1
|
Liu J, Zhang Y, Peng C. Recent Advances Hydrogenation of Carbon Dioxide to Light Olefins over Iron-Based Catalysts via the Fischer-Tropsch Synthesis. ACS OMEGA 2024; 9:25610-25624. [PMID: 38911759 PMCID: PMC11191082 DOI: 10.1021/acsomega.4c03075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
The massive burning of fossil fuels has been important for economic and social development, but the increase in the CO2 concentration has seriously affected environmental sustainability. In industrial and agricultural production, light olefins are one of the most important feedstocks. Therefore, the preparation of light olefins by CO2 hydrogenation has been intensively studied, especially for the development of efficient catalysts and for the application in industrial production. Fe-based catalysts are widely used in Fischer-Tropsch synthesis due to their high stability and activity, and they also exhibit excellent catalytic CO2 hydrogenation to light olefins. This paper systematically summarizes and analyzes the reaction mechanism of Fe-based catalysts, alkali and transition metal modifications, interactions between active sites and carriers, the synthesis process, and the effect of the byproduct H2O on catalyst performance. Meanwhile, the challenges to the development of CO2 hydrogenation for light olefin synthesis are presented, and future development opportunities are envisioned.
Collapse
Affiliation(s)
- Jiangtao Liu
- State Key Laboratory of Fine
Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, Liaoning P.R. China
| | - Yongchun Zhang
- State Key Laboratory of Fine
Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, Liaoning P.R. China
| | - Chong Peng
- State Key Laboratory of Fine
Chemicals, School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, Liaoning P.R. China
| |
Collapse
|
2
|
Prats H, Stamatakis M. Transition Metal Carbides as Supports for Catalytic Metal Particles: Recent Progress and Opportunities. J Phys Chem Lett 2024; 15:3450-3460. [PMID: 38512338 PMCID: PMC10983064 DOI: 10.1021/acs.jpclett.3c03214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Transition metal carbides (TMCs) constitute excellent alternatives to traditional oxide-based supports for small metal particles, leading to strong metal-support interactions, which drastically modify the catalytic properties of the supported metal atoms. Moreover, they possess extremely high melting points and good resistance to carbon deposition and sulfur poisoning, and the catalytic activities of some TMCs per se have been shown to be similar to those of Pt-group metals for a considerable number of reactions. Therefore, the use of TMCs as supports can give rise to bifunctional catalysts with multiple active sites. However, at present, only TiC and MoxC have been tested experimentally as supports for metal particles, and it is largely unclear which combinations may best catalyze which chemical reactions. In this Perspective, we review the most significant works on the use of TMCs as supports for catalytic applications, assess the current status of the field, and identify key advances being made and challenges, with an eye to the future.
Collapse
Affiliation(s)
- Hector Prats
- Department
of Chemical Engineering, University College
London, Roberts Building Torrington Place, London WC1E 7JE, U.K.
| | - Michail Stamatakis
- Department
of Chemistry, Inorganic Chemistry Lab, University
of Oxford, Oxford OX1 3QR, U.K.
| |
Collapse
|
3
|
Fang Z, Liang Y, Li Y, Ni B, Zhu J, Li Y, Huang S, Lin W, Zhang Y. Theoretical Insight into the Special Synergy of Bimetallic Site in Co/MoC Catalyst to Promote N 2 -to-NH 3 Conversion. Chemistry 2023:e202302900. [PMID: 38105290 DOI: 10.1002/chem.202302900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The catalytic mechanisms of nitrogen reduction reaction (NRR) on the pristine and Co/α-MoC(001) surfaces were explored by density functional theory calculations. The results show that the preferred pathway is that a direct N≡N cleavage occurs first, followed by continuous hydrogenations. The production of second NH3 molecule is identified as the rate-limiting step on both systems with kinetic barriers of 1.5 and 2.0 eV, respectively, indicating that N2 -to-NH3 transformation on bimetallic surface is more likely to occur. The two components of the bimetallic center play different roles during NRR process, in which Co atom does not directly participate in the binding of intermediates, but primarily serves as a reservoir of H atoms. This special synergy makes Co/α-MoC(001) have superior activity for ammonia synthesis. The introduction of Co not only facilitates N2 dissociation, but also accelerates the migration of H atom due to the antibonding characteristic of Co-H bond. This study offers a facile strategy for the rational design and development of efficient catalysts for ammonia synthesis and other reactions involving the hydrogenation processes.
Collapse
Affiliation(s)
- Zhongpu Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yingsi Liang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yanli Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Bilian Ni
- Department of Basic Chemistry, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Jia Zhu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Yi Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian, 361005, China
| | - Shuping Huang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian, 361005, China
| | - Yongfan Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian, 361005, China
| |
Collapse
|
4
|
Yang R, Huang Q, Sha X, Gao B, Peng J. Regulation of Bimetallic Coordination Centers in MOF Catalyst for Electrochemical CO 2 Reduction to Formate. Int J Mol Sci 2023; 24:13838. [PMID: 37762141 PMCID: PMC10530794 DOI: 10.3390/ijms241813838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Electrocatalytic reduction of CO2 to valuable chemicals can alleviate the energy crisis, and solve the greenhouse effect. The key is to develop non-noble metal electrocatalysts with high activity, selectivity, and stability. Herein, bimetallic metal organic frameworks (MOFs) materials (BiZn-MOF, BiSn-MOF, and BiIn-MOF) were constructed by coordinating the metals Zn, In, Sn, and Bi with the organic ligand 3-amino-1H-1,2,4-triazole-5-carboxylic acid (H2atzc) through a rapid microwave synthesis approach. The coordination centers in bimetallic MOF catalyst were regulated to optimize the catalytic performance for electrochemical CO2 reduction reaction (CO2RR). The optimized catalyst BiZn-MOF exhibited higher catalytic activity than those of Bi-MOF, BiSn-MOF, and BiIn-MOF. BiZn-MOF exhibited a higher selectivity for formate production with a Faradic efficiency (FE = 92%) at a potential of -0.9 V (vs. RHE, reversible hydrogen electrode) with a current density of 13 mA cm-2. The current density maintained continuous electrolysis for 13 h. The electrochemical conversion of CO2 to formate mainly follows the *OCHO pathway. The good catalytic performance of BiZn-MOF may be attributed to the Bi-Zn bimetallic coordination centers in the MOF, which can reduce the binding energies of the reaction intermediates by tuning the electronic structure and atomic arrangement. This study provides a feasible strategy for performance optimization of bismuth-based catalysts.
Collapse
Affiliation(s)
| | | | | | | | - Juan Peng
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
5
|
Lushchikova OV, Szalay M, Höltzl T, Bakker JM. Tuning the degree of CO 2 activation by carbon doping Cu n- ( n = 3-10) clusters: an IR spectroscopic study. Faraday Discuss 2023; 242:252-268. [PMID: 36325973 PMCID: PMC9890493 DOI: 10.1039/d2fd00128d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Copper clusters on carbide surfaces have shown a high catalytic activity towards methanol formation. To understand the interaction between CO2 and the catalytically active sites during this process and the role that carbon atoms could play in this, they are modeled by copper clusters, with carbon atoms incorporated. The formed clusters CunCm- (n = 3-10, m = 1-2) are reacted with CO2 and investigated by IR multiple-photon dissociation (IR-MPD) spectroscopy to probe the degree of CO2 activation. IR spectra for the reaction products [CunC·CO2]-, (n = 6-10), and [CunC2·CO2]-, (n = 3-8) are compared to reference spectra recorded for products formed when reacting the same cluster sizes with CO, and with density functional theory (DFT) calculated spectra. The results reveal a size- and carbon load-dependent activation and dissociation of CO2. The complexes [CunC·CO2]- with n = 6 and 10 show predominantly molecular activation of CO2, while those with n = 7-9 show only dissociative adsorption. The addition of the second carbon to the cluster leads to the exclusive molecular activation of the CO2 on all measured cluster sizes, except for Cu5C2- where CO2 dissociates. Combining these findings with DFT calculations leads us to speculate that at lower carbon-to-metal ratios (CMRs), the C can act as an oxygen anchor facilitating the OCO bond rupture, whereas at higher CMRs the carbon atoms increasingly attract negative charge, reducing the Cu cluster's ability to donate electron density to CO2, and consequently its ability to activate CO2.
