1
|
Martin J, Michaelis M, Petrović S, Lehnen A, Müllers Y, Wendler P, Möller HM, Hartlieb M, Glebe U. Application of Sortase-Mediated Ligation for the Synthesis of Block Copolymers and Protein-Polymer Conjugates. Macromol Biosci 2025; 25:e2400316. [PMID: 39360589 PMCID: PMC11727822 DOI: 10.1002/mabi.202400316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Sortase-mediated ligation (SML) has become a powerful tool for site-specific protein modification. However, sortase A (SrtA) suffers from low catalytic efficiency and mediates an equilibrium reaction. Therefore, ligations with large macromolecules may be challenging. Here, the synthesis of polymeric building blocks for sortase-mediated ligation constituting peptide-polymers with either the recognition sequence for sortase A (LPX1TGX2) or its nucleophilic counterpart (Gx) is demonstrated. The peptide-polymers are synthesized by solid-phase peptide synthesis followed by photo-iniferter (PI) reversible addition-fragmentation chain-transfer (RAFT) polymerization of various monomers. The building blocks are subsequently utilized to investigate possibilities and limitations when using macromolecules in SML. In particular, diblock copolymers are obtained even when using the orthogonal building blocks in equimolar ratio by exploiting a technique to shift the reaction equilibrium. However, ligations of two polymers can not be achieved when the degree of polymerization exceeds 100. Subsequently, C-terminal protein-polymer conjugates are synthesized. Several polymers are utilized that can replace the omnipresent polyethylene glycol (PEG) in future therapeutics. The conjugation is exemplified with a nanobody that is known for efficient neutralization of SARS-CoV-2. The study demonstrates a universal approach to polymer-LPX1TGX2 and Gx-polymer building blocks and gives insight into their application in SML.
Collapse
Affiliation(s)
- Johannes Martin
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Str. 24–2514476Potsdam‐GolmGermany
- Fraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam‐GolmGermany
| | - Marcus Michaelis
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Str. 24–2514476Potsdam‐GolmGermany
| | - Saša Petrović
- Department of BiochemistryUniversity of PotsdamKarl‐Liebknecht‐Str. 24–2514476Potsdam‐GolmGermany
| | - Anne‐Catherine Lehnen
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Str. 24–2514476Potsdam‐GolmGermany
- Fraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam‐GolmGermany
| | - Yannic Müllers
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Str. 24–2514476Potsdam‐GolmGermany
- Fraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam‐GolmGermany
| | - Petra Wendler
- Department of BiochemistryUniversity of PotsdamKarl‐Liebknecht‐Str. 24–2514476Potsdam‐GolmGermany
| | - Heiko M. Möller
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Str. 24–2514476Potsdam‐GolmGermany
| | - Matthias Hartlieb
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Str. 24–2514476Potsdam‐GolmGermany
- Fraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam‐GolmGermany
| | - Ulrich Glebe
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Str. 24–2514476Potsdam‐GolmGermany
- Fraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam‐GolmGermany
| |
Collapse
|
2
|
Li Z, Song K, Chen Y, Huang Q, You L, Yu L, Chen B, Yuan Z, Xu Y, Su Y, Da L, Zhu X, Dong R. Sequence-encoded bioactive protein-multiblock polymer conjugates via quantitative one-pot iterative living polymerization. Nat Commun 2024; 15:6729. [PMID: 39112493 PMCID: PMC11306232 DOI: 10.1038/s41467-024-51122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Protein therapeutics are essential in treating various diseases, but their inherent biological instability and short circulatory half-lives in vivo pose challenges. Herein, a quantitative one-pot iterative living polymerization technique is reported towards precision control over the molecular structure and monomer sequence of protein-polymer conjugates, aiming to maximize physicochemical properties and biological functions of proteins. Using this quantitative one-pot iterative living polymerization technique, we successfully develop a series of sequence-controlled protein-multiblock polymer conjugates, enhancing their biostability, pharmacokinetics, cellular uptake, and in vivo biodistribution. All-atom molecular dynamics simulations are performed to disclose the definite sequence-function relationship of the bioconjugates, further demonstrating their sequence-encoded cellular uptake behavior and in vivo biodistribution in mice. Overall, this work provides a robust approach for creating precision protein-polymer conjugates with defined sequences and advanced functions as a promising candidate in disease treatment.
Collapse
Affiliation(s)
- Ziying Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Kaiyuan Song
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yu Chen
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Qijing Huang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Lujia You
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Li Yu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Baiyang Chen
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Zihang Yuan
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, China
| | - Yaqin Xu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yue Su
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, China
| | - Lintai Da
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, China
| | - Ruijiao Dong
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Sun J, Chen J, Sun Y, Hou Y, Liu Z, Lu H. On the origin of the low immunogenicity and biosafety of a neutral α-helical polypeptide as an alternative to polyethylene glycol. Bioact Mater 2024; 32:333-343. [PMID: 37927900 PMCID: PMC10622589 DOI: 10.1016/j.bioactmat.2023.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Poly(ethylene glycol) (PEG) is a prominent synthetic polymer widely used in biomedicine. Despite its notable success, recent clinical evidence highlights concerns regarding the immunogenicity and adverse effects associated with PEG in PEGylated proteins and lipid nanoparticles. Previous studies have found a neutral helical polypeptide poly(γ-(2-(2-(2-methoxyethoxy)ethoxy)ethyl l-glutamate), namely L-P(EG3Glu), as a potential alternative to PEG, displaying lower immunogenicity. To comprehensively assess the immunogenicity, distribution, degradation, and biosafety of L-P(EG3Glu), herein, we employ assays including enzyme-linked immunosorbent assay, positron emission tomography-computed tomography, and fluorescent resonance energy transfer. Our investigations involve in vivo immune responses, biodistribution, and macrophage activation of interferon (IFN) conjugates tethered with helical L-P(EG3Glu) (L20k-IFN), random-coiled DL-P(EG3Glu) (DL20k-IFN), and PEG (PEG20k-IFN). Key findings encompass: minimal anti-IFN and anti-polymer antibodies elicited by L20k-IFN; length-dependent affinity of PEG to anti-PEG antibodies; accelerated clearance of DL20k-IFN and PEG20k-IFN linked to anti-IFN and anti-polymer IgG; complement activation for DL20k-IFN and PEG20k-IFN but not L20k-IFN; differential clearance with L20k-IFN kidney-based, and DL20k-IFN/PEG20k-IFN accumulation mainly in liver/spleen; enhanced macrophage activation by DL20k-IFN and PEG20k-IFN; L-P(EG3Glu) resistance to proteolysis; and safer repeated administrations of L-P(EG3Glu) in rats. Overall, this study offers comprehensive insights into the lower immunogenicity of L-P(EG3Glu) compared to DL-P(EG3Glu) and PEG, supporting its potential clinical use in protein conjugation and nanomedicines.
