1
|
Nakagami A, Mao Q, Horitani M, Kodera M, Kitagishi H. Detoxification of hydrogen sulfide by synthetic heme model compounds. Sci Rep 2024; 14:29371. [PMID: 39658563 PMCID: PMC11632086 DOI: 10.1038/s41598-024-80511-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Hydrogen sulfide is a lethal toxic gas that disrupts cellular respiration in the mitochondrial system. Currently, no antidote is available for the clinical treatment of hydrogen sulfide poisoning. In this study, we investigated the function of iron(III)porphyrin complexes as hydrogen sulfide scavengers in water and evaluated their potential use as therapeutic agents for hydrogen sulfide poisoning. The compounds, named met-hemoCD-P and met-hemoCD-I, are composed of iron(III)porphyrin complexed with per-methylated β-cyclodextrin dimers that contain a pyridine (met-hemoCD-P) or imidazole axial fifth ligand that is coordinated to Fe(III) (met-hemoCD-I). These compounds formed stable HS-Fe(III) complexes under physiological conditions, with binding constants of 1.2 × 105 and 2.5 × 106 M-1 for met-hemoCD-P and met-hemoCD-I, respectively. The binding constant of met-hemoCD-I was 10-times higher than that reported for native human met-hemoglobin at pH 7.4 and 25oC. Electron paramagnetic resonance (EPR) spectroscopy and H2S quantification assays revealed that after SH- was coordinated to met-hemoCD-I, it was efficiently converted to nontoxic sulfite and sulfate ions via homolytic cleavage of the HS-Fe(III) bond followed by aerobic oxidation. Mouse animal experiments revealed that the survival rate was significantly improved when NaSH-treated mice were injected with met-hemoCD-I. After the injection, mitochondrial CcO function in brain and heart tissues recovered, and met-hemoCD-I injected was excreted in the urine without chemical decomposition.
Collapse
Affiliation(s)
- Atsuki Nakagami
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-city, Kyoto, 610-0321, Japan
| | - Qiyue Mao
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-city, Kyoto, 610-0321, Japan
| | - Masaki Horitani
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, 840-8502, Japan
- The United Graduate School of Agricultural Science, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Masahito Kodera
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-city, Kyoto, 610-0321, Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-city, Kyoto, 610-0321, Japan.
| |
Collapse
|
2
|
Song L, Cui C, Lin T, Kong X, Shi K. A series of anthracene-derived dyes for Cu 2+-assisted CO sensing and bio-imaging: synthesis, performance, and mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124565. [PMID: 38875925 DOI: 10.1016/j.saa.2024.124565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
Endogenous CO acts as an important messenger for signal transduction and therapeutic effect in the human body. Fluorescent imaging appears to be a promising method for endogenous CO recognition, but traditional luminescent probes based on Pd-complexes suffered from defects of high cost. In this work, four anthracene-derived dyes having an = N-N = group were synthesized for Cu2+-assisted CO sensing. Their molecular structure, photophysical performance and spectral response to Cu2+ and CO were analyzed in detail. The optimal probe showed good selectivity and quenching effect to Cu2+, with PLQY (photoluminescence quantum yield) decreased from 0.33 to 0.04. The quenching mechanism was found as a static quenching mechanism by forming a non-fluorescent complex with Cu2+ (stoichiometric ratio = 1:1), as revealed by single crystal, EPR (electron paramagnetic resonance), and XPS (X-ray photoelectron spectroscopy) analysis. Such quenching effect could be reversed by CO, showing recovered fluorescence, with PLQY recovered to 0.32 within 328 s. Discussion on cellular endogenous CO imaging was included as well.
Collapse
Affiliation(s)
- Lina Song
- Department of Clinical Laboratory, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chunguo Cui
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tiantian Lin
- Provincial Key Laboratory for Gene Diagnosis of Cardiovascular Disease, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis, Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiao Kong
- Provincial Key Laboratory for Gene Diagnosis of Cardiovascular Disease, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis, Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kaiyao Shi
- Provincial Key Laboratory for Gene Diagnosis of Cardiovascular Disease, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis, Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Mu X, Wang Y, Xu J, Zeng F. Turn-on fluorescence detection of carbon monoxide in plant tissues based on Cu 2+ modulated polydihydroxyphenylalanine nanosensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6201-6209. [PMID: 39190338 DOI: 10.1039/d4ay01034e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
As an important signaling molecule, carbon monoxide (CO) plays an important role in plant growth and development including affecting stomatal movement, stress response and root development. Thus, it is necessary to develop fluorescent probes that can be used to detect CO in live plant tissues and further enable a deep-understanding of its biological function, mechanism and metabolism. In this paper, a novel and sensitive fluorescent probe based on Cu2+ modulated polydihydroxyphenylalanine nanoparticles (PDOAs) has been developed for the detection of CO. The fluorescence of PDOAs can be effectively quenched by Cu2+ through the multi-coordination interaction. In the presence of CO, Cu2+ can be effectively reduced to Cu+, which resulted in the release of free PDOAs and the Cu2+-quenched bright green fluorescence was restored obviously. Through this ingenious strategy, the abiotic CO can be accurately detected and identified with high selectivity, rapid response time within 5 min and an ultralow detection limit of 72.4 nM. Due to the admirable biocompatibility, the nano-material based probe has been successfully applied for in vivo imaging CO in the root tip and leave tissues of lettuce. To the best of our knowledge, this is the first example of a fluorescent probe-based methodology for the sensitive tracking of CO in plant tissues.
Collapse
Affiliation(s)
- Xiqiong Mu
- Research Center for Natural Medicine and Chemical Metrology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China
| | - Yinquan Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China
| | - Jian Xu
- Research Center for Natural Medicine and Chemical Metrology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Fankui Zeng
- Research Center for Natural Medicine and Chemical Metrology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
- Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, China
| |
Collapse
|
4
|
Komiyama M. Monomeric, Oligomeric, Polymeric, and Supramolecular Cyclodextrins as Catalysts for Green Chemistry. RESEARCH (WASHINGTON, D.C.) 2024; 7:0466. [PMID: 39253101 PMCID: PMC11381675 DOI: 10.34133/research.0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
This review comprehensively covers recent developments of cyclodextrin-mediated chemical transformations for green chemistry. These cyclic oligomers of glucose are nontoxic, eco-friendly, and recyclable to accomplish eminent functions in water. Their most important feature is to form inclusion complexes with reactants, intermediates, and/or catalysts. As a result, their cavities serve as sterically restricted and apolar reaction fields to promote the efficiency and selectivity of reactions. Furthermore, unstable reagents and intermediates are protected from undesired side reactions. The scope of their applications has been further widened through covalent or noncovalent modifications. Combinations of them with metal catalysis are especially successful. In terms of these effects, various chemical reactions are achieved with high selectivity and yield so that valuable chemicals are synthesized from multiple components in one-pot reactions. Furthermore, cyclodextrin units are orderly assembled in oligomers and polymers to show their cooperation for advanced properties. Recently, cyclodextrin-based metal-organic frameworks and polyoxometalate-cyclodextrin frameworks have been fabricated and employed for unique applications. Cyclodextrins fulfill many requirements for green chemistry and should make enormous contributions to this growing field.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
5
|
Bansal S, Liu D, Mao Q, Bauer N, Wang B. Carbon Monoxide as a Potential Therapeutic Agent: A Molecular Analysis of Its Safety Profiles. J Med Chem 2024; 67:9789-9815. [PMID: 38864348 PMCID: PMC11215727 DOI: 10.1021/acs.jmedchem.4c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
Carbon monoxide (CO) is endogenously produced in mammals, with blood concentrations in the high micromolar range in the hemoglobin-bound form. Further, CO has shown therapeutic effects in various animal models. Despite its reputation as a poisonous gas at high concentrations, we show that CO should have a wide enough safety margin for therapeutic applications. The analysis considers a large number of factors including levels of endogenous CO, its safety margin in comparison to commonly encountered biomolecules or drugs, anticipated enhanced safety profiles when delivered via a noninhalation mode, and the large amount of safety data from human clinical trials. It should be emphasized that having a wide enough safety margin for therapeutic use does not mean that it is benign or safe to the general public, even at low doses. We defer the latter to public health experts. Importantly, this Perspective is written for drug discovery professionals and not the general public.
