1
|
Schroeder L, Diepold N, Gäfe S, Niemann HH, Kottke T. Coupling and regulation mechanisms of the flavin-dependent halogenase PyrH observed by infrared difference spectroscopy. J Biol Chem 2024; 300:107210. [PMID: 38519030 PMCID: PMC11021962 DOI: 10.1016/j.jbc.2024.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
Flavin-dependent halogenases are central enzymes in the production of halogenated secondary metabolites in various organisms and they constitute highly promising biocatalysts for regioselective halogenation. The mechanism of these monooxygenases includes formation of hypohalous acid from a reaction of fully reduced flavin with oxygen and halide. The hypohalous acid then diffuses via a tunnel to the substrate-binding site for halogenation of tryptophan and other substrates. Oxidized flavin needs to be reduced for regeneration of the enzyme, which can be performed in vitro by a photoreduction with blue light. Here, we employed this photoreduction to study characteristic structural changes associated with the transition from oxidized to fully reduced flavin in PyrH from Streptomyces rugosporus as a model for tryptophan-5-halogenases. The effect of the presence of bromide and chloride or the absence of any halides on the UV-vis spectrum of the enzyme demonstrated a halide-dependent structure of the flavin-binding pocket. Light-induced FTIR difference spectroscopy was applied and the signals assigned by selective isotope labeling of the protein moiety. The identified structural changes in α-helix and β-sheet elements were strongly dependent on the presence of bromide, chloride, the substrate tryptophan, and the product 5-chloro-tryptophan, respectively. We identified a clear allosteric coupling in solution at ambient conditions between cofactor-binding site and substrate-binding site that is active in both directions, despite their separation by a tunnel. We suggest that this coupling constitutes a fine-tuned mechanism for the promotion of the enzymatic reaction of flavin-dependent halogenases in dependence of halide and substrate availability.
Collapse
Affiliation(s)
- Lea Schroeder
- Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Niklas Diepold
- Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, Bielefeld, Germany; Biophysical Chemistry and Diagnostics, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Simon Gäfe
- Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Hartmut H Niemann
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Tilman Kottke
- Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, Bielefeld, Germany; Biophysical Chemistry and Diagnostics, Medical School OWL, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
2
|
Cellini A, Shankar MK, Nimmrich A, Hunt LA, Monrroy L, Mutisya J, Furrer A, Beale EV, Carrillo M, Malla TN, Maj P, Vrhovac L, Dworkowski F, Cirelli C, Johnson PJM, Ozerov D, Stojković EA, Hammarström L, Bacellar C, Standfuss J, Maj M, Schmidt M, Weinert T, Ihalainen JA, Wahlgren WY, Westenhoff S. Directed ultrafast conformational changes accompany electron transfer in a photolyase as resolved by serial crystallography. Nat Chem 2024; 16:624-632. [PMID: 38225270 PMCID: PMC10997514 DOI: 10.1038/s41557-023-01413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024]
Abstract
Charge-transfer reactions in proteins are important for life, such as in photolyases which repair DNA, but the role of structural dynamics remains unclear. Here, using femtosecond X-ray crystallography, we report the structural changes that take place while electrons transfer along a chain of four conserved tryptophans in the Drosophila melanogaster (6-4) photolyase. At femto- and picosecond delays, photoreduction of the flavin by the first tryptophan causes directed structural responses at a key asparagine, at a conserved salt bridge, and by rearrangements of nearby water molecules. We detect charge-induced structural changes close to the second tryptophan from 1 ps to 20 ps, identifying a nearby methionine as an active participant in the redox chain, and from 20 ps around the fourth tryptophan. The photolyase undergoes highly directed and carefully timed adaptations of its structure. This questions the validity of the linear solvent response approximation in Marcus theory and indicates that evolution has optimized fast protein fluctuations for optimal charge transfer.
Collapse
Affiliation(s)
- Andrea Cellini
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Madan Kumar Shankar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Amke Nimmrich
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Leigh Anna Hunt
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Leonardo Monrroy
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Jennifer Mutisya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | | | | | | | - Tek Narsingh Malla
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Piotr Maj
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Lidija Vrhovac
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | | | | | | | | | - Emina A Stojković
- Department of Biology, Northeastern Illinois University, Chicago, IL, USA
| | - Leif Hammarström
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | - Michał Maj
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - Janne A Ihalainen
- Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology and the Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Christou NE, Apostolopoulou V, Melo DVM, Ruppert M, Fadini A, Henkel A, Sprenger J, Oberthuer D, Günther S, Pateras A, Rahmani Mashhour A, Yefanov OM, Galchenkova M, Reinke PYA, Kremling V, Scheer TES, Lange ER, Middendorf P, Schubert R, De Zitter E, Lumbao-Conradson K, Herrmann J, Rahighi S, Kunavar A, Beale EV, Beale JH, Cirelli C, Johnson PJM, Dworkowski F, Ozerov D, Bertrand Q, Wranik M, Bacellar C, Bajt S, Wakatsuki S, Sellberg JA, Huse N, Turk D, Chapman HN, Lane TJ. Time-resolved crystallography captures light-driven DNA repair. Science 2023; 382:1015-1020. [PMID: 38033070 DOI: 10.1126/science.adj4270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
Photolyase is an enzyme that uses light to catalyze DNA repair. To capture the reaction intermediates involved in the enzyme's catalytic cycle, we conducted a time-resolved crystallography experiment. We found that photolyase traps the excited state of the active cofactor, flavin adenine dinucleotide (FAD), in a highly bent geometry. This excited state performs electron transfer to damaged DNA, inducing repair. We show that the repair reaction, which involves the lysis of two covalent bonds, occurs through a single-bond intermediate. The transformation of the substrate into product crowds the active site and disrupts hydrogen bonds with the enzyme, resulting in stepwise product release, with the 3' thymine ejected first, followed by the 5' base.