Collapse
Affiliation(s)
- Jialing Sun
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yiming Sun
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yingqin Hou
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking University–Tsinghua University Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Liu L, Zhao J, Zhang G. Chemoselectivity Streamlines the Approach to Linear and Y-Shaped Thiol-Polyethers Starting from Thiocarboxylic Acids. ACS Macro Lett 2023; 12:1185-1192. [PMID: 37552569 DOI: 10.1021/acsmacrolett.3c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Thiol-functionalized polyethers, especially poly(ethylene oxide) (PEO), have extensive applications in biomedicine and materials sciences. Herein, we report a simple one-pot synthesis of α-thiol-ω-hydroxyl polyethers through ring-opening polymerization (ROP) of epoxides using thiocarboxylic acid initiators followed by in situ aminolysis. The efficient and chemoselective metal-free Lewis pair catalyst avoids transthioesterification thus achieving well-controlled molar mass, low dispersity, and high end-group fidelity. Kinetic and calculation results demonstrated a fast-initiation mode of the ROP for the strong nucleophilicity of the thiocarboxylate anion and its weak interaction with Lewis acid. The method is expanded for α-thiol-ω-dihydroxyl (Y-shaped) PEO by virtue of the stability of thioester during the ROP. The thiol functionality in linear/Y-shaped PEO is further corroborated by the intensified interaction with gold surface and the resultant protein resistance behavior.
Collapse
Affiliation(s)
- Lijun Liu
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
5
|
Spears RJ, Chudasama V. Recent advances in N- and C-terminus cysteine protein bioconjugation. Curr Opin Chem Biol 2023; 75:102306. [PMID: 37236135 DOI: 10.1016/j.cbpa.2023.102306] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 05/28/2023]
Abstract
Advances in the site-specific chemical modification of proteins, also referred to as protein bioconjugation, have proved instrumental in revolutionary approaches to designing new protein-based therapeutics. Of the sites available for protein modification, cysteine residues or the termini of proteins have proved especially popular owing to their favorable properties for site-specific modification. Strategies that, therefore, specifically target cysteine at the termini offer a combination of these favorable properties of cysteine and termini bioconjugation. In this review, we discuss these strategies with a particular focus on those reported recently and provide our opinion on the future direction of the field.
Collapse
Affiliation(s)
- Richard J Spears
- Department of Chemistry, University College London, 20 Gordon Street, London, UK
| | - Vijay Chudasama
- Department of Chemistry, University College London, 20 Gordon Street, London, UK.
| |
Collapse
|
6
|
Qu Z, Fang J, Wang YX, Sun Y, Liu Y, Wu WH, Zhang WB. A single-domain green fluorescent protein catenane. Nat Commun 2023; 14:3480. [PMID: 37311944 DOI: 10.1038/s41467-023-39233-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
Natural proteins exhibit rich structural diversity based on the folds of an invariably linear chain. Macromolecular catenanes that cooperatively fold into a single domain do not belong to the current protein universe, and their design and synthesis open new territories in chemistry. Here, we report the design, synthesis, and properties of a single-domain green fluorescent protein catenane via rewiring the connectivity of GFP's secondary motifs. The synthesis could be achieved in two steps via a pseudorotaxane intermediate or directly via expression in cellulo. Various proteins-of-interest may be inserted at the loop regions to give fusion protein catenanes where the two subunits exhibit enhanced thermal resilience, thermal stability, and mechanical stability due to strong conformational coupling. The strategy can be applied to other proteins with similar fold, giving rise to a family of single-domain fluorescent proteins. The results imply that there may be multiple protein topological variants with desirable functional traits beyond their corresponding linear protein counterparts, which are now made accessible and fully open for exploration.
Collapse
Affiliation(s)
- Zhiyu Qu
- Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing, P. R. China
- Center for Soft Matter Science and Engineering, Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing, P. R. China
- Center for Soft Matter Science and Engineering, Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Yu-Xiang Wang
- Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing, P. R. China
- Center for Soft Matter Science and Engineering, Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Yibin Sun
- Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing, P. R. China
- Center for Soft Matter Science and Engineering, Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Yajie Liu
- Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing, P. R. China
- Center for Soft Matter Science and Engineering, Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing, P. R. China
- Center for Soft Matter Science and Engineering, Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China.
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing, P. R. China.
- Center for Soft Matter Science and Engineering, Peking University, Beijing, P. R. China.
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China.
- Beijing Academy of Artificial Intelligence, Beijing, P. R. China.
| |
Collapse
|
7
|
Porello I, Cellesi F. Intracellular delivery of therapeutic proteins. New advancements and future directions. Front Bioeng Biotechnol 2023; 11:1211798. [PMID: 37304137 PMCID: PMC10247999 DOI: 10.3389/fbioe.2023.1211798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Achieving the full potential of therapeutic proteins to access and target intracellular receptors will have enormous benefits in advancing human health and fighting disease. Existing strategies for intracellular protein delivery, such as chemical modification and nanocarrier-based protein delivery approaches, have shown promise but with limited efficiency and safety concerns. The development of more effective and versatile delivery tools is crucial for the safe and effective use of protein drugs. Nanosystems that can trigger endocytosis and endosomal disruption, or directly deliver proteins into the cytosol, are essential for successful therapeutic effects. This article aims to provide a brief overview of the current methods for intracellular protein delivery to mammalian cells, highlighting current challenges, new developments, and future research opportunities.
Collapse
|
8
|
Li H, Pan Y, Li C, Yang Z, Rao J, Chen B. Lysozyme-phenolics bioconjugates with antioxidant and antibacterial bifunctionalities: Structural basis underlying the dual-function. Food Chem 2023; 406:135070. [PMID: 36462353 DOI: 10.1016/j.foodchem.2022.135070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
This work aims at adopting an Electron Paramagnetic Resonance (EPR) spectroscopic technique to help understanding protein-phenolic conjugation and final functionalities relationship as well as the underlying structural basis of antioxidant and antibacterial dual functionalities. Specifically, lysozyme (Lys) was conjugated with two natural phenolic acids, i.e. rosmarinic acid (RA) and gentisic acid (GA, our previous work) with obviously different molecular features. Lys-RA displayed 8.6- and 4.0-times enhanced antioxidant stoichiometry compared to the native Lys and ones with GA, respectively, due to the stronger antioxidant activity of RA. However, RA conjugation mitigated both enzymatic and antibacterial activities of Lys-RA conjugates. Such inhibition effect is attributed to the greater structural and surface property changes of Lys upon conjugating with RA. Furthermore, the polyphenol conjugation related structural basis of disturbance, reactivity and selectivity were explored via site-directed spin labeling (SDSL)-EPR. A dynamic picture of reactivity and selectivity of phenolics conjugation on Lys was proposed.
Collapse
Affiliation(s)
- Hui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Yanxiong Pan
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, United States
| | - Chun Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, United States.
