1
|
Guo C, Hu X, Han X, Gao Y, Zheng T, Chen D, Qiu X, Wang P, Xu K, Chen Y, Zhou R, Zong M, Wang J, Xia Z, Hao J, Xie K. Laser Precise Synthesis of Oxidation-Free High-Entropy Alloy Nanoparticle Libraries. J Am Chem Soc 2024; 146:18407-18417. [PMID: 38935530 DOI: 10.1021/jacs.4c03658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
High-entropy alloy nanoparticles (HEA-NPs) show exceptional properties and great potential as a new generation of functional materials, yet a universal and facile synthetic strategy in air toward nonoxidized and precisely controlled composition remains a huge challenge. Here we provide a laser scribing method to prepare single-phase solid solution HEA-NPs libraries in air with tunable composition at the atomic level, taking advantage of the laser-induced metastable thermodynamics and substrate-assisted confinement effect. The three-dimensional porous graphene substrate functions as a microreactor during the fast heating/cooling process, which is conductive to the generation of the pure alloy phase by effectively blocking the binding of oxygen and metals, but is also beneficial for realizing accurate composition control via microstructure confinement-endowed favorable vapor pressure. Furthermore, by combining an active learning approach based on an adaptive design strategy, we discover an optimal composition of quinary HEA-NP catalysts with an ultralow overpotential for Li-CO2 batteries. This method provides a simple, fast, and universal in-air route toward the controllable synthesis of HEA-NPs, potentially integrated with machine learning to accelerate the research on HEAs.
Collapse
Affiliation(s)
- Chang Guo
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401120, P. R. China
| | - Xiaobing Hu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Xiao Han
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401120, P. R. China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| | - Yong Gao
- Institute of Science and Technology for New Energy Xi'an Technological University. Xi'an, 710021, P. R. China
| | - Tao Zheng
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Dazhao Chen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Xueyuan Qiu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Pan Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Kengfeng Xu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yiming Chen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Runtong Zhou
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Meng Zong
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Ministry of Education, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Jincheng Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Zhenhai Xia
- Australian Carbon Materials Centre, School of Chemical Engineering, the University of New South Wales, Sydney 2052, Australia
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| | - Keyu Xie
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- Institute of Clean Energy, Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang 215400, P. R. China
| |
Collapse
|
2
|
Wang R, Chen D, Fang L, Fan W, You Q, Bian G, Zhou Y, Gu W, Wang C, Bai L, Li J, Deng H, Liao L, Yang J, Wu Z. Atomically Precise Nanometer-Sized Pt Catalysts with an Additional Photothermy Functionality. Angew Chem Int Ed Engl 2024; 63:e202402565. [PMID: 38588114 DOI: 10.1002/anie.202402565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Atomically precise ~1-nm Pt nanoparticles (nanoclusters, NCs) with ambient stability are important in fundamental research and exhibit diverse practical applications (catalysis, biomedicine, etc.). However, synthesizing such materials is challenging. Herein, by employing the mixture ligand protecting strategy, we successfully synthesized the largest organic-ligand-protected (~1-nm) Pt23 NCs precisely characterized with mass spectrometry and single-crystal X-ray diffraction analyses. Interestingly, natural population analysis and Bader charge calculation indicate an alternate, varying charge -layer distribution in the sandwich-like Pt23 NC kernel. Pt23 NCs can catalyze the oxygen reduction reaction under acidic conditions without requiring calcination and other treatments, and the resulting specific and mass activities without further treatment are sevenfold and eightfold higher than those observed for commercial Pt/C catalysts, respectively. Density functional theory and d-band center calculations interpret the high activity. Furthermore, Pt23 NCs exhibit a photothermal conversion efficiency of 68.4 % under 532-nm laser irradiation and can be used at least for six cycles, thus demonstrating great potential for practical applications.
Collapse
Grants
- 21925303, 21829501, 21771186, 22075290, 22075291, 22272179, 21222301, 21171170, and 21528303 Natural Science Foundation of China
- BJPY2019A02 CASHIPS Director's Fund
- MESO-23-A06 State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences
- 2020HSC-CIP005 and 2022HSC-CIP018 Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology
- 2021M703251 China Postdoctoral Science Foundation
- YZJJ-GGZX-2022-01 and YZJJ202306-TS HFIPS Director's Fund
Collapse
Affiliation(s)
- Runguo Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Dong Chen
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liang Fang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Guoqing Bian
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Yue Zhou
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Chengming Wang
- Instruments' Center for Physical Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Licheng Bai
- Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, P.R.China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, P.R.China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| |
Collapse
|
3
|
Chen G, Liu Y, Xue S, Zhang R, Lv H, Zhang J, Wu L, Che R. Exceptionally Bifunctional ORR/OER Performance via Synergistic Atom-Cluster Interaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308192. [PMID: 38072794 DOI: 10.1002/smll.202308192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Indexed: 05/12/2024]
Abstract
The single-atom sites (SAs) have achieved enhanced performance toward oxygen reduction reaction (ORR) with the effective utilization of the active sites. However, the excess adsorption of the intermediates and the limited stability hinders performance improvement. Metal clusters with promising stability and weak adsorption can be used as potential substitutions, but the lack of active sites is considered undesirable for catalytic reactions. Herein, a framework of Fe nanoclusters combined with SAs on One dimensional (1D) carbon nanotubes (Fe3C-NCNTs 90 min CC-1) is synthesized to confirm the synergistic atom-cluster interaction. The composite exhibits strong polarization and electron redistribution between nanocluster and SAs. The electron redistribution will significantly boost the electron transport and the desorption of the intermediates, which is confirmed by off-axis holography and DFT calculation. The electrocatalytic performance is significantly enhanced as the half-wave potential of ORR increased 75 mV and the potential of OER increased 133 mV compared with the sample without nanoclusters. Furthermore, such a bifunctional catalyst endows homemade Zn-air batteries (ZABs) with high power density and long-term stability. This work paves a facile route to design bifunctional ORR/OER electrocatalysts consisting of 0D composite structures.
Collapse
Affiliation(s)
- Guanyu Chen
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Yihao Liu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Shuyan Xue
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | | | - Hualiang Lv
- Institute of Optoelectronics, Fudan University, Shanghai, 200438, P. R. China
| | | | - Limin Wu
- Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
- Zhejiang Laboratory, Hangzhou, 311100, P. R. China
| |
Collapse
|
4
|
Samanta D, Shaw M, Shaik MAS, Basu R, Mondal I, Bhattacharya A, Pathak A. Optical Asymmetry and Structural Complexity in Hierarchically Organized Chiral CuO Nanostructures: Insight into the Geometric and Crystallographic Effects on Cooperative Chirality. Inorg Chem 2023; 62:16725-16733. [PMID: 37768369 DOI: 10.1021/acs.inorgchem.3c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Optical asymmetry and structural complexity across different length scales were realized in flower-shaped CuO nanostructures, prepared through refluxing an aqueous solution of copper acetate, sodium hydroxide, and D-tartaric acid, as well as in their toroid-like forms obtained on calcination at 600 °C. Atomic scale chirality in the flower morphology could be visualized as putative Boerdijk-Coexter-Bernal like tetrahelical fragments, while that in the toroid form could be identified as screw dislocation-driven helicity. The fraction of asymmetry in the nanostructures has been evaluated from their chiroptical responses based on Kuhn asymmetry factor (g) from circular dichroism (CD) spectroscopy in the entire UV-vis range. The origin of chirality in the two CuO nanostructures has been assigned to the helical arrangement of the Cu-O-Cu network in accordance with their microscopic and spectroscopic observations. Attempts have been made to interpret the crystallographic and geometric chiralities in the two CuO nanostructures based on the redshift and augmented intensity of the CD signal along with an increase in their corresponding anisotropic factor on calcination. Further, the diverse interaction of the toroid-shaped CuO nanostructures with enantiomeric tryptophan moieties has been illustrated from the measurement of their corresponding thermodynamic parameters.