Collapse
Affiliation(s)
- Nina-Eleni Christou
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Virginia Apostolopoulou
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Diogo V M Melo
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Matthias Ruppert
- Institute for Nanostructure and Solid-State Physics, CFEL Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Alisia Fadini
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Alessandra Henkel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Janina Sprenger
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Dominik Oberthuer
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Sebastian Günther
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Anastasios Pateras
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Aida Rahmani Mashhour
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Oleksandr M Yefanov
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Marina Galchenkova
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Patrick Y A Reinke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Viviane Kremling
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - T Emilie S Scheer
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Esther R Lange
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Philipp Middendorf
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Robin Schubert
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Elke De Zitter
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Koya Lumbao-Conradson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA
| | - Jonathan Herrmann
- Department of Structural Biology, Stanford University, 318 Campus Drive West, Stanford, CA 94305-5151, USA
| | - Simin Rahighi
- Department of Structural Biology, Stanford University, 318 Campus Drive West, Stanford, CA 94305-5151, USA
| | - Ajda Kunavar
- Laboratory for Fluid Dynamics and Thermodynamics, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - Emma V Beale
- Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - John H Beale
- Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | | | | | | | - Dmitry Ozerov
- Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | | | | | | | - Saša Bajt
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Soichi Wakatsuki
- Department of Structural Biology, Stanford University, 318 Campus Drive West, Stanford, CA 94305-5151, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA
| | - Jonas A Sellberg
- Biomedical and X-ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Nils Huse
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Institute for Nanostructure and Solid-State Physics, CFEL Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dušan Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Henry N Chapman
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Thomas J Lane
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
4
|
Iwata T, Kurahashi Y, Wijaya IMM, Kandori H. Spectroscopic Investigation of Na +-Dependent Conformational Changes of a Cyclobutane Pyrimidine Dimer-Repairing Deoxyribozyme. ACS OMEGA 2023; 8:37274-37281. [PMID: 37841180 PMCID: PMC10569015 DOI: 10.1021/acsomega.3c05083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023]
Abstract
UV1C is an enzymatically active DNA sequence (deoxyribozyme, DNAzyme) that functions as a cyclobutane pyrimidine dimer (CPD) photolyase. UV1C forms parallel guanine quadruplexes (G-quadruplexes) with a DNA substrate in the presence of 240 mM Na+, the structure of which is important for the enzymatic activity. To investigate the repair mechanism of CPD by UV1C, we designed light-induced Fourier transform infrared (FTIR) spectroscopy. Prior to FTIR measurements, circular dichroism (CD) spectroscopy was conducted to determine the Na+ concentration at which the most G-quadruplexes were formed. We found that UV1C also forms a hybrid G-quadruplex structure at over 500 mM Na+. By assuming a concentration equilibrium between G-quadruplexes and Na+, 1.3 and 1.8 Na+ were found to bind to parallel and hybrid G-quadruplexes, respectively. The hybrid G-quadruplex form of UV1C was also suggested to exhibit photolyase activity. Light-induced FTIR spectra recorded upon the photorepair of CPD by UV1C were compared for parallel G-quadruplex-rich and hybrid G-quadruplex-rich samples. Spectral variations were indicative of structural differences in parallel and hybrid G-quadruplexes before and after CPD cleavage. Differences were also observed when compared to the CPD repair spectrum by CPD photolyase. The spectral differences during CPD repair by either protein or DNAzyme suggest the local environment of the substrates, the surrounding protein, or the aqueous solution.
Collapse
Affiliation(s)
- Tatsuya Iwata
- Department
of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Yuhi Kurahashi
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - I Made Mahaputra Wijaya
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department
of Life Science and Applied Chemistry, Nagoya
Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology
Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
5
|
Weik M, Domratcheva T. Insight into the structural dynamics of light sensitive proteins from time-resolved crystallography and quantum chemical calculations. Curr Opin Struct Biol 2022; 77:102496. [PMID: 36462226 DOI: 10.1016/j.sbi.2022.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
The structural dynamics underlying molecular mechanisms of light-sensitive proteins can be studied by a variety of experimental and computational biophysical techniques. Here we review recent progress in combining time-resolved crystallography at X-ray free electron lasers and quantum chemical calculations to study structural changes in photoenzymes, photosynthetic proteins, photoreceptors, and photoswitchable fluorescent proteins following photoexcitation.
Collapse
Affiliation(s)
- Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France.
| | - Tatiana Domratcheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia; Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
6
|
Sviatenko LK, Gorb L, Leszczynski J. NTO Degradation by Nitroreductase: A DFT Study. J Phys Chem B 2022; 126:5991-6006. [PMID: 35926135 DOI: 10.1021/acs.jpcb.2c04153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NTO (5-nitro-1,2,4-triazol-3-one), an energetic material used in military applications, may be released to the environment during manufacturing, transportation, storage, training, and disposal. A detailed investigation of the possible mechanism for all steps of reduction of NTO by oxygen-insensitive nitroreductase, as one of the pathways for NTO environmental degradation, was performed by computational study at the PCM(Pauling)/M06-2X/6-311++G(d,p) level. Obtained results reveal an overall sequence for NTO transformation into ATO (5-amino-1,2,4-triazol-3-one) with the flavin mononucleotide (FMN) cofactor of nitroreductase. Reduction of the nitro group to the nitroso group and the nitroso group to the hydroxylamino group follow a similar mechanism that consists of the sequential electron and proton transfer from the flavin cofactor. The hydride transfer mechanism may contribute to reduction of the nitroso group by the anionic form of the reduced flavin cofactor. Reduction of 5-(hydroxylamino)-1,2,4-triazol-3-one by the neutral form of the reduced flavin is impossible, whereas reduction of the hydroxylamino group to the amino group occurs with the anionic form of the reduced cofactor by a mechanism involving an initial proton transfer from the hydroxonium ion followed by two electrons and one proton transfers from the flavin cofactor. Small activation energies and high exothermicity support the significant contribution of oxygen-insensitive nitroreductase and other enzymes, containing FMN as a cofactor, to NTO degradation in the environment.