Collapse
Affiliation(s)
- Olga V. Lushchikova
- Radboud University, Institute for Molecules and Materials, FELIX LaboratoryToernooiveld 76525 ED NijmegenThe Netherlands,Institut für Ionenphysik und Angewandte Physik, Universität InnsbruckTechnikerstraße 256020 InnsbruckAustria
| | - Máté Szalay
- Furukawa Electric Institute of TechnologyKésmárk Utca 28/A1158 BudapestHungary
| | - Tibor Höltzl
- MTA-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University ofTechnology and EconomicsMuegyetem rkp. 3Budapest 1111Hungary,Furukawa Electric Institute of TechnologyKésmárk Utca 28/A1158 BudapestHungary
| | - Joost M. Bakker
- Radboud University, Institute for Molecules and Materials, FELIX LaboratoryToernooiveld 76525 ED NijmegenThe Netherlands
| |
Collapse
|
6
|
Carbon Dioxide Conversion on Supported Metal Nanoparticles: A Brief Review. Catalysts 2023. [DOI: 10.3390/catal13020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The increasing concentration of anthropogenic CO2 in the air is one of the main causes of global warming. The Paris Agreement at COP 21 aims to reach the global peak of greenhouse gas emissions in the second half of this century, with CO2 conversion towards valuable added compounds being one of the main strategies, especially in the field of heterogeneous catalysis. In the current search for new catalysts, the deposition of metallic nanoparticles (NPs) supported on metal oxides and metal carbide surfaces paves the way to new catalytic solutions. This review provides a comprehensive description and analysis of the relevant literature on the utilization of metal-supported NPs as catalysts for CO2 conversion to useful chemicals and propose that the next catalysts generation can be led by single-metal-atom deposition, since in general, small metal particles enhance the catalytic activity. Among the range of potential indicators of catalytic activity and selectivity, the relevance of NPs’ size, the strong metal–support interactions, and the formation of vacancies on the support are exhaustively discussed from experimental and computational perspective.
Collapse
|
7
|
Sarabadani Tafreshi S, Ranjbar M, Jamaati M, Panahi SFKS, Taghizade N, Torkashvand M, de Leeuw NH. Carbon dioxide hydrogenation over the carbon-terminated niobium carbide (111) surface: a density functional theory study. Phys Chem Chem Phys 2023; 25:2498-2509. [PMID: 36602090 DOI: 10.1039/d2cp04749g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Carbon dioxide (CO2) hydrogenation is an energetic process which could be made more efficient through the use of effective catalysts, for example transition metal carbides. Here, we have employed calculations based on the density functional theory (DFT) to evaluate the reaction processes of CO2 hydrogenation to methane (CH4), carbon monoxide (CO), methanol (CH3OH), formaldehyde (CH2O), and formic acid (HCOOH) over the carbon-terminated niobium carbide (111) surface. First, we have studied the adsorption geometries and energies of 25 different surface-adsorbed species, followed by calculations of all of the elementary steps in the CO2 hydrogenation process. The theoretical findings indicate that the NbC (111) surface has higher catalytic activity towards CO2 methanation, releasing 4.902 eV in energy. CO represents the second-most preferred product, followed by CH3OH, CH2O, and HCOOH, all of which have exothermic reaction energies of 4.107, 2.435, 1.090, and 0.163 eV, respectively. Except for the mechanism that goes through HCOOH to produce CH2O, all favourable hydrogenation reactions lead to desired compounds through the creation of the dihydroxycarbene (HOCOH) intermediate. Along these routes, CH3* hydrogenation to CH4* has the highest endothermic reaction energy of 3.105 eV, while CO production from HCO dehydrogenation causes the highest exothermic reaction energy of -3.049 eV. The surface-adsorbed CO2 hydrogenation intermediates have minimal effect on the electronic structure and interact only weakly with the surface. Our results are consistent with experimental observations.
Collapse
Affiliation(s)
- Saeedeh Sarabadani Tafreshi
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), No. 350, Hafez Avenue, 1591634311 Tehran, Iran.
| | - Mahkameh Ranjbar
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), No. 350, Hafez Avenue, 1591634311 Tehran, Iran.
| | - Maryam Jamaati
- Department of Physics, Iran University of Science and Technology, Narmak, 16846-13114 Tehran, Iran
| | - S F K S Panahi
- Department of Physics, Iran University of Science and Technology, Narmak, 16846-13114 Tehran, Iran
| | - Narges Taghizade
- Department of Physics, Iran University of Science and Technology, Narmak, 16846-13114 Tehran, Iran
| | - Mostafa Torkashvand
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), No. 350, Hafez Avenue, 1591634311 Tehran, Iran.
| | - Nora H de Leeuw
- School of Chemistry, University of Leeds, LT2 9JT Leeds, UK. .,Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands
| |
Collapse
|
8
|
Jin C, Wang B, Zhou Y, Yang F, Han S, Guo P, Liu Z, Shen W. Gold Atomic Layers and Isolated Atoms on MoC for the Low-Temperature Water Gas Shift Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chuanchuan Jin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beibei Wang
- Center for Transformative Science, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yan Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fan Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Shaobo Han
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Peiyao Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhi Liu
- Center for Transformative Science, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
9
|
Wang H, Diao Y, Gao Z, Smith KJ, Guo X, Ma D, Shi C. H 2 Production from Methane Reforming over Molybdenum Carbide Catalysts: From Surface Properties and Reaction Mechanism to Catalyst Development. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Haiyan Wang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
| | - Yanan Diao
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
| | - Zirui Gao
- College of Chemistry and Molecular Engineering, Peking University, Beijing100871, P. R. China
| | - Kevin J. Smith
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BCV6T 1Z3, Canada
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
| | - Ding Ma
- College of Chemistry and Molecular Engineering, Peking University, Beijing100871, P. R. China
| | - Chuan Shi
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
| |
Collapse
|
10
|
Ranjan P, Saptal VB, Bera JK. Recent Advances in Carbon Dioxide Adsorption, Activation and Hydrogenation to Methanol using Transition Metal Carbides. CHEMSUSCHEM 2022; 15:e202201183. [PMID: 36036640 DOI: 10.1002/cssc.202201183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The inevitable emission of carbon dioxide (CO2 ) due to the burning of a substantial amount of fossil fuels has led to serious energy and environmental challenges. Metal-based catalytic CO2 transformations into commodity chemicals are a favorable approach in the CO2 mitigation strategy. Among these transformations, selective hydrogenation of CO2 to methanol is the most promising process that not only fulfils the energy demands but also re-balances the carbon cycle. The investigation of CO2 adsorption on the surface of heterogeneous catalyst is highly important because the formation of various intermediates which determines the selectivity of product. Transition metal carbides (TMCs) have received considerable attention in recent years because of their noble metal-like reactivity, ceramic-like properties, high chemical and thermal stability. These features make them excellent catalytic materials for a variety of transformations such as CO2 adsorption and its conversion into value-added chemicals. Herein, the catalytic properties of TMCs are summarize along with synthetic methods, CO2 binding modes, mechanistic studies, effects of dopant on CO2 adsorption, and carbon/metal ratio in the CO2 hydrogenation reaction to methanol using computational as well as experimental studies. Additionally, this Review provides an outline of the challenges and opportunities for the development of potential TMCs in CO2 hydrogenation reactions.
