1
|
Dwivedi KC, Sabharwal G, Kote BS, Balakrishna MS. Ni II, Pd II and Pt II pincer complexes of 2-(diphenylphosphanyl)- N-(2-(diphenyl-phosphanyl)benzyl)benzamide: synthesis, reactivity and catalytic studies. Dalton Trans 2024. [PMID: 39453671 DOI: 10.1039/d4dt02611j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
In this article, the synthesis of bis(phosphine), o-Ph2PC6H4C(O)N(H)CH2C6H4PPh2-o (1) (hereafter referred to as "PCNHCP" and its anionic form as "PCNCP") and its group 10 metal chemistry and catalytic studies are described. PCNHCP (1) on reaction with NiCl2(DME) and PdCl2(COD) afforded pincer complexes, [MCl{(PCNCP)κ3-P,N,P}] (M = Ni, 2; Pd, 3). A similar reaction of 1 with PtCl2(COD) yielded a chelate complex, [PtCl2{(PCNHCP)κ2-P,P}] (4), which on further treatment with LiHMDS produced the 1,2-azaphospholene-phosphine complex, [PtCl(Ph){(o-P(Ph)C6H4CONCH2C6H4PPh2-o)κ2-P,P}] (5) via P-C/P-N bond metathesis. Passing dry HCl gas through the solution of 5 resulted in benzene elimination to form [PtCl2{(o-P(Ph)C6H4CONCH2C6H4PPh2-o)κ2-P,P}] (6). Treatment of 1 with PtCl2(COD) and Pt(Cl)(Me)(COD) in the presence of a base resulted in pincer complexes [PtX{(PCNCP)κ3-P,N,P}] (X = Cl, 7; Me, 8). Nickel complex 2 catalyzed the Suzuki-Miyaura cross coupling reaction between bromobenzene and phenyl boronic acid to give the corresponding biphenyls in good yield. The platinum complex 5 showed good catalytic activity towards regio- and stereoselective hydroboration of terminal alkynes. Both the catalytic reactions were performed under mild reaction conditions with a very low catalyst loading.
Collapse
Affiliation(s)
- Khilesh C Dwivedi
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India.
| | - Gazal Sabharwal
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India.
| | - Basvaraj S Kote
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India.
| | - Maravanji S Balakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
2
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
3
|
Phearman AS, Ardon Y, Goldberg KI. Insertion of Molecular Oxygen into a Gold(III)-Hydride Bond. J Am Chem Soc 2024; 146:4045-4059. [PMID: 38290523 DOI: 10.1021/jacs.3c12285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The use of molecular oxygen as an oxidant in chemical synthesis has significant environmental and economic benefits, and it is widely used as such in large-scale industrial processes. However, its adoption in highly selective homogeneous catalytic transformations, particularly to produce oxygenated organics, has been hindered by our limited understanding of the mechanisms by which O2 reacts with transition metals. Of particular relevance are the mechanisms of the reactions of oxygen with late transition metal hydrides as these metal centers are better poised to release oxygenated products. Homogeneous catalysis with gold complexes has markedly increased, and herein we report the synthesis and full characterization of a rare AuIII-H, supported by a diphosphine pincer ligand (tBuPCP = 2,6-bis(di-tert-butylphosphinomethyl)benzene). [(tBuPCP)AuIII-H]+ was found to cleanly react with molecular oxygen to yield a stable AuIII-OOH complex that was also fully characterized. Extensive kinetic studies on the reaction via variable temperature NMR spectroscopy have been completed, and the results are consistent with an autoaccelerating radical chain mechanism. The observed kinetic behavior exhibits similarities to that of previously reported PdII-H and PtIV-H reactions with O2 but is not fully consistent with any known O2 insertion mechanism. As such, this study contributes to the nascent fundamental understanding of the mechanisms of aerobic oxidation of late metal hydrides.
Collapse
Affiliation(s)
- Alexander S Phearman
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Yotam Ardon
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Karen I Goldberg
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Shiri F, Ho CC, Bissember AC, Ariafard A. Advancing Gold Redox Catalysis: Mechanistic Insights, Nucleophilicity-Guided Transmetalation, and Predictive Frameworks for the Oxidation of Aryl Gold(I) Complexes. Chemistry 2024; 30:e202302990. [PMID: 37967304 DOI: 10.1002/chem.202302990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Indexed: 11/17/2023]
Abstract
Gold redox catalysis, often facilitated by hypervalent iodine(III) reagents, offers unique reactivity but its progress is mainly hindered by an incomplete mechanistic understanding. In this study, we investigated the reaction between the gold(I) complexes [(aryl)Au(PR3 )] and the hypervalent iodine(III) reagent PhICl2 , both experimentally and computationally and provided an explanation for the formation of divergent products as the ligands bonded to the gold(I) center change. We tackled this essential question by uncovering an intriguing transmetalation mechanism that takes place between gold(I) and gold(III) complexes. We found that the ease of transmetalation is governed by the nucleophilicity of the gold(I) complex, [(aryl)Au(PR3 )], with greater nucleophilicity leading to a lower activation energy barrier. Remarkably, transmetalation is mainly controlled by a single orbital - the gold dx 2 -y 2 orbital. This orbital also has a profound influence on the reactivity of the oxidative addition step. In this way, the fundamental mechanistic basis of divergent outcomes in reactions of aryl gold(I) complexes with PhICl2 was established and these observations are reconciled from first principles. The theoretical model developed in this study provides a conceptual framework for anticipating the outcomes of reactions involving [(aryl)Au(PR3 )] with PhICl2 , thereby establishing a solid foundation for further advancements in this field.
Collapse
Affiliation(s)
- Farshad Shiri
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran
| | - Curtis C Ho
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Alireza Ariafard
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
5
|
Yang B, Yan S, Li C, Ma H, Feng F, Zhang Y, Huang W. Mn(iii)-mediated C-P bond activation of diphosphines: toward a highly emissive phosphahelicene cation scaffold and modulated circularly polarized luminescence. Chem Sci 2023; 14:10446-10457. [PMID: 37799992 PMCID: PMC10548521 DOI: 10.1039/d3sc03201a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 10/07/2023] Open
Abstract
Transition metal mediated C-X (X = H, halogen) bond activation provides an impressive protocol for building polyaromatic hydrocarbons (PAHs) in C-C bond coupling and annulation; however, mimicking both the reaction model and Lewis acid mediator simultaneously in a hetero-PAH system for selective C-P bond cleavage faces unsolved challenges. At present, developing the C-P bond activation protocol of the phosphonic backbone using noble-metal complexes is a predominant passway for the construction of phosphine catalysts and P-center redox-dependent photoelectric semiconductors, but non-noble metal triggered methods are still elusive. Herein, we report Mn(iii)-mediated C-P bond activation and intramolecular cyclization of diphosphines by a redox-directed radical phosphonium process, generating phosphahelicene cations or phosphoniums with nice regioselectivity and substrate universality under mild conditions. Experiments and theoretical calculations revealed the existence of the unusual radical mechanism and electron-deficient character of novel phosphahelicenes. These rigid quaternary bonding skeletons facilitated versatile fluorescence with good tunability and excellent efficiency. Moreover, the enantiomerically enriched crystals of phosphahelicenes emitted intense circularly polarized luminescence (CPL). Notably, the modulated CPL of racemic phosphahelicenes was induced by chiral transmission in the cholesteric mesophase, showing ultrahigh asymmetry factors of CPL (+0.51, -0.48). Our findings provide a new approach for the design of emissive phosphahelicenes towards chiral emitters and synthesized precursors.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Suqiong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Chengbo Li
- School of Materials and Energy, University of Electronic Science and Technology of China Chengdu 610000 P. R. China
| | - Hui Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Fanda Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Yuan Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Wei Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
- Shenzhen Research Institute of Nanjing University Shenzhen 51805 P. R. China
| |
Collapse
|
6
|
Portugués A, Martínez-Nortes MÁ, Bautista D, González-Herrero P, Gil-Rubio J. Reductive Elimination Reactions in Gold(III) Complexes Leading to C(sp 3)-X (X = C, N, P, O, Halogen) Bond Formation: Inner-Sphere vs S N2 Pathways. Inorg Chem 2023; 62:1708-1718. [PMID: 36658748 PMCID: PMC9890567 DOI: 10.1021/acs.inorgchem.2c04166] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The reactions leading to the formation of C-heteroatom bonds in the coordination sphere of Au(III) complexes are uncommon, and their mechanisms are not well known. This work reports on the synthesis and reductive elimination reactions of a series of Au(III) methyl complexes containing different Au-heteroatom bonds. Complexes [Au(CF3)(Me)(X)(PR3)] (R = Ph, X = OTf, OClO3, ONO2, OC(O)CF3, F, Cl, Br; R = Cy, X = Me, OTf, Br) were obtained by the reaction of trans-[Au(CF3)(Me)2(PR3)] (R = Ph, Cy) with HX. The cationic complex cis-[Au(CF3)(Me)(PPh3)2]OTf was obtained by the reaction of [Au(CF3)(Me)(OTf)(PPh3)] with PPh3. Heating these complexes led to the reductive elimination of MeX (X = Me, Ph3P+, OTf, OClO3, ONO2, OC(O)CF3, F, Cl, Br). Mechanistic studies indicate that these reductive elimination reactions occur either through (a) the formation of tricoordinate intermediates by phosphine dissociation, followed by reductive elimination of MeX, or (b) the attack of weakly coordinating anionic (TfO- or ClO4-) or neutral nucleophiles (PPh3 or NEt3) to the Au-bound methyl carbon. The obtained results show for the first time that the nucleophilic substitution should be considered as a likely reductive elimination pathway in Au(III) alkyl complexes.
