1
|
Xiao Y, Guo Z, Cao J, Song P, Yang B, Xu W. Revealing operando surface defect-dependent electrocatalytic performance of Pt at the subparticle level. Proc Natl Acad Sci U S A 2024; 121:e2317205121. [PMID: 38776369 PMCID: PMC11145244 DOI: 10.1073/pnas.2317205121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Understanding the operando defect-tuning performance of catalysts is critical to establish an accurate structure-activity relationship of a catalyst. Here, with the tool of single-molecule super-resolution fluorescence microscopy, by imaging intermediate CO formation/oxidation during the methanol oxidation reaction process on individual defective Pt nanotubes, we reveal that the fresh Pt ends with more defects are more active and anti-CO poisoning than fresh center areas with less defects, while such difference could be reversed after catalysis-induced step-by-step creation of more defects on the Pt surface. Further experimental results reveal an operando volcano relationship between the catalytic performance (activity and anti-CO ability) and the fine-tuned defect density. Systematic DFT calculations indicate that such an operando volcano relationship could be attributed to the defect-dependent transition state free energy and the accelerated surface reconstructing of defects or Pt-atom moving driven by the adsorption of the CO intermediate. These insights deepen our understanding to the operando defect-driven catalysis at single-molecule and subparticle level, which is able to help the design of highly efficient defect-based catalysts.
Collapse
Affiliation(s)
- Yi Xiao
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, People’s Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| | - Zhichao Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, People’s Republic of China
| | - Jing Cao
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, People’s Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| | - Ping Song
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, People’s Republic of China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, People’s Republic of China
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, People’s Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| |
Collapse
|
2
|
Reis IF, Gehlen MH. Single-Molecule Catalysis in the Palladium Cross-Coupling Reaction Cycle. J Phys Chem Lett 2024; 15:2352-2358. [PMID: 38388364 DOI: 10.1021/acs.jpclett.3c03623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Single-molecule (SM) methods are applied to study various types of catalytic processes in chemical and biochemical reactions. In this study, the Suzuki-Miyaura cross-coupling reaction forming a fluorescent product is investigated within the SM approximation. Stochastic analysis of emission intermittency in selected nanoscopic spots allows us to determine the single-molecule turnover frequency (SM-TOF) of the Pd catalyst in a specific probe reaction. We generate and analyze simulated intermittency time traces of a single catalyst surrounded by reactant molecules to assess the reliability of the method applied to real intermittency time trace data from hundreds of nanoscopic fluorescence spots. The results demonstrate that the proposed method can be used to evaluate the average SM-TOF of Pd in a cross-coupling reaction.
Collapse
Affiliation(s)
- Izadora F Reis
- Department of Physical Chemistry, Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| | - Marcelo H Gehlen
- Department of Physical Chemistry, Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| |
Collapse
|
3
|
Ezendam S, Gargiulo J, Sousa-Castillo A, Lee JB, Nam YS, Maier SA, Cortés E. Spatial Distributions of Single-Molecule Reactivity in Plasmonic Catalysis. ACS NANO 2024; 18:451-460. [PMID: 37971988 PMCID: PMC10786159 DOI: 10.1021/acsnano.3c07833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Plasmonic catalysts have the potential to accelerate and control chemical reactions with light by exploiting localized surface plasmon resonances. However, the mechanisms governing plasmonic catalysis are not simple to decouple. Several plasmon-derived phenomena, such as electromagnetic field enhancements, temperature, or the generation of charge carriers, can affect the reactivity of the system. These effects are convoluted with the inherent (nonplasmonic) catalytic properties of the metal surface. Disentangling these coexisting effects is challenging but is the key to rationally controlling reaction pathways and enhancing reaction rates. This study utilizes super-resolution fluorescence microscopy to examine the mechanisms of plasmonic catalysis at the single-particle level. The reduction reaction of resazurin to resorufin in the presence of Au nanorods coated with a porous silica shell is investigated in situ. This allows the determination of reaction rates with a single-molecule sensitivity and subparticle resolution. By variation of the irradiation wavelength, it is possible to examine two different regimes: photoexcitation of the reactant molecules and photoexcitation of the nanoparticle's plasmon resonance. In addition, the measured spatial distribution of reactivity allows differentiation between superficial and far-field effects. Our results indicate that the reduction of resazurin can occur through more than one reaction pathway, being most efficient when the reactant is photoexcited and is in contact with the Au surface. In addition, it was found that the spatial distribution of enhancements varies, depending on the underlying mechanism. These findings contribute to the fundamental understanding of plasmonic catalysis and the rational design of future plasmonic nanocatalysts.