Collapse
Affiliation(s)
- Dipanjan Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, W.B. 721302, India
| | - Manisha Shaw
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, W.B. 721302, India
| | - Md Abdus Salam Shaik
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, W.B. 721302, India
| | - Rajarshi Basu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, W.B. 721302, India
| | - Imran Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, W.B. 721302, India
| | - Angana Bhattacharya
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, W.B. 721302, India
| | - Amita Pathak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, W.B. 721302, India
| |
Collapse
|
5
|
Chaudhuri S, Logsdail AJ, Maurer RJ. Stability of Single Gold Atoms on Defective and Doped Diamond Surfaces. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:16187-16203. [PMID: 37609382 PMCID: PMC10440818 DOI: 10.1021/acs.jpcc.3c03900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Indexed: 08/24/2023]
Abstract
Polycrystalline boron-doped diamond (BDD) is widely used as a working electrode material in electrochemistry, and its properties, such as its stability, make it an appealing support material for nanostructures in electrocatalytic applications. Recent experiments have shown that electrodeposition can lead to the creation of stable small nanoclusters and even single gold adatoms on the BDD surfaces. We investigate the adsorption energy and kinetic stability of single gold atoms adsorbed onto an atomistic model of BDD surfaces by using density functional theory. The surface model is constructed using hybrid quantum mechanics/molecular mechanics embedding techniques and is based on an oxygen-terminated diamond (110) surface. We use the hybrid quantum mechanics/molecular mechanics method to assess the ability of different density functional approximations to predict the adsorption structure, energy, and barrier for diffusion on pristine and defective surfaces. We find that surface defects (vacancies and surface dopants) strongly anchor adatoms on vacancy sites. We further investigated the thermal stability of gold adatoms, which reveals high barriers associated with lateral diffusion away from the vacancy site. The result provides an explanation for the high stability of experimentally imaged single gold adatoms on BDD and a starting point to investigate the early stages of nucleation during metal surface deposition.
Collapse
Affiliation(s)
- Shayantan Chaudhuri
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Centre
for Doctoral Training in Diamond Science and Technology, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Andrew J. Logsdail
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United
Kingdom
| | - Reinhard J. Maurer
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department
of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
6
|
Zhang ZN, Hong QL, Wang XH, Huang H, Li SN, Chen Y. Au Nanowires Decorated Ultrathin Co 3 O 4 Nanosheets toward Light-Enhanced Nitrate Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300530. [PMID: 36971299 DOI: 10.1002/smll.202300530] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Nitrate is a reasonable alternative instead of nitrogen for ammonia production due to the low bond energy, large water-solubility, and high chemical polarity for good absorption. Nitrate electroreduction reaction (NO3 RR) is an effective and green strategy for both nitrate treatment and ammonia production. As an electrochemical reaction, the NO3 RR requires an efficient electrocatalyst for achieving high activity and selectivity. Inspired by the enhancement effect of heterostructure on electrocatalysis, Au nanowires decorated ultrathin Co3 O4 nanosheets (Co3 O4 -NS/Au-NWs) nanohybrids are proposed for improving the efficiency of nitrate-to-ammonia electroreduction. Theoretical calculation reveals that Au heteroatoms can effectively adjust the electron structure of Co active centers and reduce the energy barrier of the determining step (*NO → *NOH) during NO3 RR. As the result, the Co3 O4 -NS/Au-NWs nanohybrids achieve an outstanding catalytic performance with high yield rate (2.661 mg h-1 mgcat -1 ) toward nitrate-to-ammonia. Importantly, the Co3 O4 -NS/Au-NWs nanohybrids show an obviously plasmon-promoted activity for NO3 RR due to the localized surface plasmon resonance (LSPR) property of Au-NWs, which can achieve an enhanced NH3 yield rate of 4.045 mg h-1 mgcat -1 . This study reveals the structure-activity relationship of heterostructure and LSPR-promotion effect toward NO3 RR, which provide an efficient nitrate-to-ammonia reduction with high efficiency.
Collapse
Affiliation(s)
- Ze-Nong Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Qing-Ling Hong
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Xiao-Hui Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Hao Huang
- Department of Microsystems, University of South-Eastern Norway, Borre, 3184, Norway
| | - Shu-Ni Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yu Chen
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| |
Collapse
|
7
|
Fu L, Liu K, Lyu Z, Sun Y, Cai J, Wang S, Wang Q, Xie S. Two-dimensional template-directed synthesis of one-dimensional kink-rich Pd 3Pb nanowires for efficient oxygen reduction. J Colloid Interface Sci 2023; 634:827-835. [PMID: 36565624 DOI: 10.1016/j.jcis.2022.12.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/09/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Developing facile synthetic strategies toward ultrafine one-dimensional (1D) nanowires (NWs) with rich catalytic hot spots is pivotal for exploring effective heterogeneous catalysts. Herein, we demonstrate a two-dimensional (2D) template-directed strategy for synthesizing 1D kink-rich Pd3Pb NWs with abundant grain boundaries to serve as high-efficiency electrocatalysts toward oxygen reduction reaction (ORR). In this one-pot synthesis, ultrathin Pd nanosheets were initially generated, which then served as self-sacrificial 2D nano-templates. A dynamic equilibrium growth was subsequently established on the 2D Pd nanosheets through the center-selected etching of Pd atoms and edge-preferred co-deposition of Pd/Pb atoms. This was followed by the oriented attachment of the generated Pd/Pb alloy nanograins and fragments. Thus, kink-rich Pd3Pb NWs with rich grain boundary defects were obtained in high yield, and these NWs were used as electrocatalytic active catalysts. The surface electronic interaction between Pd and Pb atoms effectively decreased the surface d-band center to weaken the binding of oxygen-containing intermediates toward improved ORR kinetics. Specifically, the kink-rich Pd3Pb NWs/C catalyst delivered outstanding ORR mass activity and specific activity (2.26 A⋅mgPd-1 and 2.59 mA⋅cm-2, respectively) in an alkaline solution. These values were respectively 13.3 and 10.8 times those of state-of-the-art commercial Pt/C catalyst. This study provides an innovative strategy for fabricating defect-rich low-dimensional nanocatalysts for efficient energy conversion catalysis.
Collapse
Affiliation(s)
- Luhong Fu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Kai Liu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China; College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, Henan, China
| | - Zixi Lyu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yu Sun
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Junlin Cai
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Shupeng Wang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Qiuxiang Wang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Shuifen Xie
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
8
|
Wang W, Bai X, Yuan X, Liu Y, Yang L, Chang F. Platinum-Cobalt Nanowires for Efficient Alcohol Oxidation Electrocatalysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:840. [PMID: 36676576 PMCID: PMC9864574 DOI: 10.3390/ma16020840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The compositions and surface facets of platinum (Pt)-based electrocatalysts are of great significance for the development of direct alcohol fuel cells (DAFCs). We reported an approach for preparing ultrathin PtnCo100-n nanowire (NW) catalysts with high activity. The PtnCo100-n NW alloy catalysts synthesized by single-phase surfactant-free synthesis have adjustable compositions and (111) plane and strain lattices. X-ray diffraction (XRD) results indicate that the alloy composition can adjust the lattice shrinkage or expansion of PtnCo100-n NWs. X-ray photoelectron spectroscopy (XPS) results show that the electron structure of Pt is changed by the alloying effect caused by electron modulation in the d band, and the chemical adsorption strength of Pt is decreased, thus the catalytic activity of Pt is increased. The experimental results show that the activity of PtnCo100-n for the oxidation of methanol and ethanol is related to the exposed crystal surface, strain lattice and composition of catalysts. The PtnCo100-n NWs exhibit stronger electrocatalytic performance for both methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). The dominant (111) plane Pt53Co47 exhibits the highest electrocatalytic activity in MOR, which is supported by the results of XPS. This discovery provides a new pathway to design high activity, stability nanocatalysts to enhance direct alcohol fuel cells.