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States.
| |
Collapse
|
9
|
Wang R, Li Y, Gao P, Lv J, Cheng Y, Wang H. Piperazine-modified dendrimer achieves efficient intracellular protein delivery via caveolar endocytosis bypassing the endo-lysosomal pathway. Acta Biomater 2023; 158:725-733. [PMID: 36599402 DOI: 10.1016/j.actbio.2022.12.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 01/02/2023]
Abstract
Intracellular protein delivery has been a major challenge due to various physiological barriers including low proteolytic stability and poor membrane permeability of the biologics. Nanoparticles were widely proposed to deliver cargo proteins into cells by endocytosis, however, the materials and complexes with proteins are often entrapped in endosomes and subject to lysosome degradation. In this study, we report a piperazine modified dendrimer for stabilizing the complexes via a combination of electrostatic interaction and hydrophobic interactions. The complexes show rapid cell internalization and the loaded proteins are released into the cytosols as early as half an hour post incubation. Mechanism study suggests that the complexes are endocytosed into cells via caveolae-based pathways, which could be inhibited by inhibitors such as genistein, filipin III, brefeldin A and nystatin. The phenylpiperazine-modified polymer enables the delivery of cargo proteins with reserved bioactivity and show high permeability in three-dimensional cell spheroids. The results prove the beneficial roles of phenylpiperazine ligands in polymer-mediated cytosolic protein delivery systems. STATEMENT OF SIGNIFICANCE: We synthesized a list of piperazine and derivatives modified dendrimers as cytosolic protein delivery vectors via facile reactions. Phenylpiperazine modification enables the efficient protein binding through the combination of electrostatic, hydrogen bonding and hydrophobic interactions. Phenylpiperazine modified dendrimers were internalized into the cells via a caveolae-based endo/lysosome-independent path and could release the cargo proteins into the cytosols as early as half an hour post incubation. Phenylpiperazine modified dendrimers delivered cargo proteins with reserved bioactivity and showed high permeability in three-dimensional cell spheroids.
Collapse
Affiliation(s)
- Ruijue Wang
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P.R. China
| | - Yuhan Li
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P.R. China
| | - Peng Gao
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P.R. China
| | - Jia Lv
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China.
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P.R. China.
| |
Collapse
|
10
|
Lu J, Xu Z, Fu H, Lin Y, Wang H, Lu H. Room-Temperature Grafting from Synthesis of Protein-Polydisulfide Conjugates via Aggregation-Induced Polymerization. J Am Chem Soc 2022; 144:15709-15717. [PMID: 35976716 DOI: 10.1021/jacs.2c05997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reversible modification of proteins with lipoic acid (LPA)-derived polydisulfides (PDS) is an important approach toward the transient regulation and on-demand recovery of protein functions. The in situ growth of PDS from the cysteine (Cys) residue of a protein, however, has been challenging due to the near-equilibrium thermodynamics of the ring-opening polymerization of LPA. Here, we report the protein-mediated, aggregation-induced polymerization (AIP) of amphiphilic LPA-derived monomers at room temperature, which can be performed at a concentration as low as ∼2% of the equilibrium monomer concentration normally needed. The aggregation of monomers increases the effective monomer concentration in aqueous solutions to the degree that the polymerizations behave similarly to those in bulk. The PDS conjugation enhances the thermostability, protease resistance, and tolerance to freeze-thaw treatments of the target proteins. Moreover, the PDS conjugation allows rapid and convenient purification of Cys-bearing proteins by taking advantage of the liquid-liquid phase separation of the protein-PDS conjugates and the full recovery of native proteins under mild reducing conditions. This AIP effect may shed light on facilitating other polymerizations with a similar near-equilibrium character. The PDS conjugation can open up new avenues to protein delivery, dynamic and reversible protein engineering, enzyme preservation, and recycling.
Collapse
Affiliation(s)
- Jianhua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Zhun Xu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Hailin Fu
- Institute of Materials Science & Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yao Lin
- Institute of Materials Science & Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Huan Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
11
|
Lin Q, Xia X, Li J, Zhou Z, Chen Y. Site-specific N-terminal PEGylation-based controlled release of biotherapeutics: An application for GLP-1 delivery to improve pharmacokinetics and prolong hypoglycemic effects. Eur J Med Chem 2022; 242:114672. [PMID: 35973313 DOI: 10.1016/j.ejmech.2022.114672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
PEGylation is a well-established technology for half-life extension in drug delivery. In this study, we aimed to develop a site-specific N-terminal PEGylation for biotherapeutics to achieve controlled release, using GLP-1 as a model. An additional threonine was introduced at N-terminal GLP-1. Followed by periodate oxidation, hydrazide-based PEGylation was achieved in a site-selective manner under reductive condition. Two homogenous monovalent mPEG5k-GLP-1 (peptide 4) and mPEG20k-GLP-1 (peptide 5) were successfully constructed. After PEGylation, the degradation by DPP-IV and rat plasma was obviously reduced. Their pharmacokinetic performances were enhanced at the expense of impaired GLP-1R stimulating potency, and their hypoglycemic effects were improved in different degrees. Compared with conventional strategies, this approach is devoid of the restriction and alteration of native peptide sequences, and can produce utterly homogenous conjugates with excellent selectivity and efficiency. It provides a practical controlled release approach for peptides by site-specific modification to achieve better pharmacological and therapeutic properties.
Collapse
Affiliation(s)
- Qianmeng Lin
- Department of Oncology, Department of Pathology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xuan Xia
- Department of Oncology, Department of Pathology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jun Li
- Department of Oncology, Department of Pathology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhan Zhou
- Research Center for Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, Department of Pathology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
12
|
Javia A, Vanza J, Bardoliwala D, Ghosh S, Misra A, Patel M, Thakkar H. Polymer-drug conjugates: Design principles, emerging synthetic strategies and clinical overview. Int J Pharm 2022; 623:121863. [PMID: 35643347 DOI: 10.1016/j.ijpharm.2022.121863] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Adagen, an enzyme replacement treatment for adenosine deaminase deficiency, was the first protein-polymer conjugate to be approved in early 1990s. Post this regulatory approval, numerous polymeric drugs and polymeric nanoparticles have entered the market as advanced or next-generation polymer-based therapeutics, while many others have currently been tested clinically. The polymer conjugation to therapeutic moiety offers several advantages, like enhanced solubilization of drug, controlled release, reduced immunogenicity, and prolonged circulation. The present review intends to highlight considerations in the design of therapeutically effective polymer-drug conjugates (PDCs), including the choice of linker chemistry. The potential synthetic strategies to formulate PDCs have been discussed along with recent advancements in the different types of PDCs, i.e., polymer-small molecular weight drug conjugates, polymer-protein conjugates, and stimuli-responsive PDCs, which are under clinical/preclinical investigation. Current impediments and regulatory hurdles hindering the clinical translation of PDC into effective therapeutic regimens for the amelioration of disease conditions have been addressed.
Collapse
Affiliation(s)
- Ankit Javia
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Jigar Vanza
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat-388421, India
| | - Denish Bardoliwala
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Saikat Ghosh
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Ambikanandan Misra
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India; Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur, Maharashtra-425405, Indi
| | - Mrunali Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat-388421, India
| | - Hetal Thakkar
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India.
| |
Collapse
|
13
|
Li Y, Chang R, Chen YX. Recent advances in post-polymerization modifications on polypeptides: synthesis and applications. Chem Asian J 2022; 17:e202200318. [PMID: 35576055 DOI: 10.1002/asia.202200318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/05/2022] [Indexed: 11/12/2022]
Abstract
Polypeptides, a kind of very promising biomaterial, have shown a wide range of applications due to their excellent biocompatibility, easy accessibility, and structural variability. To synthesize polypeptides with desired functions, post-polymerization modification (PPM) plays an important role in introducing novel chemical structure on their side-chains. The key of PPM strategy is to develop highly selective and efficient reactions that can couple the additional functional moieties with pre-installed side-chain functionalities on polypeptides. In this minireview, classic PPM reactions and especially their recent progresses are summarized, including different modification approaches for unsaturated alkyl group, oxygen-containing functional group, nitrogen-containing functional group, sulfur-containing functional group and other special functional group on side chains. In addition, this review also highlights the applications of structure-diversified polypeptides generated via PPM strategy in the field of biomaterial.