Collapse
Affiliation(s)
- Simone Ezendam
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Julian Gargiulo
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Ana Sousa-Castillo
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| | - Joong Bum Lee
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yoon Sung Nam
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Stefan A. Maier
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
- Department
of Physics, Imperial College London, London SW7 2AZ, United Kingdom
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Emiliano Cortés
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität, 80539 München, Germany
| |
Collapse
|
4
|
Chizallet C, Bouchy C, Larmier K, Pirngruber G. Molecular Views on Mechanisms of Brønsted Acid-Catalyzed Reactions in Zeolites. Chem Rev 2023; 123:6107-6196. [PMID: 36996355 DOI: 10.1021/acs.chemrev.2c00896] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The Brønsted acidity of proton-exchanged zeolites has historically led to the most impactful applications of these materials in heterogeneous catalysis, mainly in the fields of transformations of hydrocarbons and oxygenates. Unravelling the mechanisms at the atomic scale of these transformations has been the object of tremendous efforts in the last decades. Such investigations have extended our fundamental knowledge about the respective roles of acidity and confinement in the catalytic properties of proton exchanged zeolites. The emerging concepts are of general relevance at the crossroad of heterogeneous catalysis and molecular chemistry. In the present review, emphasis is given to molecular views on the mechanism of generic transformations catalyzed by Brønsted acid sites of zeolites, combining the information gained from advanced kinetic analysis, in situ, and operando spectroscopies, and quantum chemistry calculations. After reviewing the current knowledge on the nature of the Brønsted acid sites themselves, and the key parameters in catalysis by zeolites, a focus is made on reactions undergone by alkenes, alkanes, aromatic molecules, alcohols, and polyhydroxy molecules. Elementary events of C-C, C-H, and C-O bond breaking and formation are at the core of these reactions. Outlooks are given to take up the future challenges in the field, aiming at getting ever more accurate views on these mechanisms, and as the ultimate goal, to provide rational tools for the design of improved zeolite-based Brønsted acid catalysts.
Collapse
Affiliation(s)
- Céline Chizallet
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Christophe Bouchy
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Kim Larmier
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Gerhard Pirngruber
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| |
Collapse
|
5
|
Xiao Y, Xu W. Single-molecule fluorescence imaging for probing nanocatalytic process. Chem 2022. [DOI: 10.1016/j.chempr.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Liu X, Wang C, Zhou J, Liu C, Liu Z, Shi J, Wang Y, Teng J, Xie Z. Molecular transport in zeolite catalysts: depicting an integrated picture from macroscopic to microscopic scales. Chem Soc Rev 2022; 51:8174-8200. [PMID: 36069165 DOI: 10.1039/d2cs00079b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Increasing social sustainability triggers the persistent progress of industrial catalysis in energy transformation and chemical production. Zeolites have been demonstrated to be pivotal catalysts in chemical industries due to their moderate acidity and versatile well-defined pore structures. However, in the context of enhancing the performances of zeolite catalysts, the perspectives on the diffusion regulations within the pores and channels in the bulk phases or external surfaces of the zeolites are often overlooked. Establishing the structure-transport-reactivity relationships in heterogeneous catalysis can provide rational guidelines to design high-performance catalysts. Herein, this tutorial review attempts to systematically depict an integrated picture of molecular transport behaviors in zeolite catalysts from macroscopic to microscopic perspectives. The advances in the accurate diffusion measurements employing both macroscopic and microscopic techniques are briefly introduced. The diffusion characteristics in zeolite catalysts under working conditions (e.g., high temperature, multi-components, and reaction coupling) are then addressed. The macroscopic internal diffusion and the microscopic diffusion occurring in the micro-zones of zeolite crystals (e.g., surface diffusion, diffusion anisotropy, and confined diffusion) are reviewed and discussed in more detail. These diffusion behaviors highly impact the underlying reaction mechanism, catalytic performances, and catalyst optimization strategies. Finally, the multi-type pore systems of practical zeolite catalysts in industrial reactors and their transport behaviors are analyzed. The fully-crystalline monolithic zeolites in the absence of binders are highlighted as rising-star catalytic materials for industrial applications. The research challenges in this field and the potential future development directions are summarized.
Collapse
Affiliation(s)
- Xiaoliang Liu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC Corp., Shanghai 201208, China.
| | - Chuanming Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC Corp., Shanghai 201208, China.
| | - Jian Zhou
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC Corp., Shanghai 201208, China.
| | - Chang Liu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC Corp., Shanghai 201208, China.
| | - Zhicheng Liu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC Corp., Shanghai 201208, China.
| | - Jing Shi
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC Corp., Shanghai 201208, China.
| | - Yangdong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC Corp., Shanghai 201208, China.
| | - Jiawei Teng
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC Corp., Shanghai 201208, China.