Collapse
Affiliation(s)
| | | | | | - Yumin Liu
- Correspondence: (Y.L.); (L.Y.); (F.C.)
| | - Lin Yang
- Correspondence: (Y.L.); (L.Y.); (F.C.)
| | | |
Collapse
|
9
|
Chang F, Wang C, Wu X, Liu Y, Wei J, Bai Z, Yang L. Strained Lattice Gold-Copper Alloy Nanoparticles for Efficient Carbon Dioxide Electroreduction. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5064. [PMID: 35888530 PMCID: PMC9320753 DOI: 10.3390/ma15145064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
Electrocatalytic conversion of carbon dioxide (CO2) into specific renewable fuels is an attractive way to mitigate the greenhouse effect and solve the energy crisis. AunCu100-n/C alloy nanoparticles (AunCu100-n/C NPs) with tunable compositions, a highly active crystal plane and a strained lattice were synthesized by the thermal solvent co-reduction method. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) results show that AunCu100-n/C catalysts display a subtle lattice strain and dominant (111) crystal plane, which can be adjusted by the alloy composition. Electrochemical results show that AunCu100-n/C alloy catalysts for CO2 reduction display high catalytic activity; in particular, the Faradaic efficiency of Au75Cu25/C is up to 92.6% for CO at -0.7 V (vs. the reversible hydrogen electrode), which is related to lattice shrinkage and the active facet. This research provides a new strategy with which to design strong and active nanoalloy catalysts with lattice mismatch and main active surfaces for CO2 reduction reaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhengyu Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (F.C.); (C.W.); (X.W.); (Y.L.); (J.W.)
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (F.C.); (C.W.); (X.W.); (Y.L.); (J.W.)
| |
Collapse
|
10
|
Niu H, Xia C, Huang L, Zaman S, Maiyalagan T, Guo W, You B, Xia BY. Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63862-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Yang Z, Yang H, Shang L, Zhang T. Ordered PtFeIr Intermetallic Nanowires Prepared through a Silica‐Protection Strategy for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhaojun Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Hongzhou Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Lu Shang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
12
|
Shetty S, Gayen M, Agarwal S, Chatterjee D, Singh A, Ravishankar N. Tuning Catalytic Activity in Ultrathin Bimetallic Nanowires via Surface Segregation: Some Insights. J Phys Chem Lett 2022; 13:770-776. [PMID: 35041416 DOI: 10.1021/acs.jpclett.1c03852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The efficiency of heterogeneous catalysts critically depends on the nature of the surface. We present results on controlling the composition in ultrathin bimetallic AuPd. AuPd wires were grown using Au nanowire templates; the surface composition could be tuned by increasing the amount of Pd. Further, segregation of Pd to the surface could be induced in alloyed nanowires by annealing under a controlled CO atmosphere. Electrocatalytic activity of these bimetallic systems is assessed for the methanol oxidation reaction (MOR). While the MOR potential shows a monotonic increase with Pd content, the specific activity displays a typical volcano-type behavior. The CO-annealed nanowires show a lowering of potential owing to a higher Pd content on the surface while still maintaining the specific activity. These findings provide clear strategies to independently control the reaction potential and the activities of nanocatalysts. The experimental findings are well supported by the theoretical investigations using density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Shwetha Shetty
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Meghabarna Gayen
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Sakshi Agarwal
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | | | - Abhishek Singh
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - N Ravishankar
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Zhang J, Di Q, Zhao X, Zhu W, Luan Y, Hou Z, Fan X, Zhou Y, Wang S, Quan Z. Controllable Synthesis of Platinum-Tin Intermetallic Nanoparticles with High Electrocatalytic Performance for Ethanol Oxidation. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01644j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article proposes a general approach for the preparation of intermetallic nanoparticles of Pt3Sn, PtSn, PtSn2, and PtSn4, triggered by hexamethyldisilazane (HMDS) in conjunction with SnCl2. The ethanol oxidation reaction...
Collapse
|
14
|
Chang F, Liu Y, Yang L, Zhang Q, Wei J, Wang X, Bai Z. Modulating the intrinsic properties of platinum–cobalt nanowires for enhanced electrocatalysis of the oxygen reduction reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj01146h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to improve the intrinsic activity of nanoalloy electrocatalysts is essential for designing highly efficient electrocatalysts by optimizing the basic physical properties of the nanoalloy.
Collapse
Affiliation(s)
- Fangfang Chang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yongpeng Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qing Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Juncai Wei
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Zhengyu Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
15
|
Chang F, Liu Y, Zhang Q, Jia Z, Wang X, Yang L, Bai Z. Regulating the lattice strain of platinum–copper catalysts for enhancing collaborative electrocatalysis. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01348c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PtnCu100−n alloy nanostellates showed the high catalytic activity for both the oxygen reduction and alcohol oxidation reactions.
Collapse
Affiliation(s)
- Fangfang Chang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yongpeng Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qing Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhichao Jia
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhengyu Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
16
|
Yang Z, Yang H, Shang L, Zhang T. Ordered PtFeIr Intermetallic Nanowires Prepared through a Silica-Protection Strategy for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2021; 61:e202113278. [PMID: 34890098 DOI: 10.1002/anie.202113278] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/08/2022]
Abstract
Developing efficient and stable Pt-based oxygen reduction reaction (ORR) catalysts is a way to promote the large-scale application of fuel cells. Pt-based alloy nanowires are promising ORR catalysts, but their application is hampered by activity loss caused by structural destruction during long-term cycling. Herein, the preparation of ordered PtFeIr intermetallic nanowire catalysts with an average diameter of 2.6 nm and face-centered tetragonal structure (fct-PtFeIr/C) is reported. A silica-protected strategy prevents the deformation of PtFeIr nanowires during the phase transition at high temperature. The as-prepared fct-PtFeIr/C exhibited superior mass activity for ORR (2.03 A mgPt -1 ) than disordered PtFeIr nanowires with face-centered cubic structure (1.11 A mgPt -1 ) and commercial Pt/C (0.21 A mgPt -1 ). Importantly, the structure and electrochemical performance of fct-PtFeIr/C were maintained after stability tests, showing the advantages of the ordered structure.