Collapse
Affiliation(s)
- Liudmyla K Sviatenko
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics & Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Leonid Gorb
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotny Str., Kyiv 03143, Ukraine
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics & Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
7
|
Wen B, Xu L, Tang Y, Jiang Z, Ge M, Liu L, Zhu G. A single amino acid residue tunes the stability of the fully reduced flavin cofactor and photorepair activity in photolyases. J Biol Chem 2022; 298:102188. [PMID: 35753350 PMCID: PMC9356274 DOI: 10.1016/j.jbc.2022.102188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
The ultraviolet-induced DNA lesions, cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4 photoproducts), can be directly photorepaired by CPD photolyases and 6-4 photolyases, respectively. The fully reduced flavin (hydroquinone, HQ) cofactor is required for the catalysis of both types of these photolyases. On the other hand, flavin cofactor in the semi-reduced state, semiquinone (SQ), can be utilized by photolyase homologs, the cryptochromes. However, the evolutionary process of the transition of the functional states of` flavin cofactors in photolyases and cryptochromes remains mysterious. In this work, we investigated three representative photolyases (Escherichia coli CPD photolyase, Microcystis aeruginosa DASH, and Phaeodactylum tricornutum 6-4 photolyase). We show that the residue at a single site adjacent to the flavin cofactor (corresponding to Ala377 in E. coli CPD photolyase, hereafter referred to as site 377) can fine-tune the stability of the HQ cofactor. We found that, in the presence of a polar residue (such as Ser or Asn) at site 377, HQ was stabilized against oxidation. Furthermore, this polar residue enhanced the photorepair activity of these photolyases both in vitro and in vivo. In constrast, substitution of hydrophobic residues, such as Ile, at site 377 in these photolyases adversely affected the stability of HQ. We speculate that these differential residue preferences at site 377 in photolyase proteins might reflect an important evolutionary event that altered the stability of HQ on the timeline from expression of photolyases to that of cryptochromes.
Collapse
Affiliation(s)
- Bin Wen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Lei Xu
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, Anhui, China
| | - Yawei Tang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Zhen Jiang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Mengting Ge
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Li Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| |
Collapse
|
8
|
Serial crystallography captures dynamic control of sequential electron and proton transfer events in a flavoenzyme. Nat Chem 2022; 14:677-685. [PMID: 35393554 DOI: 10.1038/s41557-022-00922-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/25/2022] [Indexed: 11/08/2022]
Abstract
Flavin coenzymes are universally found in biological redox reactions. DNA photolyases, with their flavin chromophore (FAD), utilize blue light for DNA repair and photoreduction. The latter process involves two single-electron transfers to FAD with an intermittent protonation step to prime the enzyme active for DNA repair. Here we use time-resolved serial femtosecond X-ray crystallography to describe how light-driven electron transfers trigger subsequent nanosecond-to-microsecond entanglement between FAD and its Asn/Arg-Asp redox sensor triad. We found that this key feature within the photolyase-cryptochrome family regulates FAD re-hybridization and protonation. After first electron transfer, the FAD•- isoalloxazine ring twists strongly when the arginine closes in to stabilize the negative charge. Subsequent breakage of the arginine-aspartate salt bridge allows proton transfer from arginine to FAD•-. Our molecular videos demonstrate how the protein environment of redox cofactors organizes multiple electron/proton transfer events in an ordered fashion, which could be applicable to other redox systems such as photosynthesis.
Collapse
|
9
|
Understanding flavin electronic structure and spectra. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Cellini A, Shankar MK, Wahlgren WY, Nimmrich A, Furrer A, James D, Wranik M, Aumonier S, Beale EV, Dworkowski F, Standfuss J, Weinert T, Westenhoff S. Structural basis of the radical pair state in photolyases and cryptochromes. Chem Commun (Camb) 2022; 58:4889-4892. [PMID: 35352724 PMCID: PMC9008703 DOI: 10.1039/d2cc00376g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the structure of a photoactivated animal (6-4) photolyase in its radical pair state, captured by serial crystallography. We observe how a conserved asparigine moves towards the semiquinone FAD chromophore and stabilizes it by hydrogen bonding. Several amino acids around the final tryptophan radical rearrange, opening it up to the solvent. The structure explains how the protein environment stabilizes the radical pair state, which is crucial for function of (6-4) photolyases and cryptochromes. The structural response of the drosophila (6-4) photolyase to photoinduced electron transfer along a chain of tryptophans is revealed using a serial crystallographic snapshot of the protein in its radical pair state.![]()
Collapse
Affiliation(s)
- Andrea Cellini
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Madan Kumar Shankar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Amke Nimmrich
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Antonia Furrer
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Daniel James
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Maximilian Wranik
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Sylvain Aumonier
- Photon Science Division - Laboratory for Macromolecules and Bioimaging (LSB), Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Emma V Beale
- Photon Science Division - Laboratory for Synchrotron Radiation and Femtochemistry (LSF), Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Florian Dworkowski
- Photon Science Division - Laboratory for Macromolecules and Bioimaging (LSB), Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Jörg Standfuss
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Tobias Weinert
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
- Department of Chemistry-BMC, University of Uppsala, Husargatan 3, 75237 Uppsala, Sweden
| |
Collapse
|
11
|
Yamada D, Yamamoto J, Getzoff ED, Iwata T, Kandori H. Structural Changes during the Photorepair and Binding Processes of Xenopus (6-4) Photolyase with (6-4) Photoproducts in Single- and Double-Stranded DNA. Biochemistry 2021; 60:3253-3261. [PMID: 34658241 DOI: 10.1021/acs.biochem.1c00413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photolyases (PHRs) repair ultraviolet (UV)-induced DNA photoproducts into normal bases. In this study, we measured the conformational changes upon photoactivation and photorepair processes of a PHR and its specific substrates, (6-4)PHR and a pyrimidine(6-4)pyrimidone photoproduct ((6-4)PP), by light-induced difference Fourier transform infrared (FT-IR) spectroscopy. The single-stranded DNA with (6-4)PP (ss(6-4)PP) was used as a substrate and the resultant FT-IR spectra were compared with the previous results on double-stranded DNA with (6-4)PP (ds(6-4)PP). In the excess amount of substrate to the enzyme, different ss(6-4)PP photorepair FT-IR signals were obtained in an illumination time-dependent manner. As reported for ds(6-4)PP, the early stages of the photoreaction involve the changes in the ss(6-4)PP only, while the late stages of the reaction involve the ss(6-4)PP repair-associated changes and dissociation from (6-4)PHR. From these spectra, difference spectra originating from the binding/dissociation spectrum were extracted. The signals of the C═O stretches of (6-4)PP and repaired thymines in the single- and double-stranded DNA were tentatively assigned. The C═O stretches of (6-4)PP were observed at frequencies that reflect single- and double-stranded DNA environments in aqueous solution, reflecting the different hydrogen-bonding environments. The conformational changes of PHR upon binding of ss(6-4)PP and ds(6-4)PP were similar, suggesting that the conformational change is limited to the (6-4)PP binding pocket region. We interpreted that ds(6-4)PP may be bound together without any special mechanism for flipping out.
