1
|
Reinhard ME, Sidhu BK, Lozada IB, Powers-Riggs N, Ortiz RJ, Lim H, Nickel R, Lierop JV, Alonso-Mori R, Chollet M, Gee LB, Kramer PL, Kroll T, Raj SL, van Driel TB, Cordones AA, Sokaras D, Herbert DE, Gaffney KJ. Time-Resolved X-ray Emission Spectroscopy and Synthetic High-Spin Model Complexes Resolve Ambiguities in Excited-State Assignments of Transition-Metal Chromophores: A Case Study of Fe-Amido Complexes. J Am Chem Soc 2024; 146:17908-17916. [PMID: 38889309 DOI: 10.1021/jacs.4c02748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
To fully harness the potential of abundant metal coordination complex photosensitizers, a detailed understanding of the molecular properties that dictate and control the electronic excited-state population dynamics initiated by light absorption is critical. In the absence of detectable luminescence, optical transient absorption (TA) spectroscopy is the most widely employed method for interpreting electron redistribution in such excited states, particularly for those with a charge-transfer character. The assignment of excited-state TA spectral features often relies on spectroelectrochemical measurements, where the transient absorption spectrum generated by a metal-to-ligand charge-transfer (MLCT) electronic excited state, for instance, can be approximated using steady-state spectra generated by electrochemical ligand reduction and metal oxidation and accounting for the loss of absorptions by the electronic ground state. However, the reliability of this approach can be clouded when multiple electronic configurations have similar optical signatures. Using a case study of Fe(II) complexes supported by benzannulated diarylamido ligands, we highlight an example of such an ambiguity and show how time-resolved X-ray emission spectroscopy (XES) measurements can reliably assign excited states from the perspective of the metal, particularly in conjunction with accurate synthetic models of ligand-field electronic excited states, leading to a reinterpretation of the long-lived excited state as a ligand-field metal-centered quintet state. A detailed analysis of the XES data on the long-lived excited state is presented, along with a discussion of the ultrafast dynamics following the photoexcitation of low-spin Fe(II)-Namido complexes using a high-spin ground-state analogue as a spectral model for the 5T2 excited state.
Collapse
Affiliation(s)
- Marco E Reinhard
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Baldeep K Sidhu
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Rd, Winnipeg, Manitoba R3T 2N2, Canada
| | - Issiah B Lozada
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Rd, Winnipeg, Manitoba R3T 2N2, Canada
| | - Natalia Powers-Riggs
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Robert J Ortiz
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Rd, Winnipeg, Manitoba R3T 2N2, Canada
| | - Hyeongtaek Lim
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Rachel Nickel
- Department of Physics and Astronomy, University of Manitoba, 31A Sifton Rd, Winnipeg, Manitoba R3T 2N2, Canada
| | - Johan van Lierop
- Department of Physics and Astronomy, University of Manitoba, 31A Sifton Rd, Winnipeg, Manitoba R3T 2N2, Canada
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Matthieu Chollet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Leland B Gee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Patrick L Kramer
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Sumana L Raj
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Amy A Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - David E Herbert
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Rd, Winnipeg, Manitoba R3T 2N2, Canada
| | - Kelly J Gaffney
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
2
|
Wellauer J, Ziereisen F, Sinha N, Prescimone A, Velić A, Meyer F, Wenger OS. Iron(III) Carbene Complexes with Tunable Excited State Energies for Photoredox and Upconversion. J Am Chem Soc 2024; 146. [PMID: 38598280 PMCID: PMC11046485 DOI: 10.1021/jacs.4c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Substituting precious elements in luminophores and photocatalysts by abundant first-row transition metals remains a significant challenge, and iron continues to be particularly attractive owing to its high natural abundance and low cost. Most iron complexes known to date face severe limitations due to undesirably efficient deactivation of luminescent and photoredox-active excited states. Two new iron(III) complexes with structurally simple chelate ligands enable straightforward tuning of ground and excited state properties, contrasting recent examples, in which chemical modification had a minor impact. Crude samples feature two luminescence bands strongly reminiscent of a recent iron(III) complex, in which this observation was attributed to dual luminescence, but in our case, there is clear-cut evidence that the higher-energy luminescence stems from an impurity and only the red photoluminescence from a doublet ligand-to-metal charge transfer (2LMCT) excited state is genuine. Photoinduced oxidative and reductive electron transfer reactions with methyl viologen and 10-methylphenothiazine occur with nearly diffusion-limited kinetics. Photocatalytic reactions not previously reported for this compound class, in particular the C-H arylation of diazonium salts and the aerobic hydroxylation of boronic acids, were achieved with low-energy red light excitation. Doublet-triplet energy transfer (DTET) from the luminescent 2LMCT state to an anthracene annihilator permits the proof of principle for triplet-triplet annihilation upconversion based on a molecular iron photosensitizer. These findings are relevant for the development of iron complexes featuring photophysical and photochemical properties competitive with noble-metal-based compounds.
Collapse
Affiliation(s)
- Joël Wellauer
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Fabienne Ziereisen
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Narayan Sinha
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Ajdin Velić
- University
of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- University
of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
3
|
Prakash O, Chábera P, Kaul N, Hlynsson VF, Rosemann NW, Losada IB, Hoang Hai YT, Huang P, Bendix J, Ericsson T, Häggström L, Gupta AK, Strand D, Yartsev A, Lomoth R, Persson P, Wärnmark K. How Rigidity and Conjugation of Bidentate Ligands Affect the Geometry and Photophysics of Iron N-Heterocyclic Complexes: A Comparative Study. Inorg Chem 2024; 63:4461-4473. [PMID: 38421802 PMCID: PMC10934811 DOI: 10.1021/acs.inorgchem.3c03972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Two iron complexes featuring the bidentate, nonconjugated N-heterocyclic carbene (NHC) 1,1'-methylenebis(3-methylimidazol-2-ylidene) (mbmi) ligand, where the two NHC moieties are separated by a methylene bridge, have been synthesized to exploit the combined influence of geometric and electronic effects on the ground- and excited-state properties of homoleptic FeIII-hexa-NHC [Fe(mbmi)3](PF6)3 and heteroleptic FeII-tetra-NHC [Fe(mbmi)2(bpy)](PF6)2 (bpy = 2,2'-bipyridine) complexes. They are compared to the reported FeIII-hexa-NHC [Fe(btz)3](PF6)3 and FeII-tetra-NHC [Fe(btz)2(bpy)](PF6)2 complexes containing the conjugated, bidentate mesoionic NHC ligand 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene) (btz). The observed geometries of [Fe(mbmi)3](PF6)3 and [Fe(mbmi)2(bpy)](PF6)2 are evaluated through L-Fe-L bond angles and ligand planarity and compared to those of [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. The FeII/FeIII redox couples of [Fe(mbmi)3](PF6)3 (-0.38 V) and [Fe(mbmi)2(bpy)](PF6)2 (-0.057 V, both vs Fc+/0) are less reducing than [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. The two complexes show intense absorption bands in the visible region: [Fe(mbmi)3](PF6)3 at 502 nm (ligand-to-metal charge transfer, 2LMCT) and [Fe(mbmi)2(bpy)](PF6)2 at 410 and 616 nm (metal-to-ligand charge transfer, 3MLCT). Lifetimes of 57.3 ps (2LMCT) for [Fe(mbmi)3](PF6)3 and 7.6 ps (3MLCT) for [Fe(mbmi)2(bpy)](PF6)2 were probed and are somewhat shorter than those for [Fe(btz)3](PF6)3 and [Fe(btz)2(bpy)](PF6)2. [Fe(mbmi)3](PF6)3 exhibits photoluminescence at 686 nm (2LMCT) in acetonitrile at room temperature with a quantum yield of (1.2 ± 0.1) × 10-4, compared to (3 ± 0.5) × 10-4 for [Fe(btz)3](PF6)3.
Collapse
Affiliation(s)
- Om Prakash
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Pavel Chábera
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Nidhi Kaul
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box
523, SE-751 20 Uppsala, Sweden
| | - Valtýr F. Hlynsson
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Nils W. Rosemann
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Iria Bolaño Losada
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Yen Tran Hoang Hai
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Ping Huang
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box
523, SE-751 20 Uppsala, Sweden
| | - Jesper Bendix
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Tore Ericsson
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Lennart Häggström
- Department
of Physics − Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Arvind Kumar Gupta
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Daniel Strand
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Arkady Yartsev
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Reiner Lomoth
- Department
of Chemistry − Ångström Laboratory, Uppsala University, Box
523, SE-751 20 Uppsala, Sweden
| | - Petter Persson
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Kenneth Wärnmark
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
4
|
Shi Y, Zhang G, Xiang C, Liu C, Hu J, Wang J, Ge R, Ma H, Niu Y, Xu Y. Defect-Engineering-Mediated Long-Lived Charge-Transfer Excited-State in Fe-Gallate Complex Improves Iron Cycle and Enables Sustainable Fenton-Like Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305162. [PMID: 37708316 DOI: 10.1002/adma.202305162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Indexed: 09/16/2023]
Abstract
Fenton reactions are inefficient because the Fe(II) catalyst cannot be recycled in time due to the lack of a rapid electron transport pathway. This results in huge H2 O2 wastage in industrial applications. Here, it is shown that a sustainable heterogeneous Fenton system is attainable by enhancing the ligand-to-metal charge-transfer (LMCT) excited-state lifetime in Fe-gallate complex. By engineering oxygen defects in the complex, the lifetime is improved from 10-90 ps. The lengthened lifetime ensures sufficient concentrations of excited-states for an efficient Fe cycle, realizing previously unattainable H2 O2 activation kinetics and hydroxyl radical (• OH) productivity. Spectroscopic and electrochemical studies show the cyclic reaction mechanism involves in situ Fe(II) regeneration and synchronous supply of oxygen atoms from water to recover dissociated Fe─O bonds. Trace amounts of this catalyst effectively destroy two drug-resistant bacteria even after eight reaction cycles. This work reveals the link among LMCT excited-state lifetime, Fe cycle, and catalytic activity and stability, with implications for de novo design of efficient and sustainable Fenton-like processes.