Collapse
Affiliation(s)
- Alejandro Portugués
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Miguel Ángel Martínez-Nortes
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Delia Bautista
- ACTI,
Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Pablo González-Herrero
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Juan Gil-Rubio
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain,
| |
Collapse
|
7
|
Shiri F, Ariafard A. Mechanistic details for oxidative addition of PhICl 2 to gold( i) complexes. Chem Commun (Camb) 2023; 59:4668-4671. [PMID: 36994794 DOI: 10.1039/d3cc00543g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Our study discovered a new stepwise mechanism for the oxidative addition of PhICl2 to LAuAr. Fewer electron-withdrawing substituents on the Ar ligand increase the energy of Au(i) dx2−y2 orbital, making the reaction easier to achieve.
Collapse
Affiliation(s)
- Farshad Shiri
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran
| | - Alireza Ariafard
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran
- School of Natural Science (Chemistry), University of Tasmania, Private Bag 75, Hobart, TAS 7001, Australia
| |
Collapse
|
8
|
Hindenberg P, Belyaev A, Rominger F, Koshevoy IO, Romero-Nieto C. Two-Fold Intramolecular Phosphacyclization: From Fluorescent Diphosphapyrene Salts to Pentavalent Derivatives. Org Lett 2022; 24:6391-6396. [PMID: 36040429 DOI: 10.1021/acs.orglett.2c02391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of π-extended pyrene-based luminescent compounds containing two six-membered phosphacycles has been realized through a two-step synthesis. It involves a Cu(II)-mediated double cyclization of tertiary diphosphane derivatives to afford dicationic molecules with quaternized phosphorus centers. Subsequent transformation of diphosphonium species into the corresponding P-oxide derivatives has been successfully achieved through Pd(0)-assisted cleavage of the P-Ph bonds, which opens a promising way for the functionalization of polyaromatic P-systems.
Collapse
Affiliation(s)
- Philip Hindenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Andrey Belyaev
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101 Joensuu, Finland
| | - Carlos Romero-Nieto
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.,Faculty of Pharmacy, Universidad de Castilla-La Mancha, Calle Almansa 14 - Edif. Bioincubadora, 02008 Albacete, Spain
| |
Collapse
|
9
|
Zheng H, Fan Y, Song Y, Chen JS, You E, Labalme S, Lin W. Site Isolation in Metal-Organic Layers Enhances Photoredox Gold Catalysis. J Am Chem Soc 2022; 144:10694-10699. [PMID: 35687864 DOI: 10.1021/jacs.2c03062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Herein, we report the synthesis of a metal-organic layer, Hf-Ru-Au, containing Ru(bipyridine)32+-type photosensitizers and (phosphine)-AuCl catalysts for photoredox Au-catalyzed cross-coupling of allenoates, alkenes, or alkynes with aryldiazonium salts to afford furanone, tetrahydrofuran, or aryl alkyne derivatives, respectively. Site isolation of (phosphine)-AuCl complexes in Hf-Ru-Au prevents Au catalyst deactivation via ligand redistribution, Au(I) disproportionation, and aryl-phosphine reductive elimination, while the proximity between the Ru photosensitizers and Au catalysts enhances catalytic efficiency, with 14-200 times higher activity over those of the homogeneous controls in the cross-coupling reactions.
Collapse
Affiliation(s)
- Haifeng Zheng
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yingjie Fan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yang Song
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Justin S Chen
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Eric You
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Steven Labalme
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
Kunchur HS, Balakrishna MS. Platinum Assisted Tandem P-C Bond Cleavage and P-N Bond Formation in Amide Functionalized Bisphosphine o-Ph 2PC 6H 4C(O)N(H)C 6H 4PPh 2- o: Synthesis, Mechanistic, and Catalytic Studies. Inorg Chem 2022; 61:857-868. [PMID: 34978187 DOI: 10.1021/acs.inorgchem.1c02515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The reactions of amide functionalized bisphosphine o-Ph2PC6H4C(O)N(H)C6H4PPh2-o (1) with platinum salts are described. Treatment of 1 with [Pt(COD)Cl2] yielded a chelate complex, [PtCl2{o-Ph2PC6H4C(O)N(H)C6H4PPh2-o}κ2-P,P] (2), which on subsequent treatment with LiHMDS formed a novel 1,2-azaphospholene-phosphine complex [Pt(C6H5)Cl{o-C6H4{C(O)N(o-PPh2(C6H4))P(Ph)}}κ2-P,P] (3) involving a tandem P-C bond cleavage and P-N bond formation. The same complex 3 on passing dry HCl gas afforded the dichloro complex [PtCl2{o-C6H4{C(O)N(o-PPh2(C6H4))P(Ph)}}κ2-P,P] (5). Complex 2 upon refluxing in toluene or treatment of 1 with [Pt(COD)Cl2] in the presence of a base at room temperature resulted in the pincer complex [PtCl{o-Ph2PC6H4C(O)N(C6H4PPh2-o)}κ3-P,N,P] (4). Reaction of 1 with [Pt(COD)ClMe] at room temperature also afforded the pincer complex [PtMe{o-Ph2PC6H4C(O)N(C6H4PPh2-o)}κ3-P,N,P] (6). Mechanistic studies on 1,2-azaphospholene formation showed the reductive elimination of LiCl to form a phosphonium salt that readily adds one of the P-C bonds oxidatively to the in situ generated Pt0 species to form a chelate complex 3. The analogous palladium complex [PdCl2{o-C6H4{C(O)N(o-PPh2(C6H4))P(Ph)}}κ2-P,P] (7) showed excellent catalytic activity toward N-alkylation of amines with alcohols with a very low catalyst loading (0.05 mol %), and the methodology is very efficient toward the gram-scale synthesis of many N-alkylated amines.
Collapse
Affiliation(s)
- Harish S Kunchur
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Maravanji S Balakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Ma WT, Huang MG, Fuyue L, Wang ZH, Tao JY, Li JW, Liu YJ, Zeng MH. Ru(II)-catalyzed P(III)-assisted C8-alkylation of naphthphosphines. Chem Commun (Camb) 2022; 58:7152-7155. [DOI: 10.1039/d2cc02161g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a phosphine-directed ruthenium-catalyzed C8-selective alkylation of naphthalenes with alkenes. This protocol provides a straightforward access to a large library of electron-rich C8-alkyl substituent 1-naphthphosphines, which outperformed commonly commercial...