Collapse
Affiliation(s)
- Daichi Yamada
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Junpei Yamamoto
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Elizabeth D Getzoff
- Department of Integrative Structural and Computational Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States.,Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tatsuya Iwata
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
12
|
Kiontke S, Göbel T, Brych A, Batschauer A. DASH-type cryptochromes - solved and open questions. Biol Chem 2021; 401:1487-1493. [PMID: 32663167 DOI: 10.1515/hsz-2020-0182] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/09/2020] [Indexed: 01/04/2023]
Abstract
Drosophila, Arabidopsis, Synechocystis, human (DASH)-type cryptochromes (cry-DASHs) form one subclade of the cryptochrome/photolyase family (CPF). CPF members are flavoproteins that act as DNA-repair enzymes (DNA-photolyases), or as ultraviolet(UV)-A/blue light photoreceptors (cryptochromes). In mammals, cryptochromes are essential components of the circadian clock feed-back loop. Cry-DASHs are present in almost all major taxa and were initially considered as photoreceptors. Later studies demonstrated DNA-repair activity that was, however, restricted to UV-lesions in single-stranded DNA. Very recent studies, particularly on microbial organisms, substantiated photoreceptor functions of cry-DASHs suggesting that they could be transitions between photolyases and cryptochromes.
Collapse
Affiliation(s)
- Stephan Kiontke
- University of Marburg, Department of Biology, Molecular Plant Physiology and Photobiology, D-35032 Marburg, Germany
| | - Tanja Göbel
- University of Marburg, Department of Biology, Molecular Plant Physiology and Photobiology, D-35032 Marburg, Germany
| | - Annika Brych
- University of Marburg, Department of Biology, Molecular Plant Physiology and Photobiology, D-35032 Marburg, Germany
| | - Alfred Batschauer
- University of Marburg, Department of Biology, Molecular Plant Physiology and Photobiology, D-35032 Marburg, Germany
| |
Collapse
|
13
|
Kandori H. Structure/Function Study of Photoreceptive Proteins by FTIR Spectroscopy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200109] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hideki Kandori
- Department of Life Science and Applied Chemistry & OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
14
|
Zelenka J, Cibulka R, Roithová J. Flavinium Catalysed Photooxidation: Detection and Characterization of Elusive Peroxyflavinium Intermediates. Angew Chem Int Ed Engl 2019; 58:15412-15420. [PMID: 31364790 PMCID: PMC6852162 DOI: 10.1002/anie.201906293] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/08/2019] [Indexed: 12/18/2022]
Abstract
Flavin-based catalysts are photoactive in the visible range which makes them useful in biology and chemistry. Herein, we present electrospray-ionization mass-spectrometry detection of short-lived intermediates in photooxidation of toluene catalysed by flavinium ions (Fl+ ). Previous studies have shown that photoexcited flavins react with aromates by proton-coupled electron transfer (PCET) on the microsecond time scale. For Fl+ , PCET leads to FlH.+ with the H-atom bound to the N5 position. We show that the reaction continues by coupling between FlH.+ and hydroperoxy or benzylperoxy radicals at the C4a position of FlH.+ . These results demonstrate that the N5-blocking effect reported for alkylated flavins is also active after PCET in these photocatalytic reactions. Structures of all intermediates were fully characterised by isotopic labelling and by photodissociation spectroscopy. These tools provide a new way to study reaction intermediates in the sub-second time range.