Collapse
Affiliation(s)
| | | | | | - Nicola Bauer
- Department of Chemistry and
the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry and
the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
6
|
Sun M, Wang X. A series of triphenylamine-derived fluorophores attached to a Cu-based MOF for gaseous CO optical sensing: synthesis, performance, and mechanism. Mikrochim Acta 2024; 191:349. [PMID: 38806947 DOI: 10.1007/s00604-024-06434-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
A series of triphenylamine-derived fluorescent dyes were attached to a Cu2+-containing MOF (metal-organic framework), denoted as Pm@CuMOF. The molecular structures of these dyes were discussed by the single crystal structures. Their major absorption bands peaked at 410-450 nm, showing emission bands ranging from 556 to 586 nm with emission quantum yields ranging from 8.0 to 15.1%. It was found that the [-N(C2H5)2] group generally improved sensing performance, and the -OH group in the dyes helped the Cu2+ quenching effect. Pm@CuMOF was observed by SEM as nanorods with a width of ~100 nm and a length of 300 nm. Their XRD patterns and N2 adsorption/desorption isotherms were recorded to confirm their porous structure. A low probe loading level of ~4% was determined by TGA result. The CO sensing mechanism was revealed as a Cu2+/Cu+-involved sensing mechanism based on the result of NMR titration, IR, XPS, and EPR. The fluorescence of these triphenylamine-derived dyes was firstly quenched by CuMOF. In contact with CO, Cu2+ was reduced to Cu+, accompanied by the release and fluorescence recovery of the fluorescent dyes, showing emission turn-on effect towards CO gas. Pm@CuMOF showed increased emission intensity at CO level of 0.005% (versus N2), with response times ranging from 123 s to 280 s (depending on various temperatures). Good selectivity was observed over competing alkane gases, with stable emission for at least 5 days, but no linear calibration plots were observed.
Collapse
Affiliation(s)
- Meng Sun
- College of Biological and Food Engineering, Jilin Engineering Normal University, No. 3050 Kaixuan Road, Changchun City, 130052, Jilin Province, China.
| | - Xue Wang
- College of Biological and Food Engineering, Jilin Engineering Normal University, No. 3050 Kaixuan Road, Changchun City, 130052, Jilin Province, China
| |
Collapse
|
7
|
Lin T, Song L, Cui C, Kong X, Shi K. Azoanthracene-core structure as Cu 2+-assisted CO sensing probe: Characterization, performance, and bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124122. [PMID: 38479230 DOI: 10.1016/j.saa.2024.124122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
Detection of endogenous CO (carbon monoxide) is an interesting topic in biology because it has been discovered as a messenger for signal transduction and therapeutic effects in vital biological activities. Fluorescence imaging has proven a powerful tool for detecting endogenous CO, which drives the development of low-cost and easy-to-use fluorescent probes. In this study, four azobenzene derivatives (A1, A2, A3, and A4) with various substituents were reported, including their geometric structures, photophysical parameters, and spectral responses to Cu2+ and CO. The relationship between substituent structure and performance was discussed along with Cu2+ quenching and CO sensing mechanisms. The optimal probe (A1), which had no substituent, efficiently quenched fluorescence in the presence of Cu2+, with its PLQY decreased from 0.33 to 0.02, PLQY = photoluminescence quantum yield. Upon CO deoxidization, A1's fluorescence could be recovered (PLQY recovered to 0.32) within 180 s. Its sensing mechanism was static by forming a non-fluorescent complex with Cu2+ (with a stoichiometric ratio of 1:1). The bioimaging performance of A1 for endogenous CO in HeLa cells was reported.
Collapse
Affiliation(s)
- Tiantian Lin
- Provincial Key Laboratory for Gene Diagnosis of Cardiovascular Disease, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis, Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lina Song
- Department of Laboratory, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chunguo Cui
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiao Kong
- Provincial Key Laboratory for Gene Diagnosis of Cardiovascular Disease, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis, Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kaiyao Shi
- Provincial Key Laboratory for Gene Diagnosis of Cardiovascular Disease, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis, Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
Parker AL, Johnstone TC. Carbon monoxide poisoning: A problem uniquely suited to a medicinal inorganic chemistry solution. J Inorg Biochem 2024; 251:112453. [PMID: 38100903 DOI: 10.1016/j.jinorgbio.2023.112453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Carbon monoxide poisoning is one of the most common forms of poisoning in the world. Although the primary mode of treatment, oxygen therapy, is highly effective in many cases, there are instances in which it is inadequate or inappropriate. Whereas oxygen therapy relies on high levels of a low-affinity ligand (O2) to displace a high-affinity ligand (CO) from metalloproteins, an antidote strategy relies on introducing a molecule with a higher affinity for CO than native proteins (Kantidote,CO > Kprotein,CO). Based on the fundamental chemistry of CO, such an antidote is most likely required to be an inorganic compound featuring an electron-rich transition metal. A review is provided of the protein-, supramolecular complex-, and small molecule-based CO poisoning antidote platforms that are currently under investigation.
Collapse
Affiliation(s)
- A Leila Parker
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Timothy C Johnstone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States..
| |
Collapse
|
9
|
Liu H, Liu T, Qin Q, Li B, Li F, Zhang B, Sun W. The importance of and difficulties involved in creating molecular probes for a carbon monoxide gasotransmitter. Analyst 2023; 148:3952-3970. [PMID: 37522849 DOI: 10.1039/d3an00849e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
As one of the triumvirate of recognized gasotransmitter molecules, namely NO, H2S, and CO, the physiological effects of CO and its potential as a biomarker have been widely investigated, garnering particular attention due to its reported hypotensive, anti-inflammatory, and cytoprotective properties, making it a promising therapeutic agent. However, the development of CO molecular probes has remained relatively stagnant in comparison with the fluorescent probes for NO and H2S, owing to its inert molecular state under physiological conditions. In this review, starting from elucidating the definition and significance of CO as a gasotransmitter, the imperative for the advancement of CO probes, especially fluorescent probes, is expounded. Subsequently, the current state of development of CO probe methodologies is comprehensively reviewed, with an overview of the challenges and prospects in this burgeoning field of research.
Collapse
Affiliation(s)
- Huanying Liu
- School of Mechanical and Power Engineering, Dalian Ocean University, Dalian 116023, China
| | - Ting Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Qian Qin
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| | - Bingyu Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| | - Fasheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
10
|
Carrola A, Romão CC, Vieira HLA. Carboxyhemoglobin (COHb): Unavoidable Bystander or Protective Player? Antioxidants (Basel) 2023; 12:1198. [PMID: 37371928 DOI: 10.3390/antiox12061198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Carbon monoxide (CO) is a cytoprotective endogenous gas that is ubiquitously produced by the stress response enzyme heme-oxygenase. Being a gas, CO rapidly diffuses through tissues and binds to hemoglobin (Hb) increasing carboxyhemoglobin (COHb) levels. COHb can be formed in erythrocytes or in plasma from cell-free Hb. Herein, it is discussed as to whether endogenous COHb is an innocuous and inevitable metabolic waste product or not, and it is hypothesized that COHb has a biological role. In the present review, literature data are presented to support this hypothesis based on two main premises: (i) there is no direct correlation between COHb levels and CO toxicity, and (ii) COHb seems to have a direct cytoprotective and antioxidant role in erythrocytes and in hemorrhagic models in vivo. Moreover, CO is also an antioxidant by generating COHb, which protects against the pro-oxidant damaging effects of cell-free Hb. Up to now, COHb has been considered as a sink for both exogenous and endogenous CO generated during CO intoxication or heme metabolism, respectively. Hallmarking COHb as an important molecule with a biological (and eventually beneficial) role is a turning point in CO biology research, namely in CO intoxication and CO cytoprotection.
Collapse
Affiliation(s)
- André Carrola
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carlos C Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Helena L A Vieira
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
11
|
Noguchi M, Mao Q, Nakagami A, Kitagishi H. Spontaneous reduction of iron(III)porphyrin to iron(II)porphyrin-CO complex in mouse circulation. Chem Commun (Camb) 2023; 59:6211-6214. [PMID: 37129063 DOI: 10.1039/d3cc00420a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Iron(II/III)porphyrin/cyclodextrin inclusion complexes serve as hemoprotein models in vivo. Here we showed the iron(III)porphyrin complex to be spontaneously reduced to its iron(II) state in mouse circulation. The reduced complex bound endogenous CO from carboxyhemoglobin, which was followed by urinary excretion. The natural reduction system was found to be effective for synthetic heme-model compounds.