Collapse
|
12
|
Beucher H, Schörgenhumer J, Merino E, Nevado C. Chelation-assisted C-C bond activation of biphenylene by gold(i) halides. Chem Sci 2021; 12:15084-15089. [PMID: 34909149 PMCID: PMC8612398 DOI: 10.1039/d1sc03814a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/26/2021] [Indexed: 01/25/2023] Open
Abstract
A chelation-assisted oxidative addition of gold(i) into the C-C bond of biphenylene is reported here. The presence of a coordinating group (pyridine, phosphine) in the biphenylene unit enabled the use of readily available gold(i) halide precursors providing a new, straightforward entry towards cyclometalated (N^C^C)- and (P^C)-gold(iii) complexes. Our study, combining spectroscopic and crystallographic data with DFT calculations, showcases the importance of neighboring, weakly coordinating groups towards the successful activation of strained C-C bonds by gold.
Collapse
Affiliation(s)
- Hélène Beucher
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 Zurich CH 8057 Switzerland
| | - Johannes Schörgenhumer
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 Zurich CH 8057 Switzerland
| | - Estíbaliz Merino
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Andrés M. del Río (IQAR), Facultad de Farmacia Alcalá de Henares 28805 Madrid Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. de Colmenar Viejo, Km. 9.100 28034 Madrid Spain
| | - Cristina Nevado
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 Zurich CH 8057 Switzerland
| |
Collapse
|
13
|
Bonsignore R, Thomas SR, Rigoulet M, Jandl C, Pöthig A, Bourissou D, Barone G, Casini A. C-C Cross-Couplings from a Cyclometalated Au(III) C ∧ N Complex: Mechanistic Insights and Synthetic Developments. Chemistry 2021; 27:14322-14334. [PMID: 34310783 PMCID: PMC8597034 DOI: 10.1002/chem.202102668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 12/11/2022]
Abstract
In recent years, the reactivity of gold complexes was shown to extend well beyond π-activation and to hold promises to achieve selective cross-couplings in several C-C and C-E (E=heteroatom) bond forming reactions. Here, with the aim of exploiting new organometallic species for cross-coupling reactions, we report on the Au(III)-mediated C(sp2 )-C(sp) occurring upon reaction of the cyclometalated complex [Au(CCH2 N)Cl2 ] (1, CCH2 N=2-benzylpyridine) with AgPhCC. The reaction progress has been monitored by NMR spectroscopy, demonstrating the involvement of a number of key intermediates, whose structures have been unambiguously ascertained through 1D and 2D NMR analyses (1 H, 13 C, 1 H-1 H COSY, 1 H-13 C HSQC and 1 H-13 C HMBC) as well as by HR-ESI-MS and X-ray diffraction studies. Furthermore, crystallographic studies have serendipitously resulted in the authentication of zwitterionic Au(I) complexes as side-products arising from cyclization of the coupling product in the coordination sphere of gold. The experimental work has been paralleled and complemented by DFT calculations of the reaction profiles, providing valuable insight into the structure and energetics of the key intermediates and transition states, as well as on the coordination sphere of gold along the whole process. Of note, the broader scope of the cross-coupling at the Au(III) CCH2 N centre has also been demonstrated studying the reaction of 1 with C(sp2 )-based nucleophiles, namely vinyl and heteroaryl tin and zinc reagents. These reactions stand as rare examples of C(sp2 )-C(sp2 ) cross-couplings at Au(III).
Collapse
Affiliation(s)
- Riccardo Bonsignore
- Chair of Medicinal and Bioinorganic ChemistryDepartment of ChemistryTechnical University of MunichLichtenbergstr. 485748Garching b. MünchenGermany
| | - Sophie R. Thomas
- Chair of Medicinal and Bioinorganic ChemistryDepartment of ChemistryTechnical University of MunichLichtenbergstr. 485748Garching b. MünchenGermany
- School of ChemistryCardiff UniversityMain BuildingPark PlaceCF10 3ATCardiffUK
| | - Mathilde Rigoulet
- CNRS/Université Paul SabatierLaboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069)118 Route de Narbonne31062Toulouse Cedex 09France
| | - Christian Jandl
- Catalysis Research Center & Department of ChemistryTechnical University of MunichErnst-Otto-Fischer Str. 185748Garching b. MünchenGermany
| | - Alexander Pöthig
- Catalysis Research Center & Department of ChemistryTechnical University of MunichErnst-Otto-Fischer Str. 185748Garching b. MünchenGermany
| | - Didier Bourissou
- CNRS/Université Paul SabatierLaboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069)118 Route de Narbonne31062Toulouse Cedex 09France
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e FarmaceuticheUniversità degli Studi di PalermoViale delle Scienze, Edificio 1790128PalermoItaly
| | - Angela Casini
- Chair of Medicinal and Bioinorganic ChemistryDepartment of ChemistryTechnical University of MunichLichtenbergstr. 485748Garching b. MünchenGermany
| |
Collapse
|
14
|
Kang K, Liu S, Xu C, Lu Z, Liu S, Leng X, Lan Y, Shen Q. C(sp2)–X (X = Cl, Br, and I) Reductive Eliminations from Well-Defined Gold(III) Complexes: Concerted or Dissociation Pathways? Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kai Kang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Shihan Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People’s Republic of China
| | - Chunhui Xu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Zehai Lu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Shuanshuan Liu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Xuebing Leng
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People’s Republic of China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
15
|
Reiersølmoen AC, Battaglia S, Orthaber A, Lindh R, Erdélyi M, Fiksdahl A. P, N-Chelated Gold(III) Complexes: Structure and Reactivity. Inorg Chem 2021; 60:2847-2855. [PMID: 33169989 PMCID: PMC7927145 DOI: 10.1021/acs.inorgchem.0c02720] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gold(III) complexes are versatile catalysts offering a growing number of new synthetic transformations. Our current understanding of the mechanism of homogeneous gold(III) catalysis is, however, limited, with that of phosphorus-containing complexes being hitherto underexplored. The ease of phosphorus oxidation by gold(III) has so far hindered the use of phosphorus ligands in the context of gold(III) catalysis. We present a method for the generation of P,N-chelated gold(III) complexes that circumvents ligand oxidation and offers full counterion control, avoiding the unwanted formation of AuCl4-. On the basis of NMR spectroscopic, X-ray crystallographic, and density functional theory analyses, we assess the mechanism of formation of the active catalyst and of gold(III)-mediated styrene cyclopropanation with propargyl ester and intramolecular alkoxycyclization of 1,6-enyne. P,N-chelated gold(III) complexes are demonstrated to be straightforward to generate and be catalytically active in synthetically useful transformations of complex molecules.
Collapse
Affiliation(s)
- Ann Christin Reiersølmoen
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Stefano Battaglia
- Department of Chemistry-BMC Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| | - Andreas Orthaber
- Ångström Laboratory, Department of Organic Chemistry, Uppsala University, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
| | - Roland Lindh
- Department of Chemistry-BMC Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| | - Máté Erdélyi
- Department of Chemistry-BMC Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| | - Anne Fiksdahl
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
16
|
Belyaev A, Chou P, Koshevoy IO. Cationic Organophosphorus Chromophores: A Diamond in the Rough among Ionic Dyes. Chemistry 2021; 27:537-552. [PMID: 32492231 PMCID: PMC7821147 DOI: 10.1002/chem.202001853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 12/21/2022]
Abstract
Tunable electron-accepting properties of the cationic phosphorus center, its geometry and unique preparative chemistry that allows combining this unit with diversity of π-conjugated motifs, define the appealing photophysical and electrochemical characteristics of organophosphorus ionic chromophores. This Minireview summarizes the achievements in the synthesis of the π-extended molecules functionalized with P-cationic fragments, modulation of their properties by means of structural modification, and emphasizes the important effect of cation-anion interactions, which can drastically change physical behavior of these two-component systems.
