1
|
Mandal S, Ghosh TK. Molecular insights into the water dissociation and proton dynamics at the β-TaON (100)/water interface. Phys Chem Chem Phys 2024; 26:22173-22181. [PMID: 39129430 DOI: 10.1039/d4cp01219d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Understanding the dynamic nature of the semiconductor-water interface is crucial for developing efficient photoelectrochemical water splitting catalysts, as it governs reactivity through charge and mass transport. In this study, we employ ab initio molecular dynamics simulations to investigate the structural and dynamical properties of water at the β-TaON (100) surface. We observed that a well-defined interface is established through the spontaneous dissociation of water and the reorganization of surface chemical bonds. This leads to the formation of a partially hydroxylated surface, accompanied by a strong network of hydrogen bonds at the TaON-water interface. Consequently, various proton transport routes, including the proton transfer through "low-barrier hydrogen bond" path, become active across the interface, dramatically increasing the overall rate of the proton hopping at the interface. Based on our findings, we propose that the observed high photocatalytic activity of TaON-based semiconductors could be attributed to the spontaneous water dissociation and the resulting high proton transfer rate at the interface.
Collapse
Affiliation(s)
- Sagarmoy Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Tushar Kanti Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|
2
|
Zong L, Lu F, Li P, Fan K, Zhan T, Liu P, Jiang L, Chen D, Zhang R, Wang L. Thermal Shock Synthesis for Loading Sub-2 nm Ru Nanoclusters on Titanium Nitride as a Remarkable Electrocatalyst toward Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403525. [PMID: 38762765 DOI: 10.1002/adma.202403525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/17/2024] [Indexed: 05/20/2024]
Abstract
Heterogeneous catalysts embracing metal entities on suitable supports are profound in catalyzing various chemical reactions, and substantial synthetic endeavors in metal-support interaction modulation are made to enhance catalytic performance. Here, it is reported the loading of sub-2 nm Ru nanocrystals (NCs) on titanium nitride support (HTS-Ru-NCs/TiN) via a special Ru-Ti interaction using the high-temperature shock (HTS) method. Direct dechlorination of the adsorbed RuCl3, ultrafast nucleation process, and short coalescence duration at ultrahigh temperatures contribute to the immobilization of Ru NCs on TiN support via producing the Ru-Ti interfacial perimeter. HTS-Ru-NCs/TiN shows remarkable activity toward hydrogen evolution reaction (HER) in alkaline solution, yielding ultralow overpotentials of 16.3 and 86.6 mV to achieve 10 and 100 mA cm-2, respectively. The alkaline and anion exchange membrane water electrolyzers assembled using HTS-Ru-NCs/TiN yield 1.0 A cm-2 at 1.65 and 1.67 V, respectively, which validate its applicability in the hydrogen production industry. Theoretical simulations reveal the favorable formation of Ru─O and Ti─H bonds at the interfacial perimeters between Ru NCs and TiN, which accelerates the prerequisite water dissociation kinetics for enhanced HER activity. This exemplified work motivates the design of specific interfacial perimeters via the HTS strategy to improve the performance of diverse catalysis.
Collapse
Affiliation(s)
- Lingbo Zong
- International Cooperation United Laboratory of Eco-chemical Engineering and Green Manufacturing, Technology Innovation Center of Battery Safety and Energy Storage Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Fenghong Lu
- International Cooperation United Laboratory of Eco-chemical Engineering and Green Manufacturing, Technology Innovation Center of Battery Safety and Energy Storage Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Ping Li
- International Cooperation United Laboratory of Eco-chemical Engineering and Green Manufacturing, Technology Innovation Center of Battery Safety and Energy Storage Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Kaicai Fan
- International Cooperation United Laboratory of Eco-chemical Engineering and Green Manufacturing, Technology Innovation Center of Battery Safety and Energy Storage Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Tianrong Zhan
- International Cooperation United Laboratory of Eco-chemical Engineering and Green Manufacturing, Technology Innovation Center of Battery Safety and Energy Storage Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Porun Liu
- Centre for Catalysis and Clean Energy Gold Coast Campus, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Lixue Jiang
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales, 2052, Australia
| | - Dehong Chen
- College of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Ruiyong Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Lei Wang
- International Cooperation United Laboratory of Eco-chemical Engineering and Green Manufacturing, Technology Innovation Center of Battery Safety and Energy Storage Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
3
|
Kobayashi T, Ikeda T, Nakayama A. Long-range proton and hydroxide ion transfer dynamics at the water/CeO 2 interface in the nanosecond regime: reactive molecular dynamics simulations and kinetic analysis. Chem Sci 2024; 15:6816-6832. [PMID: 38725504 PMCID: PMC11077578 DOI: 10.1039/d4sc01422g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
The structural properties, dynamical behaviors, and ion transport phenomena at the interface between water and cerium oxide are investigated by reactive molecular dynamics (MD) simulations employing neural network potentials (NNPs). The NNPs are trained to reproduce density functional theory (DFT) results, and DFT-based MD (DFT-MD) simulations with enhanced sampling techniques and refinement schemes are employed to efficiently and systematically acquire training data that include diverse hydrogen-bonding configurations caused by proton hopping events. The water interfaces with two low-index surfaces of (111) and (110) are explored with these NNPs, and the structure and long-range proton and hydroxide ion transfer dynamics are examined with unprecedented system sizes and long simulation times. Various types of proton hopping events at the interface are categorized and analyzed in detail. Furthermore, in order to decipher the proton and hydroxide ion transport phenomena along the surface, a counting analysis based on the semi-Markov process is formulated and applied to the MD trajectories to obtain reaction rates by considering the transport as stochastic jump processes. Through this model, the coupling between hopping events, vibrational motions, and hydrogen bond networks at the interface are quantitatively examined, and the high activity and ion transport phenomena at the water/CeO2 interface are unequivocally revealed in the nanosecond regime.
Collapse
Affiliation(s)
- Taro Kobayashi
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| | - Tatsushi Ikeda
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| | - Akira Nakayama
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| |
Collapse
|
4
|
Ritacco I, Gatta G, Caporaso L, Farnesi Camellone M. Ab initio molecular dynamics of solvation effects and reactivity at the interface between water and ascorbic acid covered anatase TiO 2 (101). Chemphyschem 2024; 25:e202300768. [PMID: 38153248 DOI: 10.1002/cphc.202300768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 12/29/2023]
Abstract
In this work, we present a detailed study of the interaction between ascorbic acid (L-asc) and anatase TiO2 (101) surface both in gas phase and in contact with water by using density functional theory and ab initio molecular dynamics simulations. In gas phase, L-asc strongly binds the TiO2 (101) surface as a dianion (L-asc2- ), adopting a bridging bidentate coordination mode (BB), with the two acid protons transferred to two surface 2-fold bridging oxygens (O2c). AIMD simulations show that the interaction between the organic ligand and the anatase surface is stable and comparable to the vacuum one despite the possible solvent effects and/or possible structural distortions of the ligand. In addition, during the AIMD simulations hydroxylation phenomena occur forming transient H3 O+ ions at the solid-liquid interface. For the first time, our results provide insight into the role of the ascorbic acid on the electronic properties of the TiO2 (101), the influence of the water environment on the ligand-surface interaction and the nature of the solid-liquid interface.
Collapse
Affiliation(s)
- Ida Ritacco
- Dipartimento di Chimica e Biologia, Università degli Studi di Salerno, via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Gianluca Gatta
- Dipartimento di Medicina di Precisione Divisione di Radiologia, Università della Campania Luigi Vanvitelli, Napoli, Italia, 80131
| | - Lucia Caporaso
- Dipartimento di Chimica e Biologia, Università degli Studi di Salerno, via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Matteo Farnesi Camellone
- CNR-IOM, Consiglio Nazionale delle Ricerche -, Istituto Officina dei Materiali, c/o SISSA, 34136, Trieste, Italy
| |
Collapse
|
5
|
Farha TD, Kim S, Imayasu M, Miyawaki A, Tsutsui H. Reverse pH-dependent fluorescence protein visualizes pattern of interfacial proton dynamics during hydrogen evolution reaction. Sci Rep 2023; 13:17489. [PMID: 37840037 PMCID: PMC10577132 DOI: 10.1038/s41598-023-44758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023] Open
Abstract
Reverse pH-dependent fluorescent protein, including dKeima, is a type of fluorescent protein in which the chromophore protonation state depends inversely on external pH. The dependence is maintained even when immobilized at the metal-solution interface. But, interestingly, its responses to the hydrogen evolution reaction (HER) at the interface are not reversed: HER rises the pH of the solution around the cathode, but, highly active HER induces chromophore deprotonation regardless of the reverse pH dependence, reflecting an interface-specific deprotonation effect by HER. Here, we exploit this phenomenon to perform scanning-less, real-time visualization of interfacial proton dynamics during HER at a wide field of view. By using dKeima, the HER-driven deprotonation effect was well discriminated from the solution pH effect. In the electrodes of composite structures with a catalyst, dKeima visualized keen dependence of the proton depletion pattern on the electrode configuration. In addition, propagations of optical signals were observed, which seemingly reflect long-range proton hopping confined to the metal-solution interface. Thus, reverse pH-dependent fluorescent proteins provide a unique tool for spatiotemporal analysis of interfacial proton dynamics, which is expected to contribute to a better understanding of the HER process and ultimately to the safe and efficient production of molecular hydrogen.