Collapse
Affiliation(s)
- Masataka Noguchi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.
| | - Qiyue Mao
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.
| | - Atsuki Nakagami
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.
| |
Collapse
|
12
|
Fan Y, Wu Y, Hou J, Wang P, Peng X, Ge G. Coumarin-based near-infrared fluorogenic probes: Recent advances, challenges and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
13
|
Mohanto N, Park YJ, Jee JP. Current perspectives of artificial oxygen carriers as red blood cell substitutes: a review of old to cutting-edge technologies using in vitro and in vivo assessments. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:153-190. [PMID: 35935469 PMCID: PMC9344254 DOI: 10.1007/s40005-022-00590-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/02/2022] [Indexed: 01/06/2023]
Abstract
Background Several circumstances such as accidents, surgery, traumatic hemorrhagic shock, and other causalities cause major blood loss. Allogenic blood transfusion can be resuscitative for such conditions; however, it has numerous ambivalent effects, including supply shortage, needs for more time, cost for blood grouping, the possibility of spreading an infection, and short shelf-life. Hypoxia or ischemia causes heart failure, neurological problems, and organ damage in many patients. To address this emergent medical need for resuscitation and to treat hypoxic conditions as well as to enhance oxygen transportation, researchers aspire to achieve a robust technology aimed to develop safe and feasible red blood cell substitutes for effective oxygen transport. Area covered This review article provides an overview of the formulation, storage, shelf-life, clinical application, side effects, and current perspectives of artificial oxygen carriers (AOCs) as red blood cell substitutes. Moreover, the pre-clinical (in vitro and in vivo) assessments for the evaluation of the efficacy and safety of oxygen transport through AOCs are key considerations in this study. With the most significant technologies, hemoglobin- and perfluorocarbon-based oxygen carriers as well as other modern technologies, such as synthetically produced porphyrin-based AOCs and oxygen-carrying micro/nanobubbles, have also been elucidated. Expert opinion Both hemoglobin- and perfluorocarbon-based oxygen carriers are significant, despite having the latter acting as safeguards; they are cost-effective, facile formulations which penetrate small blood vessels and remove arterial blockages due to their nano-size. They also show better biocompatibility and longer half-life circulation than other similar technologies.
Collapse
Affiliation(s)
- Nijaya Mohanto
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452 Republic of Korea
| | - Young-Joon Park
- College of Pharmacy, Ajou University, Suwon, Gyeonggi, Republic of Korea
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452 Republic of Korea
| |
Collapse
|
14
|
Bai C, Zhang J, Qin Y, Meng Q, Yao J, Huang H, Wei B, Li R, Zhang L, Miao H, Qu C, Qiao R. Strategy for Detecting Carbon Monoxide: Cu 2+-Assisted Fluorescent Probe and Its Applications in Biological Imaging. Anal Chem 2022; 94:11298-11306. [PMID: 35926081 DOI: 10.1021/acs.analchem.2c01948] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein, a novel strategy was proposed for identifying carbon monoxide (CO), which plays a crucial part in living systems. For the first time, we have managed to design, synthesize, and characterize successfully this new Cu2+-assisted fluorescent probe (DPHP) in detecting CO. Compared with the commonly adopted Pd0-mediated Tsuji-Trost reaction recognition method, such a new strategy did not engage costly palladium (II) salt and generated no leaving group, indicating a satisfactory anti-interference ability. The recognition mechanism was confirmed by IR, 1H NMR titration, HR-MS, cyclic voltammetry, X-ray photoelectron spectroscopy, electron paramagnetic resonance, and optical properties. Surprisingly, it was found that the new method achieved high selectivity and rapid identification of CO with a lower limit of detection (1.7 × 10-8 M). More intriguingly, it could recognize endogenous and exogenous CO in HeLa cells. The cytotoxicity of this new method was so low that it allowed the detection of CO in mice and zebrafish. Basically, our results trigger a novel viewpoint of rationally designing and synthesizing advanced materials for CO detection with unique features, impelling new research in detection chemistry.
Collapse
Affiliation(s)
- Cuibing Bai
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, Anhui Province, P. R. China.,Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jie Zhang
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, Anhui Province, P. R. China
| | - Yuxin Qin
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, Anhui Province, P. R. China
| | - Qian Meng
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, Anhui Province, P. R. China
| | - Junxiong Yao
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, Anhui Province, P. R. China
| | - Huanan Huang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Xinghuo Organosilicon Industry Research Center, Jiujiang University, Jiujiang 332005, P. R. China
| | - Biao Wei
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, Anhui Province, P. R. China
| | - Ruiqian Li
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, Anhui Province, P. R. China
| | - Lin Zhang
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, Anhui Province, P. R. China
| | - Hui Miao
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, Anhui Province, P. R. China
| | - Changqing Qu
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang 236037, Anhui, P. R. China
| | - Rui Qiao
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, Anhui Province, P. R. China.,Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
15
|
Yuan Z, De La Cruz LK, Yang X, Wang B. Carbon Monoxide Signaling: Examining Its Engagement with Various Molecular Targets in the Context of Binding Affinity, Concentration, and Biologic Response. Pharmacol Rev 2022; 74:823-873. [PMID: 35738683 DOI: 10.1124/pharmrev.121.000564] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carbon monoxide (CO) has been firmly established as an endogenous signaling molecule with a variety of pathophysiological and pharmacological functions, including immunomodulation, organ protection, and circadian clock regulation, among many others. In terms of its molecular mechanism(s) of action, CO is known to bind to a large number of hemoproteins with at least 25 identified targets, including hemoglobin, myoglobin, neuroglobin, cytochrome c oxidase, cytochrome P450, soluble guanylyl cyclase, myeloperoxidase, and some ion channels with dissociation constant values spanning the range of sub-nM to high μM. Although CO's binding affinity with a large number of targets has been extensively studied and firmly established, there is a pressing need to incorporate such binding information into the analysis of CO's biologic response in the context of affinity and dosage. Especially important is to understand the reservoir role of hemoglobin in CO storage, transport, distribution, and transfer. We critically review the literature and inject a sense of quantitative assessment into our analyses of the various relationships among binding affinity, CO concentration, target occupancy level, and anticipated pharmacological actions. We hope that this review presents a picture of the overall landscape of CO's engagement with various targets, stimulates additional research, and helps to move the CO field in the direction of examining individual targets in the context of all of the targets and the concentration of available CO. We believe that such work will help the further understanding of the relationship of CO concentration and its pathophysiological functions and the eventual development of CO-based therapeutics. SIGNIFICANCE STATEMENT: The further development of carbon monoxide (CO) as a therapeutic agent will significantly rely on the understanding of CO's engagement with therapeutically relevant targets of varying affinity. This review critically examines the literature by quantitatively analyzing the intricate relationships among targets, target affinity for CO, CO level, and the affinity state of carboxyhemoglobin and provide a holistic approach to examining the molecular mechanism(s) of action for CO.
Collapse
Affiliation(s)
- Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Ladie Kimberly De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
16
|
Ye M, Zhang J, Jiang D, Tan Q, Li J, Yao C, Zhu C, Zhou Y. A Hemicyanine-Assembled Upconversion Nanosystem for NIR-Excited Visualization of Carbon Monoxide Bio-Signaling In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202263. [PMID: 35713262 DOI: 10.1002/smll.202202263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Carbon monoxide (CO) is considered as the second gasotransmitter involved in a series of physiological and pathological processes. Although a number of organic fluorescent probes have been developed for imaging CO, these probes display excitation within the ultraviolet or visible range, which restrict their applications in the complex biosystems. In the present work, a strategy is developed to construct an upconversion nanoparticles-based nanosystem for upconversion luminescent (UCL) sensing CO. This nanosystem exhibits a fast response to CO with high sensitivity and selectivity in aqueous solution by a near-infrared-excited ratiometric UCL detection method. Meanwhile, laser scanning upconversion luminescence microscope experiments demonstrate that this nanosystem can visualize the endogenous CO bio-signaling in living cells, deep tissues, zebrafish, and living mice by ratiometric UCL imaging. In particular, this nanosystem has been successfully employed in visualization of the endogenous CO bio-signaling through up-regulation of heme oxygenase-1 (HO-1) in the progression of hypoxia, acute inflammation, or ischemic injury. This work demonstrates that the outstanding performance of the nanosystem not only can provide an effective tool for further understanding the role of CO in the physiological and pathological environment, but also may have great potential ability for tracking the expression of HO-1 in living systems.