| | - Zaiku Xie
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC Corp., Shanghai 201208, China. .,China Petroleum and Chemical Corporation (SINOPEC Corp.), Beijing 100728, China
| |
Collapse
|
7
|
Saluga SJ, Dibble DJ, Blum SA. Superresolved Motions of Single Molecular Catalysts during Polymerization Show Wide Distributions. J Am Chem Soc 2022; 144:10591-10598. [PMID: 35670469 DOI: 10.1021/jacs.2c03566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The motion of single molecular ruthenium catalysts during and after single turnover events of ring-opening metathesis polymerization is imaged through single-molecule superresolution tracking with a positional accuracy of ±32 nm. This tracking is achieved through the real-time incorporation of spectrally tagged monomer units into active polymer chain ends during living polymerization; thus, by design, only active-catalyst motion is detected and imaged, without convolution by inactive catalysts. The catalysts show diverse individualistic diffusive behaviors with respect to time that persist for up to 20 s. Catalysts occupy three mobility populations: quasi-stationary (23%), intermediate (53%, 65 nm), and large (24%, 145 nm) step sizes. Differences in catalyst mobility populations also exist between individual aggregates (p < 0.001). Such differential motion indicates widely different local catalyst microenvironments during the catalytic turnover. These mobility differences are uniquely observable through single-catalyst microscopy and are not measurable through traditional ensemble analytical techniques for characterizing the behavior of molecular catalysts, such as nuclear magnetic resonance spectroscopy. The measured distributions of active molecular catalyst motions would not be readily predictable through modeling or first-principles, and the range likely impacts individual catalyst turnover rate and selectivity. This range plausibly contributes to property distributions observable in bulk polymers, such as molecular weight polydispersity (e.g., 1.9 in this system), leading to a revised understanding of the mechanistic, microscale origins of macroscale polymer properties.
Collapse
Affiliation(s)
- Shannon J Saluga
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - David Josh Dibble
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Suzanne A Blum
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
8
|
Chen W, Yi X, Liu Z, Tang X, Zheng A. Carbocation chemistry confined in zeolites: spectroscopic and theoretical characterizations. Chem Soc Rev 2022; 51:4337-4385. [PMID: 35536126 DOI: 10.1039/d1cs00966d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acid-catalyzed reactions inside zeolites are one type of broadly applied industrial reactions, where carbocations are the most common intermediates of these reaction processes, including methanol to olefins, alkene/aromatic alkylation, and hydrocarbon cracking/isomerization. The fundamental research on these acid-catalyzed reactions is focused on the stability, evolution, and lifetime of carbocations under the zeolite confinement effect, which greatly affects the efficiency, selectivity and deactivation of zeolite catalysts. Therefore, a profound understanding of the carbocations confined in zeolites is not only beneficial to explain the reaction mechanism but also drive the design of new zeolite catalysts with ideal acidity and cages/channels. In this review, we provide both an in-depth understanding of the stabilization of carbocations by the pore confinement effect and summary of the advanced characterization methods to capture carbocations in zeolites, including UV-vis spectroscopy, solid-state NMR, fluorescence microscopy, IR spectroscopy and Raman spectroscopy. Also, we clarify the relationship between the activity and stability of carbocations in zeolite-catalyzed reactions, and further highlight the role of carbocations in various hydrocarbon conversion reactions inside zeolites with diverse frameworks and varying acidic properties.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
9
|
van Vreeswijk SH, Weckhuysen BM. Emerging Analytical Methods to Characterize Zeolite-Based Materials. Natl Sci Rev 2022; 9:nwac047. [PMID: 36128456 PMCID: PMC9477204 DOI: 10.1093/nsr/nwac047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Zeolites and zeolitic materials are, through their use in numerous conventional and sustainable applications, very important to our daily lives, including to foster the necessary transition to a more circular society. The characterization of zeolite-based materials has a tremendous history and a great number of applications and properties of these materials have been discovered in the past decades. This review focuses on recently developed novel as well as more conventional techniques applied with the aim of better understanding zeolite-based materials. Recently explored analytical methods, e.g. atom probe tomography, scanning transmission X-ray microscopy, confocal fluorescence microscopy and photo-induced force microscopy, are discussed on their important contributions to the better understanding of zeolites as they mainly focus on the micro- to nanoscale chemical imaging and the revelation of structure–composition–performance relationships. Some other techniques have a long and established history, e.g. nuclear magnetic resonance, infrared, neutron scattering, electron microscopy and X-ray diffraction techniques, and have gone through increasing developments allowing the techniques to discover new and important features in zeolite-based materials. Additional to the increasing application of these methods, multiple techniques are nowadays used to study zeolites under working conditions (i.e. the in situ/operando mode of analysis) providing new insights in reaction and deactivation mechanisms.
Collapse
Affiliation(s)
- S H van Vreeswijk
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - B M Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
10
|
Mao X, Chen P. Inter-facet junction effects on particulate photoelectrodes. NATURE MATERIALS 2022; 21:331-337. [PMID: 34952940 DOI: 10.1038/s41563-021-01161-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 10/21/2021] [Indexed: 06/14/2023]
Abstract
Particulate semiconductor photocatalysts are paramount for many solar energy conversion technologies. In anisotropically shaped photocatalyst particles, the different constituent facets may form inter-facet junctions at their adjoining edges, analogous to lateral two-dimensional (2D) heterojunctions or pseudo-2D junctions made of few-layer 2D materials. Using subfacet-level multimodal functional imaging, we uncover inter-facet junction effects on anisotropically shaped bismuth vanadate (BiVO4) particles and identify the characteristics of near-edge transition zones on the particle surface, which underpin the whole-particle photoelectrochemistry. We further show that chemical doping modulates the widths of such near-edge surface transition zones, consequently altering particles' performance. Decoupled facet-size scaling laws further translate inter-facet junction effects into quantitative particle-size engineering principles, revealing surprising multiphasic size dependences of whole-particle photoelectrode performance. The imaging tools, the analytical framework and the inter-facet junction concept pave new avenues towards understanding, predicting and engineering (opto)electronic and photoelectrochemical properties of faceted semiconducting materials, with broad implications in energy science and semiconductor technology.