Collapse
Affiliation(s)
- Trisha Diba Farha
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, 923-1292, Japan
| | - Samyoung Kim
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, 923-1292, Japan
| | - Mieko Imayasu
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, 923-1292, Japan
| | - Atsushi Miyawaki
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, 351-0198, Japan
| | - Hidekazu Tsutsui
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, 923-1292, Japan.
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
6
|
Li W, Gan J, Liu Y, Zou Y, Zhang S, Qu Y. Platinum and Frustrated Lewis Pairs on Ceria as Dual-Active Sites for Efficient Reverse Water-Gas Shift Reaction at Low Temperatures. Angew Chem Int Ed Engl 2023; 62:e202305661. [PMID: 37479952 DOI: 10.1002/anie.202305661] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/23/2023]
Abstract
The low-temperature reverse water-gas shift (RWGS) reaction faces the following obstacles: low activity and unsatisfactory selectivity. Herein, the dual-active sites of platinum (Pt) clusters and frustrated Lewis pair (FLP) on porous CeO2 nanorods (Ptcluster /PN-CeO2 ) provide an interface-independent pathway to boost high performance RWGS reaction at low temperatures. Mechanistic investigations illustrate that Pt clusters can effectively activate and dissociate H2 . The FLP sites, instead of the metal and support interfaces, not only enhance the strong adsorption and activation of CO2 , but also significantly weaken CO adsorption on FLP to facilitate CO release and suppress the CH4 formation. With the help of hydrogen spillover from Pt to PN-CeO2 , the Ptcluster /PN-CeO2 catalysts achieved a CO yield of 29.6 %, which is very close to the thermodynamic equilibrium yield of CO (29.8 %) at 350 °C. Meanwhile, the Ptcluster /PN-CeO2 catalysts delivered a large turnover frequency of 8720 h-1 . Moreover, Ptcluster /PN-CeO2 operated stably and continuously for at least 840 h. This finding provides a promising path toward optimizing the RWGS reaction.
Collapse
Affiliation(s)
- Wenbin Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jie Gan
- School of Materials and Environmental Engineering, Chizhou University, Chizhou, 247000, China
| | - Yuxuan Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yong Zou
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Sai Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Yongquan Qu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
7
|
Agosta L, Arismendi-Arrieta D, Dzugutov M, Hermansson K. Origin of the Hydrophobic Behaviour of Hydrophilic CeO 2. Angew Chem Int Ed Engl 2023; 62:e202303910. [PMID: 37011105 DOI: 10.1002/anie.202303910] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
The nature of the hydrophobicity found in rare-earth oxides is intriguing. The CeO2 (100) surface, despite its strongly hydrophilic nature, exhibits hydrophobic behaviour when immersed in water. In order to understand this puzzling and counter-intuitive effect we performed a detailed analysis of the confined water structure and dynamics. We report here an ab-initio molecular dynamics simulation (AIMD) study which demonstrates that the first adsorbed water layer, in immediate contact with the hydroxylated CeO2 surface, generates a hydrophobic interface with respect to the rest of the liquid water. The hydrophobicity is manifested in several ways: a considerable diffusion enhancement of the confined liquid water as compared with bulk water at the same thermodynamic condition, a weak adhesion energy and few H-bonds above the hydrophobic water layer, which may also sustain a water droplet. These findings introduce a new concept in water/rare-earth oxide interfaces: hydrophobicity mediated by specific water patterns on a hydrophilic surface.
Collapse
Affiliation(s)
- Lorenzo Agosta
- Department of Chemistry-Ångström, Uppsala University, 751 21, Uppsala, Sweden
| | | | - Mikhail Dzugutov
- Department of Chemistry-Ångström, Uppsala University, 751 21, Uppsala, Sweden
| | - Kersti Hermansson
- Department of Chemistry-Ångström, Uppsala University, 751 21, Uppsala, Sweden
| |
Collapse
|
8
|
Darkwah WK, Appiagyei AB, Puplampu JB, Otabil Bonsu J. Mechanistic Understanding of the Use of Single-Atom and Nanocluster Catalysts for Syngas Production via Partial Oxidation of Methane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37315185 DOI: 10.1021/acs.langmuir.2c03271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single-atom and nanocluster catalysts presenting potent catalytic activity and excellent stability are used in high-temperature applications such as in structural composites, electrical devices, and catalytic chemical reactions. Recently, more attention has been drawn to application of these materials in clean fuel processing based on oxidation in terms of recovery and purification. The most popular media for catalytic oxidation reactions include gas phases, pure organic liquid phases, and aqueous solutions. It has been proven from the literature that catalysts are frequently selected as the finest in regulating organic wastewater, solar energy utilization, and environmental treatment applications in most catalytic oxidation of methane vis-à-vis photons and in environmental treatment applications. Single-atom and nanocluster catalysts have been engineered and applied in catalytic oxidations considering metal-support interactions and mechanisms facilitating catalytic deactivation. In this review, the present improvements on engineering single-atom and nano-catalysts are discussed. In detail, we summarize structure modification strategies, catalytic mechanisms, methods of synthesis, and application of single-atom and nano-catalysts for partial oxidation of methane (POM). We also present the catalytic performance of various atoms in the POM reaction. Full knowledge of the use of remarkable POM vis-à-vis the excellent structure is revealed. Based on the review conducted on single-atom and nanoclustered catalysts, we conclude their viability for POM reactions; however, the catalyst design must be carefully considered not only for isolating the individual influences from the active metal and support but also for incorporating the interactions of these components.
Collapse
Affiliation(s)
- Williams Kweku Darkwah
- School of Chemical Engineering, Faculty of Engineering, University of New South Wales Sydney, Kensington, Sydney, New South Wales 2052, Australia
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast 233, Ghana
| | - Alfred Bekoe Appiagyei
- Department of Chemical and Biological Engineering, Monash University, Wellington Road, Clayton, Melbourne, Victoria 3800, Australia
| | - Joshua B Puplampu
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast 233, Ghana
| | - Jacob Otabil Bonsu
- School of Chemical Engineering, Faculty of Engineering, University of New South Wales Sydney, Kensington, Sydney, New South Wales 2052, Australia
| |
Collapse
|
9
|
You X, Han J, Del Colle V, Xu Y, Chang Y, Sun X, Wang G, Ji C, Pan C, Zhang J, Gao Q. Relationship between oxide identity and electrocatalytic activity of platinum for ethanol electrooxidation in perchlorate acidic solution. Commun Chem 2023; 6:101. [PMID: 37248368 DOI: 10.1038/s42004-023-00908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023] Open
Abstract
Water and its dissociated species at the solid‒liquid interface play critical roles in catalytic science; e.g., functions of oxygen species from water dissociation are gradually being recognized. Herein, the relationship between oxide identity (PtOHads, PtOads, and PtO2) and electrocatalytic activity of platinum for ethanol electrooxidation was obtained in perchlorate acidic solution over a wide potential range with an upper potential of 1.5 V (reversible hydrogen electrode, RHE). PtOHads and α-PtO2, rather than PtOads, act as catalytic centers promoting ethanol electrooxidation. This relationship was corroborated on Pt(111), Pt(110), and Pt(100) electrodes, respectively. A reaction mechanism of ethanol electrooxidation was developed with DFT calculations, in which platinum oxides-mediated dehydrogenation and hydrated reaction intermediate, geminal diol, can perfectly explain experimental results, including pH dependence of product selectivity and more active α-PtO2 than PtOHads. This work can be generalized to the oxidation of other substances on other metal/alloy electrodes in energy conversion and electrochemical syntheses.