Collapse
Affiliation(s)
- Prabodh Ranjan
- Department of Chemistry and Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Vitthal B Saptal
- Department of Chemistry and Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Jitendra K Bera
- Department of Chemistry and Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
11
|
Hiragond CB, Powar NS, Lee J, In SI. Single-Atom Catalysts (SACs) for Photocatalytic CO 2 Reduction with H 2 O: Activity, Product Selectivity, Stability, and Surface Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201428. [PMID: 35695355 DOI: 10.1002/smll.202201428] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/14/2022] [Indexed: 06/15/2023]
Abstract
In recent years, single-atom catalysts (SACs) have attracted the interest of researchers owing to their suitability for various catalytic applications. For instance, their optoelectronic features, site-specific activity, and cost-effectiveness make SACs ideal for photocatalytic CO2 reduction. The activity, product selectivity, and photostability of SACs depend on various factors such as the nature of the metal/support material, the interaction between the metal atoms and support, light-harvesting ability, charge separation behavior, CO2 adsorption ability, active sites, and defects. Consequently, it is necessary to investigate these factors in depth to elucidate the working principle(s) of SACs for catalytic applications. Herein, the recent progress in the development of SACs for photocatalytic CO2 reduction with H2 O is reviewed. First, a brief overview of CO2 photoreduction and SACs for CO2 conversion is provided. Several synthesis strategies and useful techniques for characterizing SACs employed in heterogeneous catalysis are then described. Next, the challenges of SACs for photocatalytic CO2 reduction and related optimization strategies, in terms of activity, product selectivity, and stability, are explored. The progress in the development of noble metal- and transition metal-based SACs and dual-SACs for photocatalytic CO2 reduction is discussed. Finally, the prospects of SACs for CO2 reduction are considered.
Collapse
Affiliation(s)
- Chaitanya B Hiragond
- Department of Energy Science & Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Niket S Powar
- Department of Energy Science & Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Junho Lee
- Department of Energy Science & Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Su-Il In
- Department of Energy Science & Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| |
Collapse
|
12
|
Jimenez-Orozco C, Figueras M, Flórez E, Viñes F, Rodriguez JA, Illas F. Effect of nanostructuring on the interaction of CO 2 with molybdenum carbide nanoparticles. Phys Chem Chem Phys 2022; 24:16556-16565. [PMID: 35770743 DOI: 10.1039/d2cp01143c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal carbides are increasingly used as catalysts for the transformation of CO2 into useful chemicals. Recently, the effect of nanostructuring of such carbides has started to gain relevance in tailoring their catalytic capabilities. Catalytic materials based on molybdenum carbide nanoparticles (MoCy) have shown a remarkable ability to bind CO2 at room temperature and to hydrogenate it into oxygenates or light alkanes. However, the involved chemistry is largely unknown. In the present work, a systematic computational study is presented aiming to elucidate the chemistry behind the bonding of CO2 with a representative set of MoCy nanoparticles of increasing size, including stoichiometric and non-stoichiometric cases. The obtained results provide clear trends to tune the catalytic activity of these systems and to move towards more efficient CO2 transformation processes.
Collapse
Affiliation(s)
- Carlos Jimenez-Orozco
- Universidad de Medellín, Facultad de Ciencias Básicas, Grupo de Materiales con Impacto (Mat&mpac), Carrera 87 No 30-65, Medellín, Colombia.
| | - Marc Figueras
- Universitat de Barcelona, Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Elizabeth Flórez
- Universidad de Medellín, Facultad de Ciencias Básicas, Grupo de Materiales con Impacto (Mat&mpac), Carrera 87 No 30-65, Medellín, Colombia.
| | - Francesc Viñes
- Universitat de Barcelona, Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - José A Rodriguez
- Brookhaven National Laboratory, Chemistry Division, Upton, New York 11973, USA
| | - Francesc Illas
- Universitat de Barcelona, Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
13
|
Zhao W, Guan Z, Li D, Wang B, Fan M, Zhang R. Syngas Conversion to C 2 Species over WC and M/WC (M = Cu or Rh) Catalysts: Identifying the Function of Surface Termination and Supported Metal Type. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19491-19504. [PMID: 35467825 DOI: 10.1021/acsami.2c02217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Improving the selectivity and activity of C2 species from syngas is still a challenge. In this work, catalysts with monolayer Cu or Rh supported over WC with different surface terminations (M/WC (M = Cu or Rh)) are rationally designed to facilitate C2 species generation. The complete reaction network is analyzed by DFT calculations. Microkinetics modeling is utilized to consider the experimental reaction temperature, pressure, and the coverage of the species. The thermal stabilities of the M/WC (M = Cu or Rh) catalysts are confirmed by AIMD simulations. The results show that the surface termination and supported metal types in the M/WC (M = Cu or Rh) catalysts can alter the existence form of abundant CHx (x = 1-3) monomer, as well as the activity and selectivity of CHx monomer and C2 species. Among these, only the Cu/WC-C catalyst is screened out to achieve outstanding activity and selectivity for C2H2 generation, attributing to that the synergistic effect of the subsurface C atoms and the surface monolayer Cu atoms presents the noble-metal-like character to promote the generation of CHx and C2 species. This work demonstrates a new possibility for rational construction of other catalysts with the non-noble metal supported by the metal carbide, adjusting the surface termination of metal carbide and the supported metal types can present the noble-metal-like character to tune catalytic performance of C2 species from syngas.
Collapse
Affiliation(s)
- Wantong Zhao
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
| | - Zun Guan
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
| | - Debao Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, PR China
| | - Baojun Wang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
- Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education, Taiyuan, Shanxi 030024, PR China
| | - Maohong Fan
- College of Engineering and Applied Science, University of Wyoming, Laramie, Wyoming 82071, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Riguang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
- Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education, Taiyuan, Shanxi 030024, PR China
| |
Collapse
|
14
|
Jiménez MJ, Lissarrague MS, Bechthold P, González EA, Jasen PV, Juan A. Ethanol adsorption on Ni doped Mo2C(001): a theoretical study. Top Catal 2022. [DOI: 10.1007/s11244-022-01596-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Barrios AJ, Peron DV, Chakkingal A, Dugulan AI, Moldovan S, Nakouri K, Thuriot-Roukos J, Wojcieszak R, Thybaut JW, Virginie M, Khodakov AY. Efficient Promoters and Reaction Paths in the CO 2 Hydrogenation to Light Olefins over Zirconia-Supported Iron Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Alan J. Barrios
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 − UCCS − Unité de Catalyse et Chimie du Solide, Lille F-59000, France
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Ghent B-9052, Belgium
| | - Deizi V. Peron
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 − UCCS − Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Anoop Chakkingal
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 − UCCS − Unité de Catalyse et Chimie du Solide, Lille F-59000, France
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Ghent B-9052, Belgium
| | - Achim Iulian Dugulan
- Fundamental Aspects of Materials and Energy Group, Delft University of Technology, Mekelweg 15, Delft 2629 JB, Netherlands
| | - Simona Moldovan
- Groupe de Physique des Matériaux, CNRS, Université Normandie & INSA Rouen Avenue de l’Université - BP12, St Etienne du Rouvray 76801, France
| | - Kalthoum Nakouri
- Groupe de Physique des Matériaux, CNRS, Université Normandie & INSA Rouen Avenue de l’Université - BP12, St Etienne du Rouvray 76801, France
| | - Joëlle Thuriot-Roukos
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 − UCCS − Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Robert Wojcieszak
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 − UCCS − Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Joris W. Thybaut
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Ghent B-9052, Belgium
| | - Mirella Virginie
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 − UCCS − Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Andrei Y. Khodakov
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 − UCCS − Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| |
Collapse
|
16
|
Evaluation of Au/ZrO2 Catalysts Prepared via Postsynthesis Methods in CO2 Hydrogenation to Methanol. Catalysts 2022. [DOI: 10.3390/catal12020218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Au nanoparticles supported on ZrO2 enhance its surface acidic/basic properties to produce a high yield of methanol via the hydrogenation of CO2. Amorphous ZrO2-supported 0.5–1 wt.% Au catalysts were synthesized by two methods, namely deposition precipitation (DP) and impregnation (IMP), characterized by a variety of techniques, and evaluated in the process of CO2 hydrogenation to methanol. The DP-method catalysts were highly advantageous over the IMP-method catalyst. The DP method delivered samples with a large surface area, along with the control of the Au particle size. The strength and number of acidic and basic sites was enhanced on the catalyst surface. These surface changes attributed to the DP method greatly improved the catalytic activity when compared to the IMP method. The variations in the surface sites due to different preparation methods exhibited a huge impact on the formation of important intermediates (formate, dioxymethylene and methoxy) and their rapid hydrogenation to methanol via the formate route, as revealed by means of in situ DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) analysis. Finally, the rate of formation of methanol was enhanced by the increased synergy between the metal and the support.
