1
|
Yang Y, Zheng W, Wang P, Cheng Z, Wang P, Yang J, Wang C, Chen J, Qu Y, Wang D, Chen Q. Tailoring the Hydrogen Spillover Effect in Ni-Based Heterostructure Catalysts for Boosting the Alkaline Hydrogen Oxidation Reaction. ACS NANO 2024; 18:24458-24468. [PMID: 39169816 DOI: 10.1021/acsnano.4c07738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Improving the catalytic efficiency of platinum group metal-free (PGM-free) catalysts for the sluggish alkaline hydrogen oxidation reaction (HOR) is crucial to the anion exchange membrane fuel cell. Recently, numerous Ni-based heterostructures have been designed based on bifunctional theory to enhance HOR activity by optimizing the binding energy of both H* and OH*; however, their activities are still far inferior to those of PGM catalysts. Indeed, the long transfer pathway for intermediates between different active sites in such heterostructures has rarely been investigated, which could be the reason for the bottleneck. Here, we design a Ni/MoOxHy heterostructure catalyst to promote H* migration from the Ni side to the interface for alkaline HOR via the hydrogen spillover effect. In situ X-ray absorption fine structure, Raman characterizations, H/D kinetic isotope effects, and theoretical calculations have proven facile H* migration from the Ni side to the interface, which further reacts with OH* on the MoOxHy surface. Besides, the hydrogen spillover effect is also beneficial for the preservation of the metallic phase of Ni during the reaction. The catalyst exhibits a high activity with Jk,m of 58.5 mA mgNi-1 and j0,s of 42 μA cmNi-2, which is among the best PGM-free catalysts and is even comparable to some PGM catalysts. It also shows the highest power density (511 mW cm-2) as a PGM-free anode when assembled into fuel cells under moderate back pressure. These findings prove that in addition to optimizing electrophilicity and oxophilicity for active sites, we could also improve the HOR activity from the transfer pathway for intermediates, which provides insight into the design of other efficient HOR catalysts.
Collapse
Affiliation(s)
- Yang Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Peichen Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhiyu Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pengcheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jiahe Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Changlai Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jitang Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yafei Qu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dongdong Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qianwang Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Walte AF, Torres-Cadena R, Dayaratne WLN, Jaffe A. Mixed-Metal Alloying in Hybrid Bronzes. J Am Chem Soc 2024; 146:23699-23703. [PMID: 39158694 DOI: 10.1021/jacs.4c08960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
We show that substitutional alloying during the aqueous self-assembly of layered organic-templated metal oxides produces single-phase mixed-metal hybrids. Single-crystal X-ray diffraction, bulk elemental analyses, and vibrational and electronic spectroscopies corroborate a solid solution of Mo and W atoms at lattice sites within the two-dimensional metal oxide layers. Mild postsynthetic reduction then introduces relatively delocalized electrons to afford mixed-metal hybrid bronzes. To our knowledge, this represents the first demonstration of mixed-metal alloying in a hybrid metal oxide and a rare example of solid-solution formation at low temperature. We show this approach yields mixed-metal congeners with optical band gaps over 130 meV smaller than those of single-metal analogs, while achieving activation energies (Ea) of conduction as low as 78.4(2) meV. Further, metal substitution appears to tune collective electronic phenomena by suppressing the non-Arrhenius behavior observed for Mo-based hybrids. This work considerably expands the nascent hybrid bronze platform to help address energy-related challenges and fundamental solid-state physical questions.
Collapse
Affiliation(s)
- Anton F Walte
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Raúl Torres-Cadena
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - W Lakna N Dayaratne
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Adam Jaffe
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
3
|
Liu X, Huang B, Li J, Li B, Lou Z. Full-spectrum plasmonic semiconductors for photocatalysis. MATERIALS HORIZONS 2024. [PMID: 39139133 DOI: 10.1039/d4mh00515e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Localized surface plasmon resonance (LSPR) of noble metal nanoparticles can focus surrounding light onto the particle surface to boost photochemical reactions and solar energy utilization. However, the rarity and high cost of noble metals limit their applications in plasmonic photocatalysis, forcing researchers to seek low-cost alternatives. Recently, some heavily doped semiconductors with high free carrier density have garnered attention due to their metal-like LSPR properties. However, plasmonic semiconductors have complex surface structures characterized by the presence of a depletion layer, which poses challenges for active site exposure and hot carrier transfer, resulting in low photocatalytic activity. In this review, we introduce the essential characteristics and types, synthesis methods, and characterization techniques of full-spectrum plasmonic semiconductors, elucidate the mechanism of full-spectrum nonmetallic plasmonic photocatalysis, including the local electromagnetic field, hot carrier generation and transfer, the photothermal effect, and the solutions for the surface depletion layer, and summarize the applications of plasmonic semiconductors in photocatalytic environmental remediation, CO2 reduction, H2 generation, and organic transformations. Finally, we provide a perspective on full-spectrum plasmonic photocatalysis, aiming to guide the design and development of plasmonic photocatalysts.
Collapse
Affiliation(s)
- Xiaolei Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Juan Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| | - Zaizhu Lou
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
4
|
Shun K, Mori K, Kidawara T, Ichikawa S, Yamashita H. Heteroatom doping enables hydrogen spillover via H +/e - diffusion pathways on a non-reducible metal oxide. Nat Commun 2024; 15:6403. [PMID: 39085195 PMCID: PMC11291974 DOI: 10.1038/s41467-024-50217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Hydrogen spillover, the simultaneous diffusion of protons (H+) and electrons (e-) is considered to be applicable to ubiquitous technologies related to hydrogen but limited to over reducible metal oxides. The present work demonstrates that a non-reducible MgO with heteroatom Al dopants (Al-MgO) allows hydrogen spillover in the same way as reducible metal oxides. Furthermore, a H+ storage capacity of this material owing to hydrogen spillover is more than three times greater than those of various standard metal oxides based on H+ transport channels within its bulk region. Atomic hydrogen diffuses over the non-reducible Al-MgO produces active H+-e- pairs, as also occurs on reducible metal oxides, to enhance the catalytic performance of Ni during CO2 hydrogenation. The H+ and e- diffusion pathways generated by the heteroatom Al doping are disentangled based on systematic characterizations and calculations. This work provides a new strategy for designing functional materials intended to hydrogen spillover for diverse applications in a future hydrogen-based society.
Collapse
Affiliation(s)
- Kazuki Shun
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, Japan.
| | - Takumi Kidawara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, Japan
| | - Satoshi Ichikawa
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
5
|
Shun K, Matsukawa S, Mori K, Yamashita H. Specific Hydrogen Spillover Pathways Generated on Graphene Oxide Enabling the Formation of Non-Equilibrium Alloy Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306765. [PMID: 38072797 DOI: 10.1002/smll.202306765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/14/2023] [Indexed: 05/12/2024]
Abstract
The phenomenon of hydrogen spillover is investigated as a means of realizing a hydrogen-based society for over half a century. Herein, a graphene oxide having a precisely tuned architecture via calcination in air to introduce ether groups onto basal planes along with carbon defects is reported. This material provides specific pathways for the spillover of atomic hydrogen and has practical applications with regard to the synthesis of non-equilibrium solid-solution alloy nanoparticles. A combination of experimental work and simulations confirmed that the presence of ether groups associated with carbon defects facilitated hydrogen spillover within the basal planes of this graphene oxide. This enhanced hydrogen spillover ability, in turn, enables the simultaneous reduction of Ru3+ and Ni2+ ions to form RuNi alloy nanoparticles under hydrogen reduction conditions. Energy dispersive X-ray and X-ray absorption near edge structure simulations establish that this strategy forms unique alloy nanoparticles each comprising a Ru core with a RuNi solid-solution shell having a hexagonal close-packed structure. These non-equilibrium RuNi alloy nanoparticles exhibit greater catalytic activity than monometallic Ru nanoparticles during the hydrolysis of ammonia borane.
Collapse
Affiliation(s)
- Kazuki Shun
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Matsukawa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Bezerra LS, Belhout SA, Wang S, Quiroz J, de Oliveira PFM, Shetty S, Rocha G, Santos HLS, Frindy S, Oropeza FE, de la Peña O'Shea VA, Kallio AJ, Huotari S, Huo W, Camargo PHC. Triple Play of Band Gap, Interband, and Plasmonic Excitations for Enhanced Catalytic Activity in Pd/H xMoO 3 Nanoparticles in the Visible Region. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11467-11478. [PMID: 38382920 PMCID: PMC11393804 DOI: 10.1021/acsami.3c17101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Plasmonic photocatalysis has been limited by the high cost and scalability of plasmonic materials, such as Ag and Au. By focusing on earth-abundant photocatalyst/plasmonic materials (HxMoO3) and Pd as a catalyst, we addressed these challenges by developing a solventless mechanochemical synthesis of Pd/HxMoO3 and optimizing photocatalytic activities in the visible range. We investigated the effect of HxMoO3 band gap excitation (at 427 nm), Pd interband transitions (at 427 nm), and HxMoO3 localized surface plasmon resonance (LSPR) excitation (at 640 nm) over photocatalytic activities toward the hydrogen evolution and phenylacetylene hydrogenation as model reactions. Although both excitation wavelengths led to comparable photoenhancements, a 110% increase was achieved under dual excitation conditions (427 + 640 nm). This was assigned to a synergistic effect of optical excitations that optimized the generation of energetic electrons at the catalytic sites. These results are important for the development of visible-light photocatalysts based on earth-abundant components.