Collapse
Affiliation(s)
- Xinyu You
- College of Chemical Engineering, China University of Mining and Technology, 221116, Xuzhou, People's Republic of China
| | - Jiaxing Han
- College of Chemical Engineering, China University of Mining and Technology, 221116, Xuzhou, People's Republic of China
| | - Vinicius Del Colle
- Department of Chemistry, Federal University of Alagoas-Campus Arapiraca, Av. Manoel Severino Barbosa s/n, Arapiraca, AL, 57309-005, Brazil
| | - Yuqiang Xu
- College of Chemical Engineering, China University of Mining and Technology, 221116, Xuzhou, People's Republic of China
| | - Yannan Chang
- College of Chemical Engineering, China University of Mining and Technology, 221116, Xuzhou, People's Republic of China
| | - Xiao Sun
- College of Chemical Engineering, China University of Mining and Technology, 221116, Xuzhou, People's Republic of China
| | - Guichang Wang
- Department of Chemistry, Nankai University, 300071, Tianjin, People's Republic of China
| | - Chen Ji
- College of Chemical Engineering, China University of Mining and Technology, 221116, Xuzhou, People's Republic of China
| | - Changwei Pan
- College of Chemical Engineering, China University of Mining and Technology, 221116, Xuzhou, People's Republic of China.
| | - Jiujun Zhang
- College of Chemical Engineering, China University of Mining and Technology, 221116, Xuzhou, People's Republic of China.
- School of Materials Science and Engineering, Fuzhou University, 350108, Fuzhou, People's Republic of China.
| | - Qingyu Gao
- College of Chemical Engineering, China University of Mining and Technology, 221116, Xuzhou, People's Republic of China.
| |
Collapse
|
10
|
Yi H, Almatrafi E, Ma D, Huo X, Qin L, Li L, Zhou X, Zhou C, Zeng G, Lai C. Spatial confinement: A green pathway to promote the oxidation processes for organic pollutants removal from water. WATER RESEARCH 2023; 233:119719. [PMID: 36801583 DOI: 10.1016/j.watres.2023.119719] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/27/2022] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Organic pollutants removal from water is pressing owing to the great demand for clean water. Oxidation processes (OPs) are the commonly used method. However, the efficiency of most OPs is limited owing to the poor mass transfer process. Spatial confinement is a burgeoning way to solve this limitation by use of nanoreactor. Spatial confinement in OPs would (i) alter the transport characteristics of protons and charges; (ii) bring about molecular orientation and rearrangement; (iii) cause the dynamic redistribution of active sites in catalyst and reduce the entropic barrier that is high in unconfined space. So far, spatial confinement has been utilized for various OPs, such as Fenton, persulfate, and photocatalytic oxidation. A comprehensive summary and discussion on the fundamental mechanisms of spatial confinement mediated OPs is needed. Herein, the application, performance and mechanisms of spatial confinement mediated OPs are overviewed firstly. Subsequently, the features of spatial confinement and their effects on OPs are discussed in detail. Furthermore, environmental influences (including environmental pH, organic matter and inorganic ions) are studied with analyzing their intrinsic connection with the features of spatial confinement in OPs. Lastly, challenges and future development direction of spatial confinement mediated OPs are proposed.
Collapse
Affiliation(s)
- Huan Yi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Xiuqing Huo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P.R. China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
11
|
Cao W, Xia GJ, Yao Z, Zeng KH, Qiao Y, Wang YG. Aldehyde Hydrogenation by Pt/TiO 2 Catalyst in Aqueous Phase: Synergistic Effect of Oxygen Vacancy and Solvent Water. JACS AU 2023; 3:143-153. [PMID: 36711102 PMCID: PMC9875238 DOI: 10.1021/jacsau.2c00560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
The aldehyde hydrogenation for stabilizing and upgrading biomass is typically performed in aqueous phase with supported metal catalysts. By combining density functional theory calculations and ab initio molecular dynamics simulations, the model reaction of formaldehyde hydrogenation with a Pt/TiO2 catalyst is investigated with explicit solvent water molecules. In aqueous phase, both the O vacancy (Ov) on support and solvent molecules could donate charges to a Pt cluster, where the Ov could dominantly reduce the Pt cluster from positive to negative. During the formaldehyde hydrogenation, the water molecules could spontaneously protonate the O in the aldehyde group by acid/base exchange, generating the OH* at the metal-support interface by long-range proton transfer. By comparing the stoichiometric and reduced TiO2 support, it is found that the further hydrogenation of OH* is hard on the positively charged Pt cluster over stoichiometric TiO2. However, with the presence of Ov on reduced support, the OH* hydrogenation could become not only exergonic but also kinetically more facile, which prohibits the catalyst from poisoning. This mechanism suggests that both the proton transfer from solvent water molecules and the easier OH* hydrogenation from Ov could synergistically promote aldehyde hydrogenation. That means, even for such simple hydrogenation in water, the catalytic mechanism could explicitly relate to all of the metal cluster, oxide support, and solvent waters. Considering the ubiquitous Ov defects in reducible oxide supports and the common aqueous environment, this synergistic effect may not be exclusive to Pt/TiO2, which can be crucial for supported metal catalysts in biomass conversion.
Collapse
|
12
|
Xu R, Zhou Z, Wang Y, Xiao H, Xu L, Ding Y, Li X, Li A, Fang G. First-Principles Molecular Dynamics Simulations on Water-Solid Interface Behavior of H 2O-Based Atomic Layer Deposition of Zirconium Dioxide. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4362. [PMID: 36558215 PMCID: PMC9783483 DOI: 10.3390/nano12244362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
As an important inorganic material, zirconium dioxide (ZrO2) has a wide range of applications in the fields of microelectronics, coating, catalysis and energy. Due to its high dielectric constant and thermodynamic stability, ZrO2 can be used as dielectric material to replace traditional silicon dioxide. Currently, ZrO2 dielectric films can be prepared by atomic layer deposition (ALD) using water and zirconium precursors, namely H2O-based ALD. Through density functional theory (DFT) calculations and first-principles molecular dynamics (FPMD) simulations, the adsorption and dissociation of water molecule on the ZrO2 surface and the water-solid interface reaction were investigated. The results showed that the ZrO2 (111) surface has four Lewis acid active sites with different coordination environments for the adsorption and dissociation of water. The Zr atom on the surface can interacted with the O atom of the water molecule via the p orbital of the O atom and the d orbital of the Zr atom. The water molecules could be dissociated via the water-solid interface reaction of the first or second layer of water molecules with the ZrO2 (111) surface. These insights into the adsorption and dissociation of water and the water-solid interface reaction on the ZrO2 surface could also provide a reference for the water-solid interface behavior of metal oxides, such as H2O-based ALD.
Collapse
Affiliation(s)
- Rui Xu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhongchao Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yingying Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Hongping Xiao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Lina Xu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yihong Ding
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xinhua Li
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Aidong Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Guoyong Fang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
13
|
Zhao Y, Zhang Q, Ma J, Yi R, Gou L, Nie D, Han X, Zhang L, Wang Y, Xu X, Wang Z, Chen L, Lu Y, Zhang S, Zhang L. Directional growth of quasi-2D Cu2O monocrystals on rGO membranes in aqueous environments. iScience 2022; 25:105472. [DOI: 10.1016/j.isci.2022.105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
|
14
|
Qi X, Fu J, Jiang K, Chen T, He Y, Li J, Cao J, Wei H, Huang L, Chu H. Suppressing catalyst deactivation on Pd/CeO2 for selective oxidation of glucose into gluconic acid. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Zhang L, Liu Z, Yang C, García Sakai V, Tyagi M, Hong L. Conduction Mechanism in Graphene Oxide Membranes with Varied Water Content: From Proton Hopping Dominant to Ion Diffusion Dominant. ACS NANO 2022; 16:13771-13782. [PMID: 35993828 DOI: 10.1021/acsnano.2c00686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Proton conductors, particularly hydrated solid membranes, have various applications in sensors, fuel cells, and cellular biological systems. Unraveling the intrinsic proton transfer mechanism is critical for establishing the foundation of proton conduction. Two scenarios on electrical conduction, the Grotthuss and the vehicle mechanisms, have been reported by experiments and simulations. But separating and quantifying the contributions of these two components from experiments is difficult. Here, we present the conductive behavior of a two-dimensional layered proton conductor, graphene oxide membrane (GOM), and find that proton hopping is dominant at low water content, while ion diffusion prevails with increasing water content. This change in the conduction mechanism is attributable to the layers of water molecules in GOM nanosheets. The overall conductivity is greatly improved by forming one layer of water molecules. It reaches the maximum with two layers of water molecules, resulting from creating a complete hydrogen-bond network within GOM. When more than two layers of water molecules enter the GOM nanosheets, inducing the breakage of the ordered lamellar structure, protons spread in both in-plane and out-of-plane directions inside the GOM. Our results validate the existence of two conduction mechanisms and show their distinct contributions to the overall conductivity. Furthermore, these findings provide an optimization strategy for the design of realizing the fast proton transfer in materials with water participation.