Collapse
|
17
|
Sarabadani Tafreshi S, Ranjbar M, Taghizade N, Panahi SFKS, Jamaati M, de Leeuw NH. A first-principles study of CO2 hydrogenation on Niobium-terminated NbC (111) surface. Chemphyschem 2022; 23:e202100781. [PMID: 35040247 DOI: 10.1002/cphc.202100781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/15/2022] [Indexed: 11/06/2022]
Abstract
As a promising material for the reduction of Greenhouse gas, Transition metal carbides which are highly active in the hydrogenation of CO2 are mainly considered. In this regard, the reaction mechanism of CO2 hydrogenation to useful products on the Nb-terminated NbC (111) surface is investigated by applying density functional theory calculations. The computational results display that formation of CH4 , CH3OH and CO are more favored than other compounds, where CH4 is the dominant product. In addition, the findings from reaction energies reveal that the preferred mechanism for CO2 hydrogenation is thorough HCOOH * where the largest exothermic reaction energy releases during HCOOH * dissociation reaction (2.004eV). The preferred mechanism of CO2 hydrogenation towards CH 4 production is CO2 *→ t,c-COOH *→ HCOOH *→ HCO *→ CH2O *→ CH2OH *→ CH2 *→ CH3 *→ CH4 * where CO2 * → t,c-COOH * → HCOOH * → HCO * → CH2O * → CH2OH * → CH3OH * and CO2 * → t,c-COOH * → CO * are also found as the favored mechanisms for CH3 OH and CO productions thermodynamically, respectively. During the mentioned mechanisms the hydrogenation of CH2O * to CH2OH * has the largest endothermic reaction energy of 1.344 eV. It is also found from the electronic properties calculations that Nb-terminated NbC (111) is a suitable catalyst for CO2 hydrogenation where adsorption and activation of CO2 and also desorption of final products can be easily done on the surface.
Collapse
Affiliation(s)
| | - Mahkameh Ranjbar
- Amirkabir University of Technology, chemistry, IRAN (ISLAMIC REPUBLIC OF)
| | - Narges Taghizade
- Iran University of Science and Technology School of Physics, physics, IRAN (ISLAMIC REPUBLIC OF)
| | - S F K S Panahi
- Iran University of Science and Technology School of Physics, physics, IRAN (ISLAMIC REPUBLIC OF)
| | - Maryam Jamaati
- Iran University of Science and Technology School of Physics, physics, IRAN (ISLAMIC REPUBLIC OF)
| | | |
Collapse
|
18
|
Zhao J, Yin LF, Ling LX, Zhang RG, Fan MH, Wang BJ. A predicted new catalyst to replace noble metal Pd for CO oxidative coupling to DMO. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01631h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction mechanisms of CO oxidative coupling to dimethyl oxalate (DMO) on different β-Mo2C(001) based catalysts have been studied by the density functional theory (DFT) method.
Collapse
Affiliation(s)
- Juan Zhao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Li-Fei Yin
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Li-Xia Ling
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- Department of Chemical and Petroleum Engineering, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA
| | - Ri-Guang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Mao-Hong Fan
- Department of Chemical and Petroleum Engineering, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA
| | - Bao-Jun Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| |
Collapse
|
19
|
Rui N, Shi R, Gutiérrez RA, Rosales R, Kang J, Mahapatra M, Ramírez PJ, Senanayake SD, Rodriguez JA. CO 2 Hydrogenation on ZrO 2/Cu(111) Surfaces: Production of Methane and Methanol. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ning Rui
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Rui Shi
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Ramón A. Gutiérrez
- Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1020-A, Venezuela
| | - Rina Rosales
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jindong Kang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Mausumi Mahapatra
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Pedro J. Ramírez
- Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1020-A, Venezuela
- Zoneca-CENEX, R&D Laboratories, Alta Vista, 64770 Monterrey Mexico
| | - Sanjaya D. Senanayake
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - José A. Rodriguez
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
20
|
Chen Y, Lin J, Wang X. Noble-metal based single-atom catalysts for the water-gas shift reaction. Chem Commun (Camb) 2021; 58:208-222. [PMID: 34878466 DOI: 10.1039/d1cc04051k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-atom catalysts (SACs) have attracted great attention in heterogeneous catalysis. In this Feature Article, we summarize the recent advances of typical Au and Pt-group-metal (PGM) based SACs and their applications in the water-gas shift (WGS) reaction in the past two decades. First, oxide and carbide supported single atoms are categorized. Then, the active sites in the WGS reaction are identified and discussed, with SACs as the positive state or metallic state. After that, the reaction mechanisms of the WGS are presented, which are classified into two categories of redox mechanism and associative mechanism. Finally, the challenges and opportunities in this emerging field for the collection of hydrogen are proposed on the basis of current developments. It is believed that more and more exciting findings based on SACs are forthcoming.
Collapse
Affiliation(s)
- Yang Chen
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China. .,Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.
| |
Collapse
|
21
|
Highly active K-promoted Cu/β-Mo2C catalysts for reverse water gas shift reaction: Effect of potassium. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Li Y, Fang Z, Zhou H, Li Y, Wang B, Huang S, Lin W, Chen WK, Zhang Y. Theoretical Insights into Synergistic Effects at Cu/TiC Interfaces for Promoting CO 2 Activation. ACS OMEGA 2021; 6:27259-27270. [PMID: 34693146 PMCID: PMC8529663 DOI: 10.1021/acsomega.1c04040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/23/2021] [Indexed: 05/09/2023]
Abstract
The adsorption behaviors of CO2 at the Cu n /TiC(001) interfaces (n = 1-8) have been investigated using the density functional theory method. Our results reveal that the introduction of copper clusters on a TiC surface can significantly improve the thermodynamic stability of CO2 chemisorption. However, the most stable adsorption site is sensitive to the size and morphology of Cu n particles. The interfacial configuration is the most stable structure for copper clusters with small (n ≤ 2) and large (n ≥ 8) sizes, in which both Cu particles and TiC support are involved in CO2 activation. In such a case, the synergistic behavior is associated with the ligand effect introduced by directly forming adsorption bonds with CO2. For those Cu n clusters with a medium size (n = 3-7), the configuration where CO2 adsorbs solely on the exposed hollow site constructed by Cu atoms at the interface shows the best stability, and the charger transfer becomes the primary origin of the synergistic effect in promoting CO2 activation. Since the most obvious deformation of CO2 is observed for the TiC(001)-surface-supported Cu4 and Cu7 particles, copper clusters with specific sizes of n = 4 and 7 exhibit the best ability for CO2 activation. Furthermore, the kinetic barriers for CO2 dissociation on Cu4- and Cu7-supported TiC surfaces are determined. The findings obtained in this work provide useful insights into optimizing the Cu/TiC interface with high catalytic activation of CO2 by precisely controlling the size and dispersion of copper particles.