Collapse
Affiliation(s)
- Andrey Belyaev
- Department of ChemistryUniversity of Eastern FinlandYliopistokatu 780101JoensuuFinland
| | - Pi‐Tai Chou
- Department of ChemistryNational (Taiwan) UniversityTaipei106Taiwan
| | - Igor O. Koshevoy
- Department of ChemistryUniversity of Eastern FinlandYliopistokatu 780101JoensuuFinland
| |
Collapse
|
17
|
Beucher H, Kumar S, Kumar R, Merino E, Hu WH, Stemmler G, Cuesta-Galisteo S, González JA, Bezinge L, Jagielski J, Shih CJ, Nevado C. Phosphorescent κ 3 -(N^C^C)-Gold(III) Complexes: Synthesis, Photophysics, Computational Studies and Application to Solution-Processable OLEDs. Chemistry 2020; 26:17604-17612. [PMID: 32780903 DOI: 10.1002/chem.202003571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 12/19/2022]
Abstract
Efficient OLED devices have been fabricated using organometallic complexes of platinum group metals. Still, the high material cost and low stability represent central challenges for their application in commercial display technologies. Based on its innate stability, gold(III) complexes are emerging as promising candidates for high-performance OLEDs. Here, a series of alkynyl-, N-heterocyclic carbene (NHC)- and aryl-gold(III) complexes stabilized by a κ3 -(N^C^C) template have been prepared and their photophysical properties have been characterized in detail. These compounds exhibit good photoluminescence quantum efficiency (ηPL ) of up to 33 %. The PL emission can be tuned from sky-blue to yellowish green colors by variations on both the ancillary ligands as well as on the pincer template. Further, solution-processable OLED devices based on some of these complexes display remarkable emissive properties (ηCE 46.6 cd.A-1 and ηext 14.0 %), thus showcasing the potential of these motifs for the low-cost fabrication of display and illumination technologies.
Collapse
Affiliation(s)
- Hélène Beucher
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Sudhir Kumar
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH-Zürich, 8093, Zürich, Switzerland
| | - Roopender Kumar
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Estíbaliz Merino
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Wei-Hsu Hu
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH-Zürich, 8093, Zürich, Switzerland
| | - Gerrit Stemmler
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH-Zürich, 8093, Zürich, Switzerland
| | - Sergio Cuesta-Galisteo
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Jorge A González
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Léonard Bezinge
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH-Zürich, 8093, Zürich, Switzerland
| | - Jakub Jagielski
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH-Zürich, 8093, Zürich, Switzerland
| | - Chih-Jen Shih
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH-Zürich, 8093, Zürich, Switzerland
| | - Cristina Nevado
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
18
|
Genoux A, González JA, Merino E, Nevado C. Mechanistic Insights into C(sp 2 )-C(sp)N Reductive Elimination from Gold(III) Cyanide Complexes. Angew Chem Int Ed Engl 2020; 59:17881-17886. [PMID: 32648359 DOI: 10.1002/anie.202005731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/04/2020] [Indexed: 01/14/2023]
Abstract
A new family of phosphine-ligated dicyanoarylgold(III) complexes has been prepared and their reactivity towards reductive elimination has been studied in detail. Both, a highly positive entropy of activation and a primary 12/13 C KIE suggest a late concerted transition state while Hammett analysis and DFT calculations indicate that the process is asynchronous. As a result, a distinct mechanism involving an asynchronous concerted reductive elimination for the overall C(sp2 )-C(sp)N bond forming reaction is characterized herein, for the first time, complementing previous studies reported for C(sp3 )-C(sp3 ), C(sp2 )-C(sp2 ), and C(sp3 )-C(sp2 ) bond formation processes taking place on gold(III) species.
Collapse
Affiliation(s)
- Alexandre Genoux
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Jorge A González
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Estíbaliz Merino
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,Current address: Department of Organic and Inorganic Chemistry, Chemical Research Institute Andrés M. del Río (IQAR) University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - Cristina Nevado
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
19
|
Duval M, Blons C, Mallet-Ladeira S, Delcroix D, Magna L, Olivier-Bourbigou H, Sosa Carrizo ED, Miqueu K, Amgoune A, Szalóki G, Bourissou D. Cu-Catalyzed P-C bond formation/cleavage: straightforward synthesis/ring-expansion of strained cyclic phosphoniums. Dalton Trans 2020; 49:13100-13109. [PMID: 32930272 DOI: 10.1039/d0dt03059g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Upon reaction with copper(i), peri-halo naphthyl phosphines readily form peri-bridged naphthyl phosphonium salts. The reaction works with alkyl, aryl and amino substituents at phosphorus, with iodine, bromine and chlorine as a halogen. It proceeds under mild conditions and is quantitative, despite the strain associated with the resulting 4-membered ring structure and the naphthalene framework. The transformation is amenable to catalysis. Under optimized conditions, the peri-iodo naphthyl phosphine 1-I is converted into the corresponding peri-bridged naphthyl phosphonium salt 2b in only 5 minutes at room temperature using 1 mol% of CuI. Based on DFT calculations, the reaction is proposed to involve a Cu(i)/Cu(iii) cycle made of P-coordination, C-X oxidative addition and P-C reductive elimination. This copper-catalyzed route gives a general and efficient access to peri-bridged naphthyl phosphonium salts for the first time. Reactivity studies could thus be initiated and the possibility to insert gold into the strained P-C bond was demonstrated. It leads to (P,C)-cyclometallated gold(iii) complexes. According to experimental observations and DFT calculations, two mechanistic pathways are operating: (i) direct oxidative addition of the strained P-C bond to gold,(ii) backward-formation of the peri-halo naphthyl phosphine (by C-P oxidative addition to copper followed by C-X reductive elimination), copper to gold exchange and oxidative addition of the C-X bond to gold. Detailed analysis of the reaction profiles computed theoretically gives more insight into the influence of the nature of the solvent and halogen atom, and provides rationale for the very different behaviour of copper and gold in this chemistry.
Collapse
Affiliation(s)
- Maryne Duval
- CNRS/Université Toulouse III - Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France.
| | - Charlie Blons
- CNRS/Université Toulouse III - Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France.
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (FR 2599), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| | - Damien Delcroix
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize BP3, 69360 Solaize, France
| | - Lionel Magna
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize BP3, 69360 Solaize, France
| | | | - E Daiann Sosa Carrizo
- CNRS/Université de Pau et des Pays de l'Adour, Institut des Sciences Analytiques et Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France.
| | - Karinne Miqueu
- CNRS/Université de Pau et des Pays de l'Adour, Institut des Sciences Analytiques et Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254), Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France.
| | - Abderrahmane Amgoune
- CNRS/Université Toulouse III - Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France.
| | - György Szalóki
- CNRS/Université Toulouse III - Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France.
| | - Didier Bourissou
- CNRS/Université Toulouse III - Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France.
| |
Collapse
|
20
|
Fricke C, Reid WB, Schoenebeck F. A Review on Oxidative Gold‐Catalyzed C‐H Arylation of Arenes – Challenges and Opportunities. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000856] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christoph Fricke
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - William B. Reid
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
21
|
Rocchigiani L, Bochmann M. Recent Advances in Gold(III) Chemistry: Structure, Bonding, Reactivity, and Role in Homogeneous Catalysis. Chem Rev 2020; 121:8364-8451. [DOI: 10.1021/acs.chemrev.0c00552] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Luca Rocchigiani
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR47TJ, United Kingdom
| | - Manfred Bochmann
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR47TJ, United Kingdom
| |
Collapse
|
22
|
Genoux A, González JA, Merino E, Nevado C. Mechanistic Insights into C(sp
2
)−C(sp)N Reductive Elimination from Gold(III) Cyanide Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Alexandre Genoux
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Jorge A. González
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Estíbaliz Merino
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zürich Switzerland
- Current address: Department of Organic and Inorganic Chemistry Chemical Research Institute Andrés M. del Río (IQAR) University of Alcalá 28805, Alcalá de Henares Madrid Spain
| | - Cristina Nevado
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zürich Switzerland
| |
Collapse
|
23
|
Huang B, Hu M, Toste FD. Homogeneous Gold Redox Chemistry: Organometallics, Catalysis, and Beyond. TRENDS IN CHEMISTRY 2020; 2:707-720. [PMID: 34341775 PMCID: PMC8321390 DOI: 10.1016/j.trechm.2020.04.012] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gold redox chemistry holds the promise of unique reactivities and selectivities that are different to other transition metals. Recent studies have utilized strain release, ligand design, and photochemistry to promote the otherwise sluggish oxidative addition to Au(I) complexes. More details on the reductive elimination from Au(III) complexes have also been revealed. These discoveries have facilitated the development of gold redox catalysis and will continue to offer mechanistic insight and inspiration for other transition metals. This review highlights how research in organometallic chemistry has led to gold redox catalysis, as well as applications in materials science, bioconjugation, and radiochemical synthesis.