Collapse
Affiliation(s)
- Lei Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhuo Liu
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai National Center for Applied Mathematics (SJTU Center) and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenxing Yang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Victoria García Sakai
- Rutherford Appleton Laboratory, ISIS Neutron and Muon Facility, Science and Technology Facilities Council, Didcot OX11 0QX, United Kingdom
| | - Madhusudan Tyagi
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Liang Hong
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai National Center for Applied Mathematics (SJTU Center) and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Liu F, Park YS, Diercks D, Kazempoor P, Duan C. Enhanced CO 2 Methanation Activity of Sm 0.25Ce 0.75O 2-δ-Ni by Modulating the Chelating Agents-to-Metal Cation Ratio and Tuning Metal-Support Interactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13295-13304. [PMID: 35262347 DOI: 10.1021/acsami.1c23881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Highly active and selective CO2 methanation catalysts are critical to CO2 upgrading, synthetic natural gas production, and CO2 emission reduction. Wet impregnation is widely used to synthesize oxide-supported metallic nanoparticles as the catalyst for CO2 methanation. However, as the reagents cannot be homogeneously mixed at an atomic level, it is challenging to modulate the microstructure, crystal structure, chemical composition, and electronic structure of catalysts via wet impregnation. Herein, a scalable and straightforward catalyst fabrication approach has been designed and validated to produce Sm0.25Ce0.75O2-δ-supported Ni (SDC-Ni) as the CO2 methanation catalyst. By varying the chelating agents-to-total metal cations ratio (C/I ratio) during the catalyst synthesis, we can readily and simultaneously modulate the microstructure, metallic surface area, crystal structure, chemical composition, and electronic structure of SDC-Ni, consequently fine-tuning the oxide-support interactions and CO2 methanation activity. The optimal C/I ratio (0.1) leads to an SDC-Ni catalyst that facilitates C-O bond cleavage and significantly improves CO2 conversion at 250 °C. A CO2-to-CH4 yield of >73% has been achieved at 250 °C. Furthermore, a stable operation of >1500 hours has been demonstrated, and no degradation is observed. Extensive characterizations were performed to fundamentally understand how to tune and enhance CO2 methanation activity of SDC-Ni by modulating the C/I ratio. The correlation of physical, chemical, and catalytic properties of SDC-Ni with the C/I ratio is established and thoroughly elaborated in this work. This study could be applied to tune the oxide-support interactions of various catalysts for enhancing the catalytic activity.
Collapse
Affiliation(s)
- Fan Liu
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Yoo Sei Park
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - David Diercks
- Department of Metallurgical & Materials Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Pejman Kazempoor
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Chuancheng Duan
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
17
|
Liu H, Wang P, Jiang J, Cheng G, Wu T, Zhang Y. Construction of stable Mo xS y/CeO 2 heterostructures for the electrocatalytic hydrogen evolution reaction. Phys Chem Chem Phys 2022; 24:4891-4898. [PMID: 35137755 DOI: 10.1039/d1cp05466j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unique structures of polynuclear MoxSy clusters make it possible to maximize the number of their active sites and for them to be good candidates for HER catalysts. An appropriate support is highly necessary not only to avoid the desorption of MoxSy clusters in a working environment, but also to improve their HER activity. Our work here shows that the CeO2 support could provide strong support for interaction with various MoxSy clusters and the formed MoxSy/CeO2 hetero-structures also have modest ΔGH* for the HER. The electronic features of MoxSy clusters are regulated by the CeO2 support, which leads to charge redistribution on edge atoms and plays a key role in H adsorption. Our studies provide instructive predictions on efficient candidates of molybdenum-sulfur based catalysts for the HER.
Collapse
Affiliation(s)
- Hongxian Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Pai Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Jinxiu Jiang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Gang Cheng
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang, P. R. China
| | - Tongwei Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Yanning Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| |
Collapse
|
18
|
Qi X, He Y, Yao Y, Li Y, Zhang L, Geng M, Wei H, Chu H. Effect of CeO2 morphology on the catalytic properties of Au/CeO2 for base-free glucose oxidation. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02078a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Au/R-CeO2 catalyst with strong metal–support interaction and abundant oxygen vacancies displays superior glucose oxidation performance, as compared with Au/C-CeO2 and Au/O-CeO2.
Collapse
Affiliation(s)
- Xingyue Qi
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Yalin He
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Yan Yao
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Yiran Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Lu Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Miao Geng
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Hang Wei
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Haibin Chu
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
19
|
Xia GJ, Wang YG. Solvent promotion on the metal-support interaction and activity of Pd@ZrO2 Catalyst: Formation of metal hydrides as the new catalytic active phase at the Solid-Liquid interface. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Zhang J, Zhu D, Yan J, Wang CA. Strong metal-support interactions induced by an ultrafast laser. Nat Commun 2021; 12:6665. [PMID: 34795268 PMCID: PMC8602264 DOI: 10.1038/s41467-021-27000-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
Supported metal catalysts play a crucial role in the modern industry. Constructing strong metal-support interactions (SMSI) is an effective means of regulating the interfacial properties of noble metal-based supported catalysts. Here, we propose a new strategy of ultrafast laser-induced SMSI that can be constructed on a CeO2-supported Pt system by confining electric field in localized interface. The nanoconfined field essentially boosts the formation of surface defects and metastable CeOx migration. The SMSI is evidenced by covering Pt nanoparticles with the CeOx thin overlayer and suppression of CO adsorption. The overlayer is permeable to the reactant molecules. Owing to the SMSI, the resulting Pt/CeO2 catalyst exhibits enhanced activity and stability for CO oxidation. This strategy of constructing SMSI can be extended not only to other noble metal systems (such as Au/TiO2, Pd/TiO2, and Pt/TiO2) but also on non-reducible oxide supports (such as Pt/Al2O3, Au/MgO, and Pt/SiO2), providing a universal way to engineer and develop high-performance supported noble metal catalysts.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Dezhi Zhu
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jianfeng Yan
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Chang-An Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
21
|
Mu Y, Wang T, Zhang J, Meng C, Zhang Y, Kou Z. Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00124-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Han ZK, Duan X, Li X, Zhang D, Gao Y. The dynamic interplay between water and oxygen vacancy at the near-surface of ceria. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:424001. [PMID: 34256364 DOI: 10.1088/1361-648x/ac13fc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Water, even at trace concentrations, strongly increases the CO oxidation activities of the reducible metal oxide supported noble-metal catalysts, where the transfer of proton plays a key role. In this paper, we performed a thorough investigation of the interplay between water molecules and the reduced CeO2(111) surface. It was found that water molecules can induce the migration of oxygen vacancies which in turn results in the formation of surface protons. The proton then entangles with the near-surface polaron to form polaron-proton pair due to their mutual attractive interactions. The hopping of the polaron can easily trigger the long-range or short-range diffusion of protons mediated by water molecules at the CeO2(111) surface. These findings provide new insights into the key roles of oxygen vacancies and polarons in reducible oxide based heterogeneous catalysis, which is beneficial for the understanding of the increased activity of reducible oxide supported metal nanoparticles in the presence of water.
Collapse
Affiliation(s)
- Zhong-Kang Han
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xinyi Duan
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaoyan Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Dawei Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, People's Republic of China
- School of Physics, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Yi Gao
- Key Laboratory of Interfacial Science and Technology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201800, People's Republic of China
- Interdisciplinary Research Center, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, People's Republic of China
| |
Collapse
|
23
|
Brugnoli L, Menziani MC, Urata S, Pedone A. Development and Application of a ReaxFF Reactive Force Field for Cerium Oxide/Water Interfaces. J Phys Chem A 2021; 125:5693-5708. [PMID: 34152149 DOI: 10.1021/acs.jpca.1c04078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ceria (CeO2) is a well-known catalytic oxide with many environmental, energy production, and industrial applications, most of them involving water as a reactant, byproduct, solvent, or simple spectator. In this work, we parameterized a Ce/O/H ReaxFF for the study of ceria and ceria/water interfaces. The parameters were fitted to an ab initio training set obtained at the DFT/PBE0 level, including the structures, cohesive energies, and elastic properties of the crystalline phases Ce, CeO2, and Ce2O3; the O-defective structures and energies of vacancy formation on CeO2 bulk and CeO2 (111) surface, as well as the absorption and reaction energies of H2 and H2O molecules on CeO2 (111). The new potential reproduced reasonably well all the fitted properties as well as the relative stabilities of the different ceria surfaces, the oxygen vacancies formation, and the energies and structures of associative and dissociative water molecules on them. Molecular dynamics simulations of the liquid water on the CeO2 (111) and CeO2 (100) surfaces were carried out to study the coverage and the mechanism of water dissociation. After equilibration, on average, 35% of surface sites of CeO2 (111) are hydroxylated whereas 15% of them are saturated with molecular water associatively adsorbed. As for the CeO2 (100) surface, we observed that water preferentially dissociates covering 90% of the available surface sites in excellent agreement with recent experimental findings.