Collapse
Affiliation(s)
- Yanli Li
- State
Key Laboratory of Photocatalysis on Energy and Environment, College
of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhongpu Fang
- State
Key Laboratory of Photocatalysis on Energy and Environment, College
of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Hegen Zhou
- State
Key Laboratory of Photocatalysis on Energy and Environment, College
of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- College
of Chemical and Biological Engineering, Yichun University, Yichun, Jiangxi 336000, China
| | - Yi Li
- State
Key Laboratory of Photocatalysis on Energy and Environment, College
of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| | - Bin Wang
- State
Key Laboratory of Photocatalysis on Energy and Environment, College
of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Shuping Huang
- State
Key Laboratory of Photocatalysis on Energy and Environment, College
of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Wei Lin
- State
Key Laboratory of Photocatalysis on Energy and Environment, College
of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| | - Wen-Kai Chen
- State
Key Laboratory of Photocatalysis on Energy and Environment, College
of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| | - Yongfan Zhang
- State
Key Laboratory of Photocatalysis on Energy and Environment, College
of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| |
Collapse
|
23
|
Koverga AA, Flórez E, Jimenez-Orozco C, Rodriguez JA. Spot the difference: hydrogen adsorption and dissociation on unsupported platinum and platinum-coated transition metal carbides. Phys Chem Chem Phys 2021; 23:20255-20267. [PMID: 34477186 DOI: 10.1039/d1cp02974f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogenation reactions are involved in several processes in heterogeneous catalysis. Platinum is the best-known catalyst; however, there are limitations to its practical use. Therefore, it is necessary to explore alternative materials and transition metal carbides (TMCs) have emerged as potential candidates. We explore the possibility of using cheap TMCs as supports for a Pt monolayer, aiming to reduce the amount of the noble metal in the catalyst without a significant loss of its activity towards H2 dissociation. Hence, analyzing H2 dissociation from a fundamental point of view is a necessary step towards a further practical catalyst. By means of periodic DFT calculations, we analyze H2 adsorption and dissociation on Pt/β-Mo2C and Pt/α-WC surfaces, as a function of hydrogen surface coverage (ΘH), resembling a more realistic model of a catalyst. H2 dissociation rates were analyzed as a function of the reaction temperature. The results show that Pt/C-WC and Pt/Mo-Mo2C have a Pt-like behavior for H2 dissociation at ΘH > 1/2 ML. At a particular temperature of 298 K, Pt/C-WC and Pt/Mo-Mo2C have low energy barriers for H2* → 2H* (0.13 and 0.11 eV, respectively), close to the value of Pt (0.06 eV). For the highest coverage, i.e. ΘH = 1, Pt/C-WC has a lower activation energy and a higher reaction rate than Pt. Finally, the H2 dissociation rate is higher in Pt/Mo-Mo2C than in Pt when increasing the temperature above 298 K. Our results put Pt/C-WC and Pt/Mo-Mo2C under the spotlight as potential catalysts for H2 dissociation, with a similar performance to Pt, paving the way for further experimental and/or theoretical studies, addressing the capability of Pt/TMC as practical catalysts in hydrogenation reactions.
Collapse
Affiliation(s)
- Andrey A Koverga
- Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín 050026, Colombia.
| | - Elizabeth Flórez
- Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín 050026, Colombia.
| | - Carlos Jimenez-Orozco
- Grupo de Investigación Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín 050026, Colombia.
| | - José A Rodriguez
- Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
24
|
Raghav H, Siva Kumar Konathala L, Mishra N, Joshi B, Goyal R, Agrawal A, Sarkar B. Fe-decorated hierarchical molybdenum carbide for direct conversion of CO2 into ethylene: Tailoring activity and stability. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Figueras M, Gutiérrez RA, Viñes F, Ramírez PJ, Rodriguez JA, Illas F. Supported Molybdenum Carbide Nanoparticles as an Excellent Catalyst for CO 2 Hydrogenation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01738] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marc Figueras
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ramón A. Gutiérrez
- Facultad de Ciencias, Universidad Central de Venezuela, 1020-A Caracas, Venezuela
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Francesc Viñes
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Pedro J. Ramírez
- Facultad de Ciencias, Universidad Central de Venezuela, 1020-A Caracas, Venezuela
| | - José A. Rodriguez
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
26
|
Duan XP, Chen T, Chen T, Huang L, Ye L, Lo BTW, Yuan Y, Edman Tsang SC. Intercalating lithium into the lattice of silver nanoparticles boosts catalytic hydrogenation of carbon-oxygen bonds. Chem Sci 2021; 12:8791-8802. [PMID: 34257879 PMCID: PMC8246077 DOI: 10.1039/d1sc01700d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/22/2021] [Indexed: 12/28/2022] Open
Abstract
Coinage metal nanoparticles with high dispersion can serve as highly efficient heterogeneous catalysts. However, owing to their low melting point, poor thermal stability remains a major obstacle towards their application under reaction conditions. It is a common practice to use porous inorganic templates such as mesoporous silica SBA-15 to disperse Ag nanoparticles (NPs) against aggregation but their stability is far from satisfactory. Here, we show that the catalytic activity for hydrogenation of dimethyl oxalate (DMO) to methyl glycolate (MG) over Ag NPs dispersed on SBA-15 silica can be further promoted by incorporation of alkali metal ions at small loading, which follows the inverse order of their cationic size: Li+ > Na+ > K+ > Rb+. Among these, 5Ag1-Li0.05/SBA-15 can double the MG yield compared to pristine 5Ag/SBA-15 under identical conditions with superior thermal stability. Akin to the effect of an ionic surfactant on stabilization of a micro-emulsion, the cationic charge of an alkali metal ion can maintain dispersion and modulate the surface valence of Ag NPs. Interstitial Li in the octahedral holes of the face center packed Ag lattice is for the first time confirmed by X-ray pair distribution function and electron ptychography. It is believed that this interstitial-stabilization of coinage metal nanoparticles could be broadly applicable to multi-metallic nanomaterials for a broad range of C-O bond activating catalytic reactions of esters.