Collapse
Affiliation(s)
- Yue Li
- Tsinghua University Department of Chemistry, Chemistry, CHINA
| | - Rong Chang
- Tsinghua University Department of Chemistry, Chemistry, CHINA
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Haidian District, 100084, China, 100084, Beiing, CHINA
| |
Collapse
|
14
|
Liu Y, Zhao C, Chen C. Chirality-Governed UCST Behavior in Polypeptides. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yali Liu
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chuanzhuang Zhao
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chongyi Chen
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
15
|
Zhang C, Lu H. Helical Nonfouling Polypeptides for Biomedical Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2688-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Hu Y, Tian ZY, Xiong W, Wang D, Zhao R, Xie Y, Song YQ, Zhu J, Lu H. Water-Assisted and Protein-Initiated Fast and Controlled Ring-Opening Polymerization of Proline N-Carboxyanhydride. Natl Sci Rev 2022; 9:nwac033. [PMID: 36072505 PMCID: PMC9438472 DOI: 10.1093/nsr/nwac033] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
The production of polypeptides via the ring-opening polymerization (ROP) of N-carboxyanhydride (NCA) is usually conducted under stringent anhydrous conditions. The ROP of proline NCA (ProNCA) for the synthesis of poly-L-proline (PLP) is particularly challenging due to the premature product precipitation as polyproline type I helices, leading to slow reactions for up to one week, poor control of the molar mass and laborious workup. Here, we report the unexpected water-assisted controlled ROP of ProNCA, which affords well-defined PLP as polyproline II helices in 2–5 minutes and almost-quantitative yields. Experimental and theoretical studies together suggest the as-yet-unreported role of water in facilitating proton shift, which significantly lowers the energy barrier of the chain propagation. The scope of initiators can be expanded from hydrophobic amines to encompass hydrophilic amines and thiol-bearing nucleophiles, including complex biomacromolecules such as proteins. Protein-mediated ROP of ProNCA conveniently affords various protein-PLP conjugates via a grafting-from approach. PLP modification not only preserves the biological activities of the native proteins, but also enhances their resistance to extreme conditions. Moreover, PLP modification extends the elimination half-life of asparaginase (ASNase) 18-fold and mitigates the immunogenicity of wt ASNase >250-fold (ASNase is a first-line anticancer drug for lymphoma treatment). This work provides a simple solution to a long-standing problem in PLP synthesis, and offers valuable guidance for the development of water-resistant ROP of other proline-like NCAs. The facile access to PLP can greatly boost the application potential of PLP-based functional materials for engineering industry enzymes and therapeutic proteins.
Collapse
Affiliation(s)
- Yali Hu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Zi-You Tian
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Wei Xiong
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Dedao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing100142, China
| | - Ruichi Zhao
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Yan Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing100142, China
| | - Yu-Qin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing100142, China
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing100142, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| |
Collapse
|
17
|
Sun J, Lu J, Li C, Tian Y, Liu K, Liu L, Zhao C, Zhang M. Design of a UCST Polymer with Strong Hydrogen Bonds and Reactive Moieties for Facile Polymer-Protein Hybridization. Biomacromolecules 2022; 23:1291-1301. [PMID: 35049291 DOI: 10.1021/acs.biomac.1c01520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymer-protein hybrids have been extensively used in biomedical fields. Polymers with upper critical solution temperature (UCST) behaviors can form a hydrated coacervate phase below the cloud point (Tcp), providing themselves the opportunity to directly capture hydrophilic proteins and form hybrids in aqueous solutions. However, it is always a challenge to obtain a UCST polymer that could aggregate at a high temperature at a relatively low concentration and also efficiently bind with proteins. In this work, a UCST polymer reactive with proteins was designed, and its temperature responsiveness and protein-capture ability were investigated in detail. The polymer was synthesized by the reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylamide (AAm) and N-acryloxysuccinimide (NAS). Interestingly, taking advantage of the partial hydrolysis of NAS into acrylic acid (AAc), the obtained P(AAm-co-NAS-co-AAc) polymer exhibited an excellent UCST behavior and possessed good protein-capture ability. It showed a relatively higher Tcp (81 °C) at a lower concentration (0.1 wt %) and quickly formed polymer-protein hybrids with high protein loading and without losing protein bioactivity, and both the polymer and polymer-protein nanoparticles showed good cytocompatibility. All the findings are attributed to the unique structure of the polymer, which provided not only the strong and stable hydrogen bonds but also the quick and mild reactivity. The work offers an easy and mild strategy for polymer-protein hybridization directly in aqueous solutions, which may find applications in biomedical fields.
Collapse
Affiliation(s)
- Jialin Sun
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Jianlei Lu
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chen Li
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Yueyi Tian
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Kang Liu
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Lingrong Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Chuanzhuang Zhao
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
18
|
Journey to the Market: The Evolution of Biodegradable Drug Delivery Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biodegradable polymers have been used as carriers in drug delivery systems for more than four decades. Early work used crude natural materials for particle fabrication, whereas more recent work has utilized synthetic polymers. Applications include the macroscale, the microscale, and the nanoscale. Since pioneering work in the 1960’s, an array of products that use biodegradable polymers to encapsulate the desired drug payload have been approved for human use by international regulatory agencies. The commercial success of these products has led to further research in the field aimed at bringing forward new formulation types for improved delivery of various small molecule and biologic drugs. Here, we review recent advances in the development of these materials and we provide insight on their drug delivery application. We also address payload encapsulation and drug release mechanisms from biodegradable formulations and their application in approved therapeutic products.
Collapse
|
19
|
Hladysh S, Oleshchuk D, Dvořáková J, Šeděnková I, Filipová M, Pobořilová Z, Pánek J, Proks V. Comparison of carboxybetaine with sulfobetaine polyaspartamides: Nonfouling properties, hydrophilicity, cytotoxicity and model nanogelation in an inverse miniemulsion. J Appl Polym Sci 2021. [DOI: 10.1002/app.52099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sviatoslav Hladysh
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
| | - Diana Oleshchuk
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science Charles University in Prague Prague 2 Czech Republic
| | - Jana Dvořáková
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
| | - Ivana Šeděnková
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
| | - Marcela Filipová
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
| | - Zuzana Pobořilová
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
| | - Jiří Pánek
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
| | - Vladimír Proks
- Institute of Macromolecular Chemistry Academy of Sciences of the Czech Republic Prague 6 Czech Republic
| |
Collapse
|
20
|
Zhou H, Wang Y, Lu H. Intracellular delivery of His-tagged proteins via a hybrid organic–inorganic nanoparticle. Polym J 2021. [DOI: 10.1038/s41428-021-00526-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Tian ZY, Zhang Z, Wang S, Lu H. A moisture-tolerant route to unprotected α/β-amino acid N-carboxyanhydrides and facile synthesis of hyperbranched polypeptides. Nat Commun 2021; 12:5810. [PMID: 34608139 PMCID: PMC8490447 DOI: 10.1038/s41467-021-25689-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/20/2021] [Indexed: 01/04/2023] Open
Abstract
A great hurdle in the production of synthetic polypeptides lies in the access of N-carboxyanhydrides (NCA) monomers, which requires dry solvents, Schlenk line/gloveboxe, and protection of side-chain functional groups. Here we report a robust method for preparing unprotected NCA monomers in air and under moisture. The method employs epoxy compounds as ultra-fast scavengers of hydrogen chloride to allow assisted ring-closure and prevent NCA from acid-catalyzed decomposition under moist conditions. The broad scope and functional group tolerance of the method are demonstrated by the facile synthesis of over 30 different α/β-amino acid NCAs, including many otherwise inaccessible compounds with reactive functional groups, at high yield, high purity, and up to decagram scales. The utility of the method and the unprotected NCAs is demonstrated by the facile synthesis of two water-soluble polypeptides that are promising candidates for drug delivery and protein modification. Overall, our strategy holds great potential for facilitating the synthesis of NCA and expanding the industrial application of synthetic polypeptides.