Collapse
Affiliation(s)
- Luca Brugnoli
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, Modena 41125, , Italy
| | - Maria Cristina Menziani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, Modena 41125, , Italy
| | - Shingo Urata
- Innovative Technology Laboratories, AGC Inc., Yokohama, Kanagawa 230-0045, Japan
| | - Alfonso Pedone
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, Modena 41125, , Italy
| |
Collapse
|
24
|
Wang R, Klein ML, Carnevale V, Borguet E. Investigations of water/oxide interfaces by molecular dynamics simulations. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ruiyu Wang
- Department of Chemistry Temple University Philadelphia Pennsylvania USA
- Center for Complex Materials from First Principles (CCM) Temple University Philadelphia Pennsylvania USA
| | - Michael L. Klein
- Department of Chemistry Temple University Philadelphia Pennsylvania USA
- Center for Complex Materials from First Principles (CCM) Temple University Philadelphia Pennsylvania USA
- Institute for Computational Molecular Science, Temple University Philadelphia Pennsylvania USA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University Philadelphia Pennsylvania USA
- Department of Biology Temple University Philadelphia Pennsylvania USA
| | - Eric Borguet
- Department of Chemistry Temple University Philadelphia Pennsylvania USA
- Center for Complex Materials from First Principles (CCM) Temple University Philadelphia Pennsylvania USA
| |
Collapse
|
25
|
Li K, Deng L, Yi S, Wu Y, Xia G, Zhao J, LU D, Min Y. Boosting the performance by the water solvation shell with hydrogen bonds on protonic ionic liquids: insights into the acid catalysis of the glycosidic bond. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02459g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen-bonding (HB) of protonic ionic liquids induced by the water solvation shell is proposed to dominate in the acid catalysis of the glycosidic bond in hydrolysis.
Collapse
Affiliation(s)
- Kaixin Li
- School of Materials and Energy
- Center of Emerging Material and Technology
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Limin Deng
- School of Materials and Energy
- Center of Emerging Material and Technology
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Shun Yi
- School of Materials and Energy
- Center of Emerging Material and Technology
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Yabo Wu
- School of Materials and Energy
- Center of Emerging Material and Technology
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Guangjie Xia
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Jun Zhao
- Institute of Bioresource and Agriculture
- Hong Kong Baptist University
- Hong Kong SAR
| | - Dong LU
- Center for Engineering Materials and Reliability
- Guangzhou HKUST Fok Ying Tung Research Institute
- Guangzhou
- China
| | - Yonggang Min
- School of Materials and Energy
- Center of Emerging Material and Technology
- Guangdong University of Technology
- Guangzhou 510006
- China
| |
Collapse
|
26
|
Wang Q, Ge M, Dou Y, Yang F, Wang J, Shao Y, Huang A. Engineering ultrafine Pd clusters on laminar polyamide: A promising catalyst for benzyl alcohol oxidation under air in water. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Zhang Y, Dai Y, Li H, Yin L, Hoffmann MR. Proton-assisted electron transfer and hydrogen-atom diffusion in a model system for photocatalytic hydrogen production. COMMUNICATIONS MATERIALS 2020; 1:66. [PMID: 33029593 PMCID: PMC7505813 DOI: 10.1038/s43246-020-00068-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Solar energy can be converted into chemical energy by photocatalytic water splitting to produce molecular hydrogen. Details of the photo-induced reaction mechanism occurring on the surface of a semiconductor are not fully understood, however. Herein, we employ a model photocatalytic system consisting of single atoms deposited on quantum dots that are anchored on to a primary photocatalyst to explore fundamental aspects of photolytic hydrogen generation. Single platinum atoms (Pt1) are anchored onto carbon nitride quantum dots (CNQDs), which are loaded onto graphitic carbon nitride nanosheets (CNS), forming a Pt1@CNQDs/CNS composite. Pt1@CNQDs/CNS provides a well-defined photocatalytic system in which the electron and proton transfer processes that lead to the formation of hydrogen gas can be investigated. Results suggest that hydrogen bonding between hydrophilic surface groups of the CNQDs and interfacial water molecules facilitates both proton-assisted electron transfer and sorption/desorption pathways. Surface bound hydrogen atoms appear to diffuse from CNQDs surface sites to the deposited Pt1 catalytic sites leading to higher hydrogen-atom fugacity surrounding each isolated Pt1 site. We identify a pathway that allows for hydrogen-atom recombination into molecular hydrogen and eventually to hydrogen bubble evolution.
Collapse
Affiliation(s)
- Yuanzheng Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Yunrong Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, P. R. China
- Division of Engineering and Applied Science, Linde-Robinson Laboratory, California Institute of Technology, Pasadena, CA 91125 USA
| | - Huihui Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Lifeng Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
- Division of Engineering and Applied Science, Linde-Robinson Laboratory, California Institute of Technology, Pasadena, CA 91125 USA
| | - Michael R. Hoffmann
- Division of Engineering and Applied Science, Linde-Robinson Laboratory, California Institute of Technology, Pasadena, CA 91125 USA
| |
Collapse
|
28
|
Qian J, Gao X, Pan B. Nanoconfinement-Mediated Water Treatment: From Fundamental to Application. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8509-8526. [PMID: 32511915 DOI: 10.1021/acs.est.0c01065] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Safe and clean water is of pivotal importance to all living species and the ecosystem on earth. However, the accelerating economy and industrialization of mankind generate water pollutants with much larger quantity and higher complexity than ever before, challenging the efficacy of traditional water treatment technologies. The flourishing researches on nanomaterials and nanotechnologies in the past decade have generated new understandings on many fundamental processes and brought revolutionary upgrades to various traditional technologies in almost all areas, including water treatment. An indispensable step toward the real application of nanomaterials in water treatment is to confine them in large processable substrate to address various inherent issues, such as spontaneous aggregation, difficult operation and potential environmental risks. Strikingly, when the size of the spatial restriction provided by the substrate is on the order of only one or several nanometers, referred to as nanoconfinement, the phase behavior of matter and the energy diagram of a chemical reaction could be utterly changed. Nevertheless, the relationship between such changes under nanoconfinement and their implications for water treatment is rarely elucidated systematically. In this Critical Review, we will briefly summarize the current state-of-the-art of the nanomaterials, as well as the nanoconfined analogues (i.e., nanocomposites) developed for water treatment. Afterward, we will put emphasis on the effects of nanoconfinement from three aspects, that is, on the structure and behavior of water molecules, on the formation (e.g., crystallization) of confined nanomaterials, and on the nanoenabled chemical reactions. For each aspect, we will build the correlation between the nanoconfinement effects and the current studies for water treatment. More importantly, we will make proposals for future studies based on the missing links between some of the nanoconfinement effects and the water treatment technologies. Through this Critical Review, we aim to raise the research attention on using nanoconfinement as a fundamental guide or even tool to advance water treatment technologies.