Collapse
Affiliation(s)
- Zhaojun Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongzhou Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lu Shang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Xiao F, Wang YC, Wu ZP, Chen G, Yang F, Zhu S, Siddharth K, Kong Z, Lu A, Li JC, Zhong CJ, Zhou ZY, Shao M. Recent Advances in Electrocatalysts for Proton Exchange Membrane Fuel Cells and Alkaline Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006292. [PMID: 33749011 DOI: 10.1002/adma.202006292] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/10/2020] [Indexed: 05/18/2023]
Abstract
The rapid progress of proton exchange membrane fuel cells (PEMFCs) and alkaline exchange membrane fuel cells (AMFCs) has boosted the hydrogen economy concept via diverse energy applications in the past decades. For a holistic understanding of the development status of PEMFCs and AMFCs, recent advancements in electrocatalyst design and catalyst layer optimization, along with cell performance in terms of activity and durability in PEMFCs and AMFCs, are summarized here. The activity, stability, and fuel cell performance of different types of electrocatalysts for both oxygen reduction reaction and hydrogen oxidation reaction are discussed and compared. Research directions on the further development of active, stable, and low-cost electrocatalysts to meet the ultimate commercialization of PEMFCs and AMFCs are also discussed.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yu-Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhi-Peng Wu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Guangyu Chen
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
| | - Fei Yang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Kumar Siddharth
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhijie Kong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Aolin Lu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Jin-Cheng Li
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Zhi-You Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
- Energy Institute, and Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| |
Collapse
|
18
|
Kweon Y, Noh S, Shim JH. Low content Ru-incorporated Pd nanowires for bifunctional electrocatalysis. RSC Adv 2021; 11:28775-28784. [PMID: 35478580 PMCID: PMC9038088 DOI: 10.1039/d1ra05577a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 01/17/2023] Open
Abstract
This paper reports the facile synthesis and characterization of carbon supported Pd nanowires with low Ru contents (nRuPd/C). An anti-galvanic replacement reaction involving the reduction of Ru(iii) ions by nanoporous Pd nanowires to form nRuPd alloy nanowires was observed. A series of nRuPd/C materials with various Ru/Pd ratios were prepared by the spontaneous deposition of a Ru cluster on a Pd nanowire core using different Ru precursor concentrations (RuCl3 = 0.5, 1.0, 5.0 mM). The successful formation of low content Ru-incorporated Pd nanowires without individual Ru clusters were confirmed using physicochemical characterization. The electrocatalytic activity of the nRuPd/C for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) in alkaline media was measured by RDE polarization experiments. The electrocatalytic activity varied greatly depending on the Ru content on the Pd nanowires. Among the catalysts, the prepared Pd nanowires incorporated with a very small amount of Ru (ca. 1.4 wt%) exhibited excellent electrocatalytic activity toward the ORR and HER: positive ORR/HER onset and E1/2 potentials, higher n value, and lower Tafel slope. The catalytic activity of Pd nanowires with low Ru contents showed superior bifunctional electrocatalytic performance towards both ORR and HER compared to the benchmarking Pt/C.![]()
Collapse
Affiliation(s)
- Yongdeog Kweon
- Department of Chemistry, Institute of Basic Science, Daegu University Gyeongsan 38453 Republic of Korea
| | - Sunguk Noh
- Department of Chemistry, Institute of Basic Science, Daegu University Gyeongsan 38453 Republic of Korea
| | - Jun Ho Shim
- Department of Chemistry, Institute of Basic Science, Daegu University Gyeongsan 38453 Republic of Korea
| |
Collapse
|
19
|
Li C, Chai OJH, Yao Q, Liu Z, Wang L, Wang H, Xie J. Electrocatalysis of gold-based nanoparticles and nanoclusters. MATERIALS HORIZONS 2021; 8:1657-1682. [PMID: 34846497 DOI: 10.1039/d0mh01947j] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gold (Au)-based nanomaterials, including nanoparticles (NPs) and nanoclusters (NCs), have shown great potential in many electrocatalytic reactions due to their excellent catalytic ability and selectivity. In recent years, Au-based nanostructured materials have been considered as one of the most promising non-platinum (Pt) electrocatalysts. The controlled synthesis of Au-based NPs and NCs and the delicate microstructure adjustment play a vital role in regulating their catalytic activity toward various reactions. This review focuses on the latest progress in the synthesis of efficient Au-based NP and NC electrocatalysts, highlighting the relationship between Au nanostructures and their catalytic activity. This review first discusses the parameters of Au-based nanomaterials that determine their electrocatalytic performance, including composition, particle size and architecture. Subsequently, the latest electrocatalytic applications of Au-based NPs and NCs in various reactions are provided. Finally, some challenges and opportunities are highlighted, which will guide the rational design of Au-based NPs and NCs as promising electrocatalysts.
Collapse
Affiliation(s)
- Chunjie Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Zhu X, Hu Z, Huang M, Zhao Y, Qu J, Hu S. Au nanowires with high aspect ratio and atomic shell of Pt-Ru alloy for enhanced methanol oxidation reaction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Affiliation(s)
- Linfang Lu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shihui Zou
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Baizeng Fang
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
22
|
Lu H, Kong Z, Yang Y, Xie Z, Xiang H, Liu S, Yu G. Highly Stable PtPdCu Alloy Nanowire Networks as Oxygen Reduction Electrocatalysts. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Wu ZP, Shan S, Zang SQ, Zhong CJ. Dynamic Core-Shell and Alloy Structures of Multimetallic Nanomaterials and Their Catalytic Synergies. Acc Chem Res 2020; 53:2913-2924. [PMID: 33170638 DOI: 10.1021/acs.accounts.0c00564] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ConspectusMultimetallic nanomaterials containing noble metals (NM) and non-noble 3d-transition metals (3d-TMs) exhibit unique catalytic properties as a result of the synergistic combination of NMs and 3d-TMs in the nanostructure. The exploration of such a synergy depends heavily on the understanding of the atomic-scale structural details of NMs and 3d-TMs in the nanomaterials. This has attracted a great deal of recent interest in the field of catalysis science, especially concerning the core-shell and alloy nanostructures. A rarely asked question of fundamental significance is how the core-shell and alloy structural arrangements of atoms in the multimetallic nanomaterials dynamically change under reaction conditions, including reaction temperature, surface adsorbate, chemical environment, applied electrochemical potential, etc. The dynamic evolution of the core-shell/alloy structures under the reaction conditions plays a crucial role in the catalytic performance of the multimetallic nanocatalysts.This Account focuses on the dynamic structure characteristics for several different types of composition-tunable alloy and core-shell nanomaterials, including phase-segregated, elemental-enriched, dynamically evolved, and structurally different core-shell structures. In addition to outlining core-shell/alloy structure formation via processes such as seed-mediated growth, thermochemical calcination, adsorbate-induced evolution, chemical dealloying, underpotential deposition/galvanic displacement, etc., this Account will highlight the progress in understanding the dynamic core-shell/alloy structures under chemical or catalytic reaction conditions, which has become an important focal point of the research fronts in catalysis and electrocatalysis. The employment of advanced techniques, especially in situ/operando synchrotron high-energy X-ray diffraction and pair distribution function analyses, has provided significant insights into the dynamic evolution processes of NM/3d-TM nanocatalysts under electrocatalytic or fuel cell operating conditions. Examples will highlight Pt- or Pd-based nanoparticles and nanowires alloyed with various 3d-TMs with a focus on their structural evolution under reaction conditions. While the dynamic process is complex, the ability to gain an insight into the evolution of core-shell and alloy structures under the catalytic reaction condition is essential for advancing the design of multimetallic nanocatalysts. This Account serves as a springboard from fundamental understanding of the core-shell and alloy structural dynamics to the various applications of nanostructured catalysts/electrocatalysts, especially in the fronts of energy and environmental sustainability.
Collapse
Affiliation(s)
- Zhi-Peng Wu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shiyao Shan
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Shuang-Quan Zang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
24
|
|
25
|
Adstructures of platinum-complex precursors and platinum nanoparticles formed on low-index single-crystal Au surfaces for oxygen reduction reaction. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Zhang X, Zhang Y, Cheng C, Yang Z, Hermansson K. Tuning the ORR activity of Pt-based Ti 2CO 2 MXenes by varying the atomic cluster size and doping with metals. NANOSCALE 2020; 12:12497-12507. [PMID: 32496491 DOI: 10.1039/d0nr00048e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The rational design of ideal catalysts for the oxygen reduction reaction (ORR) is of great significance for solving the electrocatalytic potential problems in proton exchange membrane fuel cells (PEMFCs). Ptn (n = 1-4) and Pt3Au alloy subnanoclusters supported on a defective Ti2CO2 monolayer with oxygen vacancies (denoted as v-Ti2CO2) are simulated by using density functional theory to investigate their ORR performance. The geometries, energetics, and electronic properties of the different systems are analyzed. It is found that the supported Pt3Au alloy subnanocluster possesses the best ORR activity. The underlying mechanisms of the improved ORR activity originates from the moderate hybridization between the O 2p and the 5d orbitals of Au and Pt according to the density of states analysis. Our study suggests a facile route for designing low-cost MXene-based electrocatalysts by alloying transition metals with Pt catalysts, which may stimulate realization of suitable alternative catalysts for ORR catalysis.