Collapse
Affiliation(s)
- Leticia S Bezerra
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Samir A Belhout
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Shiqi Wang
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Jhon Quiroz
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Paulo F M de Oliveira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo. Av. Lineu Prestes 748, São Paulo 05508000, Brazil
| | - Shwetha Shetty
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Guilherme Rocha
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Hugo L S Santos
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Sana Frindy
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Freddy E Oropeza
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, Mostoles, Madrid 28935, Spain
| | - Víctor A de la Peña O'Shea
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, Mostoles, Madrid 28935, Spain
| | - Antti-Jussi Kallio
- Department of Physics, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
| | - Simo Huotari
- Department of Physics, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
| | - Wenyi Huo
- College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
- NOMATEN Centre of Excellence, National Centre for Nuclear Research. Otwock 05-400, Poland
| | - Pedro H C Camargo
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| |
Collapse
|
7
|
Li J, Li Q, Feng H, Jiao K, Zhang C, Weng S, Yang L. Tuning d-Orbital Electronic Structure via Au-Intercalated Two-Dimensional Fe 3GeTe 2 to Increase Surface Plasmon Activity. J Phys Chem Lett 2024; 15:1818-1827. [PMID: 38330253 DOI: 10.1021/acs.jpclett.3c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
While extensive research has been dedicated to plasmon tuning within non-noble metals, prior investigations primarily concentrated on markedly augmenting the inherently low concentration of free carriers in materials with minimal consideration given to the influence of electron orbitals on surface plasmons. Here, we achieve successful intercalation of Au atoms into the layered structure of Fe3GeTe2 (FGT), thereby exerting control over the orbital electronic states or structure of FGT. This intervention not only amplifies the charge density and electron mobility but also mitigates the loss associated with interband transitions, resulting in increased two-dimensional FGT surface plasmon activity. As a consequence, Au-intercalated FGT detects crystal violet molecules as a surface-enhanced Raman scattering substrate, and the detection lines are 3 orders of magnitude higher than before Au intercalation. Our work provides insight for further studies on plasmon effects and the relation between surface plasmon resonance behavior and electronic structures.
Collapse
Affiliation(s)
- Junxiang Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei 230026, Anhui, China
| | - Qiqi Li
- University of Science & Technology of China, Hefei 230026, Anhui, China
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Haochuan Feng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei 230026, Anhui, China
| | - Keke Jiao
- University of Science & Technology of China, Hefei 230026, Anhui, China
- High Magnetic Field Laboratory of Anhui Province, Chinese Academy of Sciences, Hefei 230031, China
| | - Changjin Zhang
- High Magnetic Field Laboratory of Anhui Province, Chinese Academy of Sciences, Hefei 230031, China
| | - Shirui Weng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei 230026, Anhui, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| |
Collapse
|
8
|
Wu X, Lu Y, Ren X, Wu P, Chu D, Yang X, Xu H. Interfacial Solar Evaporation: From Fundamental Research to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313090. [PMID: 38385793 DOI: 10.1002/adma.202313090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Indexed: 02/23/2024]
Abstract
In the last decade, interfacial solar steam generation (ISSG), powered by natural sunlight garnered significant attention due to its great potential for low-cost and environmentally friendly clean water production in alignment with the global decarbonization efforts. This review aims to share the knowledge and engage with a broader readership about the current progress of ISSG technology and the facing challenges to promote further advancements toward practical applications. The first part of this review assesses the current strategies for enhancing the energy efficiency of ISSG systems, including optimizing light absorption, reducing energy losses, harvesting additional energy, and lowering evaporation enthalpy. Subsequently, the current challenges faced by ISSG technologies, notably salt accumulation and bio-fouling issues in practical applications, are elucidated and contemporary methods are discussed to overcome these challenges. In the end, potential applications of ISSG, ranging from initial seawater desalination and industrial wastewater purification to power generation, sterilization, soil remediation, and innovative concept of solar sea farm, are introduced, highlighting the promising potential of ISSG technology in contributing to sustainable and environmentally conscious practices. Based on the review and in-depth understanding of these aspects, the future research focuses are proposed to address potential issues in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Xuan Wu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Yi Lu
- International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaohu Ren
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Pan Wu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
- School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xiaofei Yang
- International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Haolan Xu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| |
Collapse
|
9
|
Tan L, Yue S, Lou Y, Zhu JJ. Enhancing charge transfer in a W 18O 49/g-C 3N 4 heterostructure via band structure engineering for effective SERS detection and flexible substrate applications. Analyst 2023; 149:180-187. [PMID: 38009267 DOI: 10.1039/d3an01690k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Chemical mechanism (CM)-related surface-enhanced Raman spectroscopy (SERS) has received tremendous interest due to its exceptional stability and excellent uniformity. Nevertheless, there remains a demand for ingenious methodologies for promoting effective charge transfer (CT) to improve SERS sensitivity further. Herein, a band structure engineered W18O49/g-C3N4 heterostructure (WCN) was first employed as a CM-based SERS substrate with remarkable enhancement and sensitivity. To investigate the Raman enhancement properties of the substrate, malachite green (MG) was employed as the Raman probe with the excitation of a 633 nm laser. The WCN substrate exhibits a Raman enhancement factor (EF) of 2.6 × 107, achieving a limit of detection (LOD) of 1.9 × 10-10 M for MG. The outstanding Raman amplification behavior can be attributed to the heterojunction-induced efficient CT process, energy band matching resonance due to minor doping with g-C3N4 serving as a band gap modifier, and improved photo-induced charge transfer (PICT) efficiency via the oxygen vacancies in the W18O49 units. Additionally, a flexible SERS substrate based on WCN was constructed using a vacuum filtration method and utilized to detect prohibited pharmaceutical residues on fish skin. The integration of this WCN and a nylon membrane not only preserves the Raman activity of the WCN for sensitive detection but also endows the Raman substrate with high flexibility and good mechanical durability, making it a potential candidate for in situ detection in particular environments.
Collapse
Affiliation(s)
- Lu Tan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China.
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Shuzhen Yue
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| |
Collapse
|
10
|
Dayaratne WLN, Torres-Cadena R, Schmitt BP, Westrick EM, Jaffe A. Hybrid bronzes: mixed-valence organic-inorganic metal oxides as a tunable material platform. Chem Sci 2023; 14:10756-10767. [PMID: 37829041 PMCID: PMC10566514 DOI: 10.1039/d3sc03828a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
We demonstrate that mixed-valence layered organic-inorganic metal oxides of the form (L)zHxMO3 (L = neutral ligand; M = Mo, W; z = 0.5, 1; 0 < x < 2), which we call hybrid bronzes, can be readily synthesized through mild solution-state self-assembly reactions to integrate the stability and electronic utility of inorganic metal oxide bronzes with the chemical diversity and functionality of organic molecules. We use single-crystal and powder X-ray diffraction coupled with X-ray, electronic, and vibrational spectroscopies to show that the products of aqueous pre-, mid-, or post-synthetic reduction are mixed-valence versions of highly crystalline layered hybrid oxides. Pillaring, bilayered, or canted bilayered arrangements of molecular arrays relative to inorganic sheets are dictated by judicious choice of organic ligands that can also incorporate chemical, redox, or photoactive handles. Significantly, bond-valence sum analysis and diffuse reflectance spectroscopy indicate relatively delocalized electronic behavior and four-point variable-temperature electrical transport measurements show that hybrid bronzes have comparable conductivity to their all-inorganic parent compounds. This work establishes a solution-processable, inexpensive, air- and water-stable, and non-toxic material family whose electronic bands can be readily tuned and doped, thereby positioning hybrid bronzes to address myriad material challenges.
Collapse
Affiliation(s)
- W Lakna N Dayaratne
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Raúl Torres-Cadena
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Bennett P Schmitt
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Emma M Westrick
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Adam Jaffe
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame Indiana 46556 USA
| |
Collapse
|
11
|
Weng S, Chu W, Zhu H, Li J, Dong R, Niu R, Yang J, Zhang C, Li Z, Yang L. Near-Neighbor Electron Orbital Coupling Effect of Single-Atomic-Layer Au Cluster Intercalated Bilayer 2H-TaS 2 for Surface Enhanced Raman Scattering Sensing. J Phys Chem Lett 2023; 14:8477-8484. [PMID: 37721451 DOI: 10.1021/acs.jpclett.3c02225] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
It is difficult to perfectly analyze the enhancement mechanism of two-dimensional (2D) materials and their combination with precious metals as surface enhanced Raman scattering (SERS) substrates using chemical enhancement mechanisms. Here, we propose a new mentality based on the coupling effect of neighboring electron orbitals to elucidate the electromagnetic field enhancement mechanism of single-atom-layer Au clusters embedded in double-layer 2H-TaS2 for SRES sensing. The insertion of Au atoms into the 2H-TaS2 interlayer was verified by XRD, AFM, and HRTEM, and a SERS signal enhancement of 2 orders of magnitude was obtained compared to the pure 2H-TaS2. XPS and micro-UV/vis-NIR spectra indicate that the outer electrons of neighboring Au and 2H-TaS2 overlap and migrate from Au to 2H-TaS2. First-principles calculations suggest strong electronic coupling between Au and 2H-TaS2. This study offers insights into SERS enhancement in nonprecious metal compounds and guides the development of new SERS substrates.
Collapse
Affiliation(s)
- Shirui Weng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Wenjun Chu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science & Technology of China, Hefei 230026, Anhui, China
| | - Huaze Zhu
- Department of Materials Science and Engineering, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Junxiang Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ronglu Dong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Rui Niu
- High Magnetic Field Laboratory of Anhui Province, Chinese Academy of Sciences, Hefei 230031, China
| | - Jun Yang
- Department of Materials Science and Engineering, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Changjin Zhang
- High Magnetic Field Laboratory of Anhui Province, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhenyu Li
- Key Laboratory of Precision and Intelligent Chemistry, University of Science & Technology of China, Hefei 230026, Anhui, China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| |
Collapse
|
12
|
Lu L, Hu X, Zeng R, Lin Q, Huang X, Wei Q, Tang D, Knopp D. Ag/MoO3–Pd-mediated gasochromic reaction: An efficient dual-mode photoelectrochemical and photothermal immunoassay. Biosens Bioelectron 2023; 230:115267. [PMID: 36996546 DOI: 10.1016/j.bios.2023.115267] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023]
Abstract
Herein, we presented a dual-readout gasochromic immunosensing platform for accurate and sensitive detection of carcinoembryonic antigen (CEA) based on Ag-doped/Pd nanoparticles loaded MoO3 nanorods (Ag/MoO3-Pd). Initially, the presence of analyte CEA would prompt the formation of sandwich-type immunoreaction, accompanied by the introduction of Pt NPs labeled on detection antibody. Upon the addition of NH3BH3, the product hydrogen (H2) will interact with Ag/MoO3-Pd as a bridge between the sensing interface and the biological assembly platform. Both photocurrent and temperature signals can serve as readouts due to the significantly increased PEC performance and enhanced photothermal conversion capability of H-Ag/MoO3-Pd (the product of Ag/MoO3-Pd react with H2) compared to Ag/MoO3-Pd. In addition, the DFT results show that the band gap of Ag/MoO3-Pd becomes narrower after the reaction with H2, thus improving the utilization of light, which theoretically explains the internal mechanism of gas sensing reaction. Under optimal conditions, the designed immunosensing platform showed good sensitivity for CEA detection with the limit of detection (LOD) of 26 pg mL-1 (photoelectrochemical mode) and 98 pg mL-1 (photothermal mode). This work not only presents the possible reaction mechanism of Ag/MoO3-Pd and H2, but also creatively applicate it in photothermal biosensors that give a new path for devising dual-readout immunosensor.