Collapse
Affiliation(s)
- Banruo Huang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mingyou Hu
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, PR China
| | - F. Dean Toste
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
24
|
Furan S, Lork E, Mebs S, Hupf E, Beckmann J. Transmetallation of Bis(6‐diphenylphosphinoacenaphth‐5‐yl)‐Mercury and ‐Tributyltin with Precious Metal Chlorides. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sinas Furan
- Institut für Anorganische Chemie und Kristallographie Universität Bremen Leobener Straße 7 28359 Bremen Germany
| | - Enno Lork
- Institut für Anorganische Chemie und Kristallographie Universität Bremen Leobener Straße 7 28359 Bremen Germany
| | - Stefan Mebs
- Institut für Experimentalphysik Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Emanuel Hupf
- Institut für Anorganische Chemie und Kristallographie Universität Bremen Leobener Straße 7 28359 Bremen Germany
| | - Jens Beckmann
- Institut für Anorganische Chemie und Kristallographie Universität Bremen Leobener Straße 7 28359 Bremen Germany
| |
Collapse
|
25
|
Ingner FJL, Schmitt A, Orthaber A, Gates PJ, Pilarski LT. Mild and Efficient Synthesis of Diverse Organo-Au I -L Complexes in Green Solvents. CHEMSUSCHEM 2020; 13:2032-2037. [PMID: 31951303 PMCID: PMC7277043 DOI: 10.1002/cssc.201903415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/15/2020] [Indexed: 06/10/2023]
Abstract
An exceptionally mild and efficient method was developed for the preparation of (hetero)aryl-AuI -L complexes using ethanol or water as the reaction medium at room temperature and Ar-B(triol)K boronates as the transmetalation partner. The reaction does not need an exogeneous base or other additives, and quantitative yields can be achieved through a simple filtration as the only required purification method, which obviates considerable waste associated with alternative workup methods. A broad reaction scope was demonstrated with respect to both the L and (hetero)aryl ligands on product Au complexes. Despite the polar reaction medium, large polycyclic aromatic hydrocarbon units can be incorporated on the Au complexes in very good to excellent yields. The approach was demonstrated for the chemoselective manipulation of orthogonally protected aryl boronates to afford a new class of N-heterocyclic carbene-Au-aryl complexes. A mechanistic rationale was proposed.
Collapse
Affiliation(s)
| | | | - Andreas Orthaber
- Department of Chemistry—ÅngströmUppsala UniversityBOX 52375-120UppsalaSweden
| | - Paul J. Gates
- School of ChemistryUniversity of BristolCantock's Close, CliftonBristolBS8 1TSUK
| | | |
Collapse
|
26
|
Bonsignore R, Thomas SR, Klooster WT, Coles SJ, Jenkins RL, Bourissou D, Barone G, Casini A. Carbon-Phosphorus Coupling from C^N Cyclometalated Au III Complexes. Chemistry 2020; 26:4226-4231. [PMID: 31994237 PMCID: PMC7187188 DOI: 10.1002/chem.201905392] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/10/2020] [Indexed: 12/20/2022]
Abstract
With the aim of exploiting new organometallic species for cross-coupling reactions, we report here on the AuIII -mediated Caryl -P bond formation occurring upon reaction of C^N cyclometalated AuIII complexes with phosphines. The [Au(C^N)Cl2 ] complex 1 featuring the bidentate 2-benzoylpyridine (CCO N) scaffold was found to react with PTA (1,3,5-triaza-7-phosphaadamantane) under mild conditions, including in water, to afford the corresponding phosphonium 5 through C-P reductive elimination. A mechanism is proposed for the title reaction based on in situ 31 P{1 H} NMR and HR-ESI-MS analyses combined with DFT calculations. The C-P coupling has been generalized to other C^N cyclometalated AuIII complexes and other tertiary phosphines. Overall, this work provides new insights into the reactivity of cyclometalated AuIII compounds and establishes initial structure-activity relationships to develop AuIII -mediated C-P cross-coupling reactions.
Collapse
Affiliation(s)
- Riccardo Bonsignore
- School of ChemistryCardiff UniversityMain Building, Park PlaceCF10 3ATCardiffUK
| | - Sophie R. Thomas
- School of ChemistryCardiff UniversityMain Building, Park PlaceCF10 3ATCardiffUK
| | - Wim T. Klooster
- School of ChemistryUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Simon J. Coles
- School of ChemistryUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Robert L. Jenkins
- School of ChemistryCardiff UniversityMain Building, Park PlaceCF10 3ATCardiffUK
| | - Didier Bourissou
- CNRS/Université Paul SabatierLaboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069)118 Route de Narbonne31062Toulouse Cedex 09France
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e FarmaceuticheUniversità degli Studi di PalermoViale delle Scienze, Edificio 1790128PalermoItaly
| | - Angela Casini
- School of ChemistryCardiff UniversityMain Building, Park PlaceCF10 3ATCardiffUK
- Department of ChemistryTechnical University of MunichLichtenbergstr. 485747GarchingGermany
| |
Collapse
|
27
|
Si E, Zhao P, Wang L, Duan Z, Mathey F. New Access to Six-Membered Phosphacycle Annulated Polyaromatic Ring System. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901753] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Erbing Si
- College of Chemistry; International Phosphorus Laboratory; International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Green Catalysis Center; Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Peng Zhao
- College of Chemistry; International Phosphorus Laboratory; International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Green Catalysis Center; Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Lili Wang
- College of Chemistry; International Phosphorus Laboratory; International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Green Catalysis Center; Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Zheng Duan
- College of Chemistry; International Phosphorus Laboratory; International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Green Catalysis Center; Zhengzhou University; 450001 Zhengzhou P. R. China
| | - François Mathey
- College of Chemistry; International Phosphorus Laboratory; International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Green Catalysis Center; Zhengzhou University; 450001 Zhengzhou P. R. China
| |
Collapse
|
28
|
Jiang T, Zhang H, Ding Y, Zou S, Chang R, Huang H. Transition-metal-catalyzed reactions involving reductive elimination between dative ligands and covalent ligands. Chem Soc Rev 2020; 49:1487-1516. [DOI: 10.1039/c9cs00539k] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review summarizes transition-metal catalyzed reactions with reductive elimination between covalent ligands and dative ligands as the key elementary step.
Collapse
Affiliation(s)
- Tianxiao Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry
- Center for Excellence in Molecular Synthesis
- University of Science and Technology of China
- Chinese Academy of Sciences
- Hefei
| | - Haocheng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry
- Center for Excellence in Molecular Synthesis
- University of Science and Technology of China
- Chinese Academy of Sciences
- Hefei
| | - Yongzheng Ding
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry
- Center for Excellence in Molecular Synthesis
- University of Science and Technology of China
- Chinese Academy of Sciences
- Hefei
| | - Suchen Zou
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry
- Center for Excellence in Molecular Synthesis
- University of Science and Technology of China
- Chinese Academy of Sciences
- Hefei
| | - Rui Chang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry
- Center for Excellence in Molecular Synthesis
- University of Science and Technology of China
- Chinese Academy of Sciences
- Hefei
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry
- Center for Excellence in Molecular Synthesis
- University of Science and Technology of China
- Chinese Academy of Sciences
- Hefei
| |
Collapse
|
29
|
Lee JS, Kapustin EA, Pei X, Llopis S, Yaghi OM, Toste FD. Architectural Stabilization of a Gold(III) Catalyst in Metal-Organic Frameworks. Chem 2019; 6:142-152. [PMID: 32285019 DOI: 10.1016/j.chempr.2019.10.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unimolecular decomposition pathways are challenging to address in transition-metal catalysis and have previously not been suppressed via incorporation into a solid support. Two robust metal-organic frameworks (IRMOF-10 and bio-MOF-100) are used for the architectural stabilization of a structurally well-defined gold(III) catalyst. The inherent rigidity of these materials is utilized to preclude a unimolecular decomposition pathway - reductive elimination. Through this architectural stabilization strategy, decomposition of the incorporated gold(III) catalyst in the metal-organic frameworks is not observed; in contrast, the homogeneous analogue is prone to decomposition in solution. Stabilization of the catalyst in these metal-organic frameworks precludes leaching and enables recyclability, which is crucial for productive heterogeneous catalysis.