Collapse
Affiliation(s)
- Jieshu Qian
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023 China
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 China
| | - Xiang Gao
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023 China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023 China
- State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023 China
| |
Collapse
|
29
|
He X, Zhang YH. Kinetics study of heterogeneous reactions of O 3 and SO 2 with sea salt single droplets using micro-FTIR spectroscopy: Potential for formation of sulfate aerosol in atmospheric environment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 233:118219. [PMID: 32163877 DOI: 10.1016/j.saa.2020.118219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/19/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
The heterogeneous reactions of sea salt single droplets with the mixture of O3 and SO2 were studied in real time using microscopic Fourier transform infrared (micro-FTIR) spectrometer. Chemical conversion of SO2 to sulfate and consumption of gaseous HCl occur on the surface of droplets in the presence of O3. The sulfate formation rate and the uptake coefficient are obtained by quantitatively estimating the changes in absorbance area of the sulfate stretching band. In order to further establish a mechanistic framework, we observed the reaction kinetics versus ambient relative humidities (RHs) and droplet sizes. In the view of RH effect, sulfate formation rates are enhanced by about a factor of two on the MgCl2 and ZnCl2 single droplets with increasing RH ranges. High RH is favorable for the sulfate formation because water vapor can trap and activate more gas molecules on the interface of the single droplet. The values of uptake coefficient increase slightly with an increase in single droplet size for the two reaction systems, indicating that the effect of surface adsorption dominates the reactions. Considering the existence of combined pollution with high concentrations of trace gases and sea salt aerosols, as expected in coastal regions, the formation micro-mechanism of sulfate revealed in this work should be incorporated into air quality models to improve the prediction of sulfate concentrations.
Collapse
Affiliation(s)
- Xiang He
- College of Resource and Environment Sciences, Xinjiang University, Urumqi 830046, PR China; Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yun-Hong Zhang
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
30
|
Röckert A, Kullgren J, Broqvist P, Alwan S, Hermansson K. The water/ceria(111) interface: Computational overview and new structures. J Chem Phys 2020; 152:104709. [PMID: 32171203 DOI: 10.1063/1.5142724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Thin film structures of water on the CeO2(111) surface for coverages between 0.5 and 2.0 water monolayers have been optimized and analyzed using density functional theory (optPBE-vdW functional). We present a new 1.0 ML structure that is both the lowest in energy published and features a hydrogen-bond network extending the surface in one-dimension, contrary to what has been found in the literature, and contrary to what has been expected due to the large bulk ceria cell dimension. The adsorption energies for the monolayer and multilayered water structures agree well with experimental temperature programmed desorption results from the literature, and we discuss the stability window of CeO2(111) surfaces covered with 0.5-2.0 ML of water.
Collapse
Affiliation(s)
- Andreas Röckert
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box-538, Uppsala SE-75121, Sweden
| | - Jolla Kullgren
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box-538, Uppsala SE-75121, Sweden
| | - Peter Broqvist
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box-538, Uppsala SE-75121, Sweden
| | - Seif Alwan
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box-538, Uppsala SE-75121, Sweden
| | - Kersti Hermansson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box-538, Uppsala SE-75121, Sweden
| |
Collapse
|
31
|
Zhang X, Zhou D, Wang X, Zhou J, Li J, Zhang M, Shen Y, Chu H, Qu Y. Overcoming the Deactivation of Pt/CNT by Introducing CeO2 for Selective Base-Free Glycerol-to-Glyceric Acid Oxidation. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05559] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xueqiong Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Dan Zhou
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Xiaojing Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Jian Zhou
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Jiefei Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Mingkai Zhang
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, China
| | - Yihong Shen
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Haibin Chu
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Yongquan Qu
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, China
| |
Collapse
|
32
|
Zhao Y, Zhu X, Wang H, Han J, Mei D, Ge Q. Aqueous Phase Aldol Condensation of Formaldehyde and Acetone on Anatase TiO
2
(101) Surface: A Theoretical Investigation. ChemCatChem 2020. [DOI: 10.1002/cctc.201901736] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuntao Zhao
- Collaborative Innovation Center of Chemical Science and Engineering, School ofChemical Engineering and Technology Tianjin University Tianjin 300072 P.R.China
- Institute for Integrated CatalysisPacific Northwest National Laboratory Richland WA 99352 USA
- Department of Chemistry and BiochemistrySouthern Illinois University Carbondale IL 62901 USA
| | - Xinli Zhu
- Collaborative Innovation Center of Chemical Science and Engineering, School ofChemical Engineering and Technology Tianjin University Tianjin 300072 P.R.China
| | - Hua Wang
- Collaborative Innovation Center of Chemical Science and Engineering, School ofChemical Engineering and Technology Tianjin University Tianjin 300072 P.R.China
| | - Jinyu Han
- Collaborative Innovation Center of Chemical Science and Engineering, School ofChemical Engineering and Technology Tianjin University Tianjin 300072 P.R.China
| | - Donghai Mei
- Institute for Integrated CatalysisPacific Northwest National Laboratory Richland WA 99352 USA
- State Key National Laboratory of Membrane Separation and Membrane Processes, School of Chemistry and Chemical EngineeringTianjin Polytechnic University Tianjin 300387 P.R. China
| | - Qingfeng Ge
- Collaborative Innovation Center of Chemical Science and Engineering, School ofChemical Engineering and Technology Tianjin University Tianjin 300072 P.R.China
- Department of Chemistry and BiochemistrySouthern Illinois University Carbondale IL 62901 USA
| |
Collapse
|
33
|
Hisai Y, Murakami K, Kamite Y, Ma Q, Vøllestad E, Manabe R, Matsuda T, Ogo S, Norby T, Sekine Y. First observation of surface protonics on SrZrO3 perovskite under a H2 atmosphere. Chem Commun (Camb) 2020; 56:2699-2702. [DOI: 10.1039/c9cc08757e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This is the first direct observation that surface proton hopping occurs on SrZrO3 perovskite even under a H2 (i.e. dry) atmosphere.
Collapse
Affiliation(s)
- Yudai Hisai
- Department of Applied Chemistry
- Waseda University
- Tokyo
- Japan
| | - Kota Murakami
- Department of Applied Chemistry
- Waseda University
- Tokyo
- Japan
| | - Yukiko Kamite
- Department of Applied Chemistry
- Waseda University
- Tokyo
- Japan
| | - Quanbao Ma
- Department of Chemistry
- University of Oslo
- FERMiO
- NO-0349 Oslo
- Norway
| | - Einar Vøllestad
- Department of Chemistry
- University of Oslo
- FERMiO
- NO-0349 Oslo
- Norway
| | - Ryo Manabe
- Department of Applied Chemistry
- Waseda University
- Tokyo
- Japan
| | - Taku Matsuda
- Department of Applied Chemistry
- Waseda University
- Tokyo
- Japan
| | - Shuhei Ogo
- Department of Applied Chemistry
- Waseda University
- Tokyo
- Japan
| | - Truls Norby
- Department of Chemistry
- University of Oslo
- FERMiO
- NO-0349 Oslo
- Norway
| | - Yasushi Sekine
- Department of Applied Chemistry
- Waseda University
- Tokyo
- Japan
| |
Collapse
|
34
|
Torimoto M, Ogo S, Hisai Y, Nakano N, Takahashi A, Ma Q, Seo JG, Tsuneki H, Norby T, Sekine Y. Support effects on catalysis of low temperature methane steam reforming. RSC Adv 2020; 10:26418-26424. [PMID: 35519772 PMCID: PMC9055425 DOI: 10.1039/d0ra04717a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/08/2020] [Indexed: 01/23/2023] Open
Abstract
Low temperature (<500 K) methane steam reforming in an electric field was investigated over various catalysts. To elucidate the factors governing catalytic activity, activity tests and various characterization methods were conducted over various oxides including CeO2, Nb2O5, and Ta2O5 as supports. Activities of Pd catalysts loaded on these oxides showed the order of CeO2 > Nb2O5 > Ta2O5. Surface proton conductivity has a key role for the activation of methane in an electric field. Proton hopping ability on the oxide surface was estimated using electrochemical impedance measurements. Proton transport ability on the oxide surface at 473 K was in the order of CeO2 > Nb2O5 > Ta2O5. The OH group amounts on the oxide surface were evaluated by measuring pyridine adsorption with and without H2O pretreatment. Results indicate that the surface OH group concentrations on the oxide surface were in the order of CeO2 > Nb2O5 > Ta2O5. These results demonstrate that the surface concentrations of OH groups are related to the proton hopping ability on the oxide surface. The concentrations reflect the catalytic activity of low-temperature methane steam reforming in the electric field. Low temperature (<500 K) methane steam reforming in an electric field was investigated over various catalysts.![]()
Collapse
Affiliation(s)
- Maki Torimoto
- Department of Applied Chemistry
- Waseda University
- Shinjuku
- Japan
| | - Shuhei Ogo
- Department of Applied Chemistry
- Waseda University
- Shinjuku
- Japan
| | - Yudai Hisai
- Department of Applied Chemistry
- Waseda University
- Shinjuku
- Japan
| | - Naoya Nakano
- Department of Applied Chemistry
- Waseda University
- Shinjuku
- Japan
| | - Ayako Takahashi
- Department of Applied Chemistry
- Waseda University
- Shinjuku
- Japan
| | - Quanbao Ma
- Department of Chemistry
- University of Oslo
- FERMiO
- Oslo
- Norway
| | - Jeong Gil Seo
- Department of Chemical Engineering
- Hanyang University
- Seoul 04763
- Republic of Korea
| | - Hideaki Tsuneki
- Department of Applied Chemistry
- Waseda University
- Shinjuku
- Japan
| | - Truls Norby
- Department of Chemistry
- University of Oslo
- FERMiO
- Oslo
- Norway
| | - Yasushi Sekine
- Department of Applied Chemistry
- Waseda University
- Shinjuku
- Japan
| |
Collapse
|
35
|
van Deelen TW, Hernández Mejía C, de Jong KP. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat Catal 2019. [DOI: 10.1038/s41929-019-0364-x] [Citation(s) in RCA: 652] [Impact Index Per Article: 130.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
De Marchi L, Coppola F, Soares AMVM, Pretti C, Monserrat JM, Torre CD, Freitas R. Engineered nanomaterials: From their properties and applications, to their toxicity towards marine bivalves in a changing environment. ENVIRONMENTAL RESEARCH 2019; 178:108683. [PMID: 31539823 DOI: 10.1016/j.envres.2019.108683] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/18/2019] [Accepted: 08/20/2019] [Indexed: 05/05/2023]
Abstract
As a consequence of their unique characteristics, the use of Engineered Nanomaterials (ENMs) is rapidly increasing in industrial, agricultural products, as well as in environmental technology. However, this fast expansion and use make likely their release into the environment with particular concerns for the aquatic ecosystems, which tend to be the ultimate sink for this type of contaminants. Considering the settling behaviour of particulates, benthic organisms are more likely to be exposed to these compounds. In this way, the present review aims to summarise the most recent data available from the literature on ENMs behaviour and fate in aquatic ecosystems, focusing on their ecotoxicological impacts towards marine and estuarine bivalves. The selection of ENMs presented here was based on the OECD's Working Party on Manufactured Nanomaterials (WPMN), which involves the safety testing and risk assessment of ENMs. Physical-chemical characteristics and properties, applications, environmental relevant concentrations and behaviour in aquatic environment, as well as their toxic impacts towards marine bivalves are discussed. Moreover, it is also identified the impacts derived from the simultaneous exposure of marine organisms to ENMs and climate changes as an ecologically relevant scenario.