Collapse
|
13
|
Yamamoto T, Kawaguchi S, Kosuge T, Sugai A, Tsunoda N, Kumagai Y, Beppu K, Ohmi T, Nagase T, Higashi K, Kato K, Nitta K, Uruga T, Yamazoe S, Oba F, Tanaka T, Azuma M, Hosokawa S. Emergence of Dynamically-Disordered Phases During Fast Oxygen Deintercalation Reaction of Layered Perovskite. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301876. [PMID: 37096836 DOI: 10.1002/advs.202301876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Determination of a reaction pathway is an important issue for the optimization of reactions. However, reactions in solid-state compounds have remained poorly understood because of their complexity and technical limitations. Here, using state-of-the-art high-speed time-resolved synchrotron X-ray techniques, the topochemical solid-gas reduction mechanisms in layered perovskite Sr3 Fe2 O7- δ (from δ ∼ 0.4 to δ = 1.0), which is promising for an environmental catalyst material is revealed. Pristine Sr3 Fe2 O7- δ shows a gradual single-phase structural evolution during reduction, indicating that the reaction continuously proceeds through thermodynamically stable phases. In contrast, a nonequilibrium dynamically-disordered phase emerges a few seconds before a first-order transition during the reduction of a Pd-loaded sample. This drastic change in the reaction pathway can be explained by a change in the rate-determining step. The synchrotron X-ray technique can be applied to various solid-gas reactions and provides an opportunity for gaining a better understanding and optimizing reactions in solid-state compounds.
Collapse
Affiliation(s)
- Takafumi Yamamoto
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 2268503, Japan
| | - Shogo Kawaguchi
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-gun, Hyogo, 6795198, Japan
| | - Taiki Kosuge
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 2268503, Japan
| | - Akira Sugai
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 2268503, Japan
| | - Naoki Tsunoda
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 2268503, Japan
| | - Yu Kumagai
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 2268503, Japan
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 9808577, Japan
| | - Kosuke Beppu
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 1920397, Japan
| | - Takuya Ohmi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 2268503, Japan
| | - Teppei Nagase
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 2268503, Japan
| | - Kotaro Higashi
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-gun, Hyogo, 6795198, Japan
| | - Kazuo Kato
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-gun, Hyogo, 6795198, Japan
| | - Kiyofumi Nitta
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-gun, Hyogo, 6795198, Japan
| | - Tomoya Uruga
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-gun, Hyogo, 6795198, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 1920397, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Katsura, Nishikyo-ku, Kyoto, 6158245, Japan
| | - Fumiyasu Oba
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 2268503, Japan
| | - Tsunehiro Tanaka
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Katsura, Nishikyo-ku, Kyoto, 6158245, Japan
- Department of Molecular Engineering, Graduate school of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan
| | - Masaki Azuma
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 2268503, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, Yokohama, 2268501, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa, 2430435, Japan
| | - Saburo Hosokawa
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Katsura, Nishikyo-ku, Kyoto, 6158245, Japan
- Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 6068585, Japan
| |
Collapse
|
14
|
Jiang W, Low BQL, Long R, Low J, Loh H, Tang KY, Chai CHT, Zhu H, Zhu H, Li Z, Loh XJ, Xiong Y, Ye E. Active Site Engineering on Plasmonic Nanostructures for Efficient Photocatalysis. ACS NANO 2023; 17:4193-4229. [PMID: 36802513 DOI: 10.1021/acsnano.2c12314] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plasmonic nanostructures have shown immense potential in photocatalysis because of their distinct photochemical properties associated with tunable photoresponses and strong light-matter interactions. The introduction of highly active sites is essential to fully exploit the potential of plasmonic nanostructures in photocatalysis, considering the inferior intrinsic activities of typical plasmonic metals. This review focuses on active site-engineered plasmonic nanostructures with enhanced photocatalytic performance, wherein the active sites are classified into four types (i.e., metallic sites, defect sites, ligand-grafted sites, and interface sites). The synergy between active sites and plasmonic nanostructures in photocatalysis is discussed in detail after briefly introducing the material synthesis and characterization methods. Active sites can promote the coupling of solar energy harvested by plasmonic metal to catalytic reactions in the form of local electromagnetic fields, hot carriers, and photothermal heating. Moreover, efficient energy coupling potentially regulates the reaction pathway by facilitating the excited state formation of reactants, changing the status of active sites, and creating additional active sites using photoexcited plasmonic metals. Afterward, the application of active site-engineered plasmonic nanostructures in emerging photocatalytic reactions is summarized. Finally, a summary and perspective of the existing challenges and future opportunities are presented. This review aims to deliver some insights into plasmonic photocatalysis from the perspective of active sites, expediting the discovery of high-performance plasmonic photocatalysts.
Collapse
Affiliation(s)
- Wenbin Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Beverly Qian Ling Low
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Ran Long
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingxiang Low
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongyi Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Karen Yuanting Tang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Casandra Hui Teng Chai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Houjuan Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Hui Zhu
- Department of Chemistry, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| |
Collapse
|
15
|
Zhang X, Luo D, Liu Y, Wang X, Hu H, Ye J, Wang D. Efficient photothermal alcohol dehydration over a plasmonic W18O49 nanostructure under visible-to-near-infrared irradiation. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
16
|
Yin H, Peng Y, Li J. Electrocatalytic Reduction of Nitrate to Ammonia via a Au/Cu Single Atom Alloy Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3134-3144. [PMID: 36785514 DOI: 10.1021/acs.est.2c07968] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrocatalytic ammonia (NH3) synthesis from the reduction of nitrate (NO3-) is one of the effective and mild methods to treat nitrogen-containing wastewater from stationary sources and to obtain NH3 readily compared with the Haber-Bosch process. However, the low efficiency of electrocatalytic NO3- reduction to NH3 on traditional Cu-based catalysts hinders their practical application. Here, we prepare a Au/Cu single atom (SA) alloy (Au/Cu SAA) that shows a high performance of NH3 synthesis with 99.69% Faradaic efficiency at -0.80 V vs RHE. The structures of Au SAs and alloyed Au/Cu are confirmed by the detailed characterizations. Online differential electrochemical mass spectrometry confirms the occurrence of key reaction intermediates (*NO2, *NO, and *NH3). Density functional theory calculations demonstrate that Au SAs efficiently reduce the adsorption energy of *NO3-, and the newly formed Au-Cu bonds boost the reduction process of *NO2 to *NO. Meanwhile, Au/Cu SAAs produce significantly less N2 and N2O byproducts due to the prohibition of N-N coupling on single atoms, which finally leads to excellent Faradaic efficiency and NH3 selectivity.
Collapse
Affiliation(s)
- Haibo Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
17
|
Nishikubo R, Kuwahara Y, Naito S, Kusu K, Saeki A. Elucidation of a Photothermal Energy Conversion Mechanism in Hydrogenated Molybdenum Suboxide: Interplay of Trapped Charges and Their Dielectric Interactions. J Phys Chem Lett 2023; 14:1528-1534. [PMID: 36745105 DOI: 10.1021/acs.jpclett.3c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogenated molybdenum suboxide (HxMoO3-y) is a promising photothermal energy conversion (PEC) material. However, its charge carrier dynamics and underlying mechanisms remain unclear. Utilizing flash-photolysis time-resolved microwave conductivity, we investigated charge carrier-dielectric interactions in the Pt/HxMoO3-y composite. The charge recombination of H2-reduced Pt/HxMoO3-y was 2-3 orders of magnitude faster than that of Pt/MoO3, indicating efficient PEC. A complex photoconductivity study revealed that Pt/HxMoO3-y has two types of trapping mechanisms, Drude-Zener (DZ) and negative permittivity effect (NPE) modes, depending on the reduction temperature. Pt/HxMoO3-y reduced at 100 °C exhibited a dominant NPE owing to the electrical interaction of trapped charges with the surrounding ions and/or OH base. This polaronic trapped state retarded the PEC process. We found Pt/HxMoO3-y reduced at 200 °C to be optimal owing to the balanced suppression of the NPE and charge diffusion. This is the first report revealing the charge dynamics in hydrogenated metal oxides and their impacts on PEC processes.
Collapse
Affiliation(s)
- Ryosuke Nishikubo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Yasutaka Kuwahara
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka565-0871, Japan
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama332-0012, Japan
| | - Shintaro Naito
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Kazuki Kusu
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka565-0871, Japan
| |
Collapse
|
18
|
Wang Y, Zavabeti A, Yao Q, Tran TLC, Yang W, Kong L, Cahill D. Nanobionics-Driven Synthesis of Molybdenum Oxide Nanosheets with Tunable Plasmonic Resonances in Visible Light Regions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55285-55294. [PMID: 36459620 DOI: 10.1021/acsami.2c19154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanobionics-driven synthesis offers a process of designing and synthesizing functional materials on a nanoscale based on the structures and functions of biological systems. An approach such as this is environmentally friendly and sustainable, providing a viable option for synthesizing functional nanomaterials for catalysis and nanoelectronic components. In this work, we present a facile and green nanobionics approach to synthesize plasmonic HxMoO3 by interacting chloroplasts extracted from spinach with two-dimensional (2D) MoO3 nanoflakes. The generated plasmon resonances can be modulated in the visible wavelength ranges, and the efficiency to form the plasmonic materials is enhanced by 90% within 45 min of light excitation compared to reactions without chloroplast involvement. Such a characteristic is ascribed to the interfacial carrier dynamics between the two entities in the reactions, in which highly doped metal oxides with quasi-metallic properties can be formed to generate optical absorptions in the visible light region. The green synthesized plasmonic materials show high photocatalytic activities without the coupling of semiconductors, providing a promising nanoelectronics unit, based on the nanobionics-driven synthesized plasmonic materials.