Collapse
Affiliation(s)
- Xin-Ping Duan
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford Oxford OX1 3QR UK
- Department of Chemistry, Xiamen University Xiamen 361005 China
| | - Tianyi Chen
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford Oxford OX1 3QR UK
| | - Tianxiang Chen
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University Hong Kong China
| | - Lele Huang
- Department of Chemistry, Xiamen University Xiamen 361005 China
| | - Li Ye
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford Oxford OX1 3QR UK
- Department of Chemistry, Fudan University (Jiangwan Campus) Shanghai China
| | - Benedict T W Lo
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University Hong Kong China
| | - Youzhu Yuan
- Department of Chemistry, Xiamen University Xiamen 361005 China
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford Oxford OX1 3QR UK
| |
Collapse
|
27
|
Mondal U, Ghosh P. Role of geometry, charge and fluxionality of clusters in CO2 activation on supported sub-nanometer metal clusters: The case of Cu tetramers on pristine and O-terminated MXene. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Morales‐García Á, Viñes F, Gomes JRB, Illas F. Concepts, models, and methods in computational heterogeneous catalysis illustrated through
CO
2
conversion. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ángel Morales‐García
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB) Universitat de Barcelona Barcelona Spain
| | - Francesc Viñes
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB) Universitat de Barcelona Barcelona Spain
| | - José R. B. Gomes
- CICECO—Aveiro Institute of Materials, Department of Chemistry University of Aveiro Aveiro Portugal
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB) Universitat de Barcelona Barcelona Spain
| |
Collapse
|
29
|
Xu D, Wang Y, Ding M, Hong X, Liu G, Tsang SCE. Advances in higher alcohol synthesis from CO2 hydrogenation. Chem 2021. [DOI: 10.1016/j.chempr.2020.10.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Wulf C, Beller M, Boenisch T, Deutschmann O, Hanf S, Kockmann N, Kraehnert R, Oezaslan M, Palkovits S, Schimmler S, Schunk SA, Wagemann K, Linke D. A Unified Research Data Infrastructure for Catalysis Research – Challenges and Concepts. ChemCatChem 2021. [DOI: 10.1002/cctc.202001974] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Christoph Wulf
- Leibniz-Institute for Catalysis Rostock Albert-Einstein-Str. 29a D-18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institute for Catalysis Rostock Albert-Einstein-Str. 29a D-18059 Rostock Germany
| | - Thomas Boenisch
- High Performance Computing Center Stuttgart (HLRS) University of Stuttgart Nobelstr. 19 D-70569 Stuttgart Germany
| | - Olaf Deutschmann
- Karlsruher Institut für Technologie (KIT) Kaiserstraße 12 D-76131 Karlsruhe Germany
| | - Schirin Hanf
- Karlsruher Institut für Technologie (KIT) Engesserstr. 15 D-76131 Karlsruhe Germany
| | - Norbert Kockmann
- Biochemical and Chemical Engineering, Equipment Design TU Dortmund University D-44221 Dortmund Germany
| | - Ralph Kraehnert
- BasCat – UniCat BASF JointLab Technische Universität Berlin Hardenbergstraße 36 D-10623 Berlin Germany
| | - Mehtap Oezaslan
- Institute of Technical Chemistry TU Braunschweig D-38106 Braunschweig Germany
| | - Stefan Palkovits
- Institute for Technical and Macromolecular Chemistry RWTH Aachen University Worringerweg 2 D-52074 Aachen Germany
| | - Sonja Schimmler
- Fraunhofer Institute for Open Communication Systems (FOKUS) Kaiserin-Augusta-Allee 31 D-10589 Berlin Germany
| | - Stephan A. Schunk
- the high throughput experimentation company Kurpfalzring 104 D-69123 Heidelberg Germany
- BASF SE Carl-Bosch Str. 38 D-67056 Ludwigshafen Germany
| | - Kurt Wagemann
- DECHEMA e.V. Theodor-Heuss-Allee 25 D-60486 Frankfurt Germany
| | - David Linke
- Leibniz-Institute for Catalysis Rostock Albert-Einstein-Str. 29a D-18059 Rostock Germany
| |
Collapse
|
31
|
Ge R, Huo J, Sun M, Zhu M, Li Y, Chou S, Li W. Surface and Interface Engineering: Molybdenum Carbide-Based Nanomaterials for Electrochemical Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e1903380. [PMID: 31532899 DOI: 10.1002/smll.201903380] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Molybdenum carbide (Mox C)-based nanomaterials have shown competitive performances for energy conversion applications based on their unique physicochemical properties. A large surface area and proper surface atomic configuration are essential to explore potentiality of Mox C in electrochemical applications. Although considerable efforts are made on the development of advanced Mox C-based catalysts for energy conversion with high efficiency and stability, some urgent issues, such as low electronic conductivity, low catalytic efficiency, and structural instability, have to be resolved in accordance with their application environments. Surface and interface engineering have shown bright prospects to construct highly efficient Mox C-based electrocatalysts for energy conversion including the hydrogen evolution reaction, oxygen evolution reaction, nitrogen reduction reaction, and carbon dioxide reduction reaction. In this Review, the recent progresses in terms of surface and interface engineering of Mox C-based electrocatalytic materials are summarized, including the increased number of active sites by decreasing the particle size or introducing porous or hierarchical structures and surface modification by introducing heteroatom(s), defects, carbon materials, and others electronic conductive species. Finally, the challenges and prospects for energy conversion on Mox C-based nanomaterials are discussed in terms of key performance parameters for the catalytic performance.
Collapse
Affiliation(s)
- Riyue Ge
- Institute of Materials, School of Materials Science and Engineering/Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Juanjuan Huo
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Mingjie Sun
- Institute of Materials, School of Materials Science and Engineering/Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Mingyuan Zhu
- Institute of Materials, School of Materials Science and Engineering/Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Ying Li
- Institute of Materials, School of Materials Science and Engineering/Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Shulei Chou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, New South Wales, 2522, Australia
| | - Wenxian Li
- Institute of Materials, School of Materials Science and Engineering/Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
- Shanghai Key Laboratory of High Temperature Superconductors, Shanghai, 200444, China
| |
Collapse
|
32
|
Tang K, Wang Z, Zou W, Guo H, Wu Y, Pu Y, Tong Q, Wan H, Gu X, Dong L, Rong J, Chen YW. Advantageous Role of Ir 0 Supported on TiO 2 Nanosheets in Photocatalytic CO 2 Reduction to CH 4: Fast Electron Transfer and Rich Surface Hydroxyl Groups. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6219-6228. [PMID: 33499601 DOI: 10.1021/acsami.0c19233] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ir-based heterogeneous catalysts for photocatalytic CO2 reduction have rarely been reported and are worthy of investigation. In this work, TiO2 nanosheets with a higher specific surface area and more oxygen vacancies were employed to support Ir metal by impregnation (Imp) and ethylene glycol (EG) reduction methods. In comparison with Ir/TiO2 (Imp) and TiO2, Ir/TiO2 (EG) exhibited excellent photocatalytic performance toward CO2 reduction, especially for CH4 production on account of the oxygen defect of TiO2 and rich surface hydroxyl groups produced from the interaction between TiO2 nanosheets and metallic Ir. In situ ESR suggested that the oxygen defect was significant for CO2 adsorption/activation. Furthermore, metallic Ir was beneficial for photogenerated electron transfer, surface hydroxyl generation, and adsorption of the CO intermediate, generating more available electrons and reducing agents for CH4 production. In situ CO2 DRIFTS confirmed the key synergistic interaction between the oxygen defect and metallic Ir in the photoreduction from CO2 to CH4.
Collapse
Affiliation(s)
- Kunlin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Zhiqiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Weixin Zou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Hongyu Guo
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Yuchao Wu
- Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China
| | - Yu Pu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Qing Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Haiqin Wan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Xianrui Gu
- Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry and Chemical Engineering, Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Junfeng Rong
- Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China
| | - Yu-Wen Chen
- Department of Chemical Engineering, National Central University, Jhong-Li 32001, Taiwan
| |
Collapse
|
33
|
Insights on alkylidene formation on Mo2C: A potential overlap between direct deoxygenation and olefin metathesis. J Catal 2021. [DOI: 10.1016/j.jcat.2020.11.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Dongil AB, Conesa JM, Pastor-Pérez L, Sepúlveda-Escribano A, Guerrero-Ruiz A, Rodríguez-Ramos I. Carbothermally generated copper–molybdenum carbide supported on graphite for the CO2 hydrogenation to methanol. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00410g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The carbothermal synthesis of monometallic and bimetallic molybdenum carbide and copper supported on high surface area graphite, has been studied at 600 and 700 °C and characterised. The catalysts were tested for CO2 hydrogenation to CH3OH.