Collapse
Affiliation(s)
- Xianwen Mao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
11
|
Abstract
Catalysis is at the core of chemistry and has been essential to make all the goods surrounding us, including fuels, coatings, plastics and other functional materials. In the near future, catalysis will also be an essential tool in making the shift from a fossil-fuel-based to a more renewable and circular society. To make this reality, we have to better understand the fundamental concept of the active site in catalysis. Here, we discuss the physical meaning - and deduce the validity and, therefore, usefulness - of some common approaches in heterogeneous catalysis, such as linking catalyst activity to a 'turnover frequency' and explaining catalytic performance in terms of 'structure sensitivity' or 'structure insensitivity'. Catalytic concepts from the fields of enzymatic and homogeneous catalysis are compared, ultimately realizing that the struggle that one encounters in defining the active site in most solid catalysts is likely the one we must overcome to reach our end goal: tailoring the precise functioning of the active sites with respect to many different parameters to satisfy our ever-growing needs. This article ends with an outlook of what may become feasible within the not-too-distant future with modern experimental and theoretical tools at hand.
Collapse
|
12
|
|
13
|
Usman A, Weatherbee SL, Collinson MM, Hohn KL, Higgins DA. Single Molecule Spectroscopy Studies of Acid-Base Chemical Gradients Using Nile Red as a Probe of Local Surface Acidity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12138-12147. [PMID: 34606716 DOI: 10.1021/acs.langmuir.1c02059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single molecule spectroscopy studies of local acidity along bifunctional acid-base gradients are reported. Gradients are prepared by directional vapor phase diffusion and subsequent reaction of 3-aminopropyl-trimethoxysilane with a uniform silica film. Gradient formation is confirmed by spectroscopic ellipsometry and by static water contact angle measurements. X-ray photoelectron spectroscopy is used to characterize the nitrogen content and degree of nitrogen protonation along the gradient. Nile Red is employed as the probe dye in single molecule spectroscopy studies of these gradients. While Nile Red is well-known for its solvent sensitivity, it is used here, for the first time, to sense the acid/base properties of the film in two-color wide-field fluorescence imaging experiments. The data reveal broad bimodal distributions of Nile Red emission spectra that vary along the gradient direction. The single molecule results are consistent with solution phase ensemble acid/base studies of the dye. The former reveal a gradual transition from a surface dominated by basic aminosilane sites at the high-amine end of the gradient to one dominated by acidic silanol sites at the low-amine end. The sub-diffraction-limited spatial resolution afforded by superlocalization of the single molecules reveals spatial correlations in the acid/base properties of the gradient over ∼200 nm distances. These studies provide data relevant to the use of aminosilane-modified silica in bifunctional, cooperative chemical catalysis.
Collapse
Affiliation(s)
- Abdulhafiz Usman
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Shelby L Weatherbee
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Maryanne M Collinson
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Keith L Hohn
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| | - Daniel A Higgins
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
14
|
Dong B, Mansour N, Huang TX, Huang W, Fang N. Single molecule fluorescence imaging of nanoconfinement in porous materials. Chem Soc Rev 2021; 50:6483-6506. [PMID: 34100033 DOI: 10.1039/d0cs01568g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review covers recent progress in using single molecule fluorescence microscopy imaging to understand the nanoconfinement in porous materials. The single molecule approach unveils the static and dynamic heterogeneities from seemingly equal molecules by removing the ensemble averaging effect. Physicochemical processes including mass transport, surface adsorption/desorption, and chemical conversions within the confined space inside porous materials have been studied at nanometer spatial resolution, at the single nanopore level, with millisecond temporal resolution, and under real chemical reaction conditions. Understanding these physicochemical processes provides the ability to quantitatively measure the inhomogeneities of nanoconfinement effects from the confining properties, including morphologies, spatial arrangement, and trapping domains. Prospects and limitations of current single molecule imaging studies on nanoconfinement are also discussed.