Collapse
Affiliation(s)
- Yanfeng Shi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chao Xiang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chengzhen Liu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Jun Hu
- School of Chemical Engineering, Northwest University, Xi' an, 710069, China
| | - Junhu Wang
- Center for Advanced Mössbauer Spectroscopy, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116000, China
| | - Rile Ge
- Center for Advanced Mössbauer Spectroscopy, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116000, China
| | - Haixia Ma
- School of Chemical Engineering, Northwest University, Xi' an, 710069, China
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
5
|
Kim D, Dang VQ, Teets TS. Improved transition metal photosensitizers to drive advances in photocatalysis. Chem Sci 2023; 15:77-94. [PMID: 38131090 PMCID: PMC10732135 DOI: 10.1039/d3sc04580c] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
To function effectively in a photocatalytic application, a photosensitizer's light absorption, excited-state lifetime, and redox potentials, both in the ground state and excited state, are critically important. The absorption profile is particularly relevant to applications involving solar harvesting, whereas the redox potentials and excited-state lifetimes determine the thermodynamics, kinetics, and quantum yields of photoinduced redox processes. This perspective article focuses on synthetic inorganic and organometallic approaches to optimize these three characteristics of transition-metal based photosensitizers. We include our own work in these areas, which has focused extensively on exceptionally strong cyclometalated iridium photoreductants that enable challenging reductive photoredox transformations on organic substrates, and more recent work which has led to improved solar harvesting in charge-transfer copper(i) chromophores, an emerging class of earth-abundant compounds particularly relevant to solar-energy applications. We also extensively highlight many other complementary strategies for optimizing these parameters and highlight representative examples from the recent literature. It remains a significant challenge to simultaneously optimize all three of these parameters at once, since improvements in one often come at the detriment of the others. These inherent trade-offs and approaches to obviate or circumvent them are discussed throughout.
Collapse
Affiliation(s)
- Dooyoung Kim
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Vinh Q Dang
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Thomas S Teets
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
6
|
Reid AG, Moberg ME, Koellner CA, Machan CW, Thornton DA, Dickenson JC, Stober JJ, Turner DA, Tarring TJ, Brown CA, Harrison DP. Sterically attenuated electronic communication in cobalt complexes of meridional isoquinoline-derived ligands for applications in electrocatalysis. J Chem Phys 2023; 159:194306. [PMID: 37982482 DOI: 10.1063/5.0174177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/19/2023] [Indexed: 11/21/2023] Open
Abstract
The ability to synthetically tune the ligand frameworks of redox-active molecules is of critical importance to the economy of solar fuels because manipulating their redox properties can afford control over the operating potentials of sustained electrocatalytic or photoelectrocatalytic processes. The electronic and steric properties of 2,2':6',2″-terpyridine (Terpy) ligand frameworks can be tuned by functional group substitution on ligand backbones, and these correlate strongly to their Hammett parameters. The synthesis of a new series of tridentate meridional ligands of 2,4,6-trisubstituted pyridines that engineers the ability to finely tune the redox potentials of cobalt complexes to more positive potentials than that of their Terpy analogs is achieved by aryl-functionalizing at the four-position and by including isoquinoline at the two- and six-positions of pyridine (Aryl-DiQ). Their cobalt complex syntheses, their electronic properties, and their catalytic activity for carbon dioxide (CO2) reduction are reported and compared to their Terpy analogs. The cobalt derivatives generally experience a positive shift in their redox features relative to the Terpy-based analogs, covering a complementary potential range. Although those evaluated fail to produce any quantifiable products for the reduction of CO2 and suffer from long-term instability, these results suggest possible alternate strategies for stabilizing these compounds during catalysis. We speculate that lower equilibrium association constants to the cobalt center are intrinsic to these ligands, which originate from a steric interaction between protons on the pyridine and isoquinoline moieties. Nevertheless, the new Aryl-DiQ ligand framework has been engineered to selectively tune homoleptic cobalt complexes' redox potentials.
Collapse
Affiliation(s)
- Amelia G Reid
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| | - Megan E Moberg
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| | - Connor A Koellner
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| | - Charles W Machan
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| | - Diana A Thornton
- Virginia Tech, Department of Chemistry, Blacksburg, Virginia 24060, USA
| | - John C Dickenson
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, USA
| | - Jeffry J Stober
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, USA
| | - David A Turner
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, USA
| | - Travis J Tarring
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, USA
| | - Caleb A Brown
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, USA
| | - Daniel P Harrison
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, USA
| |
Collapse
|
7
|
Wang C, Wegeberg C, Wenger OS. First-Row d 6 Metal Complex Enables Photon Upconversion and Initiates Blue Light-Dependent Polymerization with Red Light. Angew Chem Int Ed Engl 2023; 62:e202311470. [PMID: 37681516 DOI: 10.1002/anie.202311470] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/09/2023]
Abstract
Photosensitizers for sensitized triplet-triplet annihilation upconversion (sTTA-UC) often rely on precious heavy metals, whereas coordination complexes based on abundant first-row transition metals are less common. This is mainly because long-lived triplet excited states are more difficult to obtain for 3d metals, particularly when the d-subshell is only partially filled. Here, we report the first example of sTTA-UC based on a 3d6 metal photosensitizer yielding an upconversion performance competitive with precious metal-based analogues. Using a newly developed Cr0 photosensitizer featuring equally good photophysical properties as an OsII benchmark complex in combination with an acetylene-decorated anthracene annihilator, red-to-blue upconversion is achievable. The upconversion efficiency under optimized conditions is 1.8 %, and the excitation power density threshold to reach the strong annihilation limit is 5.9 W/cm2 . These performance factors, along with high photostability, permit the initiation of acrylamide polymerization by red light, based on radiative energy transfer between delayed annihilator fluorescence and a blue light absorbing photo-initiator. Our study provides the proof-of-concept for photon upconversion with elusive first-row analogues of widely employed precious d6 metal photosensitizers, and for their application in photochemical reactions triggered by excitation wavelengths close to near-infrared.
Collapse
Affiliation(s)
- Cui Wang
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
- Current address: Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| | - Christina Wegeberg
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
- Current address: Division of Chemical Physics, Department of Chemistry, Lund University Box 124, 22100, Lund, Sweden
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
8
|
Alías-Rodríguez M, Bhattacharyya S, Huix-Rotllant M. Ultrafast Spin Crossover Photochemical Mechanism in [Fe II(2,2'-bipyridine) 3] 2+] Revealed by Quantum Dynamics. J Phys Chem Lett 2023; 14:8571-8576. [PMID: 37725036 DOI: 10.1021/acs.jpclett.3c02201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Photoexcitation of [FeII(2,2'-bipyridine)3]2+ induces a subpicosecond spin crossover transformation from a low-spin singlet to a high-spin quintet state. The mechanism involves metal-centered (MC) and metal-ligand charge transfer (MLCT) triplet intermediates, but their individual contributions to this efficient intersystem crossing have been object of debate. Employing quantum wavepacket dynamics, we show that MC triplets are catalyzing the transfer to the high-spin state. This photochemical pathway is made possible thanks to bipyridine stretching vibrations, facilitating the conversion between the MLCT bands to such MC triplets. We show that the lifetime of the MLCT states can be increased to tens of picoseconds by breaking the conjugation between pyridine units, which increases the energetic gap between MLCT and MC states. This opens the route for the design of new chelating ligands inducing long-lived MLCT states in iron complexes.
Collapse
|
9
|
Nößler M, Neuman NI, Böser L, Jäger R, Singha Hazari A, Hunger D, Pan Y, Lücke C, Bens T, van Slageren J, Sarkar B. Spin Crossover and Fluorine-Specific Interactions in Metal Complexes of Terpyridines with Polyfluorocarbon Tails. Chemistry 2023; 29:e202301246. [PMID: 37191067 DOI: 10.1002/chem.202301246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/17/2023]
Abstract
In coordination chemistry and materials science, terpyridine ligands are of great interest, due to their ability to form stable complexes with a broad range of transition metal ions. We report three terpyridine ligands containing different perfluorocarbon (PFC) tails on the backbone and the corresponding FeII and CoII complexes. The CoII complexes display spin crossover close to ambient temperature, and the nature of this spin transition is influenced by the length of the PFC tail on the ligand backbone. The electrochemical properties of the metal complexes were investigated with cyclic voltammetry revealing one oxidation and several reduction processes. The fluorine-specific interactions were investigated by EPR measurements. Analysis of the EPR spectra of the complexes as microcrystalline powders and in solution reveals exchange-narrowed spectra without resolved hyperfine splittings arising from the 59 Co nucleus; this suggests complex aggregation in solution mediated by interactions of the PFC tails. Interestingly, addition of perfluoro-octanol in different ratios to the acetonitrile solution of the sample resulted in the disruption of the F ⋯ ${\cdots }$ F interactions of the tails. To the best of our knowledge, this is the first investigation of fluorine-specific interactions in metal complexes through EPR spectroscopy, as exemplified by exchange narrowing.