Collapse
Affiliation(s)
- Yichao Wang
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria3216, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria3010, Australia
| | - Qifeng Yao
- Division of Quantum State of Matter, Beijing Academy of Quantum Information Sciences, Beijing100193, China
| | - Thi Linh Chi Tran
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria3216, Australia
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria3216, Australia
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria3216, Australia
| | - David Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria3216, Australia
| |
Collapse
|
19
|
Negm A, Howlader MMR, Belyakov I, Bakr M, Ali S, Irannejad M, Yavuz M. Materials Perspectives of Integrated Plasmonic Biosensors. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7289. [PMID: 36295354 PMCID: PMC9611134 DOI: 10.3390/ma15207289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
With the growing need for portable, compact, low-cost, and efficient biosensors, plasmonic materials hold the promise to meet this need owing to their label-free sensitivity and deep light-matter interaction that can go beyond the diffraction limit of light. In this review, we shed light on the main physical aspects of plasmonic interactions, highlight mainstream and future plasmonic materials including their merits and shortcomings, describe the backbone substrates for building plasmonic biosensors, and conclude with a brief discussion of the factors affecting plasmonic biosensing mechanisms. To do so, we first observe that 2D materials such as graphene and transition metal dichalcogenides play a major role in enhancing the sensitivity of nanoparticle-based plasmonic biosensors. Then, we identify that titanium nitride is a promising candidate for integrated applications with performance comparable to that of gold. Our study highlights the emerging role of polymer substrates in the design of future wearable and point-of-care devices. Finally, we summarize some technical and economic challenges that should be addressed for the mass adoption of plasmonic biosensors. We believe this review will be a guide in advancing the implementation of plasmonics-based integrated biosensors.
Collapse
Affiliation(s)
- Ayman Negm
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Electronics and Communications Engineering, Cairo University, Giza 12613, Egypt
| | - Matiar M. R. Howlader
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ilya Belyakov
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mohamed Bakr
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Shirook Ali
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada
- School of Mechanical and Electrical Engineering Technology, Sheridan College, Brampton, ON L6Y 5H9, Canada
| | | | - Mustafa Yavuz
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
20
|
Shingaya Y, Takaki H, Kobayashi N, Aono M, Nakayama T. Single-molecule detection with enhanced Raman scattering of tungsten oxide nanostructure. NANOSCALE 2022; 14:14552-14557. [PMID: 36149385 DOI: 10.1039/d2nr03596k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We have found that tungsten oxide nanorods have a very large enhancement effect on Raman scattering. The nanorods with adsorbed 12CO and 13CO at the ratio of 1 : 1 were dispersed on a Si substrate and Raman mapping was performed. The Raman images of 12CO and 13CO were completely different, indicating that a very small number of molecules at the single-molecule level were observed. We also confirmed the characteristic blinking phenomenon when single-molecule detection was performed. The very large enhancement effect of Raman scattering can be attributed to the {001}CS structure of the tungsten oxide nanorods. It was confirmed from the DFT calculation results that the {001}CS structure exhibits two-dimensional electrical conduction properties.
Collapse
Affiliation(s)
- Yoshitaka Shingaya
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
| | - Hirokazu Takaki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Nobuhiko Kobayashi
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Masakazu Aono
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
| | - Tomonobu Nakayama
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
21
|
Hu Y, Zhang BY, Haque F, Ren G, Ou JZ. Plasmonic metal oxides and their biological applications. MATERIALS HORIZONS 2022; 9:2288-2324. [PMID: 35770972 DOI: 10.1039/d2mh00263a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal oxides modified with dopants and defects are an emerging class of novel materials supporting the localized surface plasmon resonance across a wide range of optical wavelengths, which have attracted tremendous research interest particularly in biological applications in the past decade. Compared to conventional noble metal-based plasmonic materials, plasmonic metal oxides are particularly favored for their cost efficiency, flexible plasmonic properties, and improved biocompatibility, which can be important to accelerate their practical implementation. In this review, we first explicate the origin of plasmonics in dopant/defect-enabled metal oxides and their associated tunable localized surface plasmon resonance through the conventional Mie-Gans model. The research progress of dopant incorporation and defect generation in metal oxide hosts, including both in situ and ex situ approaches, is critically discussed. The implementation of plasmonic metal oxides in biological applications in terms of therapy, imaging, and sensing is summarized, in which the uniqueness of dopant/defect-driven plasmonics for inducing novel functionalities is particularly emphasized. This review may provide insightful guidance for developing next-generation plasmonic devices for human health monitoring, diagnosis and therapy.
Collapse
Affiliation(s)
- Yihong Hu
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Bao Yue Zhang
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Farjana Haque
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Guanghui Ren
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
22
|
Ge H, Kuwahara Y, Yamashita H. Development of defective molybdenum oxides for photocatalysis, thermal catalysis, and photothermal catalysis. Chem Commun (Camb) 2022; 58:8466-8479. [PMID: 35861347 DOI: 10.1039/d2cc02658a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The localized surface plasmon resonance (LSPR) of noble metals has been investigated for decades for applications in various catalysis reactions and optical research studies, but its development has been hampered by inefficient light absorption and high costs. In comparison, the creation of less expensive semiconductors (metal oxides) with strong plasmonic absorption is an appealing option, particularly defective molybdenum oxide (HxMoO3-y) has received considerable attention and investigation as a promising plasmonic material for a variety of catalytic reactions (photocatalysis, thermocatalysis, photothermal catalysis, etc.).The LSPR effect of HxMoO3-y can be tuned throughout a broad spectrum range from visible to near-infrared (NIR) by altering the doping amount by electrochemical control, chemical reduction, or photochemical control. Notably, defects (oxygen vacancies) in HxMoO3-y arise in conjunction with the LSPR effect, resulting in the formation of unique and useful active sites in a range of catalytic processes. In this review, we explore the formation mechanism of HxMoO3-y with plasmonic features and discuss its applications in photocatalysis, thermocatalysis, and photothermal catalysis.
Collapse
Affiliation(s)
- Hao Ge
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Osaka 565-0871, Japan.
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Osaka 565-0871, Japan. .,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,JST, PRESTO, 4-1-8 Hon-Cho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Osaka 565-0871, Japan. .,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Yang M, Ye Z, Iqbal MA, Liang H, Zeng YJ. Progress on two-dimensional binary oxide materials. NANOSCALE 2022; 14:9576-9608. [PMID: 35766429 DOI: 10.1039/d2nr01076c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional van der Waals (2D vdW) materials have attracted much attention because of their unique electronic and optical properties. Since the successful isolation of graphene in 2004, many interesting 2D materials have emerged, including elemental olefins (silicene, germanene, etc.), transition metal chalcogenides, transition metal carbides (nitrides), hexagonal boron, etc. On the other hand, 2D binary oxide materials are an important group in the 2D family owing to their high structural diversity, low cost, high stability, and strong adjustability. This review systematically summarizes the research progress on 2D binary oxide materials. We discuss their composition and structure in terms of vdW and non-vdW categories in detail, followed by a discussion of their synthesis methods. In particular, we focus on strategies to tailor the properties of 2D oxides and their emerging applications in different fields. Finally, the challenges and future developments of 2D binary oxides are provided.
Collapse
Affiliation(s)
- Manli Yang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518052, Guangdong, China.
| | - Zhixiang Ye
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Muhammad Ahsan Iqbal
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518052, Guangdong, China.
| | - Huawei Liang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518052, Guangdong, China.
| | - Yu-Jia Zeng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518052, Guangdong, China.
| |
Collapse
|
24
|
Wu Z, Shi P, Xing R, Xing Y, Ge Y, Wei L, Wang D, Zhao L, Yan S, Chen Y. Quasi-two-dimensional α-molybdenum oxide thin film prepared by magnetron sputtering for neuromorphic computing. RSC Adv 2022; 12:17706-17714. [PMID: 35765332 PMCID: PMC9199084 DOI: 10.1039/d2ra02652j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Two-dimensional (2D) layered materials have attracted intensive attention in recent years due to their rich physical properties, and shown great promise due to their low power consumption and high integration density in integrated electronics. However, mostly limited to mechanical exfoliation, large scale preparation of the 2D materials for application is still challenging. Herein, quasi-2D α-molybdenum oxide (α-MoO3) thin film with an area larger than 100 cm2 was fabricated by magnetron sputtering, which is compatible with modern semiconductor industry. An all-solid-state synaptic transistor based on this α-MoO3 thin film is designed and fabricated. Interestingly, by proton intercalation/deintercalation, the α-MoO3 channel shows a reversible conductance modulation of about four orders. Several indispensable synaptic behaviors, such as potentiation/depression and short-term/long-term plasticity, are successfully demonstrated in this synaptic device. In addition, multilevel data storage has been achieved. Supervised pattern recognition with high recognition accuracy is demonstrated in a three-layer artificial neural network constructed on this α-MoO3 based synaptic transistor. This work can pave the way for large scale production of the α-MoO3 thin film for practical application in intelligent devices.