Collapse
Affiliation(s)
- Minan Ye
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jie Zhang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Detao Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Qi Tan
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jingyun Li
- Department of Plastic & Cosmetic Surgery, Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, P. R. China
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, The Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yi Zhou
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
17
|
A bioinspired carbon monoxide delivery system prevents acute kidney injury and the progression to chronic kidney disease. Redox Biol 2022; 54:102371. [PMID: 35763935 PMCID: PMC9241064 DOI: 10.1016/j.redox.2022.102371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Renal ischemia-reperfusion (IR)-induced tissue hypoxia causes impaired energy metabolism and oxidative stress. These conditions lead to tubular cell damage, which is a cause of acute kidney injury (AKI) and AKI to chronic kidney disease (CKD). Three key molecules, i.e., hypoxia-inducible factor-1α (HIF-1α), AMP-activated protein kinase (AMPK), and nuclear factor E2-related factor 2 (Nrf2), have the potential to protect tubular cells from these disorders. Although carbon monoxide (CO) can comprehensively induce these three molecules via the action of mitochondrial reactive oxygen species (mtROS), the issue of whether CO induces these molecules in tubular cells remains unclear. Herein, we report that CO-enriched red blood cells (CO-RBC) cell therapy, the inspiration for which is the in vivo CO delivery system, exerts a renoprotective effect on hypoxia-induced tubular cell damage via the upregulation of the above molecules. Experiments using a mitochondria-specific antioxidant provide evidence to show that CO-driven mtROS partially contributes to the upregulation of the aforementioned molecules in tubular cells. CO-RBC ameliorates the pathological conditions of IR-induced AKI model mice via activation of these molecules. CO-RBC also prevents renal fibrosis via the suppression of epithelial mesenchymal transition and transforming growth factor-β1 secretion in an IR-induced AKI to CKD model mice. In conclusion, our results confirm that the bioinspired CO delivery system prevents the pathological conditions of both AKI and AKI to CKD via the amelioration of hypoxia inducible tubular cell damage, thereby making it an effective cell therapy for treating the progression to CKD.
Collapse
|
18
|
Li W, Li R, Chen R, Ai S, Zhu H, Huang L, Lin W. Activatable Fluorescent-Photoacoustic Integrated Probes with Deep Tissue Penetration for Pathological Diagnosis and Therapeutic Evaluation of Acute Inflammation in Mice. Anal Chem 2022; 94:7996-8004. [PMID: 35604398 DOI: 10.1021/acs.analchem.2c01048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inflammation is associated with many diseases, so the development of an excellent near infrared fluorescent (NIRF) and photoacoustic (PA) dual-modality probe is crucial for the accurate diagnosis and efficacy evaluation of inflammation. However, most of the current NIRF/PA scaffolds are based on repurposing existing fluorescent dye platforms that exhibit non-optimal properties for both NIRF and PA signal outputs. Herein, we developed a novel dye scaffold QL-OH by optimizing the NIRF and PA signal of classical hemicyanine dyes. Based on this optimized dye, we developed the first NIRF/PA dual-mode carbon monoxide (CO) probe QL-CO for noninvasive and sensitive visualization of CO levels in deep inflammatory lesions in vivo. The novel probe QL-CO exhibited rapid and sensitive NIRF775/PA730 dual activation responses toward CO. In addition, the CO-activated probe QL-CO was successfully used for the diagnosis of inflammation and evaluation of anti-inflammation drug efficacy in living mice though the NIRF/PA dual-mode imaging technology for the first time. More importantly, the probe QL-CO could accurately locate the deep inflammatory lesion tissues (≈1 cm) in mice and obtain 3D PA diagnostic images with deep penetration depth and spatial resolution. Therefore, the new NIRF/PA dual-mode probe QL-CO has high potential for deep-tissue diagnosis imaging of CO in vivo. These findings may provide a new tool and approach for future research and diagnosis of CO-associated diseases.
Collapse
Affiliation(s)
- Wenxiu Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Rong Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Rui Chen
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Sixin Ai
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Huayong Zhu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
19
|
Li S, Yang K, Zeng J, Xia Y, Cheng D, He L. A NIR-emissive probe with a remarkable Stokes shift for CO-releasing molecule-3 detection in cells and in vivo. Analyst 2022; 147:1169-1174. [DOI: 10.1039/d2an00038e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A NIR-emitting probe with a remarkable Stokes shift for detecting CO-releasing molecule-3 in living cells and in vivo.
Collapse
Affiliation(s)
- Songjiao Li
- Cancer Research Institute, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, China
| | - Ke Yang
- Cancer Research Institute, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiayu Zeng
- Cancer Research Institute, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuqing Xia
- Clinical Research Institute, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Dan Cheng
- Clinical Research Institute, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Longwei He
- Cancer Research Institute, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
20
|
Droege DG, Johnstone TC. A water-soluble iron-porphyrin complex capable of rescuing CO-poisoned red blood cells. Chem Commun (Camb) 2022; 58:2722-2725. [DOI: 10.1039/d1cc05542a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe herein a small-molecule platform that exhibits key properties needed by an antidote for CO poisoning. The design features an iron-porphyrin complex with bulky substituents above and below the...
Collapse
|
21
|
Panagiotakis S, Mavroidi B, Athanasopoulos A, Charalambidis G, Coutsolelos AG, Paravatou-Petsotas M, Pelecanou M, Mavridis IM, Yannakopoulou K. Unsymmetrical, monocarboxyalkyl meso-arylporphyrins in the photokilling of breast cancer cells using permethyl-β-cyclodextrin as sequestrant and cell uptake modulator. Carbohydr Polym 2022; 275:118666. [PMID: 34742406 DOI: 10.1016/j.carbpol.2021.118666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/31/2021] [Accepted: 09/12/2021] [Indexed: 11/26/2022]
Abstract
In the search for photosensitizers with chemical handles to facilitate their integration into complex drug delivery nanosystems, new, unsymmetrically substituted, water insoluble meso-tetraphenylporphyrin and meso-tetra(m-hydroxyphenyl)porphyrin derivatives bearing one carboxyalkyl side chain were synthesized. Permethyl-β-cyclodextrin (pMβCD) was their ideal monomerizing host and highly efficient shuttle to transfer them into water. New assembly modes of the extremely stable (Kbinding > 1012 M-2) 2:1 complexes were identified. The complexes are photostable and do not disassemble in FBS-containing cell culture media for 24 h. Incubation of breast cancer MCF-7 cells with the complexes results in intense intracellular fluorescence, strongly enhanced in the endoplasmic reticulum (ER), high photokilling efficiency (~90%) and low dark toxicity. pMβCD stands out as a very capable molecular isolator of mono-carboxyalkyl-arylporphyrins that increases uptake and modulates their localization in the cells. The most efficient porphyrins are envisaged as suitable photosensitizers that can be linked to biocompatible drug carriers for photo- and chemo-therapy applications.
Collapse
Affiliation(s)
- Stylianos Panagiotakis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Barbara Mavroidi
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Alexandros Athanasopoulos
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Georgios Charalambidis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| | - Athanassios G Coutsolelos
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| | - Maria Paravatou-Petsotas
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Maria Pelecanou
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Irene M Mavridis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Konstantina Yannakopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| |
Collapse
|
22
|
Rong X, Peng Y, Liu C, Li M, Shi J, Yu M, Ba S, Sheng W, Zhu B. A novel highly sensitive fluorescent probe for imaging endogenous CO. NEW J CHEM 2022. [DOI: 10.1039/d2nj04920a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A highly sensitive and selective fluorescent probe was constructed to detect carbon monoxide in living cells and zebrafish.
Collapse
Affiliation(s)
- Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Yiyuan Peng
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Mingzhu Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Jiafan Shi
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Shuaikang Ba
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
23
|
Kitagishi H, Mao Q. Capture of carbon monoxide using a heme protein model: from biomimetic chemistry of heme proteins to physiological and therapeutic applications. Polym J 2021. [DOI: 10.1038/s41428-021-00591-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Suzuki Y, Taguchi K, Kure T, Enoki Y, Otagiri M, Sakai H, Matsumoto K. Long-term pharmaceutical stability of liposome-encapsulated methemoglobin as an antidote for cyanide poisoning. Int J Pharm 2021; 610:121260. [PMID: 34740759 DOI: 10.1016/j.ijpharm.2021.121260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/11/2021] [Accepted: 10/29/2021] [Indexed: 12/29/2022]
Abstract
Liposome-encapsulated methemoglobin (metHb@Lipo) has been developed as a novel antidote for cyanide poisoning. Antidotes for lethal acute poisoning should be capable of being easily stored as ready-to-use formulations without temperature restrictions. Here, we investigated the pharmaceutical stability of the metHb@Lipo suspension after one-year storage as a ready-to-use formulation at 4 °C, room temperature (23-28 °C) and 37 °C. The liposomal integrity of metHb@Lipo was observed after one year of storage at all storage temperatures with no physicochemical change or methemoglobin leakage outside the liposome. Furthermore, the encapsulated methemoglobin remained intact without aggregation, fragmentation, denaturation, or dissociation of heme. Fresh and stored metHb@Lipo were equivalent in their binding affinity against cyanide. Moreover, all one-year stored metHb@Lipo suspensions improved the mortality rates of lethal cyanide poisoning mice comparable to fresh metHb@Lipo suspension. Additionally, all stored metHb@Lipo suspensions preserved high biocompatibility, including blood compatibility and the lack of organ toxicity. In conclusion, the metHb@Lipo suspension was a pharmaceutically stable antidote for cyanide poisoning for at least one year without any temperature restrictions.