Collapse
Affiliation(s)
- Zi-You Tian
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Zhengchu Zhang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Shuo Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
22
|
|
23
|
Zhang Y, He P, Zhang P, Yi X, Xiao C, Chen X. Polypeptides-Drug Conjugates for Anticancer Therapy. Adv Healthc Mater 2021; 10:e2001974. [PMID: 33929786 DOI: 10.1002/adhm.202001974] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/30/2021] [Indexed: 12/15/2022]
Abstract
Polypeptides are an important class of biodegradable polymers that have been widely used in drug delivery field. Owing to the controllable synthesis and robust side chain-functionalization ability, polypeptides have long been ideal candidates for conjugation with anticancer drugs. The chemical conjugation of anticancer drugs with polypeptides, termed polypeptides-drug conjugates, has demonstrated several advantages in improving pharmacokinetics, enhancing drug targeting, and controlling drug release, thereby leading to enhanced therapeutic outcomes with reduced side toxicities. This review focuses on the recent advances in the design and preparation of polypeptides-drug conjugates for enhanced anticancer therapy. Strategies for conjugation of different types of drugs, including small-molecule chemotherapeutic drugs, proteins, vascular disrupting agents, and gas molecules, onto polypeptides backbone are summarized. Finally, the challenges and future perspectives on the development of innovative polypeptides-drug conjugates for clinical cancer treatment are also presented.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Polymer Ecomaterials Jilin Biomedical Polymers Engineering Laboratory Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Pan He
- School of Materials Science and Engineering Changchun University of Science and Technology Changchun 130022 P. R. China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials Jilin Biomedical Polymers Engineering Laboratory Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xuan Yi
- Key Laboratory of Polymer Ecomaterials Jilin Biomedical Polymers Engineering Laboratory Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials Jilin Biomedical Polymers Engineering Laboratory Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials Jilin Biomedical Polymers Engineering Laboratory Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
24
|
Le PJ, Miersch S, Forbes MW, Jarvik N, Ku A, Sidhu SS, Reilly RM, Winnik MA. Site-Specific Conjugation of Metal-Chelating Polymers to Anti-Frizzled-2 Antibodies via Microbial Transglutaminase. Biomacromolecules 2021; 22:2491-2504. [PMID: 33961407 DOI: 10.1021/acs.biomac.1c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-chelating polymer-based radioimmunoconjugates (RICs) are effective agents for radioimmunotherapy but are currently limited by nonspecific binding and off-target organ uptake. Nonspecific binding appears after conjugation of the polymer to the antibody and may be related to random lysine conjugation since the polymers themselves do not bind to cells. To investigate the role of conjugation sites on nonspecific binding of polymer RICs, we developed a microbial transglutaminase reaction to prepare site-specific antibody-polymer conjugates. The reaction was enabled by introducing a Q-tag (i.e., 7M48) into antibody (i.e., Fab) fragments and synthesizing a polyglutamide-based metal-chelating polymer with a PEG amine block to yield substrates. Mass spectrometric analyses confirmed that the microbial transglutaminase conjugation reaction was site-specific. For comparison, random lysine conjugation analogs with an average of one polymer per Fab were prepared by bis-aryl hydrazone conjugation. Conjugates were prepared from an anti-frizzled-2 Fab to target the Wnt pathway, along with a nonbinding specificity control, anti-Luciferase Fab. Fabs were engineered from a trastuzumab-based IgG1 framework and lack lysines in the antigen-binding site. Conjugates were analyzed for thermal conformational stability by differential scanning fluorimetry, which showed that the site-specific conjugate had a similar melting temperature to the parent Fab. Binding assays by biolayer interferometry showed that the site-specific anti-frizzled-2 conjugate maintained high affinity to the antigen, while the random conjugate showed a 10-fold decrease in affinity, which was largely due to changes in association rates. Radioligand cell-binding assays on frizzled-2+ PANC-1 cells and frizzled-2- CHO cells showed that the site-specific anti-frizzled-2 conjugate had ca. 4-fold lower nonspecific binding compared to the random conjugate. Site-specific conjugation appeared to reduce nonspecific binding associated with random conjugation of the polymer in polymer RICs.
Collapse
Affiliation(s)
- Penny J Le
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 1H6, Canada
| | - Shane Miersch
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Matthew W Forbes
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 1H6, Canada
| | - Nick Jarvik
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Anthony Ku
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada
| | - Sachdev S Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada.,Joint Department of Medical Imaging and Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 1H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E2, Canada
| |
Collapse
|
25
|
Ma C, Li B, Zhang J, Sun Y, Li J, Zhou H, Shen J, Gu R, Qian J, Fan C, Zhang H, Liu K. Significantly Improving the Bioefficacy for Rheumatoid Arthritis with Supramolecular Nanoformulations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100098. [PMID: 33733490 DOI: 10.1002/adma.202100098] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/09/2021] [Indexed: 05/21/2023]
Abstract
As a typical inflammatory disease with chronic pain syndromes, rheumatoid arthritis (RA) generally requires long-term treatment with frequent injection administration at 1-2 times per day, because common medications such as interleukin1 receptor antagonist (IL1ra) have poor bioavailability and very limited half-life residence. Here a novel strategy to fabricate nanotherapeutic formulations employing genetically engineered IL1ra protein complexes, yielding ultralong-lasting bioefficacy is developed rationally. Using rat models, it is shown that these nanotherapeutics significantly improved drug regimen to a single subcutaneous administration in a 14-day therapy, suggesting their extraordinary bioavailability and ultralong-acting pharmacokinetics. Specifically, the half-life and bioavailability of the nanoformulations are boosted to the level of 30 h and by 7 times, respectively, significantly greater than other systems. This new strategy thus holds great promise to potently improve patient compliance in RA therapy, and it can be adapted for other therapies that suffer similar drawbacks.
Collapse
Affiliation(s)
- Chao Ma
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jinrui Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yao Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Hangcheng Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jianlei Shen
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui Gu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jiangchao Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
26
|
Cytokine engineering for targeted cancer immunotherapy. Curr Opin Chem Biol 2021; 62:43-52. [PMID: 33684633 DOI: 10.1016/j.cbpa.2021.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/23/2021] [Accepted: 01/31/2021] [Indexed: 12/20/2022]
Abstract
Cytokines are key modulators of the immune responses and represent promising therapeutics for a variety of cancers. However, successful translation of cytokine-based therapy to the clinic is limited by, among others, severe toxicities and lack of efficacy due to cytokine pleiotropy and off-target activation of cells. Engineering cytokines with enhanced therapeutic properties has emerged as a promising strategy to overcome these challenges. Advances in protein engineering and protein-polymer conjugate technologies have fostered the generation of cytokines with enhanced target cell specificity and longer half-life than the native ones. These novel cytokines exhibit reduced systemic toxicities while focusing the activities at the tumor site, thus, enhancing antitumor immunity. The growing toolbox of cytokine engineering strategies will further stimulate the development of smart cytokine-based immunotherapies with enhanced efficacy and safety profiles.