Collapse
Affiliation(s)
- Zhenfa Wu
- School of Physics, and State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Peng Shi
- School of Physics, and State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Ruofei Xing
- School of Physics, and State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Yuzhi Xing
- School of Physics, and State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Yufeng Ge
- School of Physics, and State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Lin Wei
- School of Microelectronics, and State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Dong Wang
- School of Physics, and State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Le Zhao
- School of Electronic and Information Engineering, Qilu University of Technology Jinan 250353 China
| | - Shishen Yan
- School of Physics, and State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| | - Yanxue Chen
- School of Physics, and State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 China
| |
Collapse
|
25
|
Liu G, Lou Y, Zhao Y, Burda C. Directional Damping of Plasmons at Metal-Semiconductor Interfaces. Acc Chem Res 2022; 55:1845-1856. [PMID: 35696292 DOI: 10.1021/acs.accounts.2c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusOver the past decade, it has been shown that surface plasmons can enhance photoelectric conversion in photovoltaics, photocatalysis, and other optoelectronic applications through their plasmonic absorption and damping processes. However, plasmonically enhanced devices have yet to routinely match or exceed the efficiencies of traditional semiconductor devices. The effect of plasmonic losses dissipates the absorbed photoenergy mostly into heat and that has hampered the realization of superior next-generation plasmonic optoelectronic devices. Several approaches are being explored to alleviate this situation, including using gain to compensate for the plasmonic losses, designing and synthesizing alternative low-loss plasmonic materials, and reducing activation barriers in plasmonic devices and physical thicknesses of photoabsorber layers to lower the plasmonic losses. A newly proposed plasmon-induced interfacial charge-transfer transition (PIICTT) mechanism has proven to be effective in minimizing energy loss during interfacial charge transfer. The PIICTT leads to a damping of metallic plasmonics by directly generating excitons at the plasmonic metal/semiconductor heteronanostructures. This novel concept has been proven to overcome some of the limitations of electron-transfer inefficiencies, renewing a focus on surface plasmon damping processes with the goal that the plasmonic excitation energies of metal nanoparticles can be more efficiently transferred to the adjacent semiconductor components in the absence and presence of an effective interlayer of carrier-selective blocking layer (CSBL). Several theoretical and experimental studies have concluded that efficient plasmon-induced ultrafast hot-carrier transfer was observed in plasmonic-metal/semiconductor heteronanostructures. The PIICTT mechanism may well be a general phenomenon at plasmonic metal/semiconductor, metal/molecule, semiconductor/semiconductor, and semiconductor/molecule heterointerfaces. Thus, the PIICTT presents a new opportunity to limit energy loss in plasmonic-metal nanostructures and increase device efficiencies based on plasmonic coupling. The nonradiative damping of surface plasmons can impact the energy flux direction and thereby provide a new process beyond light trapping, focusing, and hot carrier creation.In this Account, we draw much attention to the benefits of interfacial plasmonic coupling, highlighting recent pioneering discoveries in which plasmon-induced interfacial charge- and energy-transfer processes enable the generation of hot charge carriers near the plasmonic-metal/semiconductor interfaces. This process is likely to increase the photoelectric conversion efficiency, constituting "plasmonic enhancement". We also discuss recent advances in the dynamics of surface plasmon relaxation and highlight exciting new possibilities for plasmonic metals and their interactions with strongly attached semiconductors to provide directional energy fluxes. While this new research area comes on the heels of much elaborate research on both metal and semiconductor nanomaterials, it provides a subtle but important refinement in understanding the optoelectronic properties of materials with far-reaching consequences from fundamental interface science to technological applications. We hope that this Account will contribute to a more systematic description of interface-coupled plasmonics, both fundamentally and in terms of applications toward the design of plasmonic heterostructured devices.
Collapse
Affiliation(s)
- Guoning Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.,School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Clemens Burda
- Department of Chemistry, Millis Science Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
26
|
Zhao C, Wang C, Xin H, Li H, Li R, Wang B, Wei W, Cui Y, Fu Q. Hydrogenated Molybdenum Oxide Overlayers Formed on Mo Nitride Nanosheets in Ambient-Pressure CO 2/H 2 Gases. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26194-26203. [PMID: 35606336 DOI: 10.1021/acsami.2c03626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transition metal nitrides (TMNx) often exhibit high catalytic activity in many important reactions. Due to their low stability in a reaction environment, it remains as a crucial issue to reveal surface active structures in catalytic reactions, particularly for the cases containing both oxidative and reductive gases. Herein, MoN and Mo2N nanosheets have been constructed on Al2O3(0001) and Au foil surfaces, and in situ surface characterizations are performed on the model catalysts in ambient-pressure CO2, H2, and CO2 + H2 gases. In situ Raman spectroscopy and quasi in situ X-ray photoelectron spectroscopy (XPS) analysis indicate that MoO3 and defective MoO3-x overlayers form on both MoN and Mo2N surfaces in CO2, and the surface oxidation occurs under a milder condition on Mo2N than on MoN. Further, a hydrogenated Mo oxide (HzMoO3-y) overlayer forms in a CO2 + H2 atmosphere, as confirmed using quasi in situ XPS and time-of-flight secondary ion mass spectroscopy. The surface analysis over the model nitride catalysts suggests that O and/or H atoms may be incorporated into surface layers to form the active structure in many O and H-containing reactions.
Collapse
Affiliation(s)
- Changbao Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chao Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hui Xin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hao Li
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215213, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Bin Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei Wei
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215213, China
| | - Yi Cui
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215213, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
27
|
Jiang W, Zhang H, An Y, Mao Y, Wang Z, Liu Y, Wang P, Zheng Z, Wei W, Dai Y, Cheng H, Huang B. Free-Standing Nanoarrays with Energetic Electrons and Active Sites for Efficient Plasmon-Driven Ammonia Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201269. [PMID: 35567335 DOI: 10.1002/smll.202201269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/30/2022] [Indexed: 06/15/2023]
Abstract
Direct ammonia (NH3 ) synthesis from water and atmospheric nitrogen using sunlight provides an energy-sustainable and carbon-neutral alternative to the Haber-Bosch process. However, the development of such a route with high performance is impeded by the lack of effective charge transfer and abundant active sites to initiate the nitrogen reduction reaction (NRR). Here, the authors report efficient plasmon-induced photoelectrochemical (PEC) NH3 synthesis on the hierarchical free-standing Au/Kx MoO3 /Mo/Kx MoO3 /Au nanoarrays. Endowed with energetically hot electrons and catalytically active sites, the plasmonic nanoarrays exhibit an efficient PEC NH3 synthesis rate of 9.6 µg cm-2 h-1 under visible light irradiation, which is among the highest PEC NRR systems. This work demonstrates the rationally designed plasmonic nanoarrays for highly efficient NH3 synthesis, which paves a new path for PEC catalytic reactions driven by surface plasmons and future monolithic PEC devices for direct artificial photosynthesis.
Collapse
Affiliation(s)
- Weiyi Jiang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Haona Zhang
- School of Physics, Shandong University, Jinan, 250100, China
| | - Yang An
- Institute for Innovative Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yuyin Mao
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Wei Wei
- School of Physics, Shandong University, Jinan, 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan, 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
28
|
Transforming Commercial Copper Sulfide into Injectable Hydrogels for Local Photothermal Therapy. Gels 2022; 8:gels8050319. [PMID: 35621617 PMCID: PMC9141692 DOI: 10.3390/gels8050319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 12/13/2022] Open
Abstract
Photothermal therapy (PTT) is a promising local therapy playing an increasingly important role in tumor treatment. To maximize PTT efficacy, various near-infrared photoabsorbers have been developed. Among them, metal sulfides have attracted considerable interest due to the advantages of good stability and high photothermal conversion efficiency. However, the existing synthesis methods of metal-sulfide-based photoabsorbers suffer from the drawbacks of complicated procedures, low raw material utilization, and poor universality. Herein, we proposed a flexible, adjustable strategy capable of transforming commercial metal sulfides into injectable hydrogels for local PTT. We took copper sulfide (CuS) as a typical example, which has intense second-window near-infrared absorption (1064 nm), to systematically investigate its in vitro and in vivo characteristics. CuS hydrogel with good syringeability was synthesized by simply dispersing commercial CuS powders as photoabsorbers in alginate-Ca2+ hydrogel. This synthesis strategy exhibits the unique merits of an ultra-simple synthesizing process, 100% loading efficiency, good biocompatibility, low cost, outstanding photothermal capacity, and good universality. The in vitro experiments indicated that the hydrogel exhibits favorable photothermal heating ability, and it obviously destroyed tumor cells under 1064 nm laser irradiation. After intratumoral administration in vivo, large-sized CuS particles in the hydrogel highly efficiently accumulated in tumor tissues, and robust local PTT was realized under mild laser irradiation (0.3 W/cm2). The developed strategy for the synthesis of CuS hydrogel provides a novel way to utilize commercial metal sulfides for diverse biological applications.
Collapse
|
29
|
Yin H, Chen Z, Peng Y, Xiong S, Li Y, Yamashita H, Li J. Dual Active Centers Bridged by Oxygen Vacancies of Ruthenium Single‐Atom Hybrids Supported on Molybdenum Oxide for Photocatalytic Ammonia Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Haibo Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 P. R. China
| | - Zhen Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 P. R. China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 P. R. China
| | - Shangchao Xiong
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 P. R. China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science Graduate School of Engineering Osaka University Osaka 565-0871 Japan
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
30
|
Yin H, Zhao X, Xiong S, Peng Y, Chen Z, Wang R, Wen M, Luo J, Yamashita H, Li J. New insight on electroreduction of nitrate to ammonia driven by oxygen vacancies-induced strong interface interactions. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Shun K, Mori K, Masuda S, Hashimoto N, Hinuma Y, Kobayashi H, Yamashita H. Revealing hydrogen spillover pathways in reducible metal oxides. Chem Sci 2022; 13:8137-8147. [PMID: 35919430 PMCID: PMC9278487 DOI: 10.1039/d2sc00871h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Hydrogen spillover, the migration of dissociated hydrogen atoms from noble metals to their support materials, is a ubiquitous phenomenon and is widely utilized in heterogeneous catalysis and hydrogen storage materials. However, in-depth understanding of the migration of spilled hydrogen over different types of supports is still lacking. Herein, hydrogen spillover in typical reducible metal oxides, such as TiO2, CeO2, and WO3, was elucidated by combining systematic characterization methods involving various in situ techniques, kinetic analysis, and density functional theory calculations. TiO2 and CeO2 were proven to be promising platforms for the synthesis of non-equilibrium RuNi binary solid solution alloy nanoparticles displaying a synergistic promotional effect in the hydrolysis of ammonia borane. Such behaviour was driven by the simultaneous reduction of both metal cations under a H2 atmosphere over TiO2 and CeO2, in which hydrogen spillover favorably occurred over their surfaces rather than within their bulk phases. Conversely, hydrogen atoms were found to preferentially migrate within the bulk prior to the surface over WO3. Thus, the reductions of both metal cations occurred individually on WO3, which resulted in the formation of segregated NPs with no activity enhancement. The hydrogen spillover pathway in typical reducible metal oxides, such as TiO2, CeO2, and WO3, was investigated by combining various in situ characterization techniques, kinetic analysis, and density functional theory calculations.![]()
Collapse
Affiliation(s)
- Kazuki Shun
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Unit of Elements Strategy Initiative for Catalysts Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinya Masuda
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoki Hashimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoyo Hinuma
- Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Hisayoshi Kobayashi
- Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Unit of Elements Strategy Initiative for Catalysts Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
32
|
Yang HJ, Redington M, Miller DP, Zurek E, Kim M, Yoo CS, Lim SY, Cheong H, Chae SA, Ahn D, Hur NH. New monoclinic ruthenium dioxide with highly selective hydrogenation activity. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00815g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HxRuO2 acts as a standalone catalyst exhibiting selective hydrogenation under mild conditions. Mobile protons embedded in the oxide lattice play an important role in stabilizing the distorted structure, and facile proton dynamics is key to improving catalytic properties.