Collapse
Affiliation(s)
- Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal; Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Francesca Coppola
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa, 56122, Italy
| | - José M Monserrat
- Universidade Federal Do Rio Grande, FURG, Instituto de Ciências Biológicas (ICB), Av Itália km 8 s/n - Caixa Postal 474, 96200-970, Rio Grande, RS, Brazil
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milano, Italy
| | - Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
37
|
Meng J, Hou C, Wang H, Chi Q, Gao Y, Zhu B. Oriented attachment growth of monocrystalline cuprous oxide nanowires in pure water. NANOSCALE ADVANCES 2019; 1:2174-2179. [PMID: 36131967 PMCID: PMC9417747 DOI: 10.1039/c8na00374b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/24/2019] [Indexed: 06/15/2023]
Abstract
As a crucial mechanism of non-classical crystallization, the oriented attachment (OA) growth of nanocrystals is of great interest in nanoscience and materials science. The OA process occurring in aqueous solution with chemical reagents has been reported many times, but there are limited studies reporting the OA growth in pure water. In this work, we report the temperature-dependent OA growth of cuprous oxide (Cu2O) nanowires in pure water through a reagent-free electrophoretic method. Our experiments demonstrate that Cu2O quantum dots randomly coalesced to form polycrystalline nanowires at room temperature, while they form monocrystalline nanowires at higher temperatures by the OA mechanism. DFT modeling and computations indicate that the water coverage on the Cu2O nanoparticles could affect the particle attachment mechanisms. This study sheds light on the understanding of the effects of water molecules on the OA mechanism and shows new approaches for better controllable non-classical crystallization in pure water.
Collapse
Affiliation(s)
- Jun Meng
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 People's Republic of China
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 People's Republic of China
| | - Qijin Chi
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark
| | - Yi Gao
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences 201210 Shanghai China
| | - Beien Zhu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences 201210 Shanghai China
| |
Collapse
|
38
|
Singappuli-Arachchige D, Kobayashi T, Wang Z, Burkhow SJ, Smith EA, Pruski M, Slowing II. Interfacial Control of Catalytic Activity in the Aldol Condensation: Combining the Effects of Hydrophobic Environments and Water. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00195] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Dilini Singappuli-Arachchige
- US DOE Ames Laboratory, Ames Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | | | - Zhuoran Wang
- US DOE Ames Laboratory, Ames Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Sadie J. Burkhow
- US DOE Ames Laboratory, Ames Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Emily A. Smith
- US DOE Ames Laboratory, Ames Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Marek Pruski
- US DOE Ames Laboratory, Ames Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Igor I. Slowing
- US DOE Ames Laboratory, Ames Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
39
|
Santos JCC, Negreiros FR, Pedroza LS, Dalpian GM, Miranda PB. Interaction of Water with the Gypsum (010) Surface: Structure and Dynamics from Nonlinear Vibrational Spectroscopy and Ab Initio Molecular Dynamics. J Am Chem Soc 2018; 140:17141-17152. [DOI: 10.1021/jacs.8b09907] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jaciara C. C. Santos
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, São Carlos, São Paulo 13560-970, Brazil
| | - Fabio R. Negreiros
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
| | - Luana S. Pedroza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
| | - Gustavo M. Dalpian
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
| | - Paulo B. Miranda
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, São Carlos, São Paulo 13560-970, Brazil
| |
Collapse
|
40
|
Matz O, Calatayud M. Breaking H 2 with CeO 2: Effect of Surface Termination. ACS OMEGA 2018; 3:16063-16073. [PMID: 31458244 PMCID: PMC6643698 DOI: 10.1021/acsomega.8b02410] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/02/2018] [Indexed: 05/31/2023]
Abstract
The ability of ceria to break H2 in the absence of noble metals has prompted a number of studies because of its potential applications in many technological fields. Most of the theoretical works reported in the literature are focused on the most stable (111) termination. However, recently, the possibility of stabilizing ceria particles with selected terminations has opened new avenues to explore. In the present paper, we investigate the role of termination in H2 dissociation on stoichiometric ceria. We model (111)-, (110)-, and (100)-terminated slabs together with the stepped (221) and (331) surfaces. Our results support a dissociation mechanism proceeding via the formation of a hydride/hydroxyl CeH/OH intermediate. Both the stability of such an intermediate and the activation energy depend critically on the termination, the (100)-terminated surfaces being the most reactive: the activation energy is 0.16 eV, and the CeH/OH intermediate is stable by -0.64 eV for the (100) slab, whereas the (111) slab presents 0.75 and 0.74 eV, respectively. We provide structural, energetic, electronic, and spectroscopic data, as well as chemical descriptors correlating structure, energy, and reactivity, to guide in the theoretical and experimental characterization of the Ce-H surface intermediate.
Collapse
Affiliation(s)
| | - Monica Calatayud
- E-mail: . Phone: +33 1 44 27 25 05. Fax: +33 1 44 27
41 17 (M.C.)
| |
Collapse
|
41
|
Hellström M, Quaranta V, Behler J. One-dimensional vs. two-dimensional proton transport processes at solid-liquid zinc-oxide-water interfaces. Chem Sci 2018; 10:1232-1243. [PMID: 30774924 PMCID: PMC6349017 DOI: 10.1039/c8sc03033b] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/05/2018] [Indexed: 02/02/2023] Open
Abstract
Neural network molecular dynamics simulations unravel the long-range proton transport properties of ZnO–water interfaces.
Long-range charge transport is important for many applications like batteries, fuel cells, sensors, and catalysis. Obtaining microscopic insights into the atomistic mechanism is challenging, in particular if the underlying processes involve protons as the charge carriers. Here, large-scale reactive molecular dynamics simulations employing an efficient density-functional-theory-based neural network potential are used to unravel long-range proton transport mechanisms at solid–liquid interfaces, using the zinc oxide–water interface as a prototypical case. We find that the two most frequently occurring ZnO surface facets, (101[combining macron]0) and (112[combining macron]0), that typically dominate the morphologies of zinc oxide nanowires and nanoparticles, show markedly different proton conduction behaviors along the surface with respect to the number of possible proton transfer mechanisms, the role of the solvent for long-range proton migration, as well as the proton transport dimensionality. Understanding such surface-facet-specific mechanisms is crucial for an informed bottom-up approach for the functionalization and application of advanced oxide materials.