Collapse
Affiliation(s)
- Maite Nößler
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Nicolás I Neuman
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC, UNL-CONICET Predio CCT Conicet "Dr. Alberto Cassano", Colectora RN 168, Km 0, Paraje El Pozo, 3000, Santa Fe, Argentina
| | - Lisa Böser
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - René Jäger
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Arijit Singha Hazari
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - David Hunger
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Yixian Pan
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Clemens Lücke
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Tobias Bens
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Joris van Slageren
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
10
|
Sinha N, Wenger OS. Photoactive Metal-to-Ligand Charge Transfer Excited States in 3d 6 Complexes with Cr 0, Mn I, Fe II, and Co III. J Am Chem Soc 2023; 145:4903-4920. [PMID: 36808978 PMCID: PMC9999427 DOI: 10.1021/jacs.2c13432] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Many coordination complexes and organometallic compounds with the 4d6 and 5d6 valence electron configurations have outstanding photophysical and photochemical properties, which stem from metal-to-ligand charge transfer (MLCT) excited states. This substance class makes extensive use of the most precious and least abundant metal elements, and consequently there has been a long-standing interest in first-row transition metal compounds with photoactive MLCT states. Semiprecious copper(I) with its completely filled 3d subshell is a relatively straightforward and well explored case, but in 3d6 complexes the partially filled d-orbitals lead to energetically low-lying metal-centered (MC) states that can cause undesirably fast MLCT excited state deactivation. Herein, we discuss recent advances made with isoelectronic Cr0, MnI, FeII, and CoIII compounds, for which long-lived MLCT states have become accessible over the past five years. Furthermore, we discuss possible future developments in the search for new first-row transition metal complexes with partially filled 3d subshells and photoactive MLCT states for next-generation applications in photophysics and photochemistry.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
11
|
Zobel JP, Kruse A, Baig O, Lochbrunner S, Bokarev SI, Kühn O, González L, Bokareva OS. Can range-separated functionals be optimally tuned to predict spectra and excited state dynamics in photoactive iron complexes? Chem Sci 2023; 14:1491-1502. [PMID: 36794199 PMCID: PMC9906774 DOI: 10.1039/d2sc05839a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023] Open
Abstract
Density functional theory is an efficient computational tool to investigate photophysical and photochemical processes in transition metal complexes, giving invaluable assistance in interpreting spectroscopic and catalytic experiments. Optimally tuned range-separated functionals are particularly promising, as they were created to address some of the fundamental deficiencies present in approximate exchange-correlation functionals. In this paper, we scrutinize the selection of optimally tuned parameters and its influence on the excited state dynamics, using the example of the iron complex [Fe(cpmp)2]2+ with push-pull ligands. Various tuning strategies are contemplated based on pure self-consistent DFT protocols, as well as on the comparison with experimental spectra and multireference CASPT2 results. The two most promising sets of optimal parameters are then employed to carry out nonadiabatic surface-hopping dynamics simulations. Intriguingly, we find that the two sets lead to very different relaxation pathways and timescales. While the set of optimal parameters from one of the self-consistent DFT protocols predicts the formation of long-lived metal-to-ligand charge transfer triplet states, the set in better agreement with CASPT2 calculations leads to deactivation in the manifold of metal-centered states, in better agreement with the experimental reference data. These results showcase the complexity of iron-complex excited state landscapes and the difficulty of obtaining an unambiguous parametrization of long-range corrected functionals without experimental input.
Collapse
Affiliation(s)
- J. Patrick Zobel
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 191090 ViennaAustria
| | - Ayla Kruse
- Institute of Physics, University of Rostock, Albert-Einstein-Straße 23-24 18059 Rostock Germany .,Department of Life, Light and Matter, University of Rostock 18051 Rostock Germany
| | - Omar Baig
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19 1090 Vienna Austria
| | - Stefan Lochbrunner
- Institute of Physics, University of Rostock, Albert-Einstein-Straße 23-24 18059 Rostock Germany .,Department of Life, Light and Matter, University of Rostock 18051 Rostock Germany
| | - Sergey I. Bokarev
- Institute of Physics, University of Rostock, Albert-Einstein-Straße 23-2418059 RostockGermany,Chemistry Department, Technical University of Munich, Lichtenbergstr. 4Garching 85748Germany
| | - Oliver Kühn
- Institute of Physics, University of Rostock, Albert-Einstein-Straße 23-24 18059 Rostock Germany
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19 1090 Vienna Austria
| | - Olga S. Bokareva
- Institute of Physics, University of Rostock, Albert-Einstein-Straße 23-2418059 RostockGermany,Institute of Physics, University of KasselHeinrich-Plett-Straße 4034132 KasselGermany
| |
Collapse
|
12
|
Curtin GM, Jakubikova E. Extended π-Conjugated Ligands Tune Excited-State Energies of Iron(II) Polypyridine Dyes. Inorg Chem 2022; 61:18850-18860. [DOI: 10.1021/acs.inorgchem.2c02362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Gregory M. Curtin
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
13
|
DFT studies of the redox behavior of oligo(aza)pyridines and experimental CVs of 4'-substituted terpyridines. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
14
|
Sinha N, Pfund B, Wegeberg C, Prescimone A, Wenger OS. Cobalt(III) Carbene Complex with an Electronic Excited-State Structure Similar to Cyclometalated Iridium(III) Compounds. J Am Chem Soc 2022; 144:9859-9873. [PMID: 35623627 PMCID: PMC9490849 DOI: 10.1021/jacs.2c02592] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Many organometallic
iridium(III) complexes have photoactive excited
states with mixed metal-to-ligand and intraligand charge transfer
(MLCT/ILCT) character, which form the basis for numerous applications
in photophysics and photochemistry. Cobalt(III) complexes with analogous
MLCT excited-state properties seem to be unknown yet, despite the
fact that iridium(III) and cobalt(III) can adopt identical low-spin
d6 valence electron configurations due to their close chemical
relationship. Using a rigid tridentate chelate ligand (LCNC), in which a central amido π-donor is flanked by two σ-donating
N-heterocyclic carbene subunits, we obtained a robust homoleptic complex
[Co(LCNC)2](PF6), featuring a photoactive
excited state with substantial MLCT character. Compared to the vast
majority of isoelectronic iron(II) complexes, the MLCT state of [Co(LCNC)2](PF6) is long-lived because it
does not deactivate as efficiently into lower-lying metal-centered
excited states; furthermore, it engages directly in photoinduced electron
transfer reactions. The comparison with [Fe(LCNC)2](PF6), as well as structural, electrochemical, and UV–vis
transient absorption studies, provides insight into new ligand design
principles for first-row transition-metal complexes with photophysical
and photochemical properties reminiscent of those known from the platinum
group metals.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christina Wegeberg
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
15
|
Cebrían C, Pastore M, Monari A, Assfeld X, Gros PC, Haacke S. Ultrafast Spectroscopy of Fe(II) Complexes Designed for Solar Energy Conversion: Current Status and Open Questions. Chemphyschem 2022; 23:e202100659. [DOI: 10.1002/cphc.202100659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/22/2022] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | | | - Stefan Haacke
- University of Strasbourg: Universite de Strasbourg IPCMS 23, rue du Loess 67034 Strasbourg FRANCE
| |
Collapse
|
16
|
Larsen CB, Braun JD, Lozada IB, Kunnus K, Biasin E, Kolodziej C, Burda C, Cordones AA, Gaffney KJ, Herbert DE. Reduction of Electron Repulsion in Highly Covalent Fe-Amido Complexes Counteracts the Impact of a Weak Ligand Field on Excited-State Ordering. J Am Chem Soc 2021; 143:20645-20656. [PMID: 34851636 DOI: 10.1021/jacs.1c06429] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to access panchromatic absorption and long-lived charge-transfer (CT) excited states is critical to the pursuit of abundant-metal molecular photosensitizers. Fe(II) complexes supported by benzannulated diarylamido ligands have been reported to broadly absorb visible light with nanosecond CT excited state lifetimes, but as amido donors exert a weak ligand field, this defies conventional photosensitizer design principles. Here, we report an aerobically stable Fe(II) complex of a phenanthridine/quinoline diarylamido ligand, Fe(ClL)2, with panchromatic absorption and a 3 ns excited-state lifetime. Using X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) at the Fe L-edge and N K-edge, we experimentally validate the strong Fe-Namido orbital mixing in Fe(ClL)2 responsible for the panchromatic absorption and demonstrate a previously unreported competition between ligand-field strength and metal-ligand (Fe-Namido) covalency that stabilizes the 3CT state over the lowest energy triplet metal-centered (3MC) state in the ground-state geometry. Single-crystal X-ray diffraction (XRD) and density functional theory (DFT) suggest that formation of this CT state depopulates an orbital with Fe-Namido antibonding character, causing metal-ligand bonds to contract and accentuating the geometric differences between CT and MC excited states. These effects diminish the driving force for electron transfer to metal-centered excited states and increase the intramolecular reorganization energy, critical properties for extending the lifetime of CT excited states. These findings highlight metal-ligand covalency as a novel design principle for elongating excited state lifetimes in abundant metal photosensitizers.
Collapse
Affiliation(s)
- Christopher B Larsen
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Jason D Braun
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| | - Issiah B Lozada
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| | - Kristjan Kunnus
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Charles Kolodziej
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Amy A Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Kelly J Gaffney
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - David E Herbert
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
17
|
Kwon HY, Ashley DC, Jakubikova E. Halogenation affects driving forces, reorganization energies and "rocking" motions in strained [Fe(tpy) 2] 2+ complexes. Dalton Trans 2021; 50:14566-14575. [PMID: 34586133 DOI: 10.1039/d1dt02314d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlling the energetics of spin crossover (SCO) in Fe(II)-polypyridine complexes is critical for designing new multifunctional materials or tuning the excited-state lifetimes of iron-based photosensitizers. It is well established that the Fe-N "breathing" mode is important for intersystem crossing from the singlet to the quintet state, but this does not preclude other, less obvious, structural distortions from affecting SCO. Previous work has shown that halogenation at the 6 and 6'' positions of tpy (tpy = 2,2';6',2''-terpyridine) in [Fe(tpy)2]2+ dramatically increased the lifetime of the excited MLCT state and also had a large impact on the ground state spin-state energetics. To gain insight into the origins of these effects, we used density functional theory calculations to explore how halogenation impacts spin-state energetics and molecular structure in this system. Based on previous work we focused on the ligand "rocking" motion associated with SCO in [Fe(tpy)2]2+ by constructing one-dimensional potential energy surfaces (PESs) along the tpy rocking angle for various spin states. It was found that halogenation has a clear and predictable impact on ligand rocking and spin-state energetics. The rocking is correlated to numerous other geometrical distortions, all of which likely affect the reorganization energies for spin-state changes. We have quantified trends in reorganization energy and also driving force for various spin-state changes and used them to interpret the experimentally measured excited-state lifetimes.
Collapse
Affiliation(s)
- Hyuk-Yong Kwon
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC 27695, USA.
| | - Daniel C Ashley
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC 27695, USA.