Collapse
Affiliation(s)
- Jan Zelenka
- Department of Spectroscopy and CatalysisInstitute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Radek Cibulka
- Department of organic chemistryFaculty of Chemical TechnologyUniversity of Chemistry and Technology PragueTechnická 5166 28Prague 6Czech Republic
| | - Jana Roithová
- Department of Spectroscopy and CatalysisInstitute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 1356525AJNijmegenThe Netherlands
| |
Collapse
|
15
|
Zelenka J, Cibulka R, Roithová J. Flavinium Catalysed Photooxidation: Detection and Characterization of Elusive Peroxyflavinium Intermediates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jan Zelenka
- Department of Spectroscopy and Catalysis Institute for Molecules and Materials Radboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Radek Cibulka
- Department of organic chemistry Faculty of Chemical Technology University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Jana Roithová
- Department of Spectroscopy and Catalysis Institute for Molecules and Materials Radboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
16
|
Mohamed-Raseek N, Duan HD, Hildebrandt P, Mroginski MA, Miller AF. Spectroscopic, thermodynamic and computational evidence of the locations of the FADs in the nitrogen fixation-associated electron transfer flavoprotein. Chem Sci 2019; 10:7762-7772. [PMID: 31588324 PMCID: PMC6764259 DOI: 10.1039/c9sc00942f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/24/2019] [Indexed: 01/15/2023] Open
Abstract
Flavin-based electron bifurcation allows enzymes to redistribute energy among electrons by coupling endergonic and exergonic electron transfer reactions. Diverse bifurcating enzymes employ a two-flavin electron transfer flavoprotein (ETF) that accepts hydride from NADH at a flavin (the so-called bifurcating FAD, Bf-FAD). The Bf-FAD passes one electron exergonically to a second flavin thereby assuming a reactive semiquinone state able to reduce ferredoxin or flavodoxin semiquinone. The flavin that accepts one electron and passes it on via exergonic electron transfer is known as the electron transfer FAD (ET-FAD) and is believed to correspond to the single FAD present in canonical ETFs, in domain II. The Bf-FAD is believed to be the one that is unique to bifurcating ETFs, bound between domains I and III. This very reasonable model has yet to be challenged experimentally. Herein we used site-directed mutagenesis to disrupt FAD binding to the presumed Bf site between domains I and III, in the Bf-ETF from Rhodopseudomonas palustris (RpaETF). The resulting protein contained only 0.80 ± 0.05 FAD, plus 1.21 ± 0.04 bound AMP as in canonical ETFs. The flavin was not subject to reduction by NADH, confirming absence of Bf-FAD. The retained FAD displayed visible circular dichroism (CD) similar to that of the ET-FAD of RpaETF. Likewise, the mutant underwent two sequential one-electron reductions forming and then consuming anionic semiquinone, reproducing the reactivity of the ET-FAD. These data confirm that the retained FAD in domain II corresponds the ET-FAD. Quantum chemical calculations of the absorbance and CD spectra of each of WT RpaETF's two flavins reproduced the observed differences between their CD and absorbance signatures. The calculations for the flavin bound in domain II agreed better with the spectra of the ET-flavin, and those calculated based on the flavin between domains I and III agreed better with spectra of the Bf-flavin. Thus calculations independently confirm the locations of each flavin. We conclude that the site in domain II harbours the ET-FAD whereas the mutated site between domains I and III is the Bf-FAD site, confirming the accepted model by two different tests.
Collapse
Affiliation(s)
- Nishya Mohamed-Raseek
- Dept. Chemistry , University of Kentucky , 505 Rose Street , Lexington , KY 40506-0055 , USA .
| | - H Diessel Duan
- Dept. Chemistry , University of Kentucky , 505 Rose Street , Lexington , KY 40506-0055 , USA .
| | - Peter Hildebrandt
- Max Volmer Laboratorum für Biophysikalische Chemie , Technische Universität - Berlin , Sekr. PC 14, 135 Straße des 17. Juni , 10623 Berlin , Germany
| | - Maria Andrea Mroginski
- Max Volmer Laboratorum für Biophysikalische Chemie , Technische Universität - Berlin , Sekr. PC 14, 135 Straße des 17. Juni , 10623 Berlin , Germany
| | - Anne-Frances Miller
- Dept. Chemistry , University of Kentucky , 505 Rose Street , Lexington , KY 40506-0055 , USA .
- Max Volmer Laboratorum für Biophysikalische Chemie , Technische Universität - Berlin , Sekr. PC 14, 135 Straße des 17. Juni , 10623 Berlin , Germany
| |
Collapse
|
17
|
Xu Z, Zhang Q, Shi J, Zhu W. Underestimated Noncovalent Interactions in Protein Data Bank. J Chem Inf Model 2019; 59:3389-3399. [PMID: 31294978 DOI: 10.1021/acs.jcim.9b00258] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Noncovalent interactions (NCIs) play essential roles in the structure and function of biomacromolecules. There are various NCIs, e.g., hydrogen bonds (HBs), cation-π and π-π interactions, and ionic bonds, among which HBs are the most widespread and well-studied. By utilizing the ratio of the observed HBs over pseudo HBs (1.0 Å longer than the HB distance criteria without angle constraints), we demonstrated that HBs in both protein-ligand and protein-protein interfaces are overlooked in structures deposited in PDB. After the QM/MM optimization of 12 protein-ligand complexes, we showed that the overlooked HBs could be recovered. With a systematic search in the PDB, we found that the HB number per residue (NHB/R) in proteins decreases as structural resolution becomes lower, implying that HBs are overlooked even today, regardless of the type of refinement approach used. Similarly, cation-π, π-π, and ionic interactions were found to be significantly lost, manifesting the universal underestimation of various NCIs. Considering the vital role of NCIs, it is important to recover the NCIs to facilitate drug design, to explore protein-protein interaction, and to study protein structure and function.
Collapse
Affiliation(s)
- Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Qian Zhang
- Department of Computer Science and Technology , East China Normal University , Shanghai 200241 , China
| | - Jiye Shi
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China.,Open Studio for Druggability Research of Marine Natural Products , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao 266237 , China
| |
Collapse
|
18
|
Hosokawa Y, Sato R, Iwai S, Yamamoto J. Implications of a Water Molecule for Photoactivation of Plant (6-4) Photolyase. J Phys Chem B 2019; 123:5059-5068. [PMID: 31117614 DOI: 10.1021/acs.jpcb.9b03030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photolyases (PLs) are flavoproteins able to repair cross-links formed between adjacent pyrimidine bases in DNA in a light-dependent manner via an electron transfer. The catalytically active redox state of the flavin chromophore for the DNA repair is a fully reduced form of flavin adenine dinucleotide (FADH-). PLs and their relative, cryptochromes (CRYs), share a physicochemical process attributable to the light-dependent reduction of the chromophore via an ultrafast successive electron transfer through exclusively conserved three tryptophan side chains. In some (6-4) PLs and animal CRYs, an additional tryptophan participates in this photoactivation process. In a search for the intrinsic difference between the Trp triad and tetrad, a water molecule proximal to the second and third Trp was found in the reported crystal structure of Arabidopsis thaliana (6-4) PL. Here, we investigated the involvement of the water molecule in photoactivation. Molecular dynamics simulations indicated that the water molecule is stably captured in the binding site, while mutation of S412 increased water displacement from the binding site. Photochemical analysis of recombinant proteins revealed that the S412A mutation significantly decelerated the FAD photoreduction as compared to the wild type. The hydrogen-bonding network including the water molecule would play a key role in the stabilization of the FAD-Trp radical pair.