Collapse
Affiliation(s)
- Hee Jung Yang
- Department of Chemistry, Sogang University, Seoul 04107, Korea
| | - Morgan Redington
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Daniel P. Miller
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, USA
| | - Eva Zurek
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Minseob Kim
- Department of Chemistry, Institute for Shock Physics, Washington State University, Pullman, WA 99164, USA
| | - Choong-Shik Yoo
- Department of Chemistry, Institute for Shock Physics, Washington State University, Pullman, WA 99164, USA
| | - Soo Yeon Lim
- Department of Physics, Sogang University, Seoul 04107, Korea
| | - Hyeonsik Cheong
- Department of Physics, Sogang University, Seoul 04107, Korea
| | - Seen-Ae Chae
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Docheon Ahn
- Beamline Research Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Nam Hwi Hur
- Department of Chemistry, Sogang University, Seoul 04107, Korea
| |
Collapse
|
33
|
Kuwahara Y, Okada M, Ge H, Yamashita H. Hydrodeoxygenation of Aromatic Ketones under Mild Conditions over Pd-loaded Hydrogen Molybdenum Bronze with Plasmonic Features. CHEM LETT 2021. [DOI: 10.1246/cl.210706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871
- Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012
| | - Masahiro Okada
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871
| | - Hao Ge
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871
- Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520
| |
Collapse
|
34
|
Yin H, Chen Z, Peng Y, Xiong S, Yamashita H, Li J. Dual Active Centers Bridged by Oxygen Vacancies of Ru Single Atoms Hybrids Supported on Molybdenum Oxide for Photocatalytic Ammonia Synthesis. Angew Chem Int Ed Engl 2021; 61:e202114242. [PMID: 34918452 DOI: 10.1002/anie.202114242] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/09/2022]
Abstract
Photocatalytic synthesis of ammonia (NH 3 ) holds significant potential compared with the Haber-Bosch process. However, the reported photocatalysts suffered from low efficiency owing to localized electrons deficiency. Here, Ru-SA (single atoms)/H x MoO 3-y hybrids with abundant of Mo n+ (n < 6) species neighboring oxygen vacancies (O V ) are synthesized via a H-spillover process. Detailed characterizations demonstrate that Ru-SA/H x MoO 3 y hybrids can quantitatively produce NH 3 from N 2 and H 2 by the synergetic effect of dual active centers (Ru SA and Mo n+ ). That is, Ru SA boost the activation and migration of H 2 , and Mo n+ species act as the trapping sites of localized electrons and the adsorption and dissociation sites of N 2 , finally leading to NH 3 synthesis on Mo n+ -OH. The NH 3 generation rate is as high as 4.0 mmol h -1 g -1 , accompanied by an apparent quantum efficiency over 6.0% at 650 nm. Our finding may open up a new strategy for acquiring a better NH 3 synthesis approach under mild conditions.
Collapse
Affiliation(s)
- Haibo Yin
- Tsinghua University, School of environment, CHINA
| | - Zhen Chen
- Tsinghua University, School of environment, CHINA
| | - Yue Peng
- Tsinghua University, School of environment, CHINA
| | | | - Hiromi Yamashita
- Osaka University: Osaka Daigaku, Graduate School of Engineering, JAPAN
| | - Junhua Li
- Tsinghua University, School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, 100084, Beijing, CHINA
| |
Collapse
|
35
|
Deng L, Zou Y, Jiang J. Plasmonic MoO 2 embedded MoNi 4 nanosheets prepared by NiMoO 4 transformation for visible-light-enhanced 4-nitrophenol reduction. Dalton Trans 2021; 50:17235-17240. [PMID: 34784407 DOI: 10.1039/d1dt03216j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plasmonic hybrid catalysts have attracted great interest for the reduction of nitrobenzene waste to valuable aminobenzene, because they can use renewable solar energy to accelerate the catalytic reaction. However, the economical synthesis of non-precious plasmonic hybrid catalysts remains a big challenge. Herein we report the synthesis of plasmonic MoO2-embedded MoNi4 nanosheets (MoNi4-MoO2) by thermal annealing of NiMoO4 at 600 °C under a hydrogen atmosphere. The MoNi4-MoO2 hybrid catalysts retain strong plasmon absorption from MoO2 and demonstrate good catalytic activity from MoNi4 for 4-nitrophenol reduction in the dark. Under visible light irradiation, the excitation of MoO2 plasmon promotes the catalytic reaction further due to hot electron-induced increase of catalytic activity of MoNi4. In addition, the hybrid catalysts are relatively stable even under illumination reaction conditions.
Collapse
Affiliation(s)
- Liujun Deng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.,i-Lab, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yu Zou
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.,i-Lab, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jiang Jiang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.,i-Lab, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
36
|
Tee SY, Ye E, Teng CP, Tanaka Y, Tang KY, Win KY, Han MY. Advances in photothermal nanomaterials for biomedical, environmental and energy applications. NANOSCALE 2021; 13:14268-14286. [PMID: 34473186 DOI: 10.1039/d1nr04197e] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Materials that exhibit photothermal effect have attracted enormous research interests due to their ability to strongly absorb light and effectively transform it into heat for a wide range of applications in biomedical, environmental and energy related fields. The past decade has witnessed significant advances in the preparation of a variety of photothermal materials, mainly due to the emergence of many nano-enabled new materials, such as plasmonic metals, stoichiometric/non-stoichiometric semiconductors, and the newly emerging MXenes. These photothermal nanomaterials can be hybridized with other constituents to form functional hybrids or composites for achieving enhanced photothermal performance. In this review, we present the fundamental insight of inorganic photothermal materials, including their photothermal conversion mechanisms/properties as well as their potential applications in various fields. Emphasis is placed on strategic approaches for improving their light harvesting and photothermal conversion capabilities through engineering their nanostructured size, shape, composition, bandgap and so on. Lastly, the underlying challenges and perspectives for future development of photothermal nanomaterials are proposed.
Collapse
Affiliation(s)
- Si Yin Tee
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
| | - Choon Peng Teng
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
| | - Yuki Tanaka
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
| | | | - Khin Yin Win
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
| | - Ming-Yong Han
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
37
|
Niu XY, Jiang SL, Zhang Q. Photocatalytic N2 fixation by plasmonic Mo-doped TiO2 semiconductor. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2105088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Xiao-you Niu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shen-long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
38
|
Wu Y, Ou Q, Dong S, Hu G, Si G, Dai Z, Qiu CW, Fuhrer MS, Mokkapati S, Bao Q. Efficient and Tunable Reflection of Phonon Polaritons at Built-In Intercalation Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008070. [PMID: 33998712 DOI: 10.1002/adma.202008070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Phonon polaritons-light coupled to lattice vibrations-in polar van der Waals crystals offer unprecedented opportunities for controlling light at the nanoscale due to their anisotropic and ultralow-loss propagation. While their analog plasmon polaritons-light coupled to electron oscillations-have long been studied and exhibit interesting reflections at geometrical edges and electronic boundaries, whether phonon polaritons can be reflected by such barriers has been elusive. Here, the effective and tunable reflection of phonon polaritons at embedded interfaces formed in hydrogen-intercalated α-MoO3 flakes is elaborated upon. Without breaking geometrical continuity, such intercalation interfaces can reflect phonon polaritons with low losses, yielding the distinct phase changes of -0.8π and -0.3π associated with polariton propagation, high efficiency of 50%, and potential electrical tunability. The results point to a new approach to construct on-demand polariton reflectors, phase modulators, and retarders, which may be transplanted into building future polaritonic circuits using van der Waals crystals.
Collapse
Affiliation(s)
- Yingjie Wu
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Qingdong Ou
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
- ARC Center of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, Victoria, 3800, Australia
| | - Shaohua Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Guangyuan Si
- Melbourne Center for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia
| | - Zhigao Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Michael S Fuhrer
- ARC Center of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, Victoria, 3800, Australia
- School of Physics and Astronomy, Monash University, Clayton, Victoria, 3800, Australia
| | - Sudha Mokkapati
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Qiaoliang Bao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
39
|
Kuwahara Y, Mihogi T, Hamahara K, Kusu K, Kobayashi H, Yamashita H. A quasi-stable molybdenum sub-oxide with abundant oxygen vacancies that promotes CO 2 hydrogenation to methanol. Chem Sci 2021; 12:9902-9915. [PMID: 34349963 PMCID: PMC8317622 DOI: 10.1039/d1sc02550c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/26/2021] [Indexed: 11/21/2022] Open
Abstract
Production of methanol from anthropogenic carbon dioxide (CO2) is a promising chemical process that can alleviate both the environmental burden and the dependence on fossil fuels. In catalytic CO2 hydrogenation to methanol, reduction of CO2 to intermediate species is generally considered to be a crucial step. It is of great significance to design and develop advanced heterogeneous catalysts and to engineer the surface structures to promote CO2-to-methanol conversion. We herein report an oxygen-defective molybdenum sub-oxide coupled with Pt nanoparticles (Pt/HxMoO3−y) which affords high methanol yield with a methanol formation rate of 1.53 mmol g-cat−1 h−1 in liquid-phase CO2 hydrogenation under relatively mild reaction conditions (total 4.0 MPa, 200 °C), outperforming other oxide-supported Pt catalysts in terms of both the yield and selectivity for methanol. Experiments and comprehensive analyses including in situ X-ray absorption fine structure (XAFS), in situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and density functional theory (DFT) calculations reveal that both abundant surface oxygen vacancies (VO) and the redox ability of Mo species in quasi-stable HxMoO3−y confer the catalyst with enhanced adsorption and activation capability to subsequently transform CO2 to methanol. Moreover, the Pt NPs act as H2 dissociation sites to regenerate oxygen vacancies and as hydrogenation sites for the CO intermediate to finally afford methanol. Based on the experimental and computational studies, an oxygen-vacancy-mediated “reverse Mars–van Krevelen (M–vK)” mechanism is proposed. This study affords a new strategy for the design and development of an efficient heterogeneous catalyst for CO2 conversion. Oxygen-defective molybdenum sub-oxide coupled with Pt nanoparticles affords high methanol yield in liquid-phase CO2 hydrogenation via reverse Mars–van Krevelen mechanism.![]()
Collapse
Affiliation(s)
- Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Suita Osaka 565-0871 Japan .,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University 2-1 Yamada-oka Suita Osaka 565-0871 Japan.,Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University Katsura Kyoto 615-8520 Japan.,JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Takashi Mihogi
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Suita Osaka 565-0871 Japan
| | - Koji Hamahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Suita Osaka 565-0871 Japan
| | - Kazuki Kusu
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Suita Osaka 565-0871 Japan
| | - Hisayoshi Kobayashi
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Suita Osaka 565-0871 Japan .,Kyoto Institute of Technology Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamada-oka Suita Osaka 565-0871 Japan .,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University 2-1 Yamada-oka Suita Osaka 565-0871 Japan.,Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University Katsura Kyoto 615-8520 Japan
| |
Collapse
|
40
|
Yu B, Wang W, Sun W, Jiang C, Lu L. Defect Engineering Enables Synergistic Action of Enzyme-Mimicking Active Centers for High-Efficiency Tumor Therapy. J Am Chem Soc 2021; 143:8855-8865. [PMID: 34086444 DOI: 10.1021/jacs.1c03510] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Perusing redox nanozymes capable of disrupting cellular homeostasis offers new opportunities to develop cancer-specific therapy, but remains challenging, because most artificial enzymes lack enzyme-like scale and configuration. Herein, for the first time, we leverage a defect engineering strategy to develop a simple yet efficient redox nanozyme by constructing enzyme-mimicking active centers and investigated its formation and catalysis mechanism thoroughly. Specifically, the partial Fe doping in MoOx (donated as Fe-MoOv) was demonstrated to activate structure reconstruction with abundant defect site generation, including Fe substitution and oxygen vacancy (OV) defects, which significantly enable the binding capacity and catalytic activity of Fe-MoOv nanozymes in a synergetic fashion. More intriguingly, plenty of delocalized electrons appear due to Fe-facilitated band structure reconstruction, directly contributing to the remarkable surface plasmon resonance effect in the near-infrared (NIR) region. Under NIR-II laser irradiation, the designed Fe-MoOv nanozymes are able to induce substantial disruption of redox and metabolism homeostasis in the tumor region via enzyme-mimicking cascade reactions, thus significantly augmenting therapeutic effects. This study that takes advantage of defect engineering offers new insights into developing high-efficiency redox nanozymes.