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Dr., Raleigh, NC 27695, USA.
| |
Collapse
|
18
|
Dickenson JC, Haley ME, Hyde JT, Reid ZM, Tarring TJ, Iovan DA, Harrison DP. Fine-Tuning Metal and Ligand-Centered Redox Potentials of Homoleptic Bis-Terpyridine Complexes with 4'-Aryl Substituents. Inorg Chem 2021; 60:9956-9969. [PMID: 34160216 DOI: 10.1021/acs.inorgchem.1c01233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Homoleptic transition-metal complexes of 2,2':6',2″-terpyridine (terpy) and substituted derivatives of the form [M(R-terpy)2]2+ display a wide range of redox potentials that correlate well to the Hammett parameter of the terpy substituents. Less is known about the impact of incorporating a phenyl spacer between the functional group responsible for controlling the electron density of terpy and how that translates to metal complexes of the form [M(4'-aryl-terpy)2]2+, where M = Mn, Fe, Co, Ni, and Zn. Herein, we report our studies on these complexes revealed a good correlation of redox potentials of both metal- and ligand-centered events with the Hammett parameters of the aryl substituents, regardless of aryl-substitution pattern (i.e., the presence of multiple functional groups, combinations of withdrawing and donating functional groups). The phenyl spacer results in 60-80% attenuation of electron density as compared to the 4'-substituted terpy analogue, depending on the metal and redox couple analyzed. Density functional theory calculations performed on a simple model system revealed a strong correlation between the Hammett parameters and lowest unoccupied molecular orbital energies of the corresponding substituted pyridine models, thus serving as an inexpensive predictive tool when coupled with electrochemical data. Overall, these data suggest that such ligand modifications may be used in combination with previous approaches to further fine-tune the redox potentials of homoleptic transition-metal complexes, which may have applications in photochemical and electrochemical catalytic processes.
Collapse
Affiliation(s)
- John C Dickenson
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, United States
| | - MacKenzie E Haley
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, United States
| | - Jacob T Hyde
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, United States
| | - Zachary M Reid
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, United States
| | - Travis J Tarring
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, United States
| | - Diana A Iovan
- Virginia Tech, Department of Chemistry, Blacksburg, Virginia 24060, United States
| | - Daniel P Harrison
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, United States
| |
Collapse
|
19
|
Bilger JB, Kerzig C, Larsen CB, Wenger OS. A Photorobust Mo(0) Complex Mimicking [Os(2,2'-bipyridine) 3] 2+ and Its Application in Red-to-Blue Upconversion. J Am Chem Soc 2021; 143:1651-1663. [PMID: 33434435 DOI: 10.1021/jacs.0c12805] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Osmium(II) polypyridines are a well-known class of complexes with luminescent metal-to-ligand charge-transfer (MLCT) excited states that are currently experiencing a revival due to their application potential in organic photoredox catalysis, triplet-triplet annihilation upconversion, and phototherapy. At the same time, there is increased interest in the development of photoactive complexes made from Earth-abundant rather than precious metals. Against this background, we present a homoleptic Mo(0) complex with a new diisocyanide ligand exhibiting different bite angles and a greater extent of π-conjugation than previously reported related chelates. This new design leads to deep red emission, which is unprecedented for homoleptic arylisocyanide complexes of group 6 metals. With a 3MLCT lifetime of 56 ns, an emission band maximum at 720 nm, and a photoluminescence quantum yield of 1.5% in deaerated toluene at room temperature, the photophysical properties are reminiscent of the prototypical [Os(2,2'-bipyridine)3]2+ complex. Under 635 nm irradiation with a cw-laser, the new Mo(0) complex sensitizes triplet-triplet annihilation upconversion of 9,10-diphenylanthracene (DPA), resulting in delayed blue fluorescence with an anti-Stokes shift of 0.93 eV. The photorobustness of the Mo(0) complex and the upconversion quantum yield are high enough to generate a flux of upconverted light that can serve as a sufficiently potent irradiation source for a blue-light-driven photoisomerization reaction. These findings are relevant in the greater contexts of designing new luminophores and photosensitizers for use in red-light-driven photocatalysis, photochemical upconversion, light-harvesting, and phototherapy.
Collapse
Affiliation(s)
- Jakob B Bilger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christoph Kerzig
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christopher B Larsen
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
20
|
Sárosiné Szemes D, Keszthelyi T, Papp M, Varga L, Vankó G. Quantum-chemistry-aided ligand engineering for potential molecular switches: changing barriers to tune excited state lifetimes. Chem Commun (Camb) 2020; 56:11831-11834. [PMID: 33021253 DOI: 10.1039/d0cc04467a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Substitution of terpyridine at the 4' position with electron withdrawing and donating groups is used to tune the quintet lifetime of its iron(ii) complex. DFT calculations suggest that the energy barrier between the quintet and singlet states can be altered significantly upon substitution, inducing a large variation of the lifetime of the photoexcited quintet state. This prediction was experimentally verified by transient optical absorption spectroscopy and good agreement with the trend expected from the calculations was found. This demonstrates that the potential energy landscape can indeed be rationally tailored by relevant modifications based on DFT predictions. This result should pave the way to advancing efficient theory-based ligand engineering of functional molecules to a wide range of applications.
Collapse
|
21
|
Dill RD, Portillo RI, Shepard SG, Shores MP, Rappé AK, Damrauer NH. Long-Lived Mixed 2MLCT/MC States in Antiferromagnetically Coupled d 3 Vanadium(II) Bipyridine and Phenanthroline Complexes. Inorg Chem 2020; 59:14706-14715. [PMID: 32886504 DOI: 10.1021/acs.inorgchem.0c01950] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exploration of [V(bpy)3]2+ and [V(phen)3]2+ (bpy = 2,2'-bipyridine; phen = 1,10-phenanthroline) using electronic spectroscopy reveals an ultrafast excited-state decay process and implicates a pair of low-lying doublets with mixed metal-to-ligand charge-transfer (MLCT) and metal-centered (MC) character. Transient absorption (TA) studies of the vanadium(II) species probing in the visible and near-IR, in combination with spectroelectrochemical techniques and computational chemistry, lead to the conclusion that after excitation into the intense and broad visible 4MLCT ← 4GS (ground-state) absorption band (ε400-700 nm = 900-8000 M-1 cm-1), the 4MLCT state rapidly (τisc < 200 fs) relaxes to the upper of two doublet states with mixed MLCT/MC character. Electronic interconversion (τ ∼ 2.5-3 ps) to the long-lived excited state follows, which we attribute to formation of the lower mixed state. Following these initial dynamics, GS recovery ensues with τ = 430 ps and 1.6 ns for [V(bpy)3]2+ and [V(phen)3]2+, respectively. This stands in stark contrast with isoelectronic [Cr(bpy)3]3+, which rapidly forms a long-lived doublet metal-centered (2MC) state following photoexcitation and lacks strong visible GS absorption character. 2MLCT character in the long-lived states of the vanadium(II) species produces geometric distortion and energetic stabilization, both of which accelerate nonradiative decay to the GS compared to [Cr(bpy)3]3+, where the GS and 2MC are well nested. These conclusions are significant because (i) long-lived states with MLCT character are rare in first-row transition-metal complexes and (ii) the presence of a 2MLCT state at lower energy than the 4MLCT state has not been previously considered. The spin assignment of charge-transfer states in open-shell transition-metal complexes is not trivial; when metal-ligand interaction is strong, low-spin states must be carefully considered when assessing reactivity and decay from electronic excited states.
Collapse
Affiliation(s)
- Ryan D Dill
- Department of Chemistry and Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Romeo I Portillo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Samuel G Shepard
- Department of Chemistry and Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Matthew P Shores
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Anthony K Rappé
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Niels H Damrauer
- Department of Chemistry and Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
22
|
Zobel JP, Bokareva OS, Zimmer P, Wölper C, Bauer M, González L. Intersystem Crossing and Triplet Dynamics in an Iron(II) N-Heterocyclic Carbene Photosensitizer. Inorg Chem 2020; 59:14666-14678. [PMID: 32869981 PMCID: PMC7581298 DOI: 10.1021/acs.inorgchem.0c02147] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
The electronic excited
states of the iron(II) complex [FeII(tpy)(pyz-NHC)]2+ [tpy = 2,2′:6′,2″-terpyridine; pyz-NHC
= 1,1′-bis(2,6-diisopropylphenyl)pyrazinyldiimidazolium-2,2′-diylidene]
and their relaxation pathways have been theoretically investigated.
To this purpose, trajectory surface-hopping simulations within a linear
vibronic coupling model including a 244-dimensional potential energy
surface (PES) with 20 singlet and 20 triplet coupled states have been
used. The simulations show that, after excitation to the lowest-energy
absorption band of predominant metal-to-ligand charge-transfer character
involving the tpy ligand, almost 80% of the population undergoes intersystem
crossing to the triplet manifold in about 50 fs, while the remaining
20% decays through internal conversion to the electronic ground state
in about 300 fs. The population transferred to the triplet states
is found to deactivate into two different regions of the PESs, one
where the static dipole moment is small and shows increased metal-centered
character and another with a large static dipole moment, where the
electron density is transferred from the tpy to pyz-NHC ligand. Coherent
oscillations of 400 fs are observed between these two sets of triplet
populations, until the mixture equilibrates to a ratio of 60:40. Finally,
the importance of selecting suitable normal modes is highlighted—a
choice that can be far from straightforward in transition-metal complexes
with hundreds of degrees of freedom. Trajectory
surface-hopping simulations with a linear vibronic coupling model
reveal the competition of major intersystem crossing versus minor
internal conversion dynamics in an iron(II) N-heterocyclic carbene
dye. The triplet population bifurcates into two regions of the potential
energy surfaces, characterized by small and large static dipole moments
due to different electronic character and showing coherent oscillations
of 400 fs until both triplet populations coexist in a mixture of 60:40.