Collapse
Affiliation(s)
- Xilin Zhang
- School of Physics, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007, China.
| | | | | | | | | |
Collapse
|
27
|
Chang F, Bai Z, Li M, Ren M, Liu T, Yang L, Zhong CJ, Lu J. Strain-Modulated Platinum-Palladium Nanowires for Oxygen Reduction Reaction. NANO LETTERS 2020; 20:2416-2422. [PMID: 32046493 DOI: 10.1021/acs.nanolett.9b05123] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrocatalytic activity of alloy nanocatalytsts can be manipulated effectively by tuning their physical properties (ensemble, geometric, and ligand effects) to afford optimal surface structure and compositions for proton exchange membrane fuel cell (PEMFC) application. Herein, highly catalytic platinum-palladium nanowires (PtnPd100-n NWs) with a subtle lattice strain and Boerdijk-Coxeter helix type morphology are synthesized through a surfactant-free, thermal single phase solvent method. X-ray diffraction results show that PtnPd100-n NWs are exposed through the (111) facets and their shrinking or expanding lattice parameters can be modulated by the alloy compositions. Electrochemical results reveal that their high catalytic activity correlates with the lattice shrinking, facets, and bimetallic compositions, showing higher activity when the ratio of Pt and Pd is ∼78:22, which is further supported by DFT results. Compared to the nanoparticle type platinum-palladium alloyed catalysts with similar metal compositions (PtnPd100-n NPs), the PtnPd100-n NWs exhibit significantly improved electrocatalytic activity and stability for the oxygen reduction reaction. These findings open new strategies to design the highly active and stable alloy nanocatalysts with controllable compositions.
Collapse
Affiliation(s)
- Fangfang Chang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhengyu Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Matthew Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemical Engineering, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada
| | - Mengyun Ren
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tongchao Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Jun Lu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
28
|
Yin S, Ding Y. Bimetallic PtAu electrocatalysts for the oxygen reduction reaction: challenges and opportunities. Dalton Trans 2020; 49:4189-4199. [PMID: 32191785 DOI: 10.1039/d0dt00205d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly active, durable oxygen reduction reaction (ORR) electrocatalysts have an essential role in promoting the continuous operation of advanced energy technologies such as fuel cells and metal-air batteries. Considering the scarce reserve of Pt and its unsatisfactory overall performance, there is an urgent demand for the development of new generation ORR electrocatalysts that are substantially better than the state-of-the-art supported Pt-based nanocatalysts, such as Pt/C. Among various nanostructures, bimetallic PtAu represents one unique alloy system where highly contradictory performance has been reported. While it is generally accepted that Au may contribute to stabilizing Pt, its role in modulating the intrinsic activity of Pt remains unclear. This perspective will discuss critical structural issues that affect the intrinsic ORR activities of bimetallic PtAu, with an eye on elucidating the origin of seemingly inconsistent experimental results from the literature. As a relatively new class of electrodes, we will also highlight the performance of dealloyed nanoporous gold (NPG) based electrocatalysts, which allow a unique combination of structural properties highly desired for this important reaction. Finally, we will put forward the challenges and opportunities for the incorporation of these advanced electrocatalysts into membrane electrode assemblies (MEA) for actual fuel cells.
Collapse
Affiliation(s)
- Shuai Yin
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Yi Ding
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
29
|
Kong Z, Maswadeh Y, Vargas JA, Shan S, Wu ZP, Kareem H, Leff AC, Tran DT, Chang F, Yan S, Nam S, Zhao X, Lee JM, Luo J, Shastri S, Yu G, Petkov V, Zhong CJ. Origin of High Activity and Durability of Twisty Nanowire Alloy Catalysts under Oxygen Reduction and Fuel Cell Operating Conditions. J Am Chem Soc 2020; 142:1287-1299. [PMID: 31885267 DOI: 10.1021/jacs.9b10239] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ability to control the surface composition and morphology of alloy catalysts is critical for achieving high activity and durability of catalysts for oxygen reduction reaction (ORR) and fuel cells. This report describes an efficient surfactant-free synthesis route for producing a twisty nanowire (TNW) shaped platinum-iron (PtFe) alloy catalyst (denoted as PtFe TNWs) with controllable bimetallic compositions. PtFe TNWs with an optimal initial composition of ∼24% Pt are shown to exhibit the highest mass activity (3.4 A/mgPt, ∼20 times higher than that of commercial Pt catalyst) and the highest durability (<2% loss of activity after 40 000 cycles and <30% loss after 120 000 cycles) among all PtFe-based nanocatalysts under ORR or fuel cell operating conditions reported so far. Using ex situ and in situ synchrotron X-ray diffraction coupled with atomic pair distribution function (PDF) analysis and 3D modeling, the PtFe TNWs are shown to exhibit mixed face-centered cubic (fcc)-body-centered cubic (bcc) alloy structure and a significant lattice strain. A striking finding is that the activity strongly depends on the composition of the as-synthesized catalysts and this dependence remains unchanged despite the evolution of the composition of the different catalysts and their lattice constants under ORR or fuel cell operating conditions. Notably, dealloying under fuel cell operating condition starts at phase-segregated domain sites leading to a final fcc alloy structure with subtle differences in surface morphology. Due to a subsequent realloying and the morphology of TNWs, the surface lattice strain observed with the as-synthesized catalysts is largely preserved. This strain and the particular facets exhibited by the TNWs are believed to be responsible for the observed activity and durability enhancements. These findings provide new insights into the correlation between the structure, activity, and durability of nanoalloy catalysts and are expected to energize the ongoing effort to develop highly active and durable low-Pt-content nanowire catalysts by controlling their alloy structure and morphology.
Collapse
Affiliation(s)
- Zhijie Kong
- College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China.,Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Yazan Maswadeh
- Department of Physics , Central Michigan University , Mt. Pleasant , Michigan 48859 , United States
| | - Jorge A Vargas
- Department of Physics , Central Michigan University , Mt. Pleasant , Michigan 48859 , United States
| | - Shiyao Shan
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Zhi-Peng Wu
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Haval Kareem
- CCDC Army Research Laboratory , FCDD-RLS-DE , Adelphi , Maryland 20783 , United States
| | - Asher C Leff
- CCDC Army Research Laboratory , FCDD-RLS-DE , Adelphi , Maryland 20783 , United States
| | - Dat T Tran
- CCDC Army Research Laboratory , FCDD-RLS-DE , Adelphi , Maryland 20783 , United States
| | - Fangfang Chang
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Shan Yan
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Sanghyun Nam
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Xingfang Zhao
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Jason M Lee
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Jin Luo
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| | - Sarvjit Shastri
- X-ray Science Division, Advanced Photon Source , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Gang Yu
- College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Valeri Petkov
- Department of Physics , Central Michigan University , Mt. Pleasant , Michigan 48859 , United States
| | - Chuan-Jian Zhong
- Department of Chemistry , State University of New York at Binghamton , Binghamton , New York 13902 , United States
| |
Collapse
|
30
|
Lin Z, Sheng Y, Li J, Rui Z, Liu Y, Liu J, Zou Z. Ternary heterogeneous Pt–Ni–Au nanowires with enhanced activity and stability for PEMFCs. Chem Commun (Camb) 2020; 56:4276-4279. [DOI: 10.1039/d0cc01554g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work presents heterogeneous ternary nanowires with randomly distributed Pt–Ni phases and Pt–Au phases for the first time.