Collapse
Affiliation(s)
- Yuto Suzuki
- Faculty of Pharmacy, Keio University, Tokyo, Japan
| | | | - Tomoko Kure
- Department of Chemistry, Nara Medical University, Kashihara, Japan
| | - Yuki Enoki
- Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan; DDS Research Institute, Sojo University, Kumamoto, Japan
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Kashihara, Japan
| | | |
Collapse
|
25
|
Xu Z, Song A, Wang F, Chen H. Sensitive and effective imaging of carbon monoxide in living systems with a near-infrared fluorescent probe. RSC Adv 2021; 11:32203-32209. [PMID: 35495506 PMCID: PMC9042026 DOI: 10.1039/d1ra06052j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/15/2021] [Indexed: 12/27/2022] Open
Abstract
CO, a gas molecule that is harmful to living organisms, has a high affinity with hemoglobin, which will cause severe hypoxia. However, in recent years, researchers have discovered that endogenous CO, similar to NO, is one of the messenger molecules, which has a certain regulatory effect in many physiological and pathological processes in the respiratory system, cardiovascular system, and nervous system. Therefore, it is urgent to explore an effective method to monitor the role of CO under physiological and pathological conditions. Herein, we designed and synthesized a near-infrared small-molecule fluorescent probe for the detection of CO in living cells. In this design, a two-site BODIPY dye was introduced as the fluorophore, and the allyl chloroformate part as the CO reactive group. The probe displays excellent sensitivity, selectivity, and a good linear relationship to CO. Furthermore, it shows good biocompatibility and low cytotoxicity. This probe has been successfully applied to the detection of CO in a variety of cells. The developed fluorescent probe can serve as a potential molecular imaging tool for in vivo imaging and detection of CO.
Collapse
Affiliation(s)
- Zhencai Xu
- Guanyun People's Hospital Lianyungang 222000 China
| | - Aibo Song
- Guanyun People's Hospital Lianyungang 222000 China
| | - Fangwu Wang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University Haikou 570102 China
| | - Hongwei Chen
- Modern Education Technology Center, Hainan Medical University Haikou 571199 China
| |
Collapse
|
26
|
Abstract
Nitric oxide, studied to evaluate its role in cardiovascular physiology, has cardioprotective and therapeutic effects in cellular signaling, mitochondrial function, and in regulating inflammatory processes. Heme oxygenase (major role in catabolism of heme into biliverdin, carbon monoxide (CO), and iron) has similar effects as well. CO has been suggested as the molecule that is responsible for many of the above mentioned cytoprotective and therapeutic pathways as CO is a signaling molecule in the control of physiological functions. This is counterintuitive as toxic effects are related to its binding to hemoglobin. However, CO is normally produced in the body. Experimental evidence indicates that this toxic gas, CO, exerts cytoprotective properties related to cellular stress including the heart and is being assessed for its cytoprotective and cytotherapeutic properties. While survival of adult cardiomyocytes depends on oxidative phosphorylation (survival and resulting cardiac function is impaired by mitochondrial damage), mitochondrial biogenesis is modified by the heme oxygenase-1/CO system and can result in promotion of mitochondrial biogenesis by associating mitochondrial redox status to the redox-active transcription factors. It has been suggested that the heme oxygenase-1/CO system is important in differentiation of embryonic stem cells and maturation of cardiomyocytes which is thought to mitigate progression of degenerative cardiovascular diseases. Effects on other cardiac cells are being studied. Acute exposure to air pollution (and, therefore, CO) is associated with cardiovascular mortality, myocardial infarction, and heart failure, but changes in the endogenous heme oxygenase-1 system (and, thereby, CO) positively affect cardiovascular health. We will review the effect of CO on heart health and function in this article.
Collapse
Affiliation(s)
- Vicki L Mahan
- Department of Surgery and Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
27
|
Mao Q, Kawaguchi AT, Mizobata S, Motterlini R, Foresti R, Kitagishi H. Sensitive quantification of carbon monoxide in vivo reveals a protective role of circulating hemoglobin in CO intoxication. Commun Biol 2021; 4:425. [PMID: 33782534 PMCID: PMC8007703 DOI: 10.1038/s42003-021-01880-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Carbon monoxide (CO) is a gaseous molecule known as the silent killer. It is widely believed that an increase in blood carboxyhemoglobin (CO-Hb) is the best biomarker to define CO intoxication, while the fact that CO accumulation in tissues is the most likely direct cause of mortality is less investigated. There is no reliable method other than gas chromatography to accurately determine CO content in tissues. Here we report the properties and usage of hemoCD1, a synthetic supramolecular compound composed of an iron(II)porphyrin and a cyclodextrin dimer, as an accessible reagent for a simple colorimetric assay to quantify CO in biological samples. The assay was validated in various organ tissues collected from rats under normal conditions and after exposure to CO. The kinetic profile of CO in blood and tissues after CO treatment suggested that CO accumulation in tissues is prevented by circulating Hb, revealing a protective role of Hb in CO intoxication. Furthermore, hemoCD1 was used in vivo as a CO removal agent, showing that it acts as an effective adjuvant to O2 ventilation to eliminate residual CO accumulated in organs, including the brain. These findings open new therapeutic perspectives to counteract the toxicity associated with CO poisoning. Mao et al. report highly sensitive quantification of carbon monoxide with a simple colorimetric assay, exploiting a synthetic supramolecular compound, hemoCD1. It can reveal distribution of CO in organs including the brain and can also serve as a CO scavenger for residual CO accumulated in organs. Finally, the authors showed circulating hemoglobin plays a protective role in CO intoxication.
Collapse
Affiliation(s)
- Qiyue Mao
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Akira T Kawaguchi
- Cell Transplantation and Regenerative Medicine, Tokai University, Isehara, Kanagawa, Japan
| | - Shun Mizobata
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, Japan
| | | | - Roberta Foresti
- University Paris Est Creteil, INSERM, IMRB, Creteil, France.
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, Japan.
| |
Collapse
|
28
|
Zhang Y, Tang Y, Kong X, Lin W. An endoplasmic reticulum targetable turn-on fluorescence probe for imaging application of carbon monoxide in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119150. [PMID: 33188972 DOI: 10.1016/j.saa.2020.119150] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Carbon monoxide (CO) is a significant mediator in regulating endoplasmic reticulum (ER) stress, and its level may play a potential role in the treatment of vascular diseases combined with ER stress. In-situ visualization of CO in the ER helps to elucidate its physiological and pathological mechanistic behavior. Herein, a novel CO fluorescent probe (Na-CM-ER) with ER-targeting characteristics was structured. Na-CM-ER with naphthalimide as a fluorescent group, under the trigger of CO, an ICT (Intramolecular Charge Transfer) mechanism was constructed by converting a nitro group to an amino group and showed dazzling green fluorescence. Na-CM-ER exhibited satisfactory response speed, selectivity, photo-stability and sensitivity to CO in vitro. Furthermore, biological imaging experiments demonstrated that Na-CM-ER could monitor the changes of exogenous/endogenous CO in living cells and possess an ER-targeting property. To sum up, we hope that Na-CM-ER can be as a serviceable molecular tool for imaging CO in cellular ER.
Collapse
Affiliation(s)
- Yunyan Zhang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Yonghe Tang
- Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China; Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
29
|
Jiang WL, Wang WX, Mao GJ, Yan L, Du Y, Li Y, Li CY. Construction of NIR and Ratiometric Fluorescent Probe for Monitoring Carbon Monoxide under Oxidative Stress in Zebrafish. Anal Chem 2021; 93:2510-2518. [DOI: 10.1021/acs.analchem.0c04537] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Wen-Xin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Ling Yan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Yan Du
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, P. R. China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
30
|
Kitagishi H, Kano K. Synthetic heme protein models that function in aqueous solution. Chem Commun (Camb) 2021; 57:148-173. [DOI: 10.1039/d0cc07044k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Supramolecular porphyrin–cyclodextrin complexes act as biomimetic heme protein models in aqueous solution.
Collapse
Affiliation(s)
- Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyoto 610-0321
- Japan
| | - Koji Kano
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyoto 610-0321
- Japan
| |
Collapse
|
31
|
Prigorchenko E, Ustrnul L, Borovkov V, Aav R. Heterocomponent ternary supramolecular complexes of porphyrins: A review. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s108842461930026x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Porphyrins are prominent host molecules which are widely used due to their structural characteristics and directional interaction sites. This review summarizes non-covalently bound ternary complexes of porphyrins, constructed from at least three non-identical species. Progress in supramolecular chemistry allows the creation of complex molecular machinery tools, such as rotors, motors and switches from relatively simple structures in a single self-assembly step. In the current review, we highlight the collection of sophisticated molecular ensembles including sandwich-type complexes, cages, capsules, tweezers, rotaxanes, and supramolecular architectures mediating oxygen-binding and oxidation reactions. These diverse structures have high potential to be applied in sensing, production of new smart materials as well as in medical science.
