamline, European Synchrotron for Research Facility (ESRF), Grenoble, France
- Institut
Néel, UPR 2940 CNRS, Grenoble, France
| | - Christian Reber
- Département de Chimie, Université de Montréal, Montréal, Canada
| | - Andreas Hauser
- Département
de Chimie Physique, Université de Genève, 30 Quai
Ernest-Ansermet, 1211 Genève 4, Switzerland
| | - Dominique Luneau
- Univ Lyon, Université
Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces,
UMR CNRS 5615, F-69622, Villeurbanne, France
| |
Collapse
|
42
|
Zhang W, Lai W, Cao R. Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems. Chem Rev 2016; 117:3717-3797. [PMID: 28222601 DOI: 10.1021/acs.chemrev.6b00299] [Citation(s) in RCA: 712] [Impact Index Per Article: 79.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Globally increasing energy demands and environmental concerns related to the use of fossil fuels have stimulated extensive research to identify new energy systems and economies that are sustainable, clean, low cost, and environmentally benign. Hydrogen generation from solar-driven water splitting is a promising strategy to store solar energy in chemical bonds. The subsequent combustion of hydrogen in fuel cells produces electric energy, and the only exhaust is water. These two reactions compose an ideal process to provide clean and sustainable energy. In such a process, a hydrogen evolution reaction (HER), an oxygen evolution reaction (OER) during water splitting, and an oxygen reduction reaction (ORR) as a fuel cell cathodic reaction are key steps that affect the efficiency of the overall energy conversion. Catalysts play key roles in this process by improving the kinetics of these reactions. Porphyrin-based and corrole-based systems are versatile and can efficiently catalyze the ORR, OER, and HER. Because of the significance of energy-related small molecule activation, this review covers recent progress in hydrogen evolution, oxygen evolution, and oxygen reduction reactions catalyzed by porphyrins and corroles.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, China
| | - Wenzhen Lai
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710119, China.,Department of Chemistry, Renmin University of China , Beijing 100872, China
| |
Collapse
|
43
|
Bougher CJ, Abu-Omar MM. Lewis-Acid-assisted Hydrogen Atom Transfer to Manganese(V)-Oxo Corrole through Valence Tautomerization. ChemistryOpen 2016; 5:522-524. [PMID: 28032019 PMCID: PMC5167333 DOI: 10.1002/open.201600117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 11/09/2022] Open
Abstract
The kinetics of formation of the valence tautomers (tpfc⋅)MnIV(O−LA)]n+ [where LA=ZnII, CaII, ScIII, YbIII, B(C6F5)3, and trifluoroacetic acid (TFA); tpfc=5,10,15‐tris(pentafluorophenyl) corrole] from (tpfc)MnV(O) were followed by UV/Vis spectroscopy, giving second‐order rate constants ranging over five orders of magnitude from 10−2 for Ca to 103
m−1 s−1 for Sc. Hydrogen atom transfer (HAT) rates from 2,4‐di‐tert‐butyl phenol (2,4‐DTBP) to the various Lewis acid valence tautomers of manganese oxo corrole complexes were evaluated and compared. For LA=TFA, ScIII, or YbIII, the rate constants of HAT were comparable to unactivated (tpfc)MnV(O). However, with LA=B(C6F5)3, ZnII, and CaII, 6‐, 21‐, and 31‐fold rate enhancements were observed, respectively. Remarkably, [(tpfc⋅)MnIV(OCa)]2+ gave the most enhancement despite its rate of formation being the slowest. Comparisons of HAT rate constants among the various Lewis acid tautomers revealed that both size and charge are important. This study underscores how valence may affect the reactivity of high‐valent manganese‐oxo compounds and sheds light on nature's choice of Ca in the activation of Mn‐oxo in the oxygen‐evolving complex.