Collapse
Affiliation(s)
- John S Lee
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Eugene A Kapustin
- Department of Chemistry, University of California, Berkeley, CA, USA.,Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Kavli Energy NanoSciences Institute at Berkeley, Berkeley, CA, USA
| | - Xiaokun Pei
- Department of Chemistry, University of California, Berkeley, CA, USA.,Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Kavli Energy NanoSciences Institute at Berkeley, Berkeley, CA, USA
| | - Sebastián Llopis
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Omar M Yaghi
- Department of Chemistry, University of California, Berkeley, CA, USA.,Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Kavli Energy NanoSciences Institute at Berkeley, Berkeley, CA, USA.,Berkeley Global Science Institute, Berkeley, CA, USA.,UC Berkeley-KACST Joint Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, CA, USA.,Lead Contact
| |
Collapse
|
30
|
Reiersølmoen AC, Csókás D, Pápai I, Fiksdahl A, Erdélyi M. Mechanism of Au(III)-Mediated Alkoxycyclization of a 1,6-Enyne. J Am Chem Soc 2019; 141:18221-18229. [PMID: 31618010 DOI: 10.1021/jacs.9b09108] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gold-mediated homogeneous catalysis is a powerful tool for construction of valuable molecules and has lately received growing attention. Whereas Au(I)-catalyzed processes have become well established, those mediated by Au(III) have so far barely been explored, and their mechanistic understanding remains basic. Herein, we disclose the combined NMR spectroscopic, single-crystal X-ray crystallographic, and computational (DFT) investigation of the Au(III)-mediated alkoxycyclization of a 1,6-enyne in the presence of a bidentate pyridine-oxazoline ligand. The roles of the counterion, the solvent, and the type of Au(III) complex have been assessed. Au(III) is demonstrated to be the active catalyst in alkoxycyclization. Alkyne coordination to Au(III) involves decoordination of the pyridine nitrogen and is the rate-limiting step.
Collapse
Affiliation(s)
- Ann Christin Reiersølmoen
- Department of Chemistry , Norwegian University of Science and Technology , Høgskoleringen 5 , 7491 Trondheim , Norway
| | - Dániel Csókás
- Institute of Organic Chemistry, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar tudósok körútja 2 , H-1117 Budapest , Hungary
| | - Imre Pápai
- Institute of Organic Chemistry, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar tudósok körútja 2 , H-1117 Budapest , Hungary
| | - Anne Fiksdahl
- Department of Chemistry , Norwegian University of Science and Technology , Høgskoleringen 5 , 7491 Trondheim , Norway
| | - Máté Erdélyi
- Department of Chemistry , BMC Uppsala University , Husargatan 3 , 752 37 Uppsala , Sweden
| |
Collapse
|
31
|
Vanicek S, Beerhues J, Bens T, Levchenko V, Wurst K, Bildstein B, Tilset M, Sarkar B. Oxidative access via aqua regia to an electrophilic, mesoionic dicobaltoceniumyltriazolylidene gold(III) catalyst. Organometallics 2019; 38:4383-4386. [PMID: 31844348 DOI: 10.1021/acs.organomet.9b00616] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A gold(III) complex with the hitherto most electron poor mesoionic carbene ligand is presented. Aqua regia was the oxidizing agent of choice for the synthesis of this unusual organometallic compound. The AuIII complex is redox-rich, and also acts as a catalyst for oxazole formation, delivering selectively a completely different isomer compared to its AuI congener.
Collapse
Affiliation(s)
- Stefan Vanicek
- Department of Chemistry, University of Oslo, Sem Sælands vei 26, 0315, Norway
| | - Julia Beerhues
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195 Berlin, Germany
| | - Tobias Bens
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195 Berlin, Germany
| | - Volodymyr Levchenko
- Department of Chemistry, University of Oslo, Sem Sælands vei 26, 0315, Norway
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Benno Bildstein
- Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Mats Tilset
- Department of Chemistry, University of Oslo, Sem Sælands vei 26, 0315, Norway
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195 Berlin, Germany
| |
Collapse
|
32
|
Yang Y, Eberle L, Mulks FF, Wunsch JF, Zimmer M, Rominger F, Rudolph M, Hashmi ASK. Trans Influence of Ligands on the Oxidation of Gold(I) Complexes. J Am Chem Soc 2019; 141:17414-17420. [DOI: 10.1021/jacs.9b09363] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yangyang Yang
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Lukas Eberle
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Florian F. Mulks
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Jonas F. Wunsch
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Marc Zimmer
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| |
Collapse
|
33
|
Yao W, Wu Q, Huang R, Zhang Y, Yang Y, Zhang L, Wang D. The Practical Method to Synthesize Gold Nanoparticles Supported on Hydrotalcite and Application on Oxidation and Hydration Reactions. ChemistrySelect 2019. [DOI: 10.1002/slct.201902730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wei Yao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 China
| | - Qiang Wu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 China
| | - Ronghui Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 China
| | - Yilin Zhang
- Department of ChemistryWest Virginia University, Morgantown West Virginia 26506 United States
| | - Yongchun Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 China
| | - Liang Zhang
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University Wuxi 214122 China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan University Wuxi 214122 China
| |
Collapse
|
34
|
Kato T, Kuwabara T, Minami Y, Hiyama T, Ishii Y. Synthesis of Phosphaphenalenium Salts via P–C Reductive Elimination at a Ru(II) Center and Their Fluorescence Properties. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Takahiro Kato
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Takuya Kuwabara
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yasunori Minami
- Research and Development Initiative, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Tamejiro Hiyama
- Research and Development Initiative, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Youichi Ishii
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
35
|
Jimoh AA, Hosseyni S, Ye X, Wojtas L, Hu Y, Shi X. Gold redox catalysis for cyclization/arylation of allylic oximes: synthesis of isoxazoline derivatives. Chem Commun (Camb) 2019; 55:8150-8153. [PMID: 31241086 PMCID: PMC6641983 DOI: 10.1039/c9cc02830g] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Base-assisted diazonium activation has been employed to promote gold(i)/(iii) redox catalysis toward allylic oxime cyclization/aryl coupling. Functional isoxazolines were prepared with good to excellent yields, while the alternative photoactivation method provided trace amounts of the isoxazoline products. This study further broadens the scope of gold redox chemistry.