Collapse
Affiliation(s)
- Elena Prigorchenko
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Lukas Ustrnul
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Victor Borovkov
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
- College of Chemistry and Materials Science, South-Central University for Nationalities, 182 Minzu Road, Hongshan, Wuhan 430074, China
| | - Riina Aav
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| |
Collapse
|
32
|
Vonesch M, Wytko JA, Kitagishi H, Kano K, Weiss J. Modelling haemoproteins: porphyrins and cyclodextrins as sources of inspiration. Chem Commun (Camb) 2019; 55:14558-14565. [PMID: 31748764 DOI: 10.1039/c9cc07545c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The association of hydrophobic cavities with porphyrin derivatives has been used to mimic haemoprotein structures. The most employed cavity in this field is β-cyclodextrin (β-CD), and scaffolds combining β-CDs and porphyrins are expected to inspire the combination of porphyrins and cucurbiturils in the near future. Aside from providing water solubility to various porphyrinic structures, the β-CD framework can also modulate and control the reactivity of the metal core of the porphyrin. After a general introduction of the challenges faced in the field of haemoprotein models and the binding behavior of β-CDs, this article will discuss covalent and non-covalent association of porphyrins with β-CDs. In each approach, the role of the CD differs according to the relative position of the concave CD host, either directly controlling the binding and transformation of a substrate on the metalloporphyrin or playing a dual role of controlling the water solubility and selecting the axial ligand of the metal core. The discussion will be of interest to the cucurbituril community as well as to the cavitand community, as the information provided should be useful for the design of haemoprotein mimics using cucurbiturils.
Collapse
Affiliation(s)
- Maxime Vonesch
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 4 rue Blaise Pascal 67000, Strasbourg, France.
| | - Jennifer A Wytko
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 4 rue Blaise Pascal 67000, Strasbourg, France.
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.
| | - Koji Kano
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.
| | - Jean Weiss
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 4 rue Blaise Pascal 67000, Strasbourg, France.
| |
Collapse
|
33
|
Mavridis IM, Yannakopoulou K. Porphyrinoid-Cyclodextrin Assemblies in Biomedical Research: An Update. J Med Chem 2019; 63:3391-3424. [PMID: 31808344 DOI: 10.1021/acs.jmedchem.9b01069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Porphyrinoids, well-known cofactors in fundamental processes of life, have stimulated interest as synthetic models of natural systems and integral components of photodynamic therapy, but their utilization is compromised by self-aggregation in aqueous media. The capacity of cyclodextrins to include hydrophobic molecules in their cavity provides porphyrinoids with a protective environment against oxidation and the ability to disperse efficiently in biological fluids. Moreover, engineered cyclodextrin-porphyrinoid assemblies enhance the photodynamic abilities of porphyrinoids, can carry chemotherapeutics for synergistic modalities, and can be enriched with functions including cell recognition, tissue penetration, and imaging. This Perspective includes synthetic porphyrinoid-cyclodextrin models of proteins participating in fundamental processes, such as enzymatic catalysis, respiration, and electron transfer. In addition, since porphyrinoid-cyclodextrin systems comprise third generation photosensitizers, recent developments for their utilization in photomedicine, that is, multimodal therapy for cancer (e.g., PDT, PTT) and antimicrobial treatment, and eventually in biocompatible therapeutic or diagnostic platforms for next-generation nanomedicine and theranostics are discussed.
Collapse
Affiliation(s)
- Irene M Mavridis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Gregoriou & 27 Neapoleos Str., Agia Paraskevi, Attiki 15341, Greece
| | - Konstantina Yannakopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Gregoriou & 27 Neapoleos Str., Agia Paraskevi, Attiki 15341, Greece
| |
Collapse
|
34
|
Mn(I)-based photoCORMs for trackable, visible light-induced CO release and photocytotoxicity to cancer cells. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Kitagishi H, Saito M, Mao Q, Kiriyama A, Negi S, Kano K. Supramolecular Complexation in Biological Media: NMR Study on Inclusion of an Anionic Tetraarylporphyrin into a Per‐O‐Methylated β‐Cyclodextrin Cavity in Serum, Blood, and Urine. Chem Asian J 2019; 14:3320-3328. [DOI: 10.1002/asia.201900983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/08/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Hiroaki Kitagishi
- Department of Molecular Chemistry and BiochemistryFaculty of Science and EngineeringDoshisha University 1-3 Tatara Miyakodani Kyotanabe Kyoto 610-0321 Japan
| | - Mai Saito
- Department of Molecular Chemistry and BiochemistryFaculty of Science and EngineeringDoshisha University 1-3 Tatara Miyakodani Kyotanabe Kyoto 610-0321 Japan
| | - Qiyue Mao
- Department of Molecular Chemistry and BiochemistryFaculty of Science and EngineeringDoshisha University 1-3 Tatara Miyakodani Kyotanabe Kyoto 610-0321 Japan
| | - Akiko Kiriyama
- Faculty of Pharmaceutical ScienceDoshisha Women's College of Liberal Arts Kyotanabe Kyoto 610-0395 Japan
| | - Shigeru Negi
- Faculty of Pharmaceutical ScienceDoshisha Women's College of Liberal Arts Kyotanabe Kyoto 610-0395 Japan
| | - Koji Kano
- Department of Molecular Chemistry and BiochemistryFaculty of Science and EngineeringDoshisha University 1-3 Tatara Miyakodani Kyotanabe Kyoto 610-0321 Japan
| |
Collapse
|
36
|
Jiang Q, Xia Y, Barrett J, Mikhailovsky A, Wu G, Wang D, Shi P, Ford PC. Near-Infrared and Visible Photoactivation to Uncage Carbon Monoxide from an Aqueous-Soluble PhotoCORM. Inorg Chem 2019; 58:11066-11075. [DOI: 10.1021/acs.inorgchem.9b01581] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Qin Jiang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- School of Chemistry and Chemical Engineering, Jiangsu Ocean University, Lianyungang" 222005, Jiangsu, People’s Republic China
| | - Yingzi Xia
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Jacob Barrett
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Alexander Mikhailovsky
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Daqi Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, People’s Republic China
| | - Pengfei Shi
- School of Chemistry and Chemical Engineering, Jiangsu Ocean University, Lianyungang" 222005, Jiangsu, People’s Republic China
| | - Peter C. Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
37
|
Fang WL, Tang YJ, Guo XF, Wang H. A fluorescent probe for carbon monoxide based on allyl ether rather than allyl ester: A practical strategy to avoid the interference of esterase in cell imaging. Talanta 2019; 205:120070. [PMID: 31450480 DOI: 10.1016/j.talanta.2019.06.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/10/2019] [Accepted: 06/18/2019] [Indexed: 01/31/2023]
Abstract
Pd0-mediated Tsuji-Trost reaction is a practical strategy to design fluorescent probes for carbon monoxide (CO) sensing, and in such reaction CO can reduce Pd2+ to Pd0 in-situ and remove allyl groups on fluorophores. In most of these probes, esters are commonly used to link allyl on fluorophores. We found that the ester groups could be hydrolyzed by esterase activity of fetal bovine serum (FBS), while FBS is a requisite in cell culture, and the hydrolysis could interfere the Pd0-mediated Tsuji-Trost reaction. In this study, we synthesized a fluorescent probe (Cou-CO) using allyl ether as reaction site rather than allyl ester. Cou-CO is non-fluorescence, and could react with CO under the presence of Pd0 to form Cou with strong fluorescence, and the maximum excitation and emission wavelengths of Cou are 464 nm and 495 nm respectively. Cou-CO shows excellent selectivity to CO and could avoid the effect of FBS with the limit of detection for CO is 78 nm. Finally, Cou-CO was successfully applied for imaging of CO in living cells.