Collapse
Affiliation(s)
- A. B. Dongil
- Instituto de Catálisis y Petroleoquímica
- CSIC
- 28049 Madrid
- Spain
| | - J. M. Conesa
- Dpto. Química Inorgánica y Técnica
- Facultad de Ciencias UNED
- 28040 Madrid
- Spain
| | - L. Pastor-Pérez
- Department of Chemical and Process Engineering
- University of Surrey
- Guildford
- UK
| | - A. Sepúlveda-Escribano
- Laboratorio de Materiales Avanzados
- Departamento de Química Inorgánica – Instituto Universitario de Materiales de Alicante
- Universidad de Alicante
- E-03080 Alicante
- Spain
| | - A. Guerrero-Ruiz
- Dpto. Química Inorgánica y Técnica
- Facultad de Ciencias UNED
- 28040 Madrid
- Spain
- UA UNED-ICP(CSIC)
| | - I. Rodríguez-Ramos
- Instituto de Catálisis y Petroleoquímica
- CSIC
- 28049 Madrid
- Spain
- UA UNED-ICP(CSIC)
| |
Collapse
|
35
|
De Zanet A, Kondrat SA. A Review of Preparation Strategies for α-MoC1-x Catalysts. JOHNSON MATTHEY TECHNOLOGY REVIEW 2021. [DOI: 10.1595/205651322x16383716226126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transition metal carbides are attracting growing attention as robust and affordable alternative heterogeneous catalysts to platinum group metals, for a host of contemporary and established hydrogenation, dehydrogenation, and isomerisation reactions. In particular, the metastable α-MoC1-x phase has been shown to exhibit interesting catalytic properties for low temperature processes reliant on O-H and C-H bond activation. While demonstrating exciting catalytic properties, a significant challenge exists in the application of metastable carbides, namely the challenging procedure for their preparation. In this review we will briefly discuss the properties and catalytic applications of α-MoC1-x, followed by a more detailed discussion on available synthesis methods and important parameters that influence carbide properties. Techniques are contrasted with properties of phase, surface area, morphology and Mo:C being considered. Further, we briefly relate these observations to experimental and theoretical studies of α-MoC1-x in catalytic applications. Synthetic strategies discussed are, the original temperature programmed ammonolysis followed by carburisation, alternative oxycarbide or hydrogen bronze precursor phases, heat treatment of moybdate-amide compounds and other low temperature synthetic routes. The importance of carbon removal and catalyst passivation in relation to surface and bulk properties are also discussed. Novel techniques that by-pass the apparent bottle neck of ammonolysis are reported, however a clear understanding of intermediate phases is required to be able to fully apply these techniques. Pragmatically, the scaled application of these techniques requires the pre-pyrolysis wet chemistry to be simple and scalable. Further, there is a clear opportunity to correlate observed morphologies/phases and catalytic properties with findings from computational theoretical studies. Detailed characterisation throughout the synthetic process is essential and will undoubtedly provide fundamental insights that can be used for the controllable and scalable synthesis of metastable α-MoC1-x.
Collapse
Affiliation(s)
- Andrea De Zanet
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Simon A. Kondrat
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
36
|
Jangam A, Das S, Dewangan N, Hongmanorom P, Hui WM, Kawi S. Conversion of CO2 to C1 chemicals: Catalyst design, kinetics and mechanism aspects of the reactions. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.08.049] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Role of surface defects in CO2 adsorption and activation on CuFeO2 delafossite oxide. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111181] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Abstract
Mitigation of anthropogenic CO2 emissions possess a major global challenge for modern societies. Herein, catalytic solutions are meant to play a key role. Among the different catalysts for CO2 conversion, Cu supported molybdenum carbide is receiving increasing attention. Hence, in the present communication, we show the activity, selectivity and stability of fresh-prepared β-Mo2C catalysts and compare the results with those of Cu/Mo2C, Cs/Mo2C and Cu/Cs/Mo2C in CO2 hydrogenation reactions. The results show that all the catalysts were active, and the main reaction product was methanol. Copper, cesium and molybdenum interaction is observed, and cesium promoted the formation of metallic Mo on the fresh catalyst. The incorporation of copper is positive and improves the activity and selectivity to methanol. Additionally, the addition of cesium favored the formation of Mo0 phase, which for the catalysts Cs/Mo2C seemed to be detrimental for the conversion and selectivity. Moreover, the catalysts promoted by copper and/or cesium underwent redox surface transformations during the reaction, these were more obvious for cesium doped catalysts, which diminished their catalytic performance.
Collapse
|
39
|
Fang T, Liu B, Lian Y, Zhang Z. Selective Methanol Synthesis from CO 2 Hydrogenation over an In 2O 3/Co/C-N Catalyst. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tingfeng Fang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Bing Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yun Lian
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Zehui Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
40
|
Identifying correlations in Fischer-Tropsch synthesis and CO2 hydrogenation over Fe-based ZSM-5 catalysts. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101290] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
41
|
Figueras M, Gutiérrez RA, Viñes F, Ramírez PJ, Rodriguez JA, Illas F. Supported Molybdenum Carbide Nanoparticles as Hot Hydrogen Reservoirs for Catalytic Applications. J Phys Chem Lett 2020; 11:8437-8441. [PMID: 32960609 DOI: 10.1021/acs.jpclett.0c02608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transition metal carbides have been long proposed as replacements for expensive Pt-group transition metals as heterogeneous catalysts for hydrogenation reactions, featuring similar or superior activities and selectivities. Combining experimental observations and theoretical calculations, we show that the hydrogenating capabilities of molybdenum carbide can be further improved by nanostructuring, as seen on MoCy nanoclusters anchored on an inert Au(111) support, revealing a more prominent role of Mo active sites in the easier H2 adsorption, dissociation, H adatom diffusion, and elongated chemisorbed H2 Kubas moieties formation when compared to the bulk δ-MoC(001) surface, thus explaining the observed stronger H2 interaction and the larger formation of CHx species, making these systems ideal to catalyze hydrogenation reactions.
Collapse
Affiliation(s)
- Marc Figueras
- Departament de Ciència de Materials i Quı́mica Fı́sica & Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ramón A Gutiérrez
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1020-A, Venezuela
| | - Francesc Viñes
- Departament de Ciència de Materials i Quı́mica Fı́sica & Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Pedro J Ramírez
- Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1020-A, Venezuela
- Zoneca-CENEX, R&D Laboratories, Alta Vista, 64770 Monterrey, Mexico
| | - José A Rodriguez
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Francesc Illas
- Departament de Ciència de Materials i Quı́mica Fı́sica & Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
42
|
Li H, Reuter K. Active-Site Computational Screening: Role of Structural and Compositional Diversity for the Electrochemical CO2 Reduction at Mo Carbide Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haobo Li
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
43
|
Figueras M, Jurado A, Morales-García Á, Viñes F, Illas F. Bulk (in)stability as a possible source of surface reconstruction. Phys Chem Chem Phys 2020; 22:19249-19253. [PMID: 32814935 DOI: 10.1039/d0cp03819a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A density functional theory based study is presented with the aim of addressing the surface energy stabilization mechanisms of transition metal carbide and nitride surfaces from a crystal structure different from that of the most stable polymorph. To this end, we consider the MoC(001), MoN(001), WC(001), and WN(001) surface of rocksalt structures, which, for these compounds, is not the most stable one. The geometry optimization of suitable slab models shows that all these surfaces undergo a sensible reconstruction. The energy difference per formula unit between the rock salt and the most stable polymorph seems to be the driving force behind the observed reconstruction. A note of caution is given in that certain small periodic boundary conditions can artificially restrain such reconstructions, for which at least (2×2) supercells are needed. Also, it is shown that neglecting such a surface reconstruction can lead to artifacts in the prediction of the chemical activity and/or reactivity of these surfaces.