Collapse
Affiliation(s)
- Bin Dong
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA.
| | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Yi Xiao
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street, Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street, Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
16
|
Gläser R, Kärger J, Ruthven DM. Diffusion in Nanoporous Solids in the Focus of IUPAC – A Tribute to Jens Weitkamp. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202100009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Roger Gläser
- Universität Leipzig Fakultät für Chemie und Mineralogie Linnéstraße 3 04103 Leipzig Germany
| | - Jörg Kärger
- Universität Leipzig Fakultät für Physik und Geowissenschaften Linnéstraße 5 04103 Leipzig Germany
| | | |
Collapse
|
17
|
Abstract
AbstractNanoporous solids, including microporous, mesoporous and hierarchically structured porous materials, are of scientific and technological interest because of their high surface-to-volume ratio and ability to impose shape- and size-selectivity on molecules diffusing through them. Enormous efforts have been put in the mechanistic understanding of diffusion–reaction relationships of nanoporous solids, with the ultimate goal of developing materials with improved catalytic performance. Single-molecule localization microscopy can be used to explore the pore space via the trajectories of individual molecules. This ensemble-free perspective directly reveals heterogeneities in diffusion and diffusion-related reactivity of individual molecules, which would have been obscured in bulk measurements. In this article, we review developments in the spatial and temporal characterization of nanoporous solids using single-molecule localization microscopy. We illustrate various aspects of this approach, and showcase how it can be used to follow molecular diffusion and reaction behaviors in nanoporous solids.
Collapse
|
18
|
Xian X, Chen J, Chu Y, He M, Zhao S, Dong L, Ren J. Unraveling the spatial distribution of the acidity of
HZSM
‐5 zeolite on the level of crystal grains. AIChE J 2021. [DOI: 10.1002/aic.17134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xiaochao Xian
- School of Chemistry and Chemical Engineering Chongqing University Chongqing China
| | - Jun Chen
- School of Chemistry and Chemical Engineering Chongqing University Chongqing China
| | - Yirong Chu
- School of Chemistry and Chemical Engineering Chongqing University Chongqing China
| | - Mengjun He
- School of Chemistry and Chemical Engineering Chongqing University Chongqing China
| | - Shuo Zhao
- School of Chemistry and Chemical Engineering Chongqing University Chongqing China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering Chongqing University Chongqing China
| | - Jingzheng Ren
- Department of Industrial and Systems Engineering The Hong Kong Polytechnic University Kowloon Hong Kong
| |
Collapse
|
19
|
Single Particle Approaches to Plasmon-Driven Catalysis. NANOMATERIALS 2020; 10:nano10122377. [PMID: 33260302 PMCID: PMC7761459 DOI: 10.3390/nano10122377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022]
Abstract
Plasmonic nanoparticles have recently emerged as a promising platform for photocatalysis thanks to their ability to efficiently harvest and convert light into highly energetic charge carriers and heat. The catalytic properties of metallic nanoparticles, however, are typically measured in ensemble experiments. These measurements, while providing statistically significant information, often mask the intrinsic heterogeneity of the catalyst particles and their individual dynamic behavior. For this reason, single particle approaches are now emerging as a powerful tool to unveil the structure-function relationship of plasmonic nanocatalysts. In this Perspective, we highlight two such techniques based on far-field optical microscopy: surface-enhanced Raman spectroscopy and super-resolution fluorescence microscopy. We first discuss their working principles and then show how they are applied to the in-situ study of catalysis and photocatalysis on single plasmonic nanoparticles. To conclude, we provide our vision on how these techniques can be further applied to tackle current open questions in the field of plasmonic chemistry.
Collapse
|
20
|
Gehlen MH, Foltran LS, Kienle DF, Schwartz DK. Single-Molecule Observations Provide Mechanistic Insights into Bimolecular Knoevenagel Amino Catalysis. J Phys Chem Lett 2020; 11:9714-9724. [PMID: 33136415 DOI: 10.1021/acs.jpclett.0c03030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While single-molecule (SM) methods have provided new insights to various catalytic processes, bimolecular reactions have been particularly challenging to study. Here, the fluorogenic Knoevenagel condensation of an aromatic aldehyde with methyl cyanoacetate promoted by surface-immobilized piperazine is quantitatively characterized using super-resolution fluorescence imaging and stochastic analysis using hidden Markov modeling (HMM). Notably, the SM results suggest that the reaction follows the iminium intermediate pathway before the formation of a fluorescent product with intramolecular charge-transfer character. Moreover, the overall process is limited by the turnover rate of the catalyst, which is involved in multiple steps along the reaction coordinate.
Collapse
Affiliation(s)
- Marcelo H Gehlen
- Department of Physical Chemistry, Institute of Chemistry of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil
| | - Larissa S Foltran
- Department of Physical Chemistry, Institute of Chemistry of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil
| | - Daniel F Kienle
- Department of Chemistry and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Department of Chemistry and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
21
|
Rivera-Torrente M, Mandemaker LDB, Filez M, Delen G, Seoane B, Meirer F, Weckhuysen BM. Spectroscopy, microscopy, diffraction and scattering of archetypal MOFs: formation, metal sites in catalysis and thin films. Chem Soc Rev 2020; 49:6694-6732. [DOI: 10.1039/d0cs00635a] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A comprehensive overview of characterization tools for the analysis of well-known metal–organic frameworks and physico-chemical phenomena associated to their applications.