Collapse
Affiliation(s)
- J Patrick Zobel
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstraße 19, 1090 Vienna, Austria
| | - Olga S Bokareva
- Institute of Physics, Rostock University, Albert Einstein Straße 23-24, 18059 Rostock, Germany
| | - Peter Zimmer
- Faculty of Science, Chemistry Department and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Christoph Wölper
- Department for X-Ray Diffraction, Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 7, D-45117 Essen, Germany
| | - Matthias Bauer
- Faculty of Science, Chemistry Department and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstraße 19, 1090 Vienna, Austria.,Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währingerstr. 19, 1090 Vienna, Austria
| |
Collapse
|
23
|
Groß C, Omlor A, Grimm T, Oelkers B, Sun Y, Schünemann V, Thiel WR. Iron(II) Complexes of Chiral Tridentate Nitrogen Donors and their Application in Catalytic Hydrosilylation Reactions. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.201900310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Cedric Groß
- Fachbereich Chemie Technische Universität Kaiserslautern Erwin‐Schrödinger‐Straße 54 67663 Kaiserslautern Germany
| | - Andreas Omlor
- Fachbereich Physik Technische Universität Kaiserslautern Erwin‐Schrödinger‐Straße 56 67663 Kaiserslautern Germany
| | - Tobias Grimm
- Fachbereich Chemie Technische Universität Kaiserslautern Erwin‐Schrödinger‐Straße 54 67663 Kaiserslautern Germany
| | - Benjamin Oelkers
- Fachbereich Chemie Technische Universität Kaiserslautern Erwin‐Schrödinger‐Straße 54 67663 Kaiserslautern Germany
| | - Yu Sun
- Fachbereich Chemie Technische Universität Kaiserslautern Erwin‐Schrödinger‐Straße 54 67663 Kaiserslautern Germany
| | - Volker Schünemann
- Fachbereich Physik Technische Universität Kaiserslautern Erwin‐Schrödinger‐Straße 56 67663 Kaiserslautern Germany
| | - Werner R. Thiel
- Fachbereich Chemie Technische Universität Kaiserslautern Erwin‐Schrödinger‐Straße 54 67663 Kaiserslautern Germany
| |
Collapse
|
24
|
Kunnus K, Li L, Titus CJ, Lee SJ, Reinhard ME, Koroidov S, Kjær KS, Hong K, Ledbetter K, Doriese WB, O'Neil GC, Swetz DS, Ullom JN, Li D, Irwin K, Nordlund D, Cordones AA, Gaffney KJ. Chemical control of competing electron transfer pathways in iron tetracyano-polypyridyl photosensitizers. Chem Sci 2020; 11:4360-4373. [PMID: 34122894 PMCID: PMC8159445 DOI: 10.1039/c9sc06272f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
Photoinduced intramolecular electron transfer dynamics following metal-to-ligand charge-transfer (MLCT) excitation of [Fe(CN)4(2,2'-bipyridine)]2- (1), [Fe(CN)4(2,3-bis(2-pyridyl)pyrazine)]2- (2) and [Fe(CN)4(2,2'-bipyrimidine)]2- (3) were investigated in various solvents with static and time-resolved UV-Visible absorption spectroscopy and Fe 2p3d resonant inelastic X-ray scattering (RIXS). This series of polypyridyl ligands, combined with the strong solvatochromism of the complexes, enables the 1MLCT vertical energy to be varied from 1.64 eV to 2.64 eV and the 3MLCT lifetime to range from 180 fs to 67 ps. The 3MLCT lifetimes in 1 and 2 decrease exponentially as the MLCT energy increases, consistent with electron transfer to the lowest energy triplet metal-centred (3MC) excited state, as established by the Tanabe-Sugano analysis of the Fe 2p3d RIXS data. In contrast, the 3MLCT lifetime in 3 changes non-monotonically with MLCT energy, exhibiting a maximum. This qualitatively distinct behaviour results from a competing 3MLCT → ground state (GS) electron transfer pathway that exhibits energy gap law behaviour. The 3MLCT → GS pathway involves nuclear tunnelling for the high-frequency polypyridyl breathing mode (hν = 1530 cm-1), which is most displaced for complex 3, making this pathway significantly more efficient. Our study demonstrates that the excited state relaxation mechanism of Fe polypyridyl photosensitizers can be readily tuned by ligand and solvent environment. Furthermore, our study reveals that extending charge transfer lifetimes requires control of the relative energies of the 3MLCT and the 3MC states and suppression of the intramolecular distortion of the acceptor ligand in the 3MLCT excited state.
Collapse
Affiliation(s)
- Kristjan Kunnus
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA
| | - Lin Li
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA
| | - Charles J Titus
- Department of Physics, Stanford University Stanford California 94305 USA
| | - Sang Jun Lee
- SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Marco E Reinhard
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA
| | - Sergey Koroidov
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA
| | - Kasper S Kjær
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA
| | - Kiryong Hong
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA
| | - Kathryn Ledbetter
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA
- Department of Physics, Stanford University Stanford California 94305 USA
| | | | - Galen C O'Neil
- National Institute of Standards and Technology Boulder CO 80305 USA
| | - Daniel S Swetz
- National Institute of Standards and Technology Boulder CO 80305 USA
| | - Joel N Ullom
- National Institute of Standards and Technology Boulder CO 80305 USA
| | - Dale Li
- SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Kent Irwin
- Department of Physics, Stanford University Stanford California 94305 USA
- SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Dennis Nordlund
- SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Amy A Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA
| | - Kelly J Gaffney
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA
| |
Collapse
|
25
|
Päpcke A, Friedrich A, Lochbrunner S. Revealing the initial steps in homogeneous photocatalysis by time-resolved spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:153001. [PMID: 31801126 DOI: 10.1088/1361-648x/ab5ed1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photocatalysis attracts currently intense research since it can provide efficient routes for generating solar fuels and allows to apply sunlight for an environmentally friendly synthesis of valuable chemical compounds. Accordingly, in future photocatalysis may contribute significantly to a sustainable economy. However, up to now photocatalysis has made it only into some niche applications. The reasons are manifold including too low yields, insufficient stability, and scarce availability of the precious metals and rare earths used in most cases. The design of better systems is the goal of many research activities. They call for a detailed knowledge of the individual steps and the microscopic mechanisms. Time-resolved spectroscopy is a powerful tool to improve our understanding of the individual steps of a photocatalytic process and of the efficiencies and losses associated with them. This allows to address specific weaknesses of the components of a photocatalytic system and to pursue a rational design of the corresponding compounds. In this review an overview is given about what insights can be gained by time-resolved spectroscopy referring mostly to our own results while it has to be stressed that many other groups are also highly successfully working in this area. We restrict ourselves to homogeneous systems which are often easier to analyze and focus on the primary steps occurring after optical excitation. This includes intramolecular relaxation and intersystem crossing in the photosensitizer as well as the first electron transfer step resulting from the interaction of the sensitizer with other components of the system. Ultrafast pump-probe spectroscopy turns out to be particularly helpful in analyzing new photosensitizers based on abundant metals, i.e. copper and iron. These sensitizers can suffer from short lifetimes of the metal-to-ligand charge transfer states which are typically involved in the intermolecular charge transfer processes. The latter are investigated on the pico- to microsecond timescale by quenching experiments making use of a streak camera and by pump-probe spectroscopy applying a YAG-laser system for excitation. The experiments with the streak camera allow to discriminate between oxidative and reductive pathways and to determine the corresponding bimolecular quenching rates which are compared to their diffusion limit to obtain a measure for the quenching efficiency. By applying transient absorption spectroscopy, it is furthermore possible to observe appearing charge transfer products and to determine their concentrations. In this way the efficiency of the electron transfer itself can be deduced and the relevance of lossy quenching events can be estimated.
Collapse
Affiliation(s)
- Ayla Päpcke
- Institute for Physics and Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | | | | |
Collapse
|
26
|
Wu QA, Chen F, Ren CC, Liu XF, Chen H, Xu LX, Yu XC, Luo SP. Donor–acceptor fluorophores as efficient energy transfer photocatalysts for [2 + 2] photodimerization. Org Biomol Chem 2020; 18:3707-3716. [DOI: 10.1039/c9ob02735a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Donor–acceptor fluorophores can act as efficient energy transfer photocatalysts to activate enone substrates, realizing photodimerization and isomerization reaction of enone substrates without precious metal photocatalysts.
Collapse
Affiliation(s)
- Qing-An Wu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Feng Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Chen-Chao Ren
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Xue-Fen Liu
- Qianjiang College
- Hangzhou Normal University
- Hangzhou 310006
- China
| | - Hao Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Liang-Xuan Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Xiao-Cong Yu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Shu-Ping Luo
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|
27
|
Tang L, Zhu L, Ener ME, Gao H, Wang Y, Groves JT, Spiro TG, Fang C. Photoinduced charge flow inside an iron porphyrazine complex. Chem Commun (Camb) 2019; 55:13606-13609. [PMID: 31657387 PMCID: PMC11076153 DOI: 10.1039/c9cc06193b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Tracking inorganic photochemistry with high resolution poses considerable challenges. Here, sub-picosecond electronic and structural motions and MLCT/d-d intersystem crossing in a cationic iron-porphyrazine are probed using ultrafast transient absorption, stimulated Raman spectroscopy, and quantum calculations. By delineating photoinduced energy relaxation, strategies for extending the lifetime of MLCT state are discussed.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| | - Maraia E Ener
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | - Hongxin Gao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Yanli Wang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| | - John T Groves
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Thomas G Spiro
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| |
Collapse
|
28
|
Herr P, Glaser F, Büldt LA, Larsen CB, Wenger OS. Long-Lived, Strongly Emissive, and Highly Reducing Excited States in Mo(0) Complexes with Chelating Isocyanides. J Am Chem Soc 2019; 141:14394-14402. [PMID: 31464429 DOI: 10.1021/jacs.9b07373] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Newly discovered tris(diisocyanide)molybdenum(0) complexes are Earth-abundant isoelectronic analogues of the well-known class of [Ru(α-diimine)3]2+ compounds with long-lived 3MLCT (metal-to-ligand charge transfer) excited states that lead to rich photophysics and photochemistry. Depending on ligand design, luminescence quantum yields up to 0.20 and microsecond excited state lifetimes are achieved in solution at room temperature, both significantly better than those for [Ru(2,2'-bipyridine)3]2+. The excited Mo(0) complexes can induce chemical reactions that are thermodynamically too demanding for common precious metal-based photosensitizers, including the widely employed fac-[Ir(2-phenylpyridine)3] complex, as demonstrated on a series of light-driven aryl-aryl coupling reactions. The most robust Mo(0) complex exhibits stable photoluminescence and remains photoactive after continuous irradiation exceeding 2 months. Our comprehensive optical spectroscopic and photochemical study shows that Mo(0) complexes with diisocyanide chelate ligands constitute a new family of luminophores and photosensitizers, which is complementary to precious metal-based 4d6 and 5d6 complexes and represents an alternative to nonemissive Fe(II) compounds. This is relevant in the greater context of sustainable photophysics and photochemistry, as well as for possible applications in lighting, sensing, and catalysis.