Collapse
Affiliation(s)
- Curt J Bougher
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47906 USA
| | - Mahdi M Abu-Omar
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47906 USA; Current address: Department of Chemistry and Biochemistry Department of Chemical Engineering University of California Santa Barbara CA 93106 USA
| |
Collapse
|
44
|
Baglia RA, Krest CM, Yang T, Leeladee P, Goldberg DP. High-Valent Manganese-Oxo Valence Tautomers and the Influence of Lewis/Brönsted Acids on C-H Bond Cleavage. Inorg Chem 2016; 55:10800-10809. [PMID: 27689821 DOI: 10.1021/acs.inorgchem.6b02109] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The addition of Lewis or Brönsted acids (LA = Zn(OTf)2, B(C6F5)3, HBArF, TFA) to the high-valent manganese-oxo complex MnV(O)(TBP8Cz) results in the stabilization of a valence tautomer MnIV(O-LA)(TBP8Cz•+). The ZnII and B(C6F5)3 complexes were characterized by manganese K-edge X-ray absorption spectroscopy (XAS). The position of the edge energies and the intensities of the pre-edge (1s to 3d) peaks confirm that the Mn ion is in the +4 oxidation state. Fitting of the extended X-ray absorption fine structure (EXAFS) region reveals 4 N/O ligands at Mn-Nave = 1.89 Å and a fifth N/O ligand at 1.61 Å, corresponding to the terminal oxo ligand. This Mn-O bond length is elongated compared to the MnV(O) starting material (Mn-O = 1.55 Å). The reactivity of MnIV(O-LA)(TBP8Cz•+) toward C-H substrates was examined, and it was found that H• abstraction from C-H bonds occurs in a 1:1 stoichiometry, giving a MnIV complex and the dehydrogenated organic product. The rates of C-H cleavage are accelerated for the MnIV(O-LA)(TBP8Cz•+) valence tautomer as compared to the MnV(O) valence tautomer when LA = ZnII, B(C6F5)3, and HBArF, whereas for LA = TFA, the C-H cleavage rate is slightly slower than when compared to MnV(O). A large, nonclassical kinetic isotope effect of kH/kD = 25-27 was observed for LA = B(C6F5)3 and HBArF, indicating that H-atom transfer (HAT) is the rate-limiting step in the C-H cleavage reaction and implicating a potential tunneling mechanism for HAT. The reactivity of MnIV(O-LA)(TBP8Cz•+) toward C-H bonds depends on the strength of the Lewis acid. The HAT reactivity is compared with the analogous corrole complex MnIV(O-H)(tpfc•+) recently reported (J. Am. Chem. Soc. 2015, 137, 14481-14487).
Collapse
Affiliation(s)
- Regina A Baglia
- Department of Chemistry, The Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Courtney M Krest
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States
| | - Tzuhsiung Yang
- Department of Chemistry, The Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Pannee Leeladee
- Department of Chemistry, The Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
45
|
Joslin EE, Zaragoza JPT, Baglia RA, Siegler MA, Goldberg DP. The Influence of Peripheral Substituent Modification on P(V), Mn(III), and Mn(V)(O) Corrolazines: X-ray Crystallography, Electrochemical and Spectroscopic Properties, and HAT and OAT Reactivities. Inorg Chem 2016; 55:8646-60. [PMID: 27529361 DOI: 10.1021/acs.inorgchem.6b01219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The influence of remote peripheral substitution on the physicochemical properties and reactivity of phosphorus and manganese corrolazine (Cz) complexes was examined. The substitution of p-MeO for p-t-Bu groups on the eight phenyl substituents of the β-carbon atoms of the Cz ring led to changes in UV-vis transitions and redox potentials for each of the complexes. The oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactivity of the Mn(V)(O) complexes was also influenced by p-MeO substitution. The OAT reactivity of Mn(V)(O)(MeOP8Cz) (MeOP8Cz = octakis(p-methoxyphenyl)corrolazinato(3-)) with triarylphosphine (PAr3) substrates led to second-order rate constants from 10.2(5) to 3.1(2) × 10(4) M(-1) s(-1). These rates of OAT are slower than those seen for Mn(V)(O)(TBP8Cz) (TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato(3-)). A Hammett study involving para-substituted PAr3 substrates reveals a Hammett ρ-value for Mn(V)(O)(MeOP8Cz) that is more negative than that observed for Mn(V)(O)(TBP8Cz), consistent with a less electrophilic Mn center. The HAT reactivity of Mn(V)(O)(MeOP8Cz) with C-H substrates was examined and revealed second-order rate constants from 6.8(5) × 10(-5) to 1.70(2) × 10(-1) M(-1) s(-1). The rate constants varied with the C-H bond strength of the substrate. Slightly faster HAT rates with C-H substrates were observed with Mn(V)(O)(MeOP8Cz) compared to Mn(V)(O)(TBP8Cz), indicating that the basicity of the putative [Mn(IV)(O)](-) intermediate likely compensates for the more negative redox potential in the driving force for HAT. In addition, the complete, large-scale synthesis of the para-phenyl-substituted porphyrazines RP8PzH2 (R = p-tert-butylphenyl (TB), p-methoxyphenyl (MeO), and p-isopropylphenyl) and corrolazines RP8CzH3 (TBP8CzH3 and MeOP8CzH3) is presented. The crystal structures of the monoprotonated, metal-free corrolazine [(TBP8CzH3)(H)](+)[BArF](-), P(V)(OMe)2(MeOP8Cz), and Mn(III)(MeOP8Cz)(MeOH) are presented. This work provides the first insights into the influence of electronic substituent effects on the corrolazine periphery.