Collapse
Affiliation(s)
- Wen-Le Fang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying-Jie Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiao-Feng Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hong Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
38
|
Kawaguchi AT, Salybekov AA, Yamano M, Kitagishi H, Sekine K, Tamaki T. PEGylated carboxyhemoglobin bovine (SANGUINATE) ameliorates myocardial infarction in a rat model. Artif Organs 2019; 42:1174-1184. [PMID: 30375680 PMCID: PMC6590322 DOI: 10.1111/aor.13384] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/28/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022]
Abstract
Artificial oxygen (O2) carriers were reported to be protective in ischemia/reperfusion (I/R) in various organs including the heart. In the current study, 20 rats underwent ligation (MI) of the left anterior descending artery, were treated with 10 mL/kg of PEGylated carboxyhemoglobin bovine (SANGUINATE, S+, n = 10) or saline (S−, n = 10) 10 minutes after MI and daily thereafter for 3 days, and were followed by weekly echocardiography for 4 weeks, when they had left ventricular pressure volume relationship (PVR) analyses followed by necropsy. Echocardiography showed an increase in end‐systolic dimension rather than end‐diastolic dimension, preserved fractional shortening (36 vs. 26%, P < .01), and milder mitral regurgitation in S+ compared with S‐ rats. PVR revealed a milder increase in end‐systolic volume, larger stroke volume (101 vs. 74 μL, P < .005) and cardiac output (33.4 vs. 23.8 mL/min, P = .004) in S+ rats in actual determination and under a wide range of standardized loading conditions 4 weeks after MI. Excised heart showed significantly limited area of MI (8.9 vs. 13.3%, P = .028). The results suggest that SANGUINATE in short‐term repeated doses may accelerate weight recovery, preserving the myocardium, mitral competence, and cardiac function after MI. The mechanism of action and optimal treatment for MI remain to be studied.
Collapse
Affiliation(s)
- Akira T Kawaguchi
- Cell Transplantation and Regenerative Medicine, Tokai University, Kanagawa, Japan
| | | | - Mariko Yamano
- Department of Rehabilitation, Osaka Prefecture University, Osaka, Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyoto, Japan
| | - Kaori Sekine
- Department of Human Structure and Function, Tokai University, Kanagawa, Japan
| | - Tetsuro Tamaki
- Department of Human Structure and Function, Tokai University, Kanagawa, Japan
| |
Collapse
|
39
|
Kitagishi H, Ohara K, Shimoji D, Vonesch M, Weiss J, Wytko JA. Hydrogen bond directed molecular recognition in water in a strapped-porphyrin-cyclodextrin assembly. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A water soluble, phenanthroline-strapped zinc porphyrin bearing four arylsulfonate groups formed a stable host–guest complex with two per-[Formula: see text]-methylated [Formula: see text]-cyclodextrin cavities. In the host–guest assembly, the zinc porphyrin was capable of binding imidazole within the cavity between the zinc(II) ion and the phenanthroline strap in an aqueous medium. The formation of a hydrogen bond between the imidazole NH and the nitrogen atoms of the phenanthroline was an essential element of the binding event, as shown by comparative binding studies with a non-strapped tetrasulfonated zinc porphyrin and with [Formula: see text]-methylimidazole. This hydrogen bonding in an aqueous medium was possible due to the protected hydrophobic environment created by the cyclodextrins around the phenanthroline strap. This type of binding event may provide a biomimetic approach to study water soluble heme protein models.
Collapse
Affiliation(s)
- Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Kazuki Ohara
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Daiki Shimoji
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Maxime Vonesch
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Jean Weiss
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Jennifer A. Wytko
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
40
|
|
41
|
Tang Z, Song B, Ma H, Luo T, Guo L, Yuan J. Mitochondria-Targetable Ratiometric Time-Gated Luminescence Probe for Carbon Monoxide Based on Lanthanide Complexes. Anal Chem 2019; 91:2939-2946. [PMID: 30674191 DOI: 10.1021/acs.analchem.8b05127] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
As a critical gasotransmitter, carbon monoxide (CO) has been demonstrated to be related with mitochondrial respiration, but the monitoring of CO in mitochondria remains a great challenge. In this work, a unique ratiometric time-gated luminescence (TGL) probe, Mito-NBTTA-Tb3+/Eu3+, that can specifically respond to mitochondrial CO has been developed. The probe was designed by incorporating a mitochondria-targeting moiety, triphenylphosphonium, into a CO-activatable terpyridine polyacid derivative, 4'-(4-nitrobenzyloxy-2,2':6',2''-terpyridine-6,6''-diyl) bis(methylenenitrilo) tetrakis(acetic acid), for coordinating to Eu3+ and Tb3+ ions to construct lanthanide complex-based probe for ratiometric TGL detection of CO. Upon reaction with CO, accompanied by the conversion of nitro group to amino group, a 1,6-rearrangement-elimination reaction occurs, which leads to the cleavage of 4-nitrobenzyl group from Mito-NBTTA-Tb3+/Eu3+, resulting in the significant increase of Tb3+ emission at 540 nm and moderate decrease of Eu3+ emission at 610 nm. After the reaction, the I540/ I610 ratio was found to be 48-fold enhanced. This feature allowed Mito-NBTTA-Tb3+/Eu3+ to be employed as a ratiometric TGL probe for CO detection with the I540/ I610 ratio as a signal. In addition, the probe showed outstanding mitochondria-localization characteristic, which enabled the probe to be successfully applied to imaging CO within mitochondria of living cells under TGL and ratiometric modes. The application of Mito-NBTTA-Tb3+/Eu3+ was demonstrated by the visualization and quantitative detection of exogenous and endogenous CO in living cells and mouse liver tissue slices, as well as in living Daphnia magna and mice. All of the results suggested the potential of Mito-NBTTA-Tb3+/Eu3+ for the quantitative monitoring of CO in vitro and in vivo.
Collapse
Affiliation(s)
- Zhixin Tang
- State Key Laboratory of Fine Chemicals, School of Chemistry , Dalian University of Technology , Dalian 116024 , China
| | - Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemistry , Dalian University of Technology , Dalian 116024 , China
| | - Hua Ma
- State Key Laboratory of Fine Chemicals, School of Chemistry , Dalian University of Technology , Dalian 116024 , China
| | - Tianlie Luo
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Linggong Road 2 , Dalian 116024 , China
| | - Lianying Guo
- Department of Pathophysiology , Dalian Medical University , Dalian 116044 , P. R. China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemistry , Dalian University of Technology , Dalian 116024 , China
| |
Collapse
|
42
|
Optimized synthesis of a per-O-methylated β-cyclodextrin dimer linked at the secondary face by a pyridine ligand. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0839-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Circadian clock disruption by selective removal of endogenous carbon monoxide. Sci Rep 2018; 8:11996. [PMID: 30097595 PMCID: PMC6086871 DOI: 10.1038/s41598-018-30425-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/30/2018] [Indexed: 11/13/2022] Open
Abstract
Circadian rhythms are regulated by transcription-translation feedback loops (TTFL) of clock genes. Previous studies have demonstrated that core transcriptional factors, NPAS2 and CLOCK, in the TTFL can reversibly bind carbon monoxide (CO) in vitro. However, little is known about whether endogenous CO, which is continuously produced during a heme metabolic process, is involved in the circadian system. Here we show that selective removal of endogenous CO in mice considerably disrupts rhythmic expression of the clock genes. A highly selective CO scavenger, hemoCD1, which is a supramolecular complex of an iron(II)porphyrin with a per-O-methyl-β-cyclodextrin dimer, was used to remove endogenous CO in mice. Intraperitoneal administration of hemoCD1 to mice immediately reduced the amount of internal CO. The removal of CO promoted the bindings of NPAS2 and CLOCK to DNA (E-box) in the murine liver, resulting in up-regulation of the E-box-controlled clock genes (Per1, Per2, Cry1, Cry2, and Rev-erbα). Within 3 h after the administration, most hemoCD1 in mice was excreted in the urine, and heme oxygenase-1 (HO-1) was gradually induced in the liver. Increased endogenous CO production due to the overexpression of HO-1 caused dissociation of NPAS2 and CLOCK from E-box, which in turn induced down-regulation of the clock genes. The down-regulation continued over 12 h even after the internal CO level recovered to normal. The late down-regulation was ascribed to an inflammatory response caused by the endogenous CO reduction. The CO pseudo-knockdown experiments provided the clear evidence that endogenous CO contributes to regulation in the mammalian circadian clock.