Collapse
|
27
|
Hu Y, Wang D, Wang H, Zhao R, Wang Y, Shi Y, Zhu J, Xie Y, Song YQ, Lu H. An urchin-like helical polypeptide-asparaginase conjugate with mitigated immunogenicity. Biomaterials 2020; 268:120606. [PMID: 33360506 DOI: 10.1016/j.biomaterials.2020.120606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
The use of asparaginase (ASNase), a first line drug for lymphoma treatment, is impaired by short circulation and notoriously high immunogenicity. Although PEGylation can prolong the circulating half-life of ASNase, however, it also induces anti-PEG antibodies that lead to accelerated blood clearance (ABC) and hypersensitivity reactions. Here, we create an urchin-like polypeptide-ASNase conjugate P(CB-EG3Glu)-ASNase, in which the surface of ASNase is sufficiently shielded by an array of zwitterionic helical polypeptides through the labeling of the ε-amine of lysine. The conjugate is fully characterized with size exclusion chromatography, SDS-PAGE, dynamic light scattering, and circular dichroism. In vitro, P(CB-EG3Glu)-ASNase retains full activity based on the enzymatic assay using the Nessler's reagent and cell viability assay. In vivo, examination of the enzyme activity in serum indicates that P(CB-EG3Glu)-ASNase prolongs the circulating half-life of ASNase for ~20 fold. Moreover, P(CB-EG3Glu)-ASNase significantly inhibits tumor growth in a xenografted mouse model using human NKYS cells. Importantly, P(CB-EG3Glu)-ASNase elicits almost no antidrug or antipolymer antibodies without inducing ABC effect, which is in sharp contrast with a similarly produced PEG-ASNase conjugate that develops both antidrug/antipolymer antibodies and profound ABC phenomenon. Our results demonstrate that urchin-like conjugates are outstanding candidates for reducing immunogenicity of therapeutic proteins, and P(CB-EG3Glu)-ASNase holds great promises for the treatment of various lymphoma diseases.
Collapse
Affiliation(s)
- Yali Hu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
| | - Dedao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, People's Republic of China
| | - Hao Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Ruichi Zhao
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Yaoyi Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Yunfei Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, People's Republic of China
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, People's Republic of China
| | - Yan Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, People's Republic of China.
| | - Yu-Qin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, People's Republic of China.
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
28
|
|
29
|
Liu Y, Wu W, Hong S, Fang J, Zhang F, Liu G, Seo J, Zhang W. Lasso Proteins: Modular Design, Cellular Synthesis, and Topological Transformation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yajie Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Wen‐Hao Wu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Sumin Hong
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Geng‐Xin Liu
- Center for Advanced Low-dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Material Science and Engineering Donghua University Shanghai 201620 China
| | - Jongcheol Seo
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Wen‐Bin Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| |
Collapse
|
30
|
Liu Y, Wu WH, Hong S, Fang J, Zhang F, Liu GX, Seo J, Zhang WB. Lasso Proteins: Modular Design, Cellular Synthesis, and Topological Transformation. Angew Chem Int Ed Engl 2020; 59:19153-19161. [PMID: 32602613 DOI: 10.1002/anie.202006727] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/30/2020] [Indexed: 02/06/2023]
Abstract
Entangled proteins have attracted significant research interest. Herein, we report the first rationally designed lasso proteins, or protein [1]rotaxanes, by using a p53dim-entwined dimer for intramolecular entanglement and a SpyTag-SpyCatcher reaction for side-chain ring closure. The lasso structures were confirmed by proteolytic digestion, mutation, NMR spectrometry, and controlled ligation. Their dynamic properties were probed by experiments such as end-capping, proteolytic digestion, and heating/cooling. As a versatile topological intermediate, a lasso protein could be converted to a rotaxane, a heterocatenane, and a "slide-ring" network. Being entirely genetically encoded, this robust and modular lasso-protein motif is a valuable addition to the topological protein repertoire and a promising candidate for protein-based biomaterials.
Collapse
Affiliation(s)
- Yajie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Sumin Hong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Geng-Xin Liu
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jongcheol Seo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
31
|
An J, Kim S, Shrinidhi A, Kim J, Banna H, Sung G, Park KM, Kim K. Purification of protein therapeutics via high-affinity supramolecular host-guest interactions. Nat Biomed Eng 2020; 4:1044-1052. [PMID: 32690883 DOI: 10.1038/s41551-020-0589-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 06/22/2020] [Indexed: 01/10/2023]
Abstract
Efficient purification is crucial to providing large quantities of recombinant therapeutic proteins, such as monoclonal antibodies and cytokines. However, affinity techniques for manufacturing protein therapeutics that use biomolecule-conjugated agarose beads that harness specific biomolecular interactions suffer from issues related to protein denaturation, contamination and the need to maintain biomolecule-specific conditions for efficient protein capture. Here, we report a versatile and scalable method for the purification of recombinant protein therapeutics. The method exploits the high-affinity and controllable host-guest interactions between cucurbit[7]uril (CB[7]) and selected guests such as adamantylammonium. We show that the Herceptin (the brand name of trastuzumab, a monoclonal antibody drug used to treat breast cancer) and the much smaller cytokine interferon α-2a can be purified by site-specifically tagging them with adamantylammonium using the enzyme sortase A, followed by high-affinity binding with CB[7]-conjugated agarose beads and the recovery of the protein using a guest with a stronger affinity for CB[7]. The thermal and chemical stability of CB[7] beads and their scalability, recyclability and low cost may also make them advantageous for the manufacturing of biosimilars.
Collapse
Affiliation(s)
- Jaeyeon An
- Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Sungwan Kim
- Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, Republic of Korea
| | - Annadka Shrinidhi
- Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, Republic of Korea
| | - Junghyun Kim
- Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, Republic of Korea
| | - Hasanul Banna
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Gihyun Sung
- Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, Republic of Korea
| | - Kyeng Min Park
- Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, Republic of Korea.