Collapse
Affiliation(s)
- Yuhei Hosokawa
- Division of Chemistry, Graduate School of Engineering Science , Osaka University , 1-3 Machikaneyama , Toyonaka , Osaka 560-8531 , Japan
| | - Ryuma Sato
- Center for Biosystems Dynamics Research , RIKEN , 6-2-3 Furuedai , Suita , Osaka 565-0874 , Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science , Osaka University , 1-3 Machikaneyama , Toyonaka , Osaka 560-8531 , Japan
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science , Osaka University , 1-3 Machikaneyama , Toyonaka , Osaka 560-8531 , Japan
| |
Collapse
|
19
|
Holub D, Kubař T, Mast T, Elstner M, Gillet N. What accounts for the different functions in photolyases and cryptochromes: a computational study of proton transfers to FAD. Phys Chem Chem Phys 2019; 21:11956-11966. [PMID: 31134233 DOI: 10.1039/c9cp00694j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photolyases (PL) and cryptochromes (CRY) are light-sensitive flavoproteins, respectively, involved in DNA repair and signal transduction. Their activation is triggered by an electron transfer process, which partially or fully reduces the photo-activated FAD cofactor. The full reduction additionally requires a proton transfer to the isoalloxazine ring. In plant CRY, an efficient proton transfer takes place within several μs, enabled by a conserved aspartate working as a proton donor, whereas in E. coli PL a proton transfer occurs in the 4 s timescale without any obvious proton donor, indicating the presence of a long-range proton transfer pathway. Unexpectedly, the insertion of an aspartate as a proton donor in a suitable position for proton transfer in E. coli PL does not initiate a transfer process similar to plant CRY, but even prevents the formation of a protonated FAD. In the present work, thanks to a combination of classical molecular dynamics and state-of-the-art DFTB3/MM simulations, we identify a proton transfer pathway from bulk to FAD in E. coli PL associated with a free energy profile in agreement with the experimental kinetics data. The free energy profiles of the proton transfer between aspartate and FAD show an inversion of the driving force between plant CRY and E. coli PL mutants. In the latter, the proton transfer from the aspartate is faster than in plant CRY but also thermodynamically disfavoured, in agreement with the experimental data. Our results further illustrate the fine tuning of the electrostatic FAD environment and the adaptability of the FAD pocket to ensure the divergent functions of the members of the PL-CRY family.
Collapse
Affiliation(s)
- Daniel Holub
- Department for Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute for Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany.
| | | | | | | | | |
Collapse
|
20
|
Xu L, Wen B, Shao W, Yao P, Zheng W, Zhou Z, Zhang Y, Zhu G. Impacts of Cys392, Asp393, and ATP on the FAD Binding, Photoreduction, and the Stability of the Radical State of Chlamydomonas reinhardtii Cryptochrome. Chembiochem 2019; 20:940-948. [PMID: 30548754 DOI: 10.1002/cbic.201800660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Indexed: 12/16/2022]
Abstract
Plant cryptochromes (CRYs) are blue-light receptors that regulate light-dependent growth, development, and circadian rhythms. A flavin adenine dinucleotide (FAD) cofactor is bound to the photolyase homology region (PHR) of plant CRYs and can be photoreduced to a neutral radical state under blue light. This photoreaction can trigger subsequent signal transduction. Plant CRYs can also bind an ATP molecule adjacent to FAD in a pocket of the PHR. Chlamydomonas reinhardtii contains a single plant CRY, named Chlamydomonas photolyase homologue 1 (CPH1). In CPH1, Cys392 and Asp393 are located near the FAD cofactor. Here we have shown that replacing Cys392 with Ser has little effect on the properties of CPH1. The C392N mutant, however, showed a faster photoreduction rate than wild-type CPH1, together with a significantly lower oxidation rate of the neutral radical state. Substituting an Asn residue for Asp393 in CPH1 improved the binding affinity for FAD as well as the stability of the neutral radical, but photoreduction in the case of this mutant was severely inhibited. In the presence of ATP, CPH1 and its mutants exhibited significantly higher binding affinity for FAD and slower oxidation of the neutral radical. These results reveal that the residues at site 392 and the presence of ATP can tune the stability of the neutral radical, that the Asp residue at site 393 is crucial for photoreduction, and that the photoreduction rate is not determined merely by the stability of the neutral radical in CPH1.