Collapse
Affiliation(s)
- Evan E Joslin
- Department of Chemistry, The Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jan Paulo T Zaragoza
- Department of Chemistry, The Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Regina A Baglia
- Department of Chemistry, The Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
46
|
Ka WK, Ngo FL, Ranburger D, Malone J, Zhang R. Visible light-induced formation of corrole-manganese(V)-oxo complexes: Observation of multiple oxidation pathways. J Inorg Biochem 2016; 163:39-44. [PMID: 27513949 DOI: 10.1016/j.jinorgbio.2016.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 11/19/2022]
Abstract
Two manganese(V)-oxo corroles [MnV(Cor)O] that differ in their electronic environments were produced by visible light irradiation of highly photo-labile corrole-manganese(IV) bromates. The corrole ligands under study include 5,10,15-tris(pentafluorophenyl)corrole (TPFC), and 5,10,15-triphenylcorrole (TPC). The kinetics of oxygen transfer atom (OAT) reactions with various organic reductants by these photo-generated MnV(Cor)O were also studied in CH3CN and CH2Cl2 solutions. MnV(Cor)O exhibits remarkable solvent and ligand effect on its reactivity and spectral behavior. In the more electron-deficient TPFC system and in the polar solvent CH3CN, MnV(Cor)O returned MnIII corrole in the end of oxidation reactions. However, in the less polar solvent CH2Cl2 or in the less electron-deficient TPC system, MnIV product was formed instead of MnIII. Furthermore, with the same substrates and in the same solvent, the order of reactivity of MnV(Cor)O was TPC>TPFC, which is inverted from that expected based on the electron-demand of corrole ligands. Our spectral and kinetic results in this study provide compelling evidence in favor of multiple oxidation pathways, where MnV(Cor)O may serve as direct two-electron oxidant or undergo a disproportionation reaction to form a manganese(VI)-oxo corrole as the true oxidant. The choice of pathways is strongly dependent on the nature of the solvent and the corrole ligand.
Collapse
Affiliation(s)
- Wai Kwong Ka
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101-1079, USA
| | - Fung Lee Ngo
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101-1079, USA
| | - Davis Ranburger
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101-1079, USA
| | - Jonathan Malone
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101-1079, USA
| | - Rui Zhang
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101-1079, USA.
| |
Collapse
|
47
|
Hamer M, Rezzano IN. Classical Characterization Techniques to Reveal the Structural Model of Nanocomposites with Bimetallic Monolayers of Porphyrins. Inorg Chem 2016; 55:8595-602. [PMID: 27482597 DOI: 10.1021/acs.inorgchem.6b01136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanocomposites with bimetallic monolayers of porphyrins were prepared. The well-ordered metalloporphyrin monolayers covalently linked to the gold surface produce an important increase of the B band (∼400 nm) shifted 20 nm relative to that of the related high-spin iron(III) complexes in solution. The position of the B band in the bimetallic architectures is highly dependent on the relative amount of the two porphyrins, showing the most significant shift for the SiO2/APTES/AuNp/Fe-TPyP&M-TPyP (1:1) (30 nm, M = Ni(II) or Cu(II)). Resonance Raman based on the oxidation state marker bands (1553, 1354, and 390 cm(-1)) indicates that Fe-TPyP attached on gold nanoparticles adopts a low-spin Fe(II) conformation, which changes to Fe(II) intermediate spin or a low-spin Fe(III) in the presence of Cu-TPyP or Ni-TPyP. Surface-enhanced Raman scattering studies confirmed the hypothesis. MALDI-TOF analysis of the composites on gold nanoparticles was very useful in the detection of oxygenated forms of the metal complexes.
Collapse
Affiliation(s)
- Mariana Hamer
- Universidad de Buenos Aires , Facultad de Farmacia y Bioquı́mica, CONICET-IQUIFIB, Junin 956, CP 1113 Buenos Aires, Argentina
| | - Irene N Rezzano
- Universidad de Buenos Aires , Facultad de Farmacia y Bioquı́mica, CONICET-IQUIFIB, Junin 956, CP 1113 Buenos Aires, Argentina
| |
Collapse
|
48
|
Vaddypally S, McKendry IG, Tomlinson W, Hooper JP, Zdilla MJ. Electronic Structure of Manganese Complexes of the Redox‐Non‐innocent Tetrazene Ligand and Evidence for the Metal‐Azide/Imido Cycloaddition Intermediate. Chemistry 2016; 22:10548-57. [DOI: 10.1002/chem.201600531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/12/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Shivaiah Vaddypally
- Department of Chemistry Temple University 1901 N. 13th St. Philadelphia PA 19122 USA
| | - Ian G. McKendry
- Department of Chemistry Temple University 1901 N. 13th St. Philadelphia PA 19122 USA
| | - Warren Tomlinson
- Department of Physics Naval Postgraduate School 833 Dyer Rd. Monterey CA 93943 USA
| | - Joseph P. Hooper
- Department of Physics Naval Postgraduate School 833 Dyer Rd. Monterey CA 93943 USA
| | - Michael J. Zdilla
- Department of Chemistry Temple University 1901 N. 13th St. Philadelphia PA 19122 USA
| |
Collapse
|
49
|
Cai YB, Yao SY, Hu M, Liu X, Zhang JL. Manganese protoporphyrin IX reconstituted myoglobin capable of epoxidation of the CC bond with Oxone®. Inorg Chem Front 2016. [DOI: 10.1039/c6qi00120c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Myoglobin with three distal histidines stabilizes KHSO5, facilitates the O–O bond heterocleavage, and firstly catalyzes epoxidation with the MnPPIX cofactor.
Collapse
Affiliation(s)
- Yuan-Bo Cai
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Si-Yu Yao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Mo Hu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|