| | - Kimoon Kim
- Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, Republic of Korea. .,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea. .,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| |
Collapse
|
32
|
Yu Y, Xu W, Huang X, Xu X, Qiao R, Li Y, Han F, Peng H, Davis TP, Fu C, Whittaker AK. Proteins Conjugated with Sulfoxide-Containing Polymers Show Reduced Macrophage Cellular Uptake and Improved Pharmacokinetics. ACS Macro Lett 2020; 9:799-805. [PMID: 35648529 DOI: 10.1021/acsmacrolett.0c00291] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The conjugation of hydrophilic polymers to proteins is an effective approach to prolonging their circulation time in the bloodstream and, hence, improving their delivery to the target region of interest. In this work, we report the synthesis of protein-polymer conjugates using a highly water-soluble sulfoxide-containing polymer, poly(2-(methylsulfinyl)ethyl acrylate) (PMSEA), through a combination of "grafting-to" and "grafting-from" methods. Oligomeric MSEA was synthesized by conventional reversible addition-fragmentation chain transfer (RAFT) polymerization and subsequently conjugated to lysozyme to produce a macromolecular chain transfer agent. This was followed by a visible light-mediated chain extension polymerization of MSEA to obtain a lysozyme-PMSEA conjugate (Lyz-PMSEA). It was found that the Lyz-PMSEA conjugate exhibited much reduced macrophage cellular uptake compared with unmodified and PEGylated lysozyme. Moreover, the Lyz-PMSEA conjugate was able to circulate longer in the bloodstream, demonstrating significantly improved pharmacokinetics demanded for pharmaceutical applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
33
|
|
34
|
Lv J, Tan E, Wang Y, Fan Q, Yu J, Cheng Y. Tailoring guanidyl-rich polymers for efficient cytosolic protein delivery. J Control Release 2020; 320:412-420. [DOI: 10.1016/j.jconrel.2020.01.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
|
35
|
Fu C, Demir B, Alcantara S, Kumar V, Han F, Kelly HG, Tan X, Yu Y, Xu W, Zhao J, Zhang C, Peng H, Boyer C, Woodruff TM, Kent SJ, Searles DJ, Whittaker AK. Low‐Fouling Fluoropolymers for Bioconjugation and In Vivo Tracking. Angew Chem Int Ed Engl 2020; 59:4729-4735. [DOI: 10.1002/anie.201914119] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Changkui Fu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Baris Demir
- School of Chemistry and Molecular Biosciences and Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane Queensland 4072 Australia
| | - Sheilajen Alcantara
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Parkville Victoria 3010 Australia
| | - Vinod Kumar
- School of Biomedical Sciences The University of Queensland St. Lucia Queensland 4072 Australia
| | - Felicity Han
- School of Biomedical Sciences The University of Queensland St. Lucia Queensland 4072 Australia
| | - Hannah G. Kelly
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Parkville Victoria 3010 Australia
| | - Xiao Tan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Ye Yu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Weizhi Xu
- School of Biomedical Sciences The University of Queensland St. Lucia Queensland 4072 Australia
| | - Jiacheng Zhao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Cheng Zhang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Hui Peng
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences The University of Queensland St. Lucia Queensland 4072 Australia
| | - Stephen J. Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Parkville Victoria 3010 Australia
| | - Debra J. Searles
- School of Chemistry and Molecular Biosciences and Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane Queensland 4072 Australia
| | - Andrew K. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| |
Collapse
|
36
|
Fu C, Demir B, Alcantara S, Kumar V, Han F, Kelly HG, Tan X, Yu Y, Xu W, Zhao J, Zhang C, Peng H, Boyer C, Woodruff TM, Kent SJ, Searles DJ, Whittaker AK. Low‐Fouling Fluoropolymers for Bioconjugation and In Vivo Tracking. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914119] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Changkui Fu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Baris Demir
- School of Chemistry and Molecular Biosciences and Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane Queensland 4072 Australia
| | - Sheilajen Alcantara
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Parkville Victoria 3010 Australia
| | - Vinod Kumar
- School of Biomedical Sciences The University of Queensland St. Lucia Queensland 4072 Australia
| | - Felicity Han
- School of Biomedical Sciences The University of Queensland St. Lucia Queensland 4072 Australia
| | - Hannah G. Kelly
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Parkville Victoria 3010 Australia
| | - Xiao Tan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Ye Yu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Weizhi Xu
- School of Biomedical Sciences The University of Queensland St. Lucia Queensland 4072 Australia
| | - Jiacheng Zhao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Cheng Zhang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Hui Peng
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences The University of Queensland St. Lucia Queensland 4072 Australia
| | - Stephen J. Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Parkville Victoria 3010 Australia
| | - Debra J. Searles
- School of Chemistry and Molecular Biosciences and Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane Queensland 4072 Australia
| | - Andrew K. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| |
Collapse
|
37
|
Lu J, Wang H, Tian Z, Hou Y, Lu H. Cryopolymerization of 1,2-Dithiolanes for the Facile and Reversible Grafting-from Synthesis of Protein-Polydisulfide Conjugates. J Am Chem Soc 2020; 142:1217-1221. [PMID: 31927989 DOI: 10.1021/jacs.9b12937] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Grafting-from (GF) is an important yet underdeveloped strategy toward protein-polymer conjugates. Here, we report a simple cryopolymerization method that enables highly efficient GF synthesis of cell-penetrating protein-polydisulfide conjugates. Rapid and controlled ring-opening polymerization of 1,2-dithiolanes under cryo-conditions can be initiated by proteins bearing a reactive cysteine, owing to both favored thermodynamics and augmented kinetics arising from frozen-induced high local concentration of substrates. This method is applicable to various wild-type or genetically engineered proteins without the need of chemical installation of an initiation group. The resulting conjugates can be reversibly degrafted under mild conditions to regenerate functional "native" proteins in a traceless fashion. These unique features make such conjugates highly useful in applications such as a dynamic switch of protein functions, cytosolic delivery of protein therapeutics, and protein purification. The method is also potentially useful for the in situ growth of other types of polymers from protein surface.
Collapse
Affiliation(s)
- Jianhua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Hao Wang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Ziyou Tian
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Yingqin Hou
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , People's Republic of China
| |
Collapse
|
38
|
Rasines Mazo A, Allison-Logan S, Karimi F, Chan NJA, Qiu W, Duan W, O’Brien-Simpson NM, Qiao GG. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem Soc Rev 2020; 49:4737-4834. [DOI: 10.1039/c9cs00738e] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides a comprehensive overview of the latest advances in the synthesis, architectural design and biomedical applications of polypeptides and their hybrids.
Collapse
Affiliation(s)
- Alicia Rasines Mazo
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Stephanie Allison-Logan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Fatemeh Karimi
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Nicholas Jun-An Chan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wenlian Qiu
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wei Duan
- School of Medicine
- Deakin University
- Geelong
- Australia
| | - Neil M. O’Brien-Simpson
- Centre for Oral Health Research
- Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology
- University of Melbourne
- Parkville
- Australia
| | - Greg G. Qiao
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| |
Collapse
|
39
|
Xiong W, Zhang C, Lyu X, Zhou H, Chang W, Bo Y, Chen E, Shen Z, Lu H. Synthesis of modifiable photo-responsive polypeptides bearing allyloxyazobenzene side-chains. Polym Chem 2020. [DOI: 10.1039/c9py01106d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A photo-responsive and modifiable polypeptide with stable helical conformation was synthesized. The self-assembly and liquid crystalline phase structure were subsequently studied.
Collapse
Affiliation(s)
- Wei Xiong
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Chong Zhang
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Xiaolin Lyu
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Hantao Zhou
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Wenying Chang
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Yu Bo
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Erqiang Chen
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
40
|
Yao H, Sheng K, Sun J, Yan S, Hou Y, Lu H, Olsen BD. Secondary structure drives self-assembly in weakly segregated globular protein–rod block copolymers. Polym Chem 2020. [DOI: 10.1039/c9py01680e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imparting secondary structure to the polymer block can drive self-assembly in globular protein–helix block copolymers, increasing the effective segregation strength between blocks with weak or no repulsion.
Collapse
Affiliation(s)
- Helen Yao
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Kai Sheng
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Jialing Sun
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Shupeng Yan
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Yingqin Hou
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Hua Lu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Bradley D. Olsen
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
41
|
Shao Q. Effect of conjugated (EK)10 peptide on structural and dynamic properties of ubiquitin protein: a molecular dynamics simulation study. J Mater Chem B 2020; 8:6934-6943. [DOI: 10.1039/d0tb00664e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptide conjugation modulates the stability and biological acitivty of proteins via the allosteric effect.