Collapse
Affiliation(s)
- Lei Xu
- Anhui Province Key Laboratory of Active Biological Macromolecules, Wannan Medical College, 22# Wenchang West Road, Wuhu, 241002, Anhui, P. R. China
| | - Bin Wen
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, 1# Beijing East Road, Wuhu, 241000, Anhui, P. R. China
| | - Wengui Shao
- Anhui Province Key Laboratory of Active Biological Macromolecules, Wannan Medical College, 22# Wenchang West Road, Wuhu, 241002, Anhui, P. R. China
| | - Pengcheng Yao
- Anhui Province Key Laboratory of Active Biological Macromolecules, Wannan Medical College, 22# Wenchang West Road, Wuhu, 241002, Anhui, P. R. China
| | - Wei Zheng
- Anhui Province Key Laboratory of Active Biological Macromolecules, Wannan Medical College, 22# Wenchang West Road, Wuhu, 241002, Anhui, P. R. China
| | - Zhiqiang Zhou
- Anhui Province Key Laboratory of Active Biological Macromolecules, Wannan Medical College, 22# Wenchang West Road, Wuhu, 241002, Anhui, P. R. China
| | - Yao Zhang
- Anhui Province Key Laboratory of Active Biological Macromolecules, Wannan Medical College, 22# Wenchang West Road, Wuhu, 241002, Anhui, P. R. China
| | - Guoping Zhu
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, 1# Beijing East Road, Wuhu, 241000, Anhui, P. R. China
| |
Collapse
|
21
|
Hu J, Su Q, Schlessman JL, Rokita SE. Redox control of iodotyrosine deiodinase. Protein Sci 2019; 28:68-78. [PMID: 30052294 PMCID: PMC6296174 DOI: 10.1002/pro.3479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/29/2022]
Abstract
The redox chemistry of flavoproteins is often gated by substrate and iodotyrosine deiodinase (IYD) has the additional ability to switch between reaction modes based on the substrate. Association of fluorotyrosine (F-Tyr), an inert substrate analog, stabilizes single electron transfer reactions of IYD that are not observed in the absence of this ligand. The co-crystal of F-Tyr and a T239A variant of human IYD have now been characterized to provide a structural basis for control of its flavin reactivity. Coordination of F-Tyr in the active site of this IYD closely mimics that of iodotyrosine and only minor perturbations are observed after replacement of an active site Thr with Ala. However, loss of the side chain hydroxyl group removes a key hydrogen bond from flavin and suppresses the formation of its semiquinone intermediate. Even substitution of Thr with Ser decreases the midpoint potential of human IYD between its oxidized and semiquinone forms of flavin by almost 80 mV. This decrease does not adversely affect the kinetics of reductive dehalogenation although an analogous Ala variant exhibits a 6.7-fold decrease in its kcat /Km . Active site ligands lacking the zwitterion of halotyrosine are not able to induce closure of the active site lid that is necessary for promoting single electron transfer and dehalogenation. Under these conditions, a basal two-electron process dominates catalysis as indicated by preferential reduction of nitrophenol rather than deiodination of iodophenol.
Collapse
Affiliation(s)
- Jimin Hu
- Department of ChemistryJohns Hopkins UniversityBaltimoreMaryland, 21218
| | - Qi Su
- Department of ChemistryJohns Hopkins UniversityBaltimoreMaryland, 21218
| | | | - Steven E. Rokita
- Department of ChemistryJohns Hopkins UniversityBaltimoreMaryland, 21218
| |
Collapse
|
22
|
Sato R, Kitoh-Nishioka H, Ando K, Yamato T. Electron Transfer Pathways of Cyclobutane Pyrimidine Dimer Photolyase Revisited. J Phys Chem B 2018; 122:6912-6921. [PMID: 29890068 DOI: 10.1021/acs.jpcb.8b04333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photoinduced electron transfer (ET) reaction of cyclobutane pyrimidine dimer (CPD) photolyase plays an essential role in its DNA repair reaction, and the molecular mechanism of the ET reaction has attracted a large number of experimental and theoretical studies. We investigated the quantum mechanical nature of their ET reactions, characterized by multiple ET pathways of the CPD photolyase derived from Anacystis nidulans. Using the generalized Mulliken-Hush (GMH) method and the bridge green function (GF) methods, we estimated the electronic coupling matrix element, TDA, to be 36 ± 30 cm-1 from the donor (FADH-) to the acceptor (CPD). The estimated ET time was 386 ps, in good agreement with the experimental value (250 ps) in the literature. Furthermore, we performed the molecular dynamics (MD) simulations and ab initio molecular orbital (MO) calculations, and explored the electron tunneling pathway. We examined 20 different structures during the MD trajectory and quantitatively evaluated the electron tunneling currents for each of them. As a result, we demonstrated that the ET route via Asn349 was the dominant pathway among the five major routes via (Adenine/Asn349), (Adenine/Glu283), (Adenine/Glu283/Asn349/Met353), (Met353/Asn349), and (Asn349), indicating that Asn349 is an essential amino acid residue in the ET reaction.
Collapse
Affiliation(s)
- Ryuma Sato
- Department of Physics, Graduate School of Science , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8602 , Japan
| | - Hirotaka Kitoh-Nishioka
- Center for Computational Sciences , University of Tsukuba 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8577 , Japan
| | - Koji Ando
- Department of Information and Sciences , Tokyo Woman's Christian University , 2-6-1 Zempukuji, Suginami-ku , Tokyo 167-8585 , Japan
| | - Takahisa Yamato
- Department of Physics, Graduate School of Science , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8602 , Japan.,Institute of Genetics and Molecular and Cellular Biology , University of Strasbourg , 1 rue Laurent Fries Parc d'Innovation 67404 Illkirch, Cedex, France
| |
Collapse
|
23
|
Xu L, Wen B, Wang Y, Tian C, Wu M, Zhu G. Residues at a Single Site Differentiate Animal Cryptochromes from Cyclobutane Pyrimidine Dimer Photolyases by Affecting the Proteins' Preferences for Reduced FAD. Chembiochem 2017; 18:1129-1137. [PMID: 28393477 DOI: 10.1002/cbic.201700145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 12/29/2022]
Abstract
Cryptochromes (CRYs) and photolyases belong to the cryptochrome/photolyase family (CPF). Reduced FAD is essential for photolyases to photorepair UV-induced cyclobutane pyrimidine dimers (CPDs) or 6-4 photoproducts in DNA. In Drosophila CRY (dCRY, a type I animal CRY), FAD is converted to the anionic radical but not to the reduced state upon illumination, which might induce a conformational change in the protein to relay the light signal downstream. To explore the foundation of these differences, multiple sequence alignment of 650 CPF protein sequences was performed. We identified a site facing FAD (Ala377 in Escherichia coli CPD photolyase and Val415 in dCRY), hereafter referred to as "site 377", that was distinctly conserved across these sequences: CPD photolyases often had Ala, Ser, or Asn at this site, whereas animal CRYs had Ile, Leu, or Val. The binding affinity for reduced FAD, but not the photorepair activity of E. coli photolyase, was dramatically impaired when replacing Ala377 with any of the three CRY residues. Conversely, in V415S and V415N mutants of dCRY, FAD was photoreduced to its fully reduced state after prolonged illumination, and light-dependent conformational changes of these mutants were severely inhibited. We speculate that the residues at site 377 play a key role in the different preferences of CPF proteins for reduced FAD, which differentiate animal CRYs from CPD photolyases.