Collapse
Affiliation(s)
- Zhicheng Lin
- Jiangsu Key Laboratory for Nano Technology
- National Laboratory of Solid State Microstructures
- College of Engineering and Applied Sciences
- and Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Yuan Sheng
- Jiangsu Key Laboratory for Nano Technology
- National Laboratory of Solid State Microstructures
- College of Engineering and Applied Sciences
- and Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Jia Li
- Jiangsu Key Laboratory for Nano Technology
- National Laboratory of Solid State Microstructures
- College of Engineering and Applied Sciences
- and Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Zhiyan Rui
- Jiangsu Key Laboratory for Nano Technology
- National Laboratory of Solid State Microstructures
- College of Engineering and Applied Sciences
- and Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Yide Liu
- Jiangsu Key Laboratory for Nano Technology
- National Laboratory of Solid State Microstructures
- College of Engineering and Applied Sciences
- and Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Jianguo Liu
- Jiangsu Key Laboratory for Nano Technology
- National Laboratory of Solid State Microstructures
- College of Engineering and Applied Sciences
- and Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Zhigang Zou
- Jiangsu Key Laboratory for Nano Technology
- National Laboratory of Solid State Microstructures
- College of Engineering and Applied Sciences
- and Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| |
Collapse
|
31
|
Miao R, Chang F, Ren M, He X, Yang L, Wang X, Bai Z. Platinum–palladium alloy nanotetrahedra with tuneable lattice-strain for enhanced intrinsic activity. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01371d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding how to regulate lattice strain of PtPd NTDs and the correlation of PtPd NTDs between the compositions, tuneable lattice strain and the electrocatalytic properties.
Collapse
Affiliation(s)
- Ruifang Miao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Fangfang Chang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Mengyun Ren
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Xianhong He
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering
- University of Alberta
- Edmonton
- Canada
| | - Zhengyu Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| |
Collapse
|
32
|
Yang H, He Q, Liu Y, Li H, Zhang H, Zhai T. On-chip electrocatalytic microdevice: an emerging platform for expanding the insight into electrochemical processes. Chem Soc Rev 2020; 49:2916-2936. [DOI: 10.1039/c9cs00601j] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This comprehensive summary of on-chip electrocatalytic microdevices will expand the insight into electrochemical processes, ranging from dynamic exploration to performance optimization.
Collapse
Affiliation(s)
- Huan Yang
- State Key Laboratory of Material Processing and Die & Mould Technology
- School of Materials Science and Engineering
- Huazhong University of Science and Technology
- Wuhan
- P. R. China
| | - Qiyuan He
- Department of Materials Science and Engineering
- City University of Hong Kong
- Hong Kong
- P. R. China
| | - Youwen Liu
- State Key Laboratory of Material Processing and Die & Mould Technology
- School of Materials Science and Engineering
- Huazhong University of Science and Technology
- Wuhan
- P. R. China
| | - Huiqiao Li
- State Key Laboratory of Material Processing and Die & Mould Technology
- School of Materials Science and Engineering
- Huazhong University of Science and Technology
- Wuhan
- P. R. China
| | - Hua Zhang
- Department of Chemistry
- City University of Hong Kong
- Hong Kong
- P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM)
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology
- School of Materials Science and Engineering
- Huazhong University of Science and Technology
- Wuhan
- P. R. China
| |
Collapse
|
33
|
Ren M, Chang F, Miao R, He X, Yang L, Wang X, Bai Z. Strained lattice platinum–palladium alloy nanowires for efficient electrocatalysis. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00094a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ability to manipulate Pt-based alloy catalysts with controllable compositions and the type of surface facet is important for advancing direct alcohol fuel cells (DAFEs).
Collapse
Affiliation(s)
- Mengyun Ren
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Fangfang Chang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Ruifang Miao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Xianhong He
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering
- University of Alberta
- Edmonton
- Canada
| | - Zhengyu Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| |
Collapse
|
34
|
Higaki T, Liu C, Morris DJ, He G, Luo T, Sfeir MY, Zhang P, Rosi NL, Jin R. Au
130−
x
Ag
x
Nanoclusters with Non‐Metallicity: A Drum of Silver‐Rich Sites Enclosed in a Marks‐Decahedral Cage of Gold‐Rich Sites. Angew Chem Int Ed Engl 2019; 58:18798-18802. [DOI: 10.1002/anie.201908694] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Tatsuya Higaki
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Chong Liu
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - David J. Morris
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| | - Guiying He
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Tian‐Yi Luo
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Matthew Y. Sfeir
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
- Present address: Department of Physics Graduate Center City University of New York New York NY 10016 USA
- Photonics Initiative Advanced Science Research Center City University of New York New York NY 10031 USA
| | - Peng Zhang
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| | - Nathaniel L. Rosi
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Rongchao Jin
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| |
Collapse
|
35
|
Higaki T, Liu C, Morris DJ, He G, Luo T, Sfeir MY, Zhang P, Rosi NL, Jin R. Au
130−
x
Ag
x
Nanoclusters with Non‐Metallicity: A Drum of Silver‐Rich Sites Enclosed in a Marks‐Decahedral Cage of Gold‐Rich Sites. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908694] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tatsuya Higaki
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Chong Liu
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - David J. Morris
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| | - Guiying He
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Tian‐Yi Luo
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Matthew Y. Sfeir
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
- Present address: Department of Physics Graduate Center City University of New York New York NY 10016 USA
- Photonics Initiative Advanced Science Research Center City University of New York New York NY 10031 USA
| | - Peng Zhang
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| | - Nathaniel L. Rosi
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Rongchao Jin
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| |
Collapse
|
36
|
Zhao F, Li C, Yuan Q, Yang F, Luo B, Xie Z, Yang X, Zhou Z, Wang X. Trimetallic palladium-copper-cobalt alloy wavy nanowires improve ethanol electrooxidation in alkaline medium. NANOSCALE 2019; 11:19448-19454. [PMID: 31490478 DOI: 10.1039/c9nr05120a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, engineering high performance Pd-based nanocatalysts for alkaline ethanol fuel cells has attracted wide attention. Here, we report a one-pot synthesis of low-palladium ternary palladium-copper-cobalt (PdCuCo) alloy nanowires (NWs) with a diameter of ∼4.0 nm to improve the mass activity (MA) of ethanol electrooxidation in alkaline medium. The MA (7.45 A mg-1) of the Pd31Cu61Co8 NWs is 8.5-fold and 12.4-fold that of commercial Pd black and Pd/C, respectively. The reaction mechanism of the EOR and the reasons for the activity enhancement on Pd31Cu61Co8 NWs are elucidated based on the results of in situ Fourier transform infrared spectroscopy and structure characterization. Besides the electronic effect and surface defect sites, the coexistence of surface Cu and Co that have high capacities to activate water to produce reactive oxygen species is another key factor. This study shows an example of how to design low-palladium ternary PdCuCo NWs as improved anode electrocatalysts for alkaline direct ethanol fuel cells with high mass activity.