Collapse
Affiliation(s)
- Abiola Azeez Jimoh
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Schwedtmann K, Haberstroh J, Roediger S, Bauzá A, Frontera A, Hennersdorf F, Weigand JJ. Formation of an imidazoliumyl-substituted [(L C) 4P 4] 4+ tetracation and transition metal mediated fragmentation and insertion reaction (L C = NHC). Chem Sci 2019; 10:6868-6875. [PMID: 31391910 PMCID: PMC6640194 DOI: 10.1039/c9sc01701a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 05/29/2019] [Indexed: 01/10/2023] Open
Abstract
Tetracationic cyclo-tetraphosphane [(LC)4P4]4+ as triflate salt (3[OTf]4) (LC = 4,5-dimethyl-1,3-diisopropyl-imidazol-2-yl) is obtained in high yield from the reduction of [LCPCl2]+ (4[OTf]) with 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine (6) and represents the first salt of the cationic cyclo-phosphane series with the general formula [L n P n ] n+. Theoretical calculations reveal the electrophilic nature of the P atoms within the P4-ring due to the influence of the imidazoliumyl-substituents. Further reduction of 3[OTf]4 with 6 affords the unexpected formation of the notricyclane P7-type cation [(LC)3P7]3+ (9[OTf]3). Selective transition metal mediated [2 + 2]-fragmentation of 3 4+ is achieved when 3[OTf]4 is reacted with Fe2(CO)9, Pd(PPh3)4 and Pt(PPh3)4 leading to the formation of the dicationic diphosphene complexes [(η2-LCP[double bond, length as m-dash]PLC)Fe(CO)4]2+ (12[OTf]2) and [(η2-LCP[double bond, length as m-dash]PLC)M(PPh3)2]2+ (13[OTf]2 for M = Pd; 14[OTf]2 for M = Pt). In contrast, the reaction of 3[OTf]4 with an excess of AuCl(tht) gives rise to the formation of the five-membered ring complex [((LC)4P4)AuCl2]3+ (15[OTf]3), where the Au(i) atom reductively inserts into a P-P bond of 3 4+.
Collapse
Affiliation(s)
- Kai Schwedtmann
- Faculty of Chemistry and Food Chemistry , TU Dresden , Chair of Inorganic Molecular Chemistry , 01062 Dresden , Germany .
| | - Jan Haberstroh
- Faculty of Chemistry and Food Chemistry , TU Dresden , Chair of Inorganic Molecular Chemistry , 01062 Dresden , Germany .
| | - Sven Roediger
- Faculty of Chemistry and Food Chemistry , TU Dresden , Chair of Inorganic Molecular Chemistry , 01062 Dresden , Germany .
| | - Antonio Bauzá
- Department of Chemistry , Universitat de Illes Balears , 07122 Palma de Mallorca , Spain
| | - Antonio Frontera
- Department of Chemistry , Universitat de Illes Balears , 07122 Palma de Mallorca , Spain
| | - Felix Hennersdorf
- Faculty of Chemistry and Food Chemistry , TU Dresden , Chair of Inorganic Molecular Chemistry , 01062 Dresden , Germany .
| | - Jan J Weigand
- Faculty of Chemistry and Food Chemistry , TU Dresden , Chair of Inorganic Molecular Chemistry , 01062 Dresden , Germany .
| |
Collapse
|
37
|
Belyaev A, Chen Y, Liu Z, Hindenberg P, Wu C, Chou P, Romero‐Nieto C, Koshevoy IO. Intramolecular Phosphacyclization: Polyaromatic Phosphonium P-Heterocycles with Wide-Tuning Optical Properties. Chemistry 2019; 25:6332-6341. [PMID: 30791177 PMCID: PMC6594060 DOI: 10.1002/chem.201900136] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Indexed: 01/08/2023]
Abstract
Rationally designed cationic phospha-polyaromatic fluorophores were prepared through intramolecular cyclization of the tertiary ortho-(acene)phenylene-phosphines mediated by CuII triflate. As a result of phosphorus quaternization, heterocyclic phosphonium salts 1 c-3 c, derived from naphthalene, phenanthrene, and anthracene cores, exhibited very intense blue to green fluorescence (Φem =0.38-0.99) and high photostability in aqueous medium. The structure-emission relationship was further investigated by tailoring the electron-donating functions to the anthracene moiety to give dyes 4 c-6 c with charge-transfer character. The latter significantly decreases the emission energy to reach near-IR region. Thus, the intramolecular phosphacyclization renders an ultra-wide tuning of fluorescence from 420 nm (1 c) to 780 nm (6 c) in solution, extended to 825 nm for 6 c in the solid state with quantum efficiency of approximately 0.07. The physical behavior of these new dyes was studied spectroscopically, crystallographically, and electrochemically, whereas computational analysis was used to correlate the experimental data with molecular electronic structures. The excellent stability, water solubility, and attractive photophysical characteristics make these phosphonium heterocycles powerful tools in cell imaging.
Collapse
Affiliation(s)
- Andrey Belyaev
- Department of ChemistryUniversity of Eastern FinlandYliopistokatu 780101JoensuuFinland
| | - Yi‐Ting Chen
- Department of ChemistryNational (Taiwan) UniversityTaipei106Taiwan
| | - Zong‐Ying Liu
- Department of ChemistryNational (Taiwan) UniversityTaipei106Taiwan
| | - Philip Hindenberg
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Cheng‐Ham Wu
- Department of ChemistryNational (Taiwan) UniversityTaipei106Taiwan
| | - Pi‐Tai Chou
- Department of ChemistryNational (Taiwan) UniversityTaipei106Taiwan
| | - Carlos Romero‐Nieto
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Faculty of PharmacyUniversity of Castilla-La ManchaCalle Almansa 14 - Edif. Bioincubadora02008AlbaceteSpain
| | - Igor O. Koshevoy
- Department of ChemistryUniversity of Eastern FinlandYliopistokatu 780101JoensuuFinland
| |
Collapse
|
38
|
Jin L, Liu C, Yang FZ, Wu DY, Tian ZQ. Coordination behavior of theophylline with Au(III) and electrochemical reduction of the complex. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Lee YH, Morandi B. Transition metal-mediated metathesis between P–C and M–C bonds: Beyond a side reaction. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Ohata J, Martin SC, Ball ZT. Metallvermittelte Funktionalisierung natürlicher Peptide und Proteine: Biokonjugation mit Übergangsmetallen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201807536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun Ohata
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Samuel C. Martin
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Zachary T. Ball
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| |
Collapse
|
41
|
Ohata J, Martin SC, Ball ZT. Metal‐Mediated Functionalization of Natural Peptides and Proteins: Panning for Bioconjugation Gold. Angew Chem Int Ed Engl 2019; 58:6176-6199. [DOI: 10.1002/anie.201807536] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Jun Ohata
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Samuel C. Martin
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Zachary T. Ball
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| |
Collapse
|
42
|
Do TG, Hupf E, Lork E, Kögel JF, Mohr F, Brown A, Toyoda R, Sakamoto R, Nishihara H, Mebs S, Beckmann J. Aurophilicity and Photoluminescence of (6‐Diphenylpnicogenoacenaphth‐5‐yl)gold Compounds. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Truong Giang Do
- Institut für Anorganische Chemie und Kristallographie Universität Bremen Leobener Straße 7 28359 Bremen Germany
| | - Emanuel Hupf
- Institut für Anorganische Chemie und Kristallographie Universität Bremen Leobener Straße 7 28359 Bremen Germany
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. T6G 2G2 Edmonton Alberta Canada
| | - Enno Lork
- Institut für Anorganische Chemie und Kristallographie Universität Bremen Leobener Straße 7 28359 Bremen Germany
| | - Julius F. Kögel
- Institut für Anorganische Chemie und Kristallographie Universität Bremen Leobener Straße 7 28359 Bremen Germany
| | - Fabian Mohr
- Fakultät für Mathematik und Naturwissenschaften Anorganische Chemie Bergische Universität Wuppertal Gaußstr. 20 42119 Wuppertal Germany
| | - Alex Brown
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr. T6G 2G2 Edmonton Alberta Canada
| | - Ryojun Toyoda
- Department of Chemistry, Graduate School of Science Anorganische Chemie The University of Tokyo 7‐3‐1, Hongo, Bunkyo‐ku 113‐0033 Tokyo Japan
| | - Ryota Sakamoto
- Department of Chemistry, Graduate School of Science Anorganische Chemie The University of Tokyo 7‐3‐1, Hongo, Bunkyo‐ku 113‐0033 Tokyo Japan
- Anorganische Chemie JST‐PRESTO 4‐1‐8, Honcho, Kawaguchi 332‐0012 Saitama Japan
| | - Hiroshi Nishihara
- Department of Chemistry, Graduate School of Science Anorganische Chemie The University of Tokyo 7‐3‐1, Hongo, Bunkyo‐ku 113‐0033 Tokyo Japan
| | - Stefan Mebs
- Institut für Chemie und Biochemie Anorganische Chemie Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Jens Beckmann
- Institut für Anorganische Chemie und Kristallographie Universität Bremen Leobener Straße 7 28359 Bremen Germany
| |
Collapse
|
43
|
Kim JH, Mertens RT, Agarwal A, Parkin S, Berger G, Awuah SG. Direct intramolecular carbon(sp 2)-nitrogen(sp 2) reductive elimination from gold(iii). Dalton Trans 2019; 48:6273-6282. [PMID: 30989158 DOI: 10.1039/c8dt05155k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The reactivity of bidentate AuIII-Cl species, [(C^N)AuCl2], with a bisphosphine or carbon donor ligands results in reductive elimination. Combined experimental and computational investigations lead to the first evidence of a direct intramolecular C(sp2)-N(sp2) bond formation from a monomeric [(C^N)AuCl2] gold(iii) complex. We show that bidentate ligated Au(iii) systems bypass transmetallation to form C(sp2)-N(sp2) species and NHC-Au-Cl. Mechanistic investigations of the reported transformation reveal a ligand-induced reductive elimination via a key AuIII intermediate. Kinetic studies of the reaction support a second-order rate process.