Collapse
Affiliation(s)
- Matti Hellström
- Universität Göttingen , Institut für Physikalische Chemie, Theoretische Chemie , Tammannstr. 6 , 37077 Göttingen , Germany . .,Lehrstuhl für Theoretische Chemie , Ruhr-Universität Bochum , 44780 Bochum , Germany
| | - Vanessa Quaranta
- Lehrstuhl für Theoretische Chemie , Ruhr-Universität Bochum , 44780 Bochum , Germany
| | - Jörg Behler
- Universität Göttingen , Institut für Physikalische Chemie, Theoretische Chemie , Tammannstr. 6 , 37077 Göttingen , Germany . .,Lehrstuhl für Theoretische Chemie , Ruhr-Universität Bochum , 44780 Bochum , Germany
| |
Collapse
|
42
|
Tomishige K, Tamura M, Nakagawa Y. CO
2
Conversion with Alcohols and Amines into Carbonates, Ureas, and Carbamates over CeO
2
Catalyst in the Presence and Absence of 2‐Cyanopyridine. CHEM REC 2018; 19:1354-1379. [DOI: 10.1002/tcr.201800117] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/07/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Keiichi Tomishige
- Department of Applied Chemistry, Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai, 980-8579 Japan
| | - Masazumi Tamura
- Department of Applied Chemistry, Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai, 980-8579 Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai, 980-8579 Japan
| |
Collapse
|
43
|
|
44
|
Quaranta V, Hellström M, Behler J, Kullgren J, Mitev PD, Hermansson K. Maximally resolved anharmonic OH vibrational spectrum of the water/ZnO(101¯0) interface from a high-dimensional neural network potential. J Chem Phys 2018; 148:241720. [DOI: 10.1063/1.5012980] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Vanessa Quaranta
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Matti Hellström
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
- Universität Göttingen, Institut für Physikalische Chemie, Theoretische Chemie, Tammannstr. 6, D-37077 Göttingen, Germany
| | - Jörg Behler
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
- Universität Göttingen, Institut für Physikalische Chemie, Theoretische Chemie, Tammannstr. 6, D-37077 Göttingen, Germany
| | - Jolla Kullgren
- Department of Chemistry–Ångström Laboratory, Uppsala University, P.O. Box 538, SE-75121 Uppsala, Sweden
| | - Pavlin D. Mitev
- Department of Chemistry–Ångström Laboratory, Uppsala University, P.O. Box 538, SE-75121 Uppsala, Sweden
| | - Kersti Hermansson
- Department of Chemistry–Ångström Laboratory, Uppsala University, P.O. Box 538, SE-75121 Uppsala, Sweden
| |
Collapse
|
45
|
Kakekhani A, Roling LT, Kulkarni A, Latimer AA, Abroshan H, Schumann J, AlJama H, Siahrostami S, Ismail-Beigi S, Abild-Pedersen F, Nørskov JK. Nature of Lone-Pair–Surface Bonds and Their Scaling Relations. Inorg Chem 2018; 57:7222-7238. [DOI: 10.1021/acs.inorgchem.8b00902] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Arvin Kakekhani
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Luke T. Roling
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ambarish Kulkarni
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Allegra A. Latimer
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hadi Abroshan
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Julia Schumann
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hassan AlJama
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Samira Siahrostami
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sohrab Ismail-Beigi
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, United States
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jens K. Nørskov
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
46
|
Metal Clusters Dispersed on Oxide Supports: Preparation Methods and Metal-Support Interactions. Top Catal 2018. [DOI: 10.1007/s11244-018-0957-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
47
|
Dvořák F, Szabová L, Johánek V, Farnesi Camellone M, Stetsovych V, Vorokhta M, Tovt A, Skála T, Matolínová I, Tateyama Y, Mysliveček J, Fabris S, Matolín V. Bulk Hydroxylation and Effective Water Splitting by Highly Reduced Cerium Oxide: The Role of O Vacancy Coordination. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04409] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Filip Dvořák
- Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Lucie Szabová
- Center for Green Research on Energy and Environmental Materials (GREEN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Viktor Johánek
- Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Matteo Farnesi Camellone
- CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Via Bonomea 265, 34136 Trieste, Italy
| | - Vitalii Stetsovych
- Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Mykhailo Vorokhta
- Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Andrii Tovt
- Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Tomáš Skála
- Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Iva Matolínová
- Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Yoshitaka Tateyama
- Center for Green Research on Energy and Environmental Materials (GREEN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Josef Mysliveček
- Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Stefano Fabris
- CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Via Bonomea 265, 34136 Trieste, Italy
| | - Vladimír Matolín
- Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| |
Collapse
|
48
|
Duan X, Wen Z, Zhao Y, Zhou J, Fang H, Cao Y, Jiang L, Ye L, Yuan Y. Intercalation of nanostructured CeO 2 in MgAl 2O 4 spinel illustrates the critical interaction between metal oxides and oxides. NANOSCALE 2018; 10:3331-3341. [PMID: 29384541 DOI: 10.1039/c7nr07825k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Heterogeneous catalytic oxidation arises from the prerequisite oxygen activation and transfer ability of metal oxide catalysts. Thus, engineering intercalated nanounits and heterophase metal oxide structures, and forming interstitial catalyst supports at the nanoscale level can drastically alter the catalytic performances of metal oxides. This is particularly important for ceria-based nanomaterial catalysts, where the interactions of reducible ceria (CeO2) and nonreducible oxides are fundamental for the preparation of enhanced catalysts for oxygen-involved reactions. Herein, we intercalated nanostructured CeO2 in the bulk phase of magnesium aluminate spinel (MgAl2O4, referred to as MgAl), produced the interstitial effect between CeO2 nanoparticles and MgAl crystallites, thus boosting their oxygen transfer and activation capability. This nanoscaled intercalation engineering significantly enhanced the number and quality of tight contact points between the nanostructured CeO2 and MgAl units. Therefore, the oxygen storage/release capability (OSC) is exceptionally improved as revealed by various characterizations and catalytic carbon oxidation reaction. A mechanism similar to the Mars-van Krevelen process at the nanoscale level was invoked to explain the catalytic oxidation mechanisms. The reactive oxygen species of gaseous O2 originate formed the bulk of the as-obtained nanomaterial, where strong interactions between the CeO2 and MgAl components occured, which were subsequently released and diffused to the catalyst-interface at elevated temperatures. Silver supported on Ce-MgAl produced an approximately 4-fold higher concentration of active oxygen species than Ag/MgAl, and gives the optimum low-temperature oxidation at 229 °C. This study verifies the importance of the redox performance of ceria-spinel with enhanced OSC, which validates that the arrangement of contacts at the nanoscale can substantially boost the catalytic reactivity without varying the microscale structure and properties of spinel.
Collapse
Affiliation(s)
- Xinping Duan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and National Engineering Laboratory for Green Chemical Production of Alcohols-Ethers-Esters, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Muñoz-Santiburcio D, Farnesi Camellone M, Marx D. Solvation-Induced Changes in the Mechanism of Alcohol Oxidation at Gold/Titania Nanocatalysts in the Aqueous Phase versus Gas Phase. Angew Chem Int Ed Engl 2018; 57:3327-3331. [DOI: 10.1002/anie.201710791] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/08/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel Muñoz-Santiburcio
- Lehrstuhl für Theoretische Chemie; Ruhr-Universität Bochum; 44780 Bochum Germany
- Present address: CIC nanoGUNE; Tolosa Hiribidea 76 20018 San Sebastián Spain
| | | | - Dominik Marx
- Lehrstuhl für Theoretische Chemie; Ruhr-Universität Bochum; 44780 Bochum Germany
| |
Collapse
|
50
|
Muñoz-Santiburcio D, Farnesi Camellone M, Marx D. Solvation-Induced Changes in the Mechanism of Alcohol Oxidation at Gold/Titania Nanocatalysts in the Aqueous Phase versus Gas Phase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel Muñoz-Santiburcio
- Lehrstuhl für Theoretische Chemie; Ruhr-Universität Bochum; 44780 Bochum Germany
- Present address: CIC nanoGUNE; Tolosa Hiribidea 76 20018 San Sebastián Spain
| | | | - Dominik Marx
- Lehrstuhl für Theoretische Chemie; Ruhr-Universität Bochum; 44780 Bochum Germany
| |
Collapse
|