Collapse
Affiliation(s)
- Fengling Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, People's Republic of China.
| | - Chaozhong Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, People's Republic of China.
| | - Qiang Yuan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, People's Republic of China. and Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China.
| | - Fang Yang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, People's Republic of China.
| | - Bin Luo
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, People's Republic of China.
| | - Zixuan Xie
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, People's Republic of China.
| | - Xiaotong Yang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, People's Republic of China.
| | - Zhiyou Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xun Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China.
| |
Collapse
|
37
|
Song T, Gao F, Jin L, Zhang Y, Wang C, Li S, Chen C, Du Y. From bimetallic PdCu nanowires to ternary PdCu-SnO 2 nanowires: Interface control for efficient ethanol electrooxidation. J Colloid Interface Sci 2019; 560:802-810. [PMID: 31711664 DOI: 10.1016/j.jcis.2019.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
At present, although a large number of palladium-based nanowire electrocatalysts have been prepared, there are few reports on nanowires containing rich metal oxides. Herein, porous PdCu alloy nanowires and PdCu-SnO2 nanowires were prepared by using a galvanic displacement synthesis method. Due to their one-dimensional structure, rough surfaces with non-homogeneous edges, electronic effect, and the advanced PdCu/SnO2 interface of the as-synthesized PdCu-SnO2 nanowire catalysts, they exhibited a mass activity of 7770.0 mA mg-1 towards ethanol oxidation, which was 7.6-fold higher than that of Pd/C catalysts (1025.0 mA mg-1). In addition, they behaved strong durability upon chronoamperometry and continuous cyclic voltammetry tests. The electrochemical measurements demonstrated that SnO2 was introduced into the PdCu/SnO2 interface, which promoted the oxidation of ethanol at a lower potential and accelerated the oxidation of Pd-COads via SnO2-OHads to regenerate the active sites. This research highlights the significance of introducing metal oxides into the nanostructure interface, and the performance of Pd-containing catalysts towards ethanol oxidation reaction was greatly improved.
Collapse
Affiliation(s)
- Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Liujun Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Shujin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China.
| | - Chunyan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China.
| |
Collapse
|
38
|
Li HH, Yu SH. Recent Advances on Controlled Synthesis and Engineering of Hollow Alloyed Nanotubes for Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803503. [PMID: 30645003 DOI: 10.1002/adma.201803503] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 10/15/2018] [Indexed: 06/09/2023]
Abstract
The past decade has witnessed great progress in the synthesis and electrocatalytic applications of 1D hollow alloy nanotubes with controllable compositions and fine structures. Hollow nanotubes have been explored as promising electrocatalysts in the fuel cell reactions due to their well-controlled surface structure, size, porosity, and compositions. In addition, owing to the self-supporting ability of 1D structure, hollow nanotubes are capable of avoiding catalyst aggregation and carbon corrosion during the catalytic process, which are two other issues for the widely investigated carbon-supported nanoparticle catalysts. It is currently a great challenge to achieve high activity and stability at a relatively low cost to realize commercialization of these catalysts. An overview of the structural and compositional properties of 1D hollow alloy nanotubes, which provide a large number of accessible active sites, void spaces for electrolytes/reactants impregnation, and structural stability for suppressing aggregation, is presented. The latest advances on several strategies such as hard template and self-templating methods for controllable synthesis of hollow alloyed nanotubes with controllable structures and compositions are then summarized. Benefiting from the advantages of the unique properties and facile synthesis approaches, the capability of 1D hollow nanotubes is then highlighted by discussing examples of their applications in fuel-cell-related electrocatalysis. Finally, the remaining challenges and potential solutions in the field are summarized to provide some useful clues for the future development of 1D hollow alloy nanotube materials.
Collapse
Affiliation(s)
- Hui-Hui Li
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
39
|
Liu K, Ma M, Wu L, Valenti M, Cardenas-Morcoso D, Hofmann JP, Bisquert J, Gimenez S, Smith WA. Electronic Effects Determine the Selectivity of Planar Au-Cu Bimetallic Thin Films for Electrochemical CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16546-16555. [PMID: 30969748 PMCID: PMC6509640 DOI: 10.1021/acsami.9b01553] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Au-Cu bimetallic thin films with controlled composition were fabricated by magnetron sputtering co-deposition, and their performance for the electrocatalytic reduction of CO2 was investigated. The uniform planar morphology served as a platform to evaluate the electronic effect isolated from morphological effects while minimizing geometric contributions. The catalytic selectivity and activity of Au-Cu alloys was found to be correlated with the variation of electronic structure that was varied with tunable composition. Notably, the d-band center gradually shifted away from the Fermi level with increasing Au atomic ratio, leading to a weakened binding energy of *CO, which is consistent with low CO coverage observed in CO stripping experiments. The decrease in the *CO binding strength results in the enhanced catalytic activity for CO formation with the increase in Au content. In addition, it was observed that copper oxide/hydroxide species are less stable on Au-Cu surfaces compared to those on the pure Cu surface, where the surface oxophilicity could be critical to tuning the binding strength of *OCHO. These results imply that the altered electronic structure could explain the decreased formation of HCOO- on the Au-Cu alloys. In general, the formation of CO and HCOO- as main CO2 reduction products on planar Au-Cu alloys followed the shift of the d-band center, which indicates that the electronic effect is the major governing factor for the electrocatalytic activity of CO2 reduction on Au-Cu bimetallic thin films.
Collapse
Affiliation(s)
- Kai Liu
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering,
Faculty of Applied Sciences, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ming Ma
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering,
Faculty of Applied Sciences, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Longfei Wu
- Laboratory
for Inorganic Materials and Catalysis (IMC), Department of Chemical
Engineering and Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Marco Valenti
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering,
Faculty of Applied Sciences, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Drialys Cardenas-Morcoso
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avenida de Vicent Sos Baynat, s/n, 12006 Castelló de la Plana, Spain
| | - Jan P. Hofmann
- Laboratory
for Inorganic Materials and Catalysis (IMC), Department of Chemical
Engineering and Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Juan Bisquert
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avenida de Vicent Sos Baynat, s/n, 12006 Castelló de la Plana, Spain
| | - Sixto Gimenez
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avenida de Vicent Sos Baynat, s/n, 12006 Castelló de la Plana, Spain
| | - Wilson A. Smith
- Materials
for Energy Conversion and Storage (MECS), Department of Chemical Engineering,
Faculty of Applied Sciences, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- E-mail:
| |
Collapse
|
40
|
Liu M, Zhao Z, Duan X, Huang Y. Nanoscale Structure Design for High-Performance Pt-Based ORR Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802234. [PMID: 30561854 DOI: 10.1002/adma.201802234] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/19/2018] [Indexed: 05/18/2023]
Abstract
Proton-exchange-membrane fuel cells (PEMFCs) are of considerable interest for direct chemical-to-electrical energy conversion and may represent an ultimate solution for mobile power supply. However, PEMFCs today are primarily limited by the sluggish kinetics of the cathodic oxygen reduction reaction (ORR), which requires a significant amount of Pt-based catalyst with a substantial contribution to the overall cost. Hence, promoting the activity and stability of the needed catalyst and minimizing the amount of Pt loaded are central to reducing the cost of PEMFCs for commercial deployment. Considerable efforts have been devoted to improving the catalytic performance of Pt-based ORR catalysts, including the development of various Pt nanostructures with tunable sizes and chemical compositions, controlled shapes with selectively displayed crystallographic surfaces, tailored surface strains, surface doping, geometry engineering, and interface engineering. Herein, a brief introduction of some fundamentals of fuel cells and ORR catalysts with performance metrics is provided, followed by a detailed description of a series of strategies for pushing the limit of high-performance Pt-based catalysts. A brief perspective and new insights on the remaining challenges and future directions of Pt-based ORR catalysts for fuel cells are also presented.