Collapse
Affiliation(s)
- Qing Shao
- Chemical and Materials Engineering Department
- University of Kentucky
- Lexington KY
- USA
| |
Collapse
|
42
|
Sun H, Gu X, Zhang Q, Xu H, Zhong Z, Deng C. Cancer Nanomedicines Based on Synthetic Polypeptides. Biomacromolecules 2019; 20:4299-4311. [DOI: 10.1021/acs.biomac.9b01291] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Xiaolei Gu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Qiang Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Hao Xu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
43
|
Wang H, Hou Y, Hu Y, Dou J, Shen Y, Wang Y, Lu H. Enzyme-Activatable Interferon–Poly(α-amino acid) Conjugates for Tumor Microenvironment Potentiation. Biomacromolecules 2019; 20:3000-3008. [DOI: 10.1021/acs.biomac.9b00560] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | - Jiaxiang Dou
- CAS Center for Excellence in Nanoscience, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yucai Wang
- CAS Center for Excellence in Nanoscience, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | |
Collapse
|
44
|
McNelles SA, Marando VM, Adronov A. Globular Polymer Grafts Require a Critical Size for Efficient Molecular Sieving of Enzyme Substrates. Angew Chem Int Ed Engl 2019; 58:8448-8453. [PMID: 30893493 DOI: 10.1002/anie.201902864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Stuart A. McNelles
- Department of Chemistry and Chemical BiologyMcMaster University 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
| | - Victoria M. Marando
- Department of Chemistry and Chemical BiologyMcMaster University 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
| | - Alex Adronov
- Department of Chemistry and Chemical BiologyMcMaster University 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
| |
Collapse
|
45
|
Affiliation(s)
- Yingqin Hou
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
46
|
McNelles SA, Marando VM, Adronov A. Globular Polymer Grafts Require a Critical Size for Efficient Molecular Sieving of Enzyme Substrates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Stuart A. McNelles
- Department of Chemistry and Chemical BiologyMcMaster University 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
| | - Victoria M. Marando
- Department of Chemistry and Chemical BiologyMcMaster University 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
| | - Alex Adronov
- Department of Chemistry and Chemical BiologyMcMaster University 1280 Main Street West Hamilton Ontario L8S 4M1 Canada
| |
Collapse
|
47
|
OEGylated polypeptide bearing Y-Shaped pendants with a LCST close to body temperature: Synthesis and thermoresponsive properties. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Hou Y, Zhou Y, Wang H, Sun J, Wang R, Sheng K, Yuan J, Hu Y, Chao Y, Liu Z, Lu H. Therapeutic Protein PEPylation: The Helix of Nonfouling Synthetic Polypeptides Minimizes Antidrug Antibody Generation. ACS CENTRAL SCIENCE 2019; 5:229-236. [PMID: 30834311 PMCID: PMC6396190 DOI: 10.1021/acscentsci.8b00548] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Indexed: 05/19/2023]
Abstract
Polymer conjugation is a clinically proven approach to generate long acting protein drugs with decreased immune responses. Although poly(ethylene glycol) (PEG) is one of the most commonly used conjugation partners due to its unstructured conformation, its therapeutic application is limited by its poor biodegradability, propensity to induce an anti-PEG immune response, and the resultant accelerated blood clearance (ABC) effect. Moreover, the prevailing preference of unstructured polymers for protein conjugation still lacks strong animal data support with appropriate control reagents. By using two biodegradable synthetic polypeptides with similar structural compositions (l-P(EG3Glu) and dl-P(EG3Glu)) for site-specific protein modification, in the current study, we systematically investigate the effect of the polymer conformation on the in vivo pharmacological performances of the resulting conjugates. Our results reveal that the conjugate l20K-IFN, interferon (IFN) modified with the helical polypeptide l-P(EG3Glu) shows improved binding affinity, in vitro antiproliferative activity, and in vivo efficacy compared to those modified with the unstructured polypeptide analogue dl-P(EG3Glu) or PEG. Moreover, l20K-IFN triggered significantly less antidrug and antipolymer antibodies than the other two. Importantly, the unusual findings observed in the IFN series are reproduced in a human growth hormone (GH) conjugate series. Subcutaneously infused l20K-GH, GH modified with l-P(EG3Glu), evokes considerably less anti-GH and antipolymer antibodies compared to those modified with dl-P(EG3Glu) or PEG (dl20K-GH or PEG20K-GH). As a result, repeated injections of dl20K-GH or PEG20K-GH, but not l20K-GH, result in a clear ABC effect and significantly diminished drug availability in the blood. Meanwhile, immature mouse bone marrow cells incubated with the helical l20K-GH exhibit decreased drug uptake and secretion of proinflammatory cytokines compared to those treated with one of the other two GH conjugates bearing unstructured polymers. Taken together, the current study highlights an urgent necessity to systematically reassess the pros and cons of choosing unstructured polymers for protein conjugation. Furthermore, our results also lay the foundation for the development of next-generation biohybrid drugs based on helical synthetic polypeptides.
Collapse
Affiliation(s)
- Yingqin Hou
- Beijing National
Laboratory for Molecular Sciences, Center for Soft Matter Science
and Engineering, Key Laboratory of Polymer Chemistry and Physics of
Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Yu Zhou
- Beijing National
Laboratory for Molecular Sciences, Center for Soft Matter Science
and Engineering, Key Laboratory of Polymer Chemistry and Physics of
Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Hao Wang
- Beijing National
Laboratory for Molecular Sciences, Center for Soft Matter Science
and Engineering, Key Laboratory of Polymer Chemistry and Physics of
Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Jialing Sun
- Beijing National
Laboratory for Molecular Sciences, Center for Soft Matter Science
and Engineering, Key Laboratory of Polymer Chemistry and Physics of
Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Ruijue Wang
- Beijing National
Laboratory for Molecular Sciences, Center for Soft Matter Science
and Engineering, Key Laboratory of Polymer Chemistry and Physics of
Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Kai Sheng
- Beijing National
Laboratory for Molecular Sciences, Center for Soft Matter Science
and Engineering, Key Laboratory of Polymer Chemistry and Physics of
Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Jingsong Yuan
- Beijing National
Laboratory for Molecular Sciences, Center for Soft Matter Science
and Engineering, Key Laboratory of Polymer Chemistry and Physics of
Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Yali Hu
- Peking-Tsinghua Center
for Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Yu Chao
- Institute
of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation
Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhuang Liu
- Institute
of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation
Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hua Lu
- Beijing National
Laboratory for Molecular Sciences, Center for Soft Matter Science
and Engineering, Key Laboratory of Polymer Chemistry and Physics of
Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
- E-mail:
| |
Collapse
|
49
|
Yang Z, Bai T, Ling J, Shen Y. Hydroxyl-tolerated polymerization of N-phenoxycarbonyl α-amino acids: A simple way to polypeptides bearing hydroxyl groups. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhening Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
50
|
Machado CA, Smith IR, Savin DA. Self-Assembly of Oligo- and Polypeptide-Based Amphiphiles: Recent Advances and Future Possibilities. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Craig A. Machado
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Ian R. Smith
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel A. Savin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|