Collapse
Affiliation(s)
- Jong Hyun Kim
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Xie J, Sekine K, Witzel S, Krämer P, Rudolph M, Rominger F, Hashmi ASK. Light‐Induced Gold‐Catalyzed Hiyama Arylation: A Coupling Access to Biarylboronates. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806427] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jin Xie
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Kohei Sekine
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Sina Witzel
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Petra Krämer
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Matthias Rudolph
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
45
|
Xie J, Sekine K, Witzel S, Krämer P, Rudolph M, Rominger F, Hashmi ASK. Light‐Induced Gold‐Catalyzed Hiyama Arylation: A Coupling Access to Biarylboronates. Angew Chem Int Ed Engl 2018; 57:16648-16653. [DOI: 10.1002/anie.201806427] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Jin Xie
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Kohei Sekine
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Sina Witzel
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Petra Krämer
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Matthias Rudolph
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutUniversität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
46
|
Dimé AKD, Cattey H, Lucas D, Devillers CH. Electrosynthesis and X‐ray Crystallographic Structure of Zn
II
meso
‐Triaryltriphenylphosphonium Porphyrin and Structural Comparison with Mg
II
meso
‐Triphenylphosphonium Porphine. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Abdou K. D. Dimé
- Institut de Chimie Moléculaire de l′Université de Bourgogne UMR CNRS 6302 Université Bourgogne Franche‐Comté 9 Avenue Alain Savary 21078 Dijon cedex France
- Département de Chimie, UFR SATIC Université Alioune Diop de Bambey Bambey Senegal
| | - Hélène Cattey
- Institut de Chimie Moléculaire de l′Université de Bourgogne UMR CNRS 6302 Université Bourgogne Franche‐Comté 9 Avenue Alain Savary 21078 Dijon cedex France
| | - Dominique Lucas
- Institut de Chimie Moléculaire de l′Université de Bourgogne UMR CNRS 6302 Université Bourgogne Franche‐Comté 9 Avenue Alain Savary 21078 Dijon cedex France
| | - Charles H. Devillers
- Institut de Chimie Moléculaire de l′Université de Bourgogne UMR CNRS 6302 Université Bourgogne Franche‐Comté 9 Avenue Alain Savary 21078 Dijon cedex France
| |
Collapse
|
47
|
Spang N, Müller M, Buchner MR. The Phosphonium Ion [Cy3
PCHCl2
]+
: Synthesis and Properties. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nils Spang
- Anorganische Chemie; Nachwuchsgruppe Berylliumchemie; Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Strasse 4 35032 Marburg Germany
| | - Matthias Müller
- Anorganische Chemie; Nachwuchsgruppe Berylliumchemie; Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Strasse 4 35032 Marburg Germany
| | - Magnus R. Buchner
- Anorganische Chemie; Nachwuchsgruppe Berylliumchemie; Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Strasse 4 35032 Marburg Germany
| |
Collapse
|
48
|
Lin Y, Vong K, Matsuoka K, Tanaka K. 2-Benzoylpyridine Ligand Complexation with Gold Critical for Propargyl Ester-Based Protein Labeling. Chemistry 2018; 24:10595-10600. [PMID: 29791049 DOI: 10.1002/chem.201802058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/18/2018] [Indexed: 01/07/2023]
Abstract
In previously reported work, AuIII complexes coordinated with 2-benzoylpyridine ligand, BPy-Au, were prebound to a protein and used to discover a novel protein-directed labeling approach with propargyl ester functional groups. In this work, further examination discovered that gold catalysts devoid of the 2-benzoylpyridine ligand (e.g., NaAuCl4) had significantly reduced levels of protein labeling. Mechanistic investigations then revealed that BPy-Au and propargyl esters undergo a rare example of C(sp2 )-C(sp) aryl-alkynyl cross-coupling, likely through spontaneous reductive elimination. Overall, these observations appear to suggest that BPy-Au-mediated, propargyl ester-based protein labeling acts via an activated ester intermediate, which contributes to our understanding of this process and will aid the expansion/optimization of gold-catalyst usage in future bioconjugation applications, especially in vivo.
Collapse
Affiliation(s)
- Yixuan Lin
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Division of Material Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Koji Matsuoka
- Division of Material Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, 420008, Kazan, Russia.,JST-PRESTO, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| |
Collapse
|
49
|
de Paiva REF, Du Z, Nakahata DH, Lima FA, Corbi PP, Farrell NP. Gold‐Catalyzed C–S Aryl‐Group Transfer in Zinc Finger Proteins. Angew Chem Int Ed Engl 2018; 57:9305-9309. [DOI: 10.1002/anie.201803082] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/02/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Raphael E. F. de Paiva
- Department of Chemistry Virginia Commonwealth University 1001 W. Main Street Richmond VA 23284-2006 USA
- Institute of Chemistry University of Campinas—UNICAMP P.O. Box 6154, CEP 13083-970 Campinas, São Paulo Brazil
| | - Zhifeng Du
- Department of Chemistry Virginia Commonwealth University 1001 W. Main Street Richmond VA 23284-2006 USA
| | - Douglas H. Nakahata
- Institute of Chemistry University of Campinas—UNICAMP P.O. Box 6154, CEP 13083-970 Campinas, São Paulo Brazil
| | - Frederico A. Lima
- Centro Nacional de Pesquisa em Energia e Materiais Brazilian Synchrotron Light Laboratory—LNLS, 13084-971 Campinas SP Brazil
- European XFEL GmbH Holzkoppel 4 22869 Schenefeld Germany
| | - Pedro P. Corbi
- Institute of Chemistry University of Campinas—UNICAMP P.O. Box 6154, CEP 13083-970 Campinas, São Paulo Brazil
| | - Nicholas P. Farrell
- Department of Chemistry Virginia Commonwealth University 1001 W. Main Street Richmond VA 23284-2006 USA
| |
Collapse
|
50
|
Blons C, Duval M, Delcroix D, Olivier‐Bourbigou H, Mallet‐Ladeira S, Sosa Carrizo ED, Miqueu K, Amgoune A, Bourissou D. Formation of a
peri
‐Bridged Phosphonio‐Naphthalene by Cu‐Mediated Phosphine–Aryl Coupling. Chemistry 2018; 24:11922-11925. [DOI: 10.1002/chem.201802579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Charlie Blons
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Maryne Duval
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Damien Delcroix
- IFP Energies nouvellesRond-Point de l'Echangeur de Solaize BP3 69360 Solaize France
| | | | - Sonia Mallet‐Ladeira
- Institut de Chimie de Toulouse (ICT, FR 2599) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - E. Daiann Sosa Carrizo
- CNRS/UNIV PAU & PAYS ADOURInstitut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254) Hélioparc, 2 Avenue du Président Angot 64053 Pau Cedex 09 France
| | - Karinne Miqueu
- CNRS/UNIV PAU & PAYS ADOURInstitut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254) Hélioparc, 2 Avenue du Président Angot 64053 Pau Cedex 09 France
| | - Abderrahmane Amgoune
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| |
Collapse
|