Collapse
Affiliation(s)
- Lei Xu
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, 1# Beijing East Road, Wuhu, 241000, Anhui, China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, 22# Wenchang West Road, Wuhu, 241002, Anhui, China
| | - Bin Wen
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, 1# Beijing East Road, Wuhu, 241000, Anhui, China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, 22# Wenchang West Road, Wuhu, 241002, Anhui, China
| | - Yuan Wang
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, 1# Beijing East Road, Wuhu, 241000, Anhui, China
| | - Changqing Tian
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, 1# Beijing East Road, Wuhu, 241000, Anhui, China
| | - Mingcai Wu
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, 1# Beijing East Road, Wuhu, 241000, Anhui, China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, 22# Wenchang West Road, Wuhu, 241002, Anhui, China
| | - Guoping Zhu
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, 1# Beijing East Road, Wuhu, 241000, Anhui, China
| |
Collapse
|
24
|
Tachikawa H. Effects of zero point vibration on the reaction dynamics of water dimer cations following ionization. J Comput Chem 2017; 38:1503-1508. [DOI: 10.1002/jcc.24783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/21/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Hiroto Tachikawa
- Division of Applied Chemistry; Graduate School of Engineering, Hokkaido University; Sapporo 060-8628 Japan
| |
Collapse
|
25
|
Schuabb C, Kumar N, Pataraia S, Marx D, Winter R. Pressure modulates the self-cleavage step of the hairpin ribozyme. Nat Commun 2017; 8:14661. [PMID: 28358002 PMCID: PMC5379106 DOI: 10.1038/ncomms14661] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 01/20/2017] [Indexed: 01/01/2023] Open
Abstract
The ability of certain RNAs, denoted as ribozymes, to not only store genetic information but also catalyse chemical reactions gave support to the RNA world hypothesis as a putative step in the development of early life on Earth. This, however, might have evolved under extreme environmental conditions, including the deep sea with pressures in the kbar regime. Here we study pressure-induced effects on the self-cleavage of hairpin ribozyme by following structural changes in real-time. Our results suggest that compression of the ribozyme leads to an accelerated transesterification reaction, being the self-cleavage step, although the overall process is retarded in the high-pressure regime. The results reveal that favourable interactions between the reaction site and neighbouring nucleobases are strengthened under pressure, resulting therefore in an accelerated self-cleavage step upon compression. These results suggest that properly engineered ribozymes may also act as piezophilic biocatalysts in addition to their hitherto known properties.
Collapse
Affiliation(s)
- Caroline Schuabb
- Physikalische Chemie I-Biophysikalische Chemie, Fakultät für Chemie und Chemische Biologie, TU Dortmund, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Narendra Kumar
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Bochum 44780, Germany
| | - Salome Pataraia
- Physikalische Chemie I-Biophysikalische Chemie, Fakultät für Chemie und Chemische Biologie, TU Dortmund, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Bochum 44780, Germany
| | - Roland Winter
- Physikalische Chemie I-Biophysikalische Chemie, Fakultät für Chemie und Chemische Biologie, TU Dortmund, Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| |
Collapse
|
26
|
Xie LJ, Wang RL, Wang D, Liu L, Cheng L. Visible-light-mediated oxidative demethylation of N6-methyl adenines. Chem Commun (Camb) 2017; 53:10734-10737. [DOI: 10.1039/c7cc05544g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel solution for the chemical modulation of RNA epigenetics via biologically compatible photo-catalysis under visible light irradiation has been described.
Collapse
Affiliation(s)
- Li-Jun Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Rui-Li Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Dong Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
27
|
Silva PJ. Refining the reaction mechanism of O 2 towards its co-substrate in cofactor-free dioxygenases. PeerJ 2016; 4:e2805. [PMID: 28028471 PMCID: PMC5178339 DOI: 10.7717/peerj.2805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/19/2016] [Indexed: 11/21/2022] Open
Abstract
Cofactor-less oxygenases perform challenging catalytic reactions between singlet co-substrates and triplet oxygen, in spite of apparently violating the spin-conservation rule. In 1-H-3-hydroxy-4-oxoquinaldine-2,4-dioxygenase, the active site has been suggested by quantum chemical computations to fine tune triplet oxygen reactivity, allowing it to interact rapidly with its singlet substrate without the need for spin inversion, and in urate oxidase the reaction is thought to proceed through electron transfer from the deprotonated substrate to an aminoacid sidechain, which then feeds the electron to the oxygen molecule. In this work, we perform additional quantum chemical computations on these two systems to elucidate several intriguing features unaddressed by previous workers. These computations establish that in both enzymes the reaction proceeds through direct electron transfer from co-substrate to O2 followed by radical recombination, instead of minimum-energy crossing points between singlet and triplet potential energy surfaces without formal electron transfer. The active site does not affect the reactivity of oxygen directly but is crucial for the generation of the deprotonated form of the co-substrates, which have redox potentials far below those of their protonated forms and therefore may transfer electrons to oxygen without sizeable thermodynamic barriers. This mechanism seems to be shared by most cofactor-less oxidases studied so far.
Collapse
Affiliation(s)
- Pedro J Silva
- FP-ENAS/Fac. de Ciências da Saúde, Universidade Fernando Pessoa , Porto , Portugal
| |
Collapse
|