Collapse
Affiliation(s)
- Miguel Rivera-Torrente
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Laurens D. B. Mandemaker
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Matthias Filez
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Guusje Delen
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Beatriz Seoane
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| |
Collapse
|
22
|
Moissette A, Hureau M, Moreau M, Cornard JP. Pore selectivity and electron transfers in HZSM-5 single crystals: a Raman microspectroscopy mapping and confocal fluorescence imaging combined study. Phys Chem Chem Phys 2020; 22:12745-12756. [DOI: 10.1039/d0cp02018d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electron transfers at the single particle level in HZSM-5 zeolite are followed by combining Raman microspectroscopy mapping and confocal fluorescence imaging. The effects of pore accessibility and guest diffusion on reactivity are investigated.
Collapse
Affiliation(s)
- A. Moissette
- LASIRE, Bât. C5
- Faculté des Sciences et Technologies
- Université de Lille
- 59655 Villeneuve d’Ascq cedex
- France
| | - M. Hureau
- LASIRE, Bât. C5
- Faculté des Sciences et Technologies
- Université de Lille
- 59655 Villeneuve d’Ascq cedex
- France
| | - M. Moreau
- LASIRE, Bât. C5
- Faculté des Sciences et Technologies
- Université de Lille
- 59655 Villeneuve d’Ascq cedex
- France
| | - J. P. Cornard
- LASIRE, Bât. C5
- Faculté des Sciences et Technologies
- Université de Lille
- 59655 Villeneuve d’Ascq cedex
- France
| |
Collapse
|
23
|
Bautista-Gomez J, Usman A, Zhang M, Rafferty RJ, Bossmann SH, Hohn KL, Higgins DA. Fluorescence spectroscopy studies of crossed aldol reactions: a reactive Nile red dye reveals catalyst-dependent product formation. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00806k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly fluorescent, aldol-reactive derivative of the dye Nile red is synthesized and evaluated as an in situ probe of crossed aldol reactions.
Collapse
Affiliation(s)
| | - Abdulhafiz Usman
- Department of Chemical Engineering
- Kansas State University
- Manhattan
- USA
| | - Man Zhang
- Department of Chemistry
- Kansas State University
- Manhattan
- USA
| | | | | | - Keith L. Hohn
- Department of Chemical Engineering
- Kansas State University
- Manhattan
- USA
| | | |
Collapse
|
24
|
Ihli J, Green DC, Lynch C, Holden MA, Lee PA, Zhang S, Robinson IK, Webb SED, Meldrum FC. Super‐Resolution Microscopy Reveals Shape and Distribution of Dislocations in Single‐Crystal Nanocomposites. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Johannes Ihli
- Paul Scherrer Institut 5232 Villigen PSI Switzerland
- School of ChemistryUniversity of Leeds Leeds LS2 9JT UK
| | | | - Christophe Lynch
- Central Laser Facility, Science and Technology Facilities CouncilResearch Complex at HarwellRutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Mark A. Holden
- School of ChemistryUniversity of Leeds Leeds LS2 9JT UK
- School of Physical Sciences and ComputingUniversity of Central Lancashire Preston PR1 2HE UK
| | | | - Shuheng Zhang
- School of ChemistryUniversity of Leeds Leeds LS2 9JT UK
| | - Ian K. Robinson
- London Centre for NanotechnologyUniversity College London London WC1H 0AH UK
- Brookhaven National Lab Upton NY 11973 USA
| | - Stephen E. D. Webb
- Central Laser Facility, Science and Technology Facilities CouncilResearch Complex at HarwellRutherford Appleton Laboratory Didcot OX11 0QX UK
| | | |
Collapse
|
25
|
Ihli J, Green DC, Lynch C, Holden MA, Lee PA, Zhang S, Robinson IK, Webb SED, Meldrum FC. Super-Resolution Microscopy Reveals Shape and Distribution of Dislocations in Single-Crystal Nanocomposites. Angew Chem Int Ed Engl 2019; 58:17328-17334. [PMID: 31591809 DOI: 10.1002/anie.201905293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 01/08/2023]
Abstract
With their potential to offer new properties, single crystals containing nanoparticles provide an attractive class of nanocomposite materials. However, to fully profit from these, it is essential that we can characterise their 3D structures, identifying the locations of individual nanoparticles, and the defects present within the host crystals. Using calcite crystals containing quantum dots as a model system, we here use 3D stochastic optical reconstruction microscopy (STORM) to locate the positions of the nanoparticles within the host crystal. The nanoparticles are shown to preferentially associate with dislocations in a manner previously recognised for atomic impurities, rendering these defects visible by STORM. Our images also demonstrate that the types of dislocations formed at the crystal/substrate interface vary according to the nucleation face, and dislocation loops are observed that have entirely different geometries to classic misfit dislocations. This approach offers a rapid, easily accessed, and non-destructive method for visualising the dislocations present within crystals, and gives insight into the mechanisms by which additives become occluded within crystals.