Collapse
Affiliation(s)
- Meiling Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Zipeng Zhao
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
41
|
Synthesis of popcorn-shaped gallium-platinum (GaPt3) nanoparticles as highly efficient and stable electrocatalysts for hydrogen evolution reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.152] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Zhai Z, Wu Q, Li J, Zhou B, Shen J, Farooqi ZH, Wu W. Enhanced catalysis of gold nanoparticles in microgels upon on site altering the gold–polymer interface interaction. J Catal 2019. [DOI: 10.1016/j.jcat.2018.10.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Zhang Q, He J, Guo R, Zhao Y, Zhang W, Zhang W, Pang SS, Ding Y. Assembling Highly Coordinated Pt Sites on Nanoporous Gold for Efficient Oxygen Electroreduction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39705-39712. [PMID: 30362703 DOI: 10.1021/acsami.8b14079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pt with high coordination number (HCN) located in the defect surface sites is favorable for high oxygen reduction reaction activity. However, it is still a challenge to design and fabricate such a structure with a high density of Pt HCN sites at minimum Pt usage. Here, using nanoporous Au (NPG) that intrinsically possesses a higher proportion of HCN Au atoms over traditional nanoparticles, we epitaxially deposit Pt monolayer onto NPG to inherit the high-density HCN Pt sites. Among the NPG-Pt catalysts, the one with a smaller ligament size possesses a higher proportion of HCN Pt atoms, thus exhibiting a 5.2-fold specific activity and 18.7-fold mass activity enhancement than the commercial Pt/C catalyst. Moreover, depositing Au atoms on the NPG-Pt surface can further increase the HCN Pt surface exposure, which leads to a 6.9-fold specific activity and 19.1-fold mass activity increase as compared to Pt/C.
Collapse
Affiliation(s)
- Qiwen Zhang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Jia He
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Ruijie Guo
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Yang Zhao
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Weiqing Zhang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health , Macau University of Science and Technology , Taipa , Macau 999078 , P. R. China
| | - Su-Seng Pang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health , Macau University of Science and Technology , Taipa , Macau 999078 , P. R. China
| | - Yi Ding
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies , Tianjin University of Technology , Tianjin 300384 , P. R. China
| |
Collapse
|
44
|
The Enhanced Electro-catalytic Performance of Au@Pd Nanoparticles Self-assembled on Fluorine-Modified Multi-walled Carbon Nanotubes for Methanol Oxidation. Catal Letters 2018. [DOI: 10.1007/s10562-018-2511-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Song P, Xu H, Wang J, Zhang Y, Gao F, Guo J, Shiraishi Y, Du Y. 1D alloy ultrafine Pt-Fe nanowires as efficient electrocatalysts for alcohol electrooxidation in alkaline media. NANOSCALE 2018; 10:16468-16473. [PMID: 30152828 DOI: 10.1039/c8nr04918a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fuel cells have been gaining much interest due to their advantages of high energy conversion efficiency, easy handling, etc., whereas some drawbacks of anode catalysts regarding limited performances have seriously restricted their practical applications. Therefore, the development of anode nanocatalysts with higher activity and stability has become an urgent need. In view of this, we have developed a facile wet-chemical approach to synthesize 1D alloy ultrafine Pt-Fe NWs, and we have also revealed the formation mechanism of the ultrafine Pt-Fe NWs using time-dependent studies. More importantly, 1D ultrafine nanowires with anisotropy, superior flexibility, high surface area and excellent conductivity are promising candidates for the improvement of nanocatalytic activity and stability enhancement. Therefore, the electrocatalytic activities of ultrafine Pt3Fe NWs in the oxidation of ethylene glycol and glycerol are 3.9 and 2.5 times greater than that of commercial Pt/C, respectively. Moreover, they provide excellent long-term stability. Our efforts may potentially promote the commercialization of fuel cells to some extent.
Collapse
Affiliation(s)
- Pingping Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Shah K, Bhagat S, Varade D, Singh S. Novel synthesis of polyoxyethylene cholesteryl ether coated Fe-Pt nanoalloys: A multifunctional and cytocompatible bimetallic alloy exhibiting intrinsic chemical catalysis and biological enzyme-like activities. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Zhao Y, Zhang W, Yin H, He J, Ding Y. Surface alloying of Pt monolayer on nanoporous gold for enhanced oxygen reduction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Zhang Q, Kusada K, Wu D, Kawaguchi S, Kubota Y, Kitagawa H. Crystal Structure-dependent Thermal Stability and Catalytic Performance of AuRu3 Solid-solution Alloy Nanoparticles. CHEM LETT 2018. [DOI: 10.1246/cl.180047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Quan Zhang
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kohei Kusada
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Dongshuang Wu
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shogo Kawaguchi
- Japan Synchrotron Radiation Research Insitute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yoshiki Kubota
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- INAMORI Frontier Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
49
|
Chatterjee D, Shetty S, Müller-Caspary K, Grieb T, Krause FF, Schowalter M, Rosenauer A, Ravishankar N. Ultrathin Au-Alloy Nanowires at the Liquid-Liquid Interface. NANO LETTERS 2018; 18:1903-1907. [PMID: 29397751 DOI: 10.1021/acs.nanolett.7b05217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ultrathin bimetallic nanowires are of importance and interest for applications in electronic devices such as sensors and heterogeneous catalysts. In this work, we have designed a new, highly reproducible and generalized wet chemical method to synthesize uniform and monodispersed Au-based alloy (AuCu, AuPd, and AuPt) nanowires with tunable composition using microwave-assisted reduction at the liquid-liquid interface. These ultrathin alloy nanowires are below 4 nm in diameter and about 2 μm long. Detailed microstructural characterization shows that the wires have an face centred cubic (FCC) crystal structure, and they have low-energy twin-boundary and stacking-fault defects along the growth direction. The wires exhibit remarkable thermal and mechanical stability that is critical for important applications. The alloy wires exhibit excellent electrocatalytic activity for methanol oxidation in an alkaline medium.
Collapse
Affiliation(s)
- Dipanwita Chatterjee
- Materials Research Centre , Indian Institute of Science , Bangalore 560012 , India
| | - Shwetha Shetty
- Materials Research Centre , Indian Institute of Science , Bangalore 560012 , India
| | | | - Tim Grieb
- University of Bremen , Otto-Hahn-Allee 1 , D-28359 Bremen , Germany
| | - Florian F Krause
- University of Bremen , Otto-Hahn-Allee 1 , D-28359 Bremen , Germany
| | - Marco Schowalter
- University of Bremen , Otto-Hahn-Allee 1 , D-28359 Bremen , Germany
| | | | | |
Collapse
|
50
|
Zhang C, Zou X, Du Z, Gu J, Li S, Li B, Yang S. Atomic Layers of MoO 2 with Exposed High-Energy (010) Facets for Efficient Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703960. [PMID: 29405565 DOI: 10.1002/smll.201703960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/21/2017] [Indexed: 05/25/2023]
Abstract
Although 2D nanocrystals with exposed high-energy facets are highly desired in the field of catalysts due to their anticipant high catalytic activities, they are difficult to be gained. Here, atomic layers of metallic molybdenum dioxide (MoO2 ) with primarily exposed high-energy (010) facet are achieved via a facile carbothermic reduction approach. The resultant MoO2 exhibits single-crystalline, monoclinic, and ultrathin features with nearly 100% exposed (010) facet, which can significantly reduce reaction barriers toward the oxygen reduction reaction. As a consequence, the atomic layers of MoO2 exhibit high electrocatalytic activity, excellent tolerance to methanol, and good stability for the oxygen reduction reaction in alkaline electrolyte, superior to commercial Pt/C catalysts. It is believed that such new transition metal oxide catalysts with exposed high-energy facets have broad applications in the areas of energy storage and conversions.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science & Engineering, Beihang University, Beijing, 100191, China
| | - Xiaolong Zou
- Low-Dimensional Materials and Devices Laboratory (LDMD), Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Zhiguo Du
- Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science & Engineering, Beihang University, Beijing, 100191, China
| | - Jianan Gu
- Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science & Engineering, Beihang University, Beijing, 100191, China
| | - Songmei Li
- Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science & Engineering, Beihang University, Beijing, 100191, China
| | - Bin Li
- Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science & Engineering, Beihang University, Beijing, 100191, China
| | - Shubin Yang
- Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science & Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|