Collapse
Affiliation(s)
- Marc Figueras
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Anabel Jurado
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Ángel Morales-García
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Francesc Viñes
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
44
|
Transition Metal Carbides (TMCs) Catalysts for Gas Phase CO2 Upgrading Reactions: A Comprehensive Overview. Catalysts 2020. [DOI: 10.3390/catal10090955] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Increasing demand for CO2 utilization reactions and the stable character of CO2 have motivated interest in developing highly active, selective and stable catalysts. Precious metal catalysts have been studied extensively due to their high activities, but their implementation for industrial applications is hindered due to their elevated cost. Among the materials which have comparatively low prices, transition metal carbides (TMCs) are deemed to display catalytic properties similar to Pt-group metals (Ru, Rh, Pd, Ir, Pt) in several reactions such as hydrogenation and dehydrogenation processes. In addition, they are excellent substrates to disperse metallic particles. Hence, the unique properties of TMCs make them ideal substitutes for precious metals resulting in promising catalysts for CO2 utilization reactions. This work aims to provide a comprehensive overview of recent advances on TMCs catalysts towards gas phase CO2 utilization processes, such as CO2 methanation, reverse water gas shift (rWGS) and dry reforming of methane (DRM). We have carefully analyzed synthesis procedures, performances and limitations of different TMCs catalysts. Insights on material characteristics such as crystal structure and surface chemistry and their connection with the catalytic activity are also critically reviewed.
Collapse
|
45
|
Abou Hamdan M, Nassereddine A, Checa R, Jahjah M, Pinel C, Piccolo L, Perret N. Supported Molybdenum Carbide and Nitride Catalysts for Carbon Dioxide Hydrogenation. Front Chem 2020; 8:452. [PMID: 32582635 PMCID: PMC7296157 DOI: 10.3389/fchem.2020.00452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Catalysts based on molybdenum carbide or nitride nanoparticles (2-5 nm) supported on titania were prepared by wet impregnation followed by a thermal treatment under alkane (methane or ethane)/hydrogen or nitrogen/hydrogen mixture, respectively. The samples were characterized by elemental analysis, volumetric adsorption of nitrogen, X-ray diffraction, and aberration-corrected transmission electron microscopy. They were evaluated for the hydrogenation of CO2 in the 2-3 MPa and 200-300°C ranges using a gas-phase flow fixed bed reactor. CO, methane, methanol, and ethane (in fraction-decreasing order) were formed on carbides, whereas CO, methanol, and methane were formed on nitrides. The carbide and nitride phase stoichiometries were tuned by varying the preparation conditions, leading to C/Mo and N/Mo atomic ratios of 0.2-1.8 and 0.5-0.7, respectively. The carbide activity increased for lower carburizing alkane concentration and temperature, i.e., lower C/Mo ratio. Enhanced carbide performances were obtained with pure anatase titania support as compared to P25 (anatase/rutile) titania or zirconia, with a methanol selectivity up to 11% at 250°C. The nitride catalysts appeared less active but reached a methanol selectivity of 16% at 250°C.
Collapse
Affiliation(s)
- Marwa Abou Hamdan
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne, France
| | | | - Ruben Checa
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne, France
| | - Mohamad Jahjah
- LCIO, Laboratoire de Chimie de Coordination Inorganique et Organométallique, Université Libanaise- Faculté des Sciences I, Beyrouth, Lebanon
| | - Catherine Pinel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne, France
| | - Laurent Piccolo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne, France
| | - Noémie Perret
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne, France
| |
Collapse
|
46
|
Jimenez-Orozco C, Flórez E, Viñes F, Rodriguez JA, Illas F. Critical Hydrogen Coverage Effect on the Hydrogenation of Ethylene Catalyzed by δ-MoC(001): An Ab Initio Thermodynamic and Kinetic Study. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00144] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carlos Jimenez-Orozco
- Grupo de Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellı́n, Mat&mpac, Carrera 87 No 30-65, Medellín, Colombia
| | - Elizabeth Flórez
- Grupo de Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellı́n, Mat&mpac, Carrera 87 No 30-65, Medellín, Colombia
| | - Francesc Viñes
- Departament de Ciència de Materials i Quı́mica Fı́sica & Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - José A. Rodriguez
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Francesc Illas
- Departament de Ciència de Materials i Quı́mica Fı́sica & Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
47
|
Geng F, Bonita Y, Jain V, Magiera M, Rai N, Hicks JC. Bimetallic Ru–Mo Phosphide Catalysts for the Hydrogenation of CO2 to Methanol. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06937] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Feiyang Geng
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yolanda Bonita
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Varsha Jain
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Matthew Magiera
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Neeraj Rai
- Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Jason C. Hicks
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
48
|
Rodriguez JA. Activation of Gold on Metal Carbides: Novel Catalysts for C1 Chemistry. Front Chem 2020; 7:875. [PMID: 31970150 PMCID: PMC6960188 DOI: 10.3389/fchem.2019.00875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/04/2019] [Indexed: 11/17/2022] Open
Abstract
This article presents a review of recent uses of Au-carbide interfaces as catalysts for C1 Chemistry (CO oxidation, low-temperature water-gas shift, and CO2 hydrogenation). The results of density-functional calculations and photoemission point to important electronic perturbations when small two-dimensional clusters of gold are bounded to the (001) surface of various transition metal carbides (TiC, ZrC, VC, Ta C, and δ-MoC). On these surfaces, the C sites exhibited strong interactions with the gold clusters. On the carbide surfaces, the Au interacts stronger than on oxides opening the door for strong metal-support interactions. So far, most of the experimental studies with well-defined systems have been focused on the Au/TiC, Au/δ-MoC, and Au/β-Mo2C interfaces. Au/TiC and Au/δ-MoC are active and stable catalysts for the low-temperature water-gas shift reaction and for the hydrogenation of CO2 to methanol or CO. Variations in the behavior of the Au/δ-MoC and Au/β-Mo2C systems clearly show the strong effect of the metal/carbon ratio on the performance of the carbide catalysts. This parameter substantially impacts the chemical behavior of the carbide and its interaction with supported metals, up to the point of modifying the reaction rate and mechanism of C1 processes.
Collapse
Affiliation(s)
- José A Rodriguez
- Brookhaven National Laboratory, Department of Chemistry, Upton, NY, United States
| |
Collapse
|
49
|
Meng C, Li R, Ning Y, Pavlovska A, Bauer E, Fu Q, Bao X. Visualizing Formation of Tungsten Carbide Model Catalyst and its Interaction with Oxygen. ChemCatChem 2020. [DOI: 10.1002/cctc.201901755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Caixia Meng
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsThe Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Rongtan Li
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsThe Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Yanxiao Ning
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsThe Chinese Academy of Sciences Dalian 116023 P. R. China
| | | | - Ernst Bauer
- Department of PhysicsArizona State University Tempe AZ-85287-1504 USA
| | - Qiang Fu
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsThe Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Xinhe Bao
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsThe Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
50
|
Koverga AA, Flórez E, Dorkis L, Rodriguez JA. Promoting effect of tungsten carbide on the catalytic activity of Cu for CO2 reduction. Phys Chem Chem Phys 2020; 22:13666-13679. [DOI: 10.1039/d0cp00358a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supporting Cu atoms on WC(0001) surfaces stabilizes CO2 molecules relative to Cu(111), promoting the CO2 catalytic activity on Cu/WC(0001).
Collapse
Affiliation(s)
- Andrey A. Koverga
- Universidad Nacional de Colombia sede Medellín
- Facultad de Minas
- Departamento de Materiales y Minerales
- Grupo de Investigación en Catálisis y Nanomateriales
- Medellín
| | - Elizabeth Flórez
- Universidad de Medellín
- Facultad de Ciencias Básicas
- Grupo de Investigación Mat&mpac
- Medellín
- Colombia
| | - Ludovic Dorkis
- Universidad Nacional de Colombia sede Medellín
- Facultad de Minas
- Departamento de Materiales y Minerales
- Grupo de Investigación en Catálisis y Nanomateriales
- Medellín
| | | |
Collapse
|