Collapse
Affiliation(s)
- Patrick Herr
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Felix Glaser
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Laura A Büldt
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Christopher B Larsen
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Oliver S Wenger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| |
Collapse
|
29
|
Britz A, Gawelda W, Assefa TA, Jamula LL, Yarranton JT, Galler A, Khakhulin D, Diez M, Harder M, Doumy G, March AM, Bajnóczi É, Németh Z, Pápai M, Rozsályi E, Sárosiné Szemes D, Cho H, Mukherjee S, Liu C, Kim TK, Schoenlein RW, Southworth SH, Young L, Jakubikova E, Huse N, Vankó G, Bressler C, McCusker JK. Using Ultrafast X-ray Spectroscopy To Address Questions in Ligand-Field Theory: The Excited State Spin and Structure of [Fe(dcpp)2]2+. Inorg Chem 2019; 58:9341-9350. [DOI: 10.1021/acs.inorgchem.9b01063] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Alexander Britz
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Wojciech Gawelda
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Tadesse A. Assefa
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Laser Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Lindsey L. Jamula
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jonathan T. Yarranton
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | | | - Dmitry Khakhulin
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael Diez
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Manuel Harder
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Anne Marie March
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Éva Bajnóczi
- Wigner Research Centre for Physics, Hungarian Academy Sciences, H-1525 Budapest, Hungary
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy Sciences, H-1525 Budapest, Hungary
| | - Mátyás Pápai
- Wigner Research Centre for Physics, Hungarian Academy Sciences, H-1525 Budapest, Hungary
- Department of Chemistry, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Emese Rozsályi
- Wigner Research Centre for Physics, Hungarian Academy Sciences, H-1525 Budapest, Hungary
| | | | - Hana Cho
- Center for Analytical Chemistry, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Sriparna Mukherjee
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Chang Liu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Tae Kyu Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Robert W. Schoenlein
- Ultrafast X-ray Science Laboratory, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Stephen H. Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Physics and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nils Huse
- Center for Free-Electron Laser Science, University of Hamburg, 22607 Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy Sciences, H-1525 Budapest, Hungary
| | - Christian Bressler
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - James K. McCusker
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
30
|
Francés‐Monerris A, Gros PC, Assfeld X, Monari A, Pastore M. Toward Luminescent Iron Complexes: Unravelling the Photophysics by Computing Potential Energy Surfaces. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Antonio Francés‐Monerris
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Philippe C. Gros
- Laboratoire Lorrain de Chimie Moléculaire (L2CM)Université de Lorraine, CNRS 54000 Nancy France
| | - Xavier Assfeld
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| | - Mariachiara Pastore
- Laboratoire de Physique et Chimie Théoriques (LPCT)Université de Lorraine, CNRS 54000 Nancy France
| |
Collapse
|
31
|
Ligiéro CBP, Oliveira TV, Fontes CCF, Barragan JTC, So FWY, Kubota LT, Nome RA, Miranda PCML. TIMPZ: An Exquisite Building Block for Metal/Hydrogen Coordination Polymers. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Carolina B. P. Ligiéro
- Institute of Chemistry University of Campinas Josué de Castro 10384‐612 Sao Paulo Brazil
| | - Thiago V. Oliveira
- Institute of Chemistry University of Campinas Josué de Castro 10384‐612 Sao Paulo Brazil
| | - Chárbel C. F. Fontes
- Institute of Chemistry University of Campinas Josué de Castro 10384‐612 Sao Paulo Brazil
| | - José T. C. Barragan
- Institute of Chemistry University of Campinas Josué de Castro 10384‐612 Sao Paulo Brazil
| | - Fernanda W. Y. So
- Institute of Chemistry University of Campinas Josué de Castro 10384‐612 Sao Paulo Brazil
| | - Lauro T. Kubota
- Institute of Chemistry University of Campinas Josué de Castro 10384‐612 Sao Paulo Brazil
| | - René A. Nome
- Institute of Chemistry University of Campinas Josué de Castro 10384‐612 Sao Paulo Brazil
| | - Paulo C. M. L. Miranda
- Institute of Chemistry University of Campinas Josué de Castro 10384‐612 Sao Paulo Brazil
| |
Collapse
|
32
|
|
33
|
Yu ZJ, Lou WY, Junge H, Päpcke A, Chen H, Xia LM, Xu B, Wang MM, Wang XJ, Wu QA, Lou BY, Lochbrunner S, Beller M, Luo SP. Thermally activated delayed fluorescence (TADF) dyes as efficient organic photosensitizers for photocatalytic water reduction. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2018.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
34
|
Zimmer P, Burkhardt L, Schepper R, Zheng K, Gosztola D, Neuba A, Flörke U, Wölper C, Schoch R, Gawelda W, Canton SE, Bauer M. Towards Noble-Metal-Free Dyads: Ground and Excited State Tuning by a Cobalt Dimethylglyoxime Motif Connected to an Iron N-Heterocyclic Carbene Photosensitizer. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800946] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Peter Zimmer
- Faculty of science; Paderborn University; Warburger Straße 100 33098 Paderborn Germany
| | - Lukas Burkhardt
- Faculty of science; Paderborn University; Warburger Straße 100 33098 Paderborn Germany
| | - Rahel Schepper
- Faculty of science; Paderborn University; Warburger Straße 100 33098 Paderborn Germany
| | - Kaibo Zheng
- Department of Chemistry; Technical University of Denmark; -2800 Kongens Lyngby Denmark
- Department of Chemical Physics and NanoLund; Lund University; Box 124 22100 Lund Sweden
| | - David Gosztola
- Argonne National Laboratory; Center for Nanoscale Materials; 9700 S. Cass Avenue 60439 Lemont, Illinois United States
| | - Adam Neuba
- Faculty of science; Paderborn University; Warburger Straße 100 33098 Paderborn Germany
| | - Ulrich Flörke
- Faculty of science; Paderborn University; Warburger Straße 100 33098 Paderborn Germany
| | - Christoph Wölper
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide); University of Duisburg-Essen; Universitätsstraße 5-7 -45117 Essen Germany
| | - Roland Schoch
- Faculty of science; Paderborn University; Warburger Straße 100 33098 Paderborn Germany
| | - Wojciech Gawelda
- European XFEL, Holzkoppel 4; 22869 Schenefeld Germany
- Faculty of Physics; Adam Mickiewicz University, Umultowska 85, 61-614 Poznań; Poland
| | - Sophie E. Canton
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics ter 13, Szeged 6720, Hungary & Attosecond Science Group, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85; Germany
| | - Matthias Bauer
- Faculty of science; Paderborn University; Warburger Straße 100 33098 Paderborn Germany
| |
Collapse
|
35
|
Abstract
In this invited Perspective, recent developments and possible future directions of research on photoactive coordination compounds made from nonprecious transition metal elements will be discussed. The focus is on conceptually new, structurally well-characterized complexes with excited-state lifetimes between 10 ps and 1 ms in fluid solution for possible applications in photosensitizing, light-harvesting, luminescence and catalysis. The key metal elements considered herein are Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, W and Ce in various oxidation states equipped with diverse ligands, giving access to long-lived excited states via a range of fundamentally different types of electronic transitions. Research performed in this area over the past five years demonstrated that a much broader spectrum of metal complexes than what was long considered relevant exhibits useful photophysics and photochemistry.
Collapse
Affiliation(s)
- Oliver S Wenger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| |
Collapse
|
36
|
Francés-Monerris A, Magra K, Darari M, Cebrián C, Beley M, Domenichini E, Haacke S, Pastore M, Assfeld X, Gros PC, Monari A. Synthesis and Computational Study of a Pyridylcarbene Fe(II) Complex: Unexpected Effects of fac/ mer Isomerism in Metal-to-Ligand Triplet Potential Energy Surfaces. Inorg Chem 2018; 57:10431-10441. [PMID: 30063338 DOI: 10.1021/acs.inorgchem.8b01695] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synthesis and the steady-state absorption spectrum of a new pyridine-imidazolylidene Fe(II) complex (Fe-NHC) are presented. A detailed mechanism of the triplet metal-to-ligand charge-transfer states decay is provided on the basis of minimum energy path (MEP) calculations used to connect the lowest-lying singlet, triplet, and quintet state minima. The competition between the different decay pathways involved in the photoresponse is assessed by analyzing the shapes of the obtained potential energy surfaces. A qualitative difference between facial ( fac) and meridional ( mer) isomers' potential energy surface (PES) topologies is evidenced for the first time in iron-based complexes. Indeed, the mer complex shows a steeper triplet path toward the corresponding 3MC minimum, which lies at a lower energy as compared to the fac isomer, thus pointing to a faster triplet decay of the former. Furthermore, while a major role of the metal-centered quintet state population from the triplet 3MC region is excluded, we identify the enlargement of iron-nitrogen bonds as the main normal modes driving the excited-state decay.