Collapse
|
44
|
Liu K, Kong X, Ma Y, Lin W. Preparation of a Nile Red–Pd-based fluorescent CO probe and its imaging applications in vitro and in vivo. Nat Protoc 2018; 13:1020-1033. [DOI: 10.1038/nprot.2018.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Liu K, Kong X, Ma Y, Lin W. Rational Design of a Robust Fluorescent Probe for the Detection of Endogenous Carbon Monoxide in Living Zebrafish Embryos and Mouse Tissue. Angew Chem Int Ed Engl 2017; 56:13489-13492. [DOI: 10.1002/anie.201707518] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/23/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Keyin Liu
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Materials Science and Engineering; University of Jinan; 250022 Jinan Shandong China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Materials Science and Engineering; University of Jinan; 250022 Jinan Shandong China
| | - Yanyan Ma
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Materials Science and Engineering; University of Jinan; 250022 Jinan Shandong China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Materials Science and Engineering; University of Jinan; 250022 Jinan Shandong China
| |
Collapse
|
46
|
Liu K, Kong X, Ma Y, Lin W. Rational Design of a Robust Fluorescent Probe for the Detection of Endogenous Carbon Monoxide in Living Zebrafish Embryos and Mouse Tissue. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707518] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Keyin Liu
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Materials Science and Engineering; University of Jinan; 250022 Jinan Shandong China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Materials Science and Engineering; University of Jinan; 250022 Jinan Shandong China
| | - Yanyan Ma
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Materials Science and Engineering; University of Jinan; 250022 Jinan Shandong China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging; School of Chemistry and Chemical Engineering; School of Materials Science and Engineering; University of Jinan; 250022 Jinan Shandong China
| |
Collapse
|
47
|
Minegishi S, Yumura A, Miyoshi H, Negi S, Taketani S, Motterlini R, Foresti R, Kano K, Kitagishi H. Detection and Removal of Endogenous Carbon Monoxide by Selective and Cell-Permeable Hemoprotein Model Complexes. J Am Chem Soc 2017; 139:5984-5991. [PMID: 28388069 DOI: 10.1021/jacs.7b02229] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Carbon monoxide (CO) is produced in mammalian cells during heme metabolism and serves as an important signaling messenger. Here we report the bioactive properties of selective CO scavengers, hemoCD1 and its derivative R8-hemoCD1, which have the ability to detect and remove endogenous CO in cells. HemoCD1 is a supramolecular hemoprotein-model complex composed of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphinatoiron(II) and a per-O-methylated β-cyclodextrin dimer having an pyridine linker. We demonstrate that hemoCD1 can be used effectively to quantify endogenous CO in cell lysates by a simple spectrophotometric method. The hemoCD1 assay detected ca. 260 pmol of CO in 106 hepatocytes, which was well-correlated with the amount of intracellular bilirubin, the final breakdown product of heme metabolism. We then covalently attached an octaarginine peptide to a maleimide-appended hemoCD1 to synthesize R8-hemoCD1, a cell-permeable CO scavenger. Indeed, R8-hemoCD1 was taken up by intact cells and captured intracellular CO with high efficiency. Moreover, we revealed that removal of endogenous CO by R8-hemoCD1 in cultured macrophages led to a significant increase (ca. 2.5-fold) in reactive oxygen species production and exacerbation of inflammation after challenge with lipopolysaccharide. Thus, R8-hemoCD1 represents a powerful expedient for exploring specific and still unidentified biological functions of CO in cells.
Collapse
Affiliation(s)
- Saika Minegishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University , Kyotanabe, Kyoto 610-0321, Japan
| | - Aki Yumura
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University , Kyotanabe, Kyoto 610-0321, Japan
| | - Hirotsuna Miyoshi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University , Kyotanabe, Kyoto 610-0321, Japan
| | - Shigeru Negi
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts , Kyotanabe, Kyoto 610-0395, Japan
| | - Shigeru Taketani
- Department of Microbiology, Kansai Medical University , Hirakata, Osaka 573-1010, Japan
| | - Roberto Motterlini
- Inserm U955 , Team 12, Créteil 94000, France.,Université Paris Est , Faculty of Medicine, Créteil 94000, France
| | - Roberta Foresti
- Inserm U955 , Team 12, Créteil 94000, France.,Université Paris Est , Faculty of Medicine, Créteil 94000, France
| | - Koji Kano
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University , Kyotanabe, Kyoto 610-0321, Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University , Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
48
|
Takeda TA, Sasai M, Adachi Y, Ohnishi K, Fujisawa JI, Izawa S, Taketani S. Potential role of heme metabolism in the inducible expression of heme oxygenase-1. Biochim Biophys Acta Gen Subj 2017; 1861:1813-1824. [PMID: 28347842 DOI: 10.1016/j.bbagen.2017.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/06/2017] [Accepted: 03/23/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND The degradation of heme significantly contributes to cytoprotective effects against oxidative stress and inflammation. The enzyme heme oxygenase-1 (HO-1), involved in the degradation of heme, forms carbon monoxide (CO), ferrous iron, and bilirubin in conjunction with biliverdin reductase, and is induced by various stimuli including oxidative stress and heavy metals. We examined the involvement of heme metabolism in the induction of HO-1 by the inducers sulforaphane and sodium arsenite. METHODS We examined the expression of HO-1 in sulforaphane-, sodium arsenite- and CORM3-treated HEK293T cells, by measuring the transcriptional activity and levels of mRNA and protein. RESULTS The blockade of heme biosynthesis by succinylacetone and N-methyl protoporphyrin, which are inhibitors of heme biosynthesis, markedly decreased the induction of HO-1. The knockdown of the first enzyme in the biosynthesis of heme, 5-aminolevulinic acid synthase, also decreased the induction of HO-1. The cessation of HO-1 induction occurred at the transcriptional and translational levels, and was mediated by the activation of the heme-binding transcriptional repressor Bach1 and translational factor HRI. CO appeared to improve the expression of HO-1 at the transcriptional and translational levels. CONCLUSIONS We demonstrated the importance of heme metabolism in the stress-inducible expression of HO-1, and also that heme and its degradation products are protective factors for self-defense responses. GENERAL SIGNIFICANCE The key role of heme metabolism in the stress-inducible expression of HO-1 may promote further studies on heme and its degradation products as protective factors of cellular stresses and iron homeostasis in specialized cells, organs, and whole animal systems.
Collapse
Affiliation(s)
- Taka-Aki Takeda
- Department of Biotechnology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8510, Japan
| | - Machiko Sasai
- Department of Biotechnology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8510, Japan
| | - Yuka Adachi
- Department of Biotechnology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8510, Japan
| | - Keiko Ohnishi
- Department of Biotechnology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8510, Japan
| | - Jun-Ichi Fujisawa
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka 573-8510, Japan
| | - Shingo Izawa
- Department of Biotechnology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8510, Japan
| | - Shigeru Taketani
- Department of Biotechnology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8510, Japan; Unit of Research Complex, Kansai Medical University, Hirakata, Osaka 573-8510, Japan.
| |
Collapse
|
49
|
Li Z, Pierri AE, Huang PJ, Wu G, Iretskii AV, Ford PC. Dinuclear PhotoCORMs: Dioxygen-Assisted Carbon Monoxide Uncaging from Long-Wavelength-Absorbing Metal–Metal-Bonded Carbonyl Complexes. Inorg Chem 2017; 56:6094-6104. [DOI: 10.1021/acs.inorgchem.6b03138] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhi Li
- Department of Chemistry
and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Agustin E. Pierri
- Department of Chemistry
and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Po-Ju Huang
- Department of Chemistry
and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Guang Wu
- Department of Chemistry
and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Alexei V. Iretskii
- Department of Chemistry
and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
- Department of Chemistry and Environmental
Sciences, Lake Superior State University, Sault Sainte Marie, Michigan 49783, United States
| | - Peter C. Ford
- Department of Chemistry
and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
50
|
Motterlini R, Foresti R. Biological signaling by carbon monoxide and carbon monoxide-releasing molecules. Am J Physiol Cell Physiol 2017; 312:C302-C313. [DOI: 10.1152/ajpcell.00360.2016] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 02/02/2023]
Abstract
Carbon monoxide (CO) is continuously produced in mammalian cells during the degradation of heme. It is a stable gaseous molecule that reacts selectively with transition metals in a specific redox state, and these characteristics restrict the interaction of CO with defined biological targets that transduce its signaling activity. Because of the high affinity of CO for ferrous heme, these targets can be grouped into heme-containing proteins, representing a large variety of sensors and enzymes with a series of diverse function in the cell and the organism. Despite this notion, progress in identifying which of these targets are selective for CO has been slow and even the significance of elevated carbonmonoxy hemoglobin, a classical marker used to diagnose CO poisoning, is not well understood. This is also due to the lack of technologies capable of assessing in a comprehensive fashion the distribution and local levels of CO between the blood circulation, the tissue, and the mitochondria, one of the cellular compartments where CO exerts its signaling or detrimental effects. Nevertheless, the use of CO gas and CO-releasing molecules as pharmacological approaches in models of disease has provided new important information about the signaling properties of CO. In this review we will analyze the most salient effects of CO in biology and discuss how the binding of CO with key ferrous hemoproteins serves as a posttranslational modification that regulates important processes as diverse as aerobic metabolism, oxidative stress, and mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Roberto Motterlini
- Inserm U955, Team 12, Créteil, France; and Faculty of Medicine, Université Paris Est, Créteil, France
| | - Roberta Foresti
- Inserm U955, Team 12, Créteil, France; and Faculty of Medicine, Université Paris Est, Créteil, France
| |
Collapse
|