Collapse
Affiliation(s)
- Bin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Wenbo Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.,College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
| | - Chunhuan Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
41
|
Liu G, Qi S, Chen J, Lou Y, Zhao Y, Burda C. Cu-Sb-S Ternary Semiconductor Nanoparticle Plasmonics. NANO LETTERS 2021; 21:2610-2617. [PMID: 33705150 DOI: 10.1021/acs.nanolett.1c00006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Semiconductor plasmonics is a recently emerging field that expands the chemical and physical bandwidth of the hitherto well-established noble metallic nanoparticles. Achieving tunable plasmonics from colloidal semiconductor nanocrystals has drawn enormous interest and is promising for plasmon-related applications. However, realizing this goal of tunable semiconductor nanocrystals is currently still a synthetic challenge. Here, we report a colloidal synthesis strategy for highly dispersed, platelet-shaped, antimony-doped copper sulfide semiconductor nanocrystals (Sby-CuxS NCs) with a dominant localized surface plasmon resonance (LSPR) band tunable from the near-infrared into the midvisible spectral range. This work presents the synthesis and quantifies the resulting plasmonic features. It furthermore elucidates the underlying carrier concentration requirements to realize a continuum of LSPR spectra. Building on our previous work on binary plasmonics CuxS, CuxSe, and CuxTe NCs, the present method introduces a much wider and finer tunability with ternary semiconductor plasmonics.
Collapse
Affiliation(s)
- Guoning Liu
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Southeast University, No. 2 Southeast University Road, Nanjing 211189, P. R. China
| | - Shaopeng Qi
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Southeast University, No. 2 Southeast University Road, Nanjing 211189, P. R. China
| | - Jinxi Chen
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Southeast University, No. 2 Southeast University Road, Nanjing 211189, P. R. China
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Southeast University, No. 2 Southeast University Road, Nanjing 211189, P. R. China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Clemens Burda
- Department of Chemistry, Millis Science Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
42
|
Gu C, Li D, Zeng S, Jiang T, Shen X, Zhang H. Synthesis and defect engineering of molybdenum oxides and their SERS applications. NANOSCALE 2021; 13:5620-5651. [PMID: 33688873 DOI: 10.1039/d0nr07779h] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy has been developed into a cross-disciplinary analytical technology through exploring various materials' Raman vibrational modes with ultra-high sensitivity and specificity. Although conventional noble-metal based SERS substrates have achieved great success, oxide-semiconductor-based SERS substrates are attracting researchers' intensive interest due to their merits of facile fabrication, high uniformity and tunable SERS characteristics. Among all the SERS active oxide semiconductors, molybdenum oxides (MoOx) possess exceptional advantages of high Raman enhancement factor, environmental stability, recyclable detection, etc. More interestingly, the SERS effect of the MoOx SERS substrates may involve both the electromagnetic enhancement mechanism and the chemical enhancement mechanism, which is determined by the stoichiometry and morphology of the material. Therefore, the focus of this review will be on two critical points: (1) synthesis and material engineering methods of the functional MoOx material and (2) MoOx SERS mechanism and performance evaluation. First, we review recent works on the MoOx preparation and material property tuning approaches. Second, the SERS mechanism and performance of various MoOx substrates are surveyed. In particular, the performance uniformity, enhancement factor and recyclability are evaluated. In the end, we discuss several challenges and open questions related to further promoting the MoOx as the SERS substrate for monitoring extremely low trace molecules and the theory for better understanding of the SERS enhancement mechanism.
Collapse
Affiliation(s)
- Chenjie Gu
- Institute of Photonics, Ningbo University, 818 Feng Hua Road 315211, Ningbo, China.
| | | | | | | | | | | |
Collapse
|
43
|
Wang L, Xu X, Cheng Q, Dou SX, Du Y. Near-Infrared-Driven Photocatalysts: Design, Construction, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e1904107. [PMID: 31539198 DOI: 10.1002/smll.201904107] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/01/2019] [Indexed: 05/19/2023]
Abstract
Photocatalysts, which utilize solar energy to catalyze the oxidation or reduction half reactions, have attracted tremendous interest due to their great potential in addressing increasingly severe global energy and environmental issues. Solar energy utilization plays an important role in determining photocatalytic efficiencies. In the past few decades, many studies have been done to promote photocatalytic efficiencies via extending the absorption of solar energy into near-infrared (NIR) light. This Review comprehensively summarizes the recent progress in NIR-driven photocatalysts, including the strategies to harvest NIR photons and corresponding photocatalytic applications such as the degradation of organic pollutants, water disinfection, water splitting for H2 and O2 evolution, CO2 reduction, etc. The application of NIR-active photocatalysts employed as electrocatalysts is also presented. The subject matter of this Review is designed to present the relationship between material structure and material optical properties as well as the advantage of material modification in photocatalytic reactions. It paves the way for future material design in solar energy-related fields and other energy conversion and storage fields.
Collapse
Affiliation(s)
- Li Wang
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong, NSW, 2500, Australia
- School of Chemistry, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Xun Xu
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong, NSW, 2500, Australia
- BUAA-UOW Joint Research Centre and School of Physics, Beihang University, Beijing, 100191, China
| | - Qunfeng Cheng
- BUAA-UOW Joint Research Centre and School of Chemistry, Beihang University, Beijing, 100191, China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong, NSW, 2500, Australia
- BUAA-UOW Joint Research Centre and School of Physics, Beihang University, Beijing, 100191, China
| | - Yi Du
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong, NSW, 2500, Australia
- BUAA-UOW Joint Research Centre and School of Physics, Beihang University, Beijing, 100191, China
| |
Collapse
|
44
|
Lu C, Li X, Wu Q, Li J, Wen L, Dai Y, Huang B, Li B, Lou Z. Constructing Surface Plasmon Resonance on Bi 2WO 6 to Boost High-Selective CO 2 Reduction for Methane. ACS NANO 2021; 15:3529-3539. [PMID: 33570380 DOI: 10.1021/acsnano.1c00452] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plasmonic Bi2WO6 with strong localized surface plasmon resonance (LSPR) around the 500-1400 region is successfully constructed by electron doping. Oxygen vacancies on W-O-W (V1) and Bi-O-Bi (V2) sites are precisely controlled to obtain Bi2WO6-V1 with LSPR and Bi2WO6-V2 with defect absorption. Density functional theory (DFT) calculation demonstrates that the V1-induced energy state facilitates photoelectron collection for a long lifetime, resulting in LSPR of Bi2WO6. Photoelectron trapping on V1 sites is demonstrated by a single-particle photoluminescence (PL) study, and 93% PL quenching efficiency is observed. With strong LSPR, plasmonic Bi2WO6-V1 exhibits highly selective methane generation with a rate of 9.95 μmol g-1 h-1 during the CO2 reduction reaction (CO2-RR), which is 26-fold higher than 0.37 μmol g-1 h-1 of BiWO3-V2 under UV-visible light irradiation. LSPR-dependent methane generation is confirmed by various photocatalytic results of plasmonic Bi2WO6 with tunable LSPR and different light excitations. Furthermore, the DFT-simulated pathway of CO2-RR and in situ Fourier transform infrared spectra on the surface of Bi2WO6 prove that V1 sites facilitate CH4 generation. Our work provides a strategy to obtain nonmetallic plasmonic materials by electron doping.