Collapse
Affiliation(s)
- Johannes Ihli
- Paul Scherrer Institut, 5232, Villigen PSI, Switzerland.,School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - David C Green
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Christophe Lynch
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Mark A Holden
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.,School of Physical Sciences and Computing, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Phillip A Lee
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Shuheng Zhang
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Ian K Robinson
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK.,Brookhaven National Lab, Upton, NY, 11973, USA
| | - Stephen E D Webb
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
26
|
Dong B, Pei Y, Mansour N, Lu X, Yang K, Huang W, Fang N. Deciphering nanoconfinement effects on molecular orientation and reaction intermediate by single molecule imaging. Nat Commun 2019; 10:4815. [PMID: 31645571 PMCID: PMC6811571 DOI: 10.1038/s41467-019-12799-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/25/2019] [Indexed: 11/10/2022] Open
Abstract
Nanoconfinement could dramatically change molecular transport and reaction kinetics in heterogeneous catalysis. Here we specifically design a core-shell nanocatalyst with aligned linear nanopores for single-molecule studies of the nanoconfinement effects. The quantitative single-molecule measurements reveal unusual lower adsorption strength and higher catalytic activity on the confined metal reaction centres within the nanoporous structure. More surprisingly, the nanoconfinement effects on enhanced catalytic activity are larger for catalysts with longer and narrower nanopores. Experimental evidences, including molecular orientation, activation energy, and intermediate reactive species, have been gathered to provide a molecular level explanation on how the nanoconfinement effects enhance the catalyst activity, which is essential for the rational design of highly-efficient catalysts.
Collapse
Affiliation(s)
- Bin Dong
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Yuchen Pei
- Department of Chemistry, Iowa State University, and Ames Laboratory, U.S. Department of Energy, Ames, IA, 50011, USA
| | - Nourhan Mansour
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Xuemei Lu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, 215006, Suzhou, P. R. China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, 215006, Suzhou, P. R. China
| | - Wenyu Huang
- Department of Chemistry, Iowa State University, and Ames Laboratory, U.S. Department of Energy, Ames, IA, 50011, USA.
| | - Ning Fang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
27
|
Easter QT, Blum SA. Organic and Organometallic Chemistry at the Single-Molecule, -Particle, and -Molecular-Catalyst-Turnover Level by Fluorescence Microscopy. Acc Chem Res 2019; 52:2244-2255. [PMID: 31310095 DOI: 10.1021/acs.accounts.9b00219] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mechanistic studies have historically played a key role in the discovery and optimization of reactions in organic and organometallic chemistry. However, even apparently simple organic and organometallic transformations may have surprisingly complicated multistep mechanisms, increasing the difficulty of extracting this mechanistic information. The resulting reaction intermediates often constitute a small fraction of the total reaction mixture, for example, creating a long-term analytical challenge of detection. This challenge is particularly pronounced in cases where the positions of intermediates on the reaction energy surface mean that they do not "build up" to the quantities needed for observation by traditional ensemble analytical tools. Thus, their existence and single-step elementary reactivity cannot be studied directly. New approaches for obtaining this otherwise-missing mechanistic information are therefore needed. Single-turnover, single-molecule, single-particle, and other subensemble fluorescence microscopy techniques are ideally suited for this role because of their sensitivity and spatiotemporal resolution. Inspired by the robust development of single-molecule fluorescence microscopy tools for studying enzyme catalysis, our laboratory has developed analogous fluorescence microscopy techniques to overcome mechanistic challenges in synthetic chemistry, with sensitivity as high as the single-complex, single-turnover, and single-molecule level. These techniques free the experimenter from the previous restriction that intermediates must "build up" to quantities needed for detection by ensemble analytical tools and are suited to systems where synchronization through flash photolysis or stopped flow would be inconvenient or inaccessible. In this process, the techniques transform certain previously "unobservable" intermediates and their elementary single-step reactivities into "observable" ones through sensitive and selective spectral handles. Our program has focused on imaging reactions in small-molecule, organic, and polymer synthetic chemistry with an accent on the reactivity of molecular transition metal complexes and catalysts. Our laboratory initiated studies in this area in 2008 with the imaging of individual palladium complexes that were tagged with spectator fluorophores. To enable imaging, we started with fluorophore selection and development, overcame challenges with imaging in organic solvents, and developed strategies compatible with air-sensitive chemistry and concentrations of reagents generally used in small-molecule synthesis. These studies grew to include characterization of previously unknown organometallic intermediates in the synthesis of organozinc reagents and the direct study of their elementary-step reactivity. The ability to directly observe this behavior generated predictive power for selecting salts that accelerated organozinc reagent formation in synthesis, including salts that had not yet been reported synthetically. In 2017 we also developed the first single-turnover imaging of molecular (chemo)catalysts, which through the technique's spatiotemporal resolution revealed abruptly time-variable polymerization kinetics wherein molecular ruthenium ring-opening metathesis polymerization (ROMP) catalysts changed rates independently from other catalysts less than 1 μm away. Individual catalytic turnovers, each corresponding to one single-chain-elongation reaction arising from insertion of single ROMP or enyne monomers at individual Grubbs II molecular ruthenium catalysts, were spatiotemporally resolved as green flashes in growing polymers. In this Account, we discuss the development of this technique from idea to application, including challenges overcome and strategies created to image synthetic organic and organometallic molecular chemistry at the highest levels of detection sensitivity. We also describe challenges not yet solved and provide an outlook for this growing field at the intersection of microscopy and synthetic/molecular chemistry.