Collapse
Affiliation(s)
| | - Kevin Magra
- Université de Lorraine , CNRS, L2CM , F57000 Metz , France
| | - Mohamed Darari
- Université de Lorraine , CNRS, L2CM , F54000 Nancy , France
| | | | - Marc Beley
- Université de Lorraine , CNRS, L2CM , F57000 Metz , France
| | | | - Stefan Haacke
- Université de Strasbourg-CNRS , UMR 7504 IPCMS , 67034 Strasbourg , France
| | | | - Xavier Assfeld
- Université de Lorraine , CNRS, LPCT , F54000 Nancy , France
| | | | - Antonio Monari
- Université de Lorraine , CNRS, LPCT , F54000 Nancy , France
| |
Collapse
|
37
|
|
38
|
Ashley DC, Jakubikova E. Ray-Dutt and Bailar Twists in Fe(II)-Tris(2,2′-bipyridine): Spin States, Sterics, and Fe–N Bond Strengths. Inorg Chem 2018; 57:5585-5596. [DOI: 10.1021/acs.inorgchem.8b00560] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniel C. Ashley
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
39
|
Mikhailov KI, Galenko EE, Galenko AV, Novikov MS, Ivanov AY, Starova GL, Khlebnikov AF. Fe(II)-Catalyzed Isomerization of 5-Chloroisoxazoles to 2H-Azirine-2-carbonyl Chlorides as a Key Stage in the Synthesis of Pyrazole–Nitrogen Heterocycle Dyads. J Org Chem 2018; 83:3177-3187. [DOI: 10.1021/acs.joc.8b00069] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kirill I. Mikhailov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Ekaterina E. Galenko
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexey V. Galenko
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Mikhail S. Novikov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexander Yu. Ivanov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Galina L. Starova
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexander F. Khlebnikov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
40
|
Garakyaraghi S, McCusker CE, Khan S, Koutnik P, Bui AT, Castellano FN. Enhancing the Visible-Light Absorption and Excited-State Properties of Cu(I) MLCT Excited States. Inorg Chem 2018; 57:2296-2307. [PMID: 29393633 DOI: 10.1021/acs.inorgchem.7b03169] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A computationally inspired Cu(I) metal-to-ligand charge transfer (MLCT) chromophore, [Cu(sbmpep)2]+ (sbmpep = 2,9-di(sec-butyl)-3,8-dimethyl-4,7-di(phenylethynyl)-1,10-phenanthroline), was synthesized in seven total steps, prepared from either dichloro- or dibromophenanthroline precursors. Complete synthesis, structural characterization, and electrochemistry, in addition to static and dynamic photophysical properties of [Cu(sbmpep)2]+, are reported on all relevant time scales. UV-Vis absorption spectroscopy revealed significant increases in oscillator strength along with a concomitant bathochromic shift in the MLCT absorption bands with respect to structurally related model complexes (ε = 16 500 M-1 cm-1 at 491 nm). Strong red photoluminescence (Φ = 2.7%, λmax = 687 nm) was observed from [Cu(sbmpep)2]+, which featured an average excited-state lifetime of 1.4 μs in deaerated dichloromethane. Cyclic and differential pulse voltammetry revealed ∼300 mV positive shifts in the measured one-electron reversible reduction and oxidation waves in relation to a Cu(I) model complex possessing identical structural elements without the π-conjugated 4,7-substituents. The excited-state redox potential of [Cu(sbmpep)2]+ was estimated to be -1.36 V, a notably powerful reductant for driving photoredox chemistry. The combination of conventional and ultrafast transient absorption and luminescence spectroscopy successfully map the excited-state dynamics of [Cu(sbmpep)2]+ from initial photoexcitation to the formation of the lowest-energy MLCT excited state and ultimately its relaxation to the ground state. This newly conceived molecule appears poised for photosensitization reactions involving energy and electron-transfer processes relevant to photochemical upconversion, photoredox catalysis, and solar fuels photochemistry.
Collapse
Affiliation(s)
- Sofia Garakyaraghi
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Catherine E McCusker
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Saba Khan
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Petr Koutnik
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Anh Thy Bui
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
41
|
Chábera P, Kjaer KS, Prakash O, Honarfar A, Liu Y, Fredin LA, Harlang TCB, Lidin S, Uhlig J, Sundström V, Lomoth R, Persson P, Wärnmark K. Fe II Hexa N-Heterocyclic Carbene Complex with a 528 ps Metal-to-Ligand Charge-Transfer Excited-State Lifetime. J Phys Chem Lett 2018; 9:459-463. [PMID: 29298063 DOI: 10.1021/acs.jpclett.7b02962] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The iron carbene complex [FeII(btz)3](PF6)2 (where btz = 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene)) has been synthesized, isolated, and characterized as a low-spin ferrous complex. It exhibits strong metal-to-ligand charge transfer (MLCT) absorption bands throughout the visible spectrum, and excitation of these bands gives rise to a 3MLCT state with a 528 ps excited-state lifetime in CH3CN solution that is more than one order of magnitude longer compared with the MLCT lifetime of any previously reported FeII complex. The low potential of the [Fe(btz)3]3+/[Fe(btz)3]2+ redox couple makes the 3MLCT state of [FeII(btz)3]2+ a potent photoreductant that can be generated by light absorption throughout the visible spectrum. Taken together with our recent results on the [FeIII(btz)3]3+ form of this complex, these results show that the FeII and FeIII oxidation states of the same Fe(btz)3 complex feature long-lived MLCT and LMCT states, respectively, demonstrating the versatility of iron N-heterocyclic carbene complexes as promising light-harvesters for a broad range of oxidizing and reducing conditions.
Collapse
Affiliation(s)
| | - Kasper S Kjaer
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University , Menlo Park, California 94025, United States
| | | | | | | | | | | | | | | | | | - Reiner Lomoth
- Department of Chemistry - Ångström Laboratory, Uppsala University , Box 523, SE-75120 Uppsala, Sweden
| | | | | |
Collapse
|
42
|
Pastore M, Duchanois T, Liu L, Monari A, Assfeld X, Haacke S, Gros PC. Interfacial charge separation and photovoltaic efficiency in Fe(ii)-carbene sensitized solar cells. Phys Chem Chem Phys 2018; 18:28069-28081. [PMID: 27711638 DOI: 10.1039/c6cp05535d] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The first combined theoretical and photovoltaic characterization of both homoleptic and heteroleptic Fe(ii)-carbene sensitized photoanodes in working dye sensitized solar cells (DSSCs) has been performed. Three new heteroleptic Fe(ii)-NHC dye sensitizers have been synthesized, characterized and tested. Despite an improved interfacial charge separation in comparison to the homoleptic compounds, the heteroleptic complexes did not show boosted photovoltaic performances. The ab initio quantitative analysis of the interfacial electron and hole transfers and the measured photovoltaic data clearly evidenced fast recombination reactions for heteroleptics, even associated with un unfavorable directional electron flow, and hence slower injection rates, in the case of homoleptics. Notably, quantum mechanics calculations revealed that deprotonation of the not anchored carboxylic function in the homoleptic complex can effectively accelerate the electron injection rate and completely suppress the electron recombination to the oxidized dye. This result suggests that introduction of strong electron-donating substituents on the not-anchored carbene ligand in heteroleptic complexes, in such a way of mimicking the electronic effects of the carboxylate functionality, should yield markedly improved interfacial charge generation properties. The present results, providing for the first time a detailed understanding of the interfacial electron transfers and photovoltaic characterization in Fe(ii)-carbene sensitized solar cells, open the way to a rational molecular engineering of efficient iron-based dyes for photoelectrochemical applications.
Collapse
Affiliation(s)
- Mariachiara Pastore
- Université de Lorraine & CNRS, SRSMC, TMS, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France.
| | - Thibaut Duchanois
- Université de Lorraine & CNRS, SRSMC, HecRIn, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France.
| | - Li Liu
- Université de Strasbourg & CNRS, IPCMS & Labex NIE, Rue du Loess, 67034 Strasbourg Cedex, France
| | - Antonio Monari
- Université de Lorraine & CNRS, SRSMC, TMS, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France.
| | - Xavier Assfeld
- Université de Lorraine & CNRS, SRSMC, TMS, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France.
| | - Stefan Haacke
- Université de Strasbourg & CNRS, IPCMS & Labex NIE, Rue du Loess, 67034 Strasbourg Cedex, France
| | - Philippe C Gros
- Université de Lorraine & CNRS, SRSMC, HecRIn, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
43
|
Leshchev D, Harlang TCB, Fredin LA, Khakhulin D, Liu Y, Biasin E, Laursen MG, Newby GE, Haldrup K, Nielsen MM, Wärnmark K, Sundström V, Persson P, Kjær KS, Wulff M. Tracking the picosecond deactivation dynamics of a photoexcited iron carbene complex by time-resolved X-ray scattering. Chem Sci 2018; 9:405-414. [PMID: 29629111 PMCID: PMC5868308 DOI: 10.1039/c7sc02815f] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022] Open
Abstract
Recent years have seen the development of new iron-centered N-heterocyclic carbene (NHC) complexes for solar energy applications. Compared to typical ligand systems, the NHC ligands provide Fe complexes with longer-lived metal-to-ligand charge transfer (MLCT) states. This increased lifetime is ascribed to strong ligand field splitting provided by the NHC ligands that raises the energy levels of the metal centered (MC) states and therefore reduces the deactivation efficiency of MLCT states. Among currently known NHC systems, [Fe(btbip)2]2+ (btbip = 2,6-bis(3-tert-butyl-imidazol-1-ylidene)pyridine) is a unique complex as it exhibits a short-lived MC state with a lifetime on the scale of a few hundreds of picoseconds. Hence, this complex allows for a detailed investigation, using 100 ps X-ray pulses from a synchrotron, of strong ligand field effects on the intermediate MC state in an NHC complex. Here, we use time-resolved wide angle X-ray scattering (TRWAXS) aided by density functional theory (DFT) to investigate the molecular structure, energetics and lifetime of the high-energy MC state in the Fe-NHC complex [Fe(btbip)2]2+ after excitation to the MLCT manifold. We identify it as a 260 ps metal-centered quintet (5MC) state, and we refine the molecular structure of the excited-state complex verifying the DFT results. Using information about the hydrodynamic state of the solvent, we also determine, for the first time, the energy of the 5MC state as 0.75 ± 0.15 eV. Our results demonstrate that due to the increased ligand field strength caused by NHC ligands, upon transition from the ground state to the 5MC state, the metal to ligand bonds extend by unusually large values: by 0.29 Å in the axial and 0.21 Å in the equatorial direction. These results imply that the transition in the photochemical properties from typical Fe complexes to novel NHC compounds is manifested not only in the destabilization of the MC states, but also in structural distortion of these states.