Collapse
Affiliation(s)
- Changhai Lu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xinru Li
- Shenzhen University, Shenzhen, 518060, China
| | - Qian Wu
- State Key Laboratory for Crystal Materials, Shandong University, Jinan, 250100, China
| | - Juan Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Long Wen
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Ying Dai
- State Key Laboratory for Crystal Materials, Shandong University, Jinan, 250100, China
| | - Baibiao Huang
- State Key Laboratory for Crystal Materials, Shandong University, Jinan, 250100, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Zaizhu Lou
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
45
|
Khan MW, Zhang BY, Xu K, Mohiuddin M, Jannat A, Haque F, Alkathiri T, Pillai N, Wang Y, Reza SZ, Li J, Mulet X, Babarao R, Mahmood N, Ou JZ. Plasmonic metal-organic framework nanocomposites enabled by degenerately doped molybdenum oxides. J Colloid Interface Sci 2021; 588:305-314. [PMID: 33412351 DOI: 10.1016/j.jcis.2020.12.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/04/2020] [Accepted: 12/20/2020] [Indexed: 01/20/2023]
Abstract
Metal-organic frameworks (MOFs) nanocomposites are under the limelight due to their unique electronic, optical, and surface properties for various applications. Plasmonic MOFs enabled by noble metal nanostructures are an emerging class of MOF nanocomposites with efficient solar light-harvesting capability. However, major concerns such as poor photostability, sophisticated synthesis processes, and high fabrication cost are raised. Here, we develop a novel plasmonic MOF nanocomposite consisting of the ultra-thin degenerately doped molybdenum oxide core and the flexible iron MOF (FeMOF) shell through a hydrothermal growth, featuring low cost, facile synthesis, and non-toxicity. More importantly, the incorporation of plasmonic oxides in the highly porous MOF structure enhances the visible light absorbability, demonstrating improved photobleaching performances of various azo and non-azo dyes compared to that of pure FeMOF without the incorporation of oxidative agents. Furthermore, the nanocomposite exhibits enhanced sensitivity and selectivity towards NO2 gas at room temperature, attributed to the electron-rich surface of plasmonic oxides. This work possibly broadens the exploration of plasmonic MOF nanocomposites for practical and efficient solar energy harvesting, environmental remediation, and environmental monitoring applications.
Collapse
Affiliation(s)
- Muhammad Waqas Khan
- School of Engineering, RMIT University, Melbourne, Victoria, Australia; Manufacturing, CSIRO, Clayton, Victoria, Australia
| | - Bao Yue Zhang
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Kai Xu
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Md Mohiuddin
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Azmira Jannat
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Farjana Haque
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Turki Alkathiri
- School of Engineering, RMIT University, Melbourne, Victoria, Australia; School of Engineering, Albaha University, Albaha, Alaqiq, Saudi Arabia
| | - Naresha Pillai
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Yichao Wang
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Syed Zahin Reza
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Jing Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xavier Mulet
- Manufacturing, CSIRO, Clayton, Victoria, Australia.
| | - Ravichandar Babarao
- Manufacturing, CSIRO, Clayton, Victoria, Australia; School of Applied Chemistry and Environmental Science, RMIT University, Melbourne, Victoria, Australia.
| | - Nasir Mahmood
- School of Engineering, RMIT University, Melbourne, Victoria, Australia.
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Victoria, Australia; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China.
| |
Collapse
|
46
|
Barba-Nieto I, Gómez-Cerezo N, Kubacka A, Fernández-García M. Oxide-based composites: applications in thermo-photocatalysis. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01067k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent progress on oxide-based thermo-photocatalytic composite systems. Role of plasmonic, defect-related, and thermal effects on the catalytic performance.
Collapse
Affiliation(s)
- Irene Barba-Nieto
- Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie 2, 28049 Madrid, Spain
| | | | - Anna Kubacka
- Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie 2, 28049 Madrid, Spain
| | | |
Collapse
|
47
|
Zhu Q, Jiang S, Ye K, Hu W, Zhang J, Niu X, Lin Y, Chen S, Song L, Zhang Q, Jiang J, Luo Y. Hydrogen-Doping-Induced Metal-Like Ultrahigh Free-Carrier Concentration in Metal-Oxide Material for Giant and Tunable Plasmon Resonance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004059. [PMID: 33174328 DOI: 10.1002/adma.202004059] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The practical utilization of plasmon-based technology relies on the ability to find high-performance plasmonic materials other than noble metals. A key scientific challenge is to significantly increase the intrinsically low concentration of free carriers in metal-oxide materials. Here, a novel electron-proton co-doping strategy is developed to achieve uniform hydrogen doping in metal-oxide MoO3 at mild conditions, which creates a metal-like ultrahigh free-carrier concentration approaching that of noble metals (1021 cm-3 in H1.68 MoO3 versus 1022 cm-3 in Au/Ag). This bestows giant and tunable plasmonic resonances in the visible region to this originally semiconductive material. Using ultrafast spectroscopy characterizations and first-principle simulations, the formation of a quasi-metallic energy band structure that leads to long-lived and strong plasmonic field is revealed. As verified by the surface-enhanced Raman spectra (SERS) of rhodamine 6G molecules on Hx MoO3 , the SERS enhancement factor reaches as high as 1.1 × 107 with a detection limit at concentration as low as 1 × 10-9 mol L-1 , representing the best among the hitherto reported non-metal systems. The findings not only provide a set of metal-like semiconductor materials with merits of low cost, tunable electronic structure, and plasmonic resonance, but also a general strategy to induce tunable ultrahigh free-carrier concentration in non-metal systems.
Collapse
Affiliation(s)
- Qing Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shenlong Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ke Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wei Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiachen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaoyou Niu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yunxiang Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shuangming Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Li Song
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
48
|
Zribi R, Neri G. Mo-Based Layered Nanostructures for the Electrochemical Sensing of Biomolecules. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5404. [PMID: 32967188 PMCID: PMC7571038 DOI: 10.3390/s20185404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
Mo-based layered nanostructures are two-dimensional (2D) nanomaterials with outstanding characteristics and very promising electrochemical properties. These materials comprise nanosheets of molybdenum (Mo) oxides (MoO2 and MoO3), dichalcogenides (MoS2, MoSe2, MoTe2), and carbides (MoC2), which find application in electrochemical devices for energy storage and generation. In this feature paper, we present the most relevant characteristics of such Mo-based layered compounds and their use as electrode materials in electrochemical sensors. In particular, the aspects related to synthesis methods, structural and electronic characteristics, and the relevant electrochemical properties, together with applications in the specific field of electrochemical biomolecule sensing, are reviewed. The main features, along with the current status, trends, and potentialities for biomedical sensing applications, are described, highlighting the peculiar properties of Mo-based 2D-nanomaterials in this field.
Collapse
Affiliation(s)
| | - Giovanni Neri
- Department of Engineering, University of Messina, C.da Di Dio, I-98166 Messina, Italy;
| |
Collapse
|
49
|
Qi M, Zhang NMY, Li K, Tjin SC, Wei L. Hybrid Plasmonic Fiber-Optic Sensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3266. [PMID: 32521770 PMCID: PMC7308908 DOI: 10.3390/s20113266] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/24/2020] [Accepted: 06/06/2020] [Indexed: 01/17/2023]
Abstract
With the increasing demand of achieving comprehensive perception in every aspect of life, optical fibers have shown great potential in various applications due to their highly-sensitive, highly-integrated, flexible and real-time sensing capabilities. Among various sensing mechanisms, plasmonics based fiber-optic sensors provide remarkable sensitivity benefiting from their outstanding plasmon-matter interaction. Therefore, surface plasmon resonance (SPR) and localized SPR (LSPR)-based hybrid fiber-optic sensors have captured intensive research attention. Conventionally, SPR- or LSPR-based hybrid fiber-optic sensors rely on the resonant electron oscillations of thin metallic films or metallic nanoparticles functionalized on fiber surfaces. Coupled with the new advances in functional nanomaterials as well as fiber structure design and fabrication in recent years, new solutions continue to emerge to further improve the fiber-optic plasmonic sensors' performances in terms of sensitivity, specificity and biocompatibility. For instance, 2D materials like graphene can enhance the surface plasmon intensity at the metallic film surface due to the plasmon-matter interaction. Two-dimensional (2D) morphology of transition metal oxides can be doped with abundant free electrons to facilitate intrinsic plasmonics in visible or near-infrared frequencies, realizing exceptional field confinement and high sensitivity detection of analyte molecules. Gold nanoparticles capped with macrocyclic supramolecules show excellent selectivity to target biomolecules and ultralow limits of detection. Moreover, specially designed microstructured optical fibers are able to achieve high birefringence that can suppress the output inaccuracy induced by polarization crosstalk and meanwhile deliver promising sensitivity. This review aims to reveal and explore the frontiers of such hybrid plasmonic fiber-optic platforms in various sensing applications.
Collapse
Affiliation(s)
- Miao Qi
- School of Electrical and Electronic Engineering and the Photonics Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (M.Q.); (N.M.Y.Z.)
| | - Nancy Meng Ying Zhang
- School of Electrical and Electronic Engineering and the Photonics Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (M.Q.); (N.M.Y.Z.)
| | - Kaiwei Li
- Institute of Photonics Technology, Jinan University, Guangzhou 510632, China;
| | - Swee Chuan Tjin
- School of Electrical and Electronic Engineering and the Photonics Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (M.Q.); (N.M.Y.Z.)
| | - Lei Wei
- School of Electrical and Electronic Engineering and the Photonics Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; (M.Q.); (N.M.Y.Z.)
| |
Collapse
|
50
|
Li P, Zhu L, Ma C, Zhang L, Guo L, Liu Y, Ma H, Zhao B. Plasmonic Molybdenum Tungsten Oxide Hybrid with Surface-Enhanced Raman Scattering Comparable to that of Noble Metals. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19153-19160. [PMID: 32233413 DOI: 10.1021/acsami.0c00220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The surface-enhanced Raman scattering (SERS) research is in full swing owing to its high sensitivity and high selectivity; however, the substrates with superexcellent performance for SERS are largely confined to noble metals (Au, Ag, etc.). Although the SERS active substrates have been extended to semiconductors and transition metals, it is frustrating that their sensitivities are insufficient for widespread practical application. Here, we report the plasmonic molybdenum tungsten oxide (MWO) hybrid nanomaterials (NMs), which can be used as high-performance substrates with SERS comparable to that of noble metals. MWO NMs can achieve the trace detection of rhodamine 6G (R6G), basic fuchsin (BF), and oil red O (ORO). The detection limit concentration for R6G is 10-8 M, with the maximum enhancement factor of up to 6.09 × 107. The superexcellent SERS performance was attributed to the cooperative enhancement effect of electromagnetic (EM) enhancement mechanism and the charge transfer (CT) mechanism. Moreover, in the proposed system, the EM and CT contribution was distinguished by employing poly(vinylpyrrolidone) (PVP), which serves as a barrier layer to prevent the CT process from MWO NMs to R6G. These remarkable MWO NMs can be obtained with a facile method, and this research provides new insight into non-noble metal based SERS substrate.
Collapse
Affiliation(s)
- Peng Li
- Stake Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Lin Zhu
- Stake Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Chao Ma
- Stake Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130023, China
| | - Lixia Zhang
- Stake Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130023, China
| | - Lin Guo
- Stake Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yawen Liu
- Stake Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hao Ma
- Stake Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bing Zhao
- Stake Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|