Collapse
Affiliation(s)
- Quinn T. Easter
- Department of Chemistry, University of California, Irvine, California 92697−2025, United States
| | - Suzanne A. Blum
- Department of Chemistry, University of California, Irvine, California 92697−2025, United States
| |
Collapse
|
28
|
Liu X, Chen T, Jain PK, Xu W. Revealing the Thermodynamic Properties of Elementary Chemical Reactions at the Single-Molecule Level. J Phys Chem B 2019; 123:6253-6259. [PMID: 31246466 DOI: 10.1021/acs.jpcb.9b03474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An understanding of the thermodynamic properties of elementary chemical steps of a reaction is important for the development of fundamental reaction theories and for effective industrial practice. In this work, temperature-variable single-molecule fluorescence microscopy was employed to study a reversible redox chemical process and reveal the thermodynamics of chemical elementary reactions at a single-molecule level. Activation energies of pure elementary steps were measured on the level of single molecules and found to be heterogeneously distributed across the population of individual molecules. The activation parameters measured across the population of individual molecules also exhibited a compensation effect and an isokinetic relationship. These results constitute a new single-molecule-level perspective into a chemical reaction.
Collapse
Affiliation(s)
- Xiaodong Liu
- State Key Laboratory of Electroanalytical Chemistry & Jilin Province Key Laboratory of Low Carbon Chemical Power , Changchun Institute of Applied Chemistry, Chinese Academy of Science , 5625 Renmin Street , Changchun 130022 , China.,University of Science and Technology of China , Anhui 230026 , China
| | - Tao Chen
- State Key Laboratory of Electroanalytical Chemistry & Jilin Province Key Laboratory of Low Carbon Chemical Power , Changchun Institute of Applied Chemistry, Chinese Academy of Science , 5625 Renmin Street , Changchun 130022 , China.,Graduate University of Chinese Academy of Science , Beijing 100049 , China
| | - Prashant K Jain
- Department of Chemistry & Beckman Institute of Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry & Jilin Province Key Laboratory of Low Carbon Chemical Power , Changchun Institute of Applied Chemistry, Chinese Academy of Science , 5625 Renmin Street , Changchun 130022 , China.,University of Science and Technology of China , Anhui 230026 , China
| |
Collapse
|
29
|
Mao X, Liu C, Hesari M, Zou N, Chen P. Super-resolution imaging of non-fluorescent reactions via competition. Nat Chem 2019; 11:687-694. [DOI: 10.1038/s41557-019-0288-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/31/2019] [Indexed: 11/09/2022]
|
30
|
Jess K, Kitagawa K, Tagawa TKS, Blum SA. Microscopy Reveals: Impact of Lithium Salts on Elementary Steps Predicts Organozinc Reagent Synthesis and Structure. J Am Chem Soc 2019; 141:9879-9884. [PMID: 31188579 DOI: 10.1021/jacs.9b02639] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lithium chloride is known to promote the direct insertion of metallic zinc powder into organohalides in the practical synthesis of organozinc reagents, but the reason for its special ability is poorly understood. Pioneering a combined approach of single-metal-particle fluorescence microscopy with 1H NMR spectroscopy, we herein show that the effectiveness of different lithium salts toward solubilizing intermediates on the surface of zinc metal establishes a previously unknown reactivity correlation that predicts the propensity of that salt to promote macroscale reagent synthesis and also predicts the solution structure of the ultimate organozinc reagent. A salt-free pathway is also identified. These observations of an organometallic surface intermediate, its elementary-step reactivity, and the impact of various synthetic conditions (salt, salt-free, temperature, stirring, and time) on its persistence, are uniquely available from the sensitivity and spatial localization ability of the microscopy technique. These studies unify previously disparate observations under a single unified mechanistic framework. This framework enables the rational prediction of salt effects on multiple steps in organozinc reagent synthesis and reactivity. This is an early example of single-particle microscopy characterization of elementary steps providing predictive power in reaction development by gaining a sensitive and selective spectral handle on an important intermediate, highlighting the role of this next generation of analytical tools in the development of synthetic chemistry.
Collapse
Affiliation(s)
- Kristof Jess
- Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States
| | - Kazuhiro Kitagawa
- Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States
| | - Tristen K S Tagawa
- Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States
| | - Suzanne A Blum
- Department of Chemistry , University of California, Irvine , Irvine , California 92697-2025 , United