Collapse
Affiliation(s)
- Denis Leshchev
- European Synchrotron Radiation Facility , 71 Avenue des Martyrs , 38000 Grenoble , France .
| | - Tobias C B Harlang
- Department of Chemical Physics , Lund University , P. O. Box 12 4 , 22100 Lund , Sweden
- Molecular Movies Group , Department of Physics , Technical University of Denmark , Lyngby , DK-2800 , Denmark
| | - Lisa A Fredin
- Theoretical Chemistry Division , Lund University , P. O. Box 124 , 22100 Lund , Sweden
| | | | - Yizhu Liu
- Centre for Analysis and Synthesis , Department of Chemistry , Lund University , P. O. Box 12 4 , Lund 22100 , Sweden
| | - Elisa Biasin
- Molecular Movies Group , Department of Physics , Technical University of Denmark , Lyngby , DK-2800 , Denmark
| | - Mads G Laursen
- Molecular Movies Group , Department of Physics , Technical University of Denmark , Lyngby , DK-2800 , Denmark
| | - Gemma E Newby
- European Synchrotron Radiation Facility , 71 Avenue des Martyrs , 38000 Grenoble , France .
| | - Kristoffer Haldrup
- Molecular Movies Group , Department of Physics , Technical University of Denmark , Lyngby , DK-2800 , Denmark
| | - Martin M Nielsen
- Molecular Movies Group , Department of Physics , Technical University of Denmark , Lyngby , DK-2800 , Denmark
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis , Department of Chemistry , Lund University , P. O. Box 12 4 , Lund 22100 , Sweden
| | - Villy Sundström
- Department of Chemical Physics , Lund University , P. O. Box 12 4 , 22100 Lund , Sweden
| | - Petter Persson
- Theoretical Chemistry Division , Lund University , P. O. Box 124 , 22100 Lund , Sweden
| | - Kasper S Kjær
- Department of Chemical Physics , Lund University , P. O. Box 12 4 , 22100 Lund , Sweden
- Molecular Movies Group , Department of Physics , Technical University of Denmark , Lyngby , DK-2800 , Denmark
| | - Michael Wulff
- European Synchrotron Radiation Facility , 71 Avenue des Martyrs , 38000 Grenoble , France .
| |
Collapse
|
44
|
Zhao R, Shi L. A renaissance of ligand-to-metal charge transfer by cerium photocatalysis. Org Chem Front 2018. [DOI: 10.1039/c8qo00893k] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diverse alcohols, serving as substrates or co-catalysts, and Ce(iv) achieve photoinduced LMCT to generate highly active alkoxy radicals, which opens a new avenue for many difficult HAT reactions.
Collapse
Affiliation(s)
- Rong Zhao
- School of Science
- Harbin Institute of Technology
- Shenzhen 518055
- P. R. China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
| | - Lei Shi
- School of Science
- Harbin Institute of Technology
- Shenzhen 518055
- P. R. China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
| |
Collapse
|
45
|
Đokić M, Soo HS. Artificial photosynthesis by light absorption, charge separation, and multielectron catalysis. Chem Commun (Camb) 2018; 54:6554-6572. [DOI: 10.1039/c8cc02156b] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We highlight recent novel approaches in the field of artificial photosynthesis. We emphasize the potential of a highly modular plug-and-play concept that we hope will persuade the community to explore a more inclusive variety of multielectron redox catalysis to complement the proton reduction and water oxidation half-reactions in traditional solar water splitting systems.
Collapse
Affiliation(s)
- Miloš Đokić
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Han Sen Soo
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| |
Collapse
|
46
|
Mukherjee S, Torres DE, Jakubikova E. HOMO inversion as a strategy for improving the light-absorption properties of Fe(ii) chromophores. Chem Sci 2017; 8:8115-8126. [PMID: 29568460 PMCID: PMC5855294 DOI: 10.1039/c7sc02926h] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/03/2017] [Indexed: 12/26/2022] Open
Abstract
Substitution of π-conjugated donor groups onto the polypyridine ligands in Fe(ii) complexes inverts the HOMO character and improves the light-absorption.
A computational study of a series of [Fe(tpy)2]2+ (tpy = 2,2′:6′,2′′-terpyridine) complexes is reported, where the tpy ligand is substituted at the 4, 4′, and 4′′ positions by electron donor (furan, thiophene, selenophene, NH2) and acceptor (carboxylic acid, NO2) groups. Using DFT and TD-DFT calculations, we show that the substitution of heterocyclic π donor groups onto the tpy ligand scaffold leads to marked improvement of the [Fe(tpy)2]2+ absorption properties, characterized by increased molar extinction coefficients, shift of absorption energies to longer wavelengths, and broadening of the absorption spectrum in the visible region. The observed changes in the light absorption properties are due to destabilization of ligand-centered occupied π orbital energies, thus increasing the interactions between the metal t2g (HOMO) and ligand π orbitals. Substitution of extended π-conjugated groups, such as thienothiophene and dithienothiophene, further destabilizes the ligand π orbital energies, resulting in a fully ligand-localized HOMO (i.e., HOMO inversion) and additional improvement of the light absorption properties. These results open up a new strategy to tuning the light absorption properties of Fe(ii)-polypyridines.
Collapse
Affiliation(s)
- Sriparna Mukherjee
- Department of Chemistry , North Carolina State University , Raleigh , NC 27695 , USA .
| | - David E Torres
- Wake STEM Early College High School , 715 Barbour Dr , Raleigh , NC 27603 , USA
| | - Elena Jakubikova
- Department of Chemistry , North Carolina State University , Raleigh , NC 27695 , USA .
| |
Collapse
|
47
|
Büldt LA, Wenger OS. Chromium complexes for luminescence, solar cells, photoredox catalysis, upconversion, and phototriggered NO release. Chem Sci 2017; 8:7359-7367. [PMID: 29163886 PMCID: PMC5672834 DOI: 10.1039/c7sc03372a] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022] Open
Abstract
Cr(iii) and Cr(0) complexes are earth-abundant alternatives to photosensitizers that are commonly made from precious metals.
Some complexes of Cr(iii) and Cr(0) have long been known to exhibit interesting photophysical and photochemical properties, but in the past few years important conceptual progress was made. This Perspective focuses on the recent developments of Cr(iii) complexes as luminophores and dyes for solar cells, their application in photoredox catalysis, their use as sensitizers in upconversion processes, and their performance as photochemical nitric oxide sources. The example of a luminescent Cr(0) isocyanide complex illustrates the possibility of obtaining photoactive analogues of d6 metal complexes that are commonly made from precious metals such as Ru(ii) or Ir(iii). The studies highlighted herein illustrate the favorable excited-state properties of robust first-row transition metal complexes with broad application potential.
Collapse
Affiliation(s)
- Laura A Büldt
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland .
| | - Oliver S Wenger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland .
| |
Collapse
|
48
|
Ericson F, Honarfar A, Prakash O, Tatsuno H, Fredin LA, Handrup K, Chabera P, Gordivska O, Kjær KS, Liu Y, Schnadt J, Wärnmark K, Sundström V, Persson P, Uhlig J. Electronic structure and excited state properties of iron carbene photosensitizers – A combined X-ray absorption and quantum chemical investigation. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.03.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
49
|
Ponseca CS, Chábera P, Uhlig J, Persson P, Sundström V. Ultrafast Electron Dynamics in Solar Energy Conversion. Chem Rev 2017; 117:10940-11024. [DOI: 10.1021/acs.chemrev.6b00807] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Carlito S. Ponseca
- Division
of Chemical Physics, Chemical Center, and ‡Theoretical Chemistry Division,
Chemical Center, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Pavel Chábera
- Division
of Chemical Physics, Chemical Center, and ‡Theoretical Chemistry Division,
Chemical Center, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Jens Uhlig
- Division
of Chemical Physics, Chemical Center, and ‡Theoretical Chemistry Division,
Chemical Center, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Petter Persson
- Division
of Chemical Physics, Chemical Center, and ‡Theoretical Chemistry Division,
Chemical Center, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Villy Sundström
- Division
of Chemical Physics, Chemical Center, and ‡Theoretical Chemistry Division,
Chemical Center, Lund University, Box 124, Lund SE-221 00, Sweden
| |
Collapse
|
50
|
Chábera P, Liu Y, Prakash O, Thyrhaug E, Nahhas AE, Honarfar A, Essén S, Fredin LA, Harlang TCB, Kjær KS, Handrup K, Ericson F, Tatsuno H, Morgan K, Schnadt J, Häggström L, Ericsson T, Sobkowiak A, Lidin S, Huang P, Styring S, Uhlig J, Bendix J, Lomoth R, Sundström V, Persson P, Wärnmark K. A low-spin Fe(iii) complex with 100-ps ligand-to-metal charge transfer photoluminescence. Nature 2017; 543:695-699. [PMID: 28358064 DOI: 10.1038/nature21430] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022]
Abstract
Transition-metal complexes are used as photosensitizers, in light-emitting diodes, for biosensing and in photocatalysis. A key feature in these applications is excitation from the ground state to a charge-transfer state; the long charge-transfer-state lifetimes typical for complexes of ruthenium and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron and copper being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs, it remains a formidable scientific challenge to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers. Here we present the iron complex [Fe(btz)3]3+ (where btz is 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene)), and show that the superior σ-donor and π-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(iii) d5 complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer (2LMCT) state that is rarely seen for transition-metal complexes. The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers.
Collapse
Affiliation(s)
- Pavel Chábera
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Yizhu Liu
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Om Prakash
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Erling Thyrhaug
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Amal El Nahhas
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Alireza Honarfar
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Sofia Essén
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Lisa A Fredin
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Tobias C B Harlang
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden.,Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Kasper S Kjær
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden.,Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Karsten Handrup
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Fredric Ericson
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Hideyuki Tatsuno
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Kelsey Morgan
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Joachim Schnadt
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Lennart Häggström
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden
| | - Tore Ericsson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden
| | - Adam Sobkowiak
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden
| | - Sven Lidin
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Ping Huang
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Jens Uhlig
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Jesper Bendix
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Reiner Lomoth
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Villy Sundström
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Petter Persson
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Kenneth Wärnmark
- Center for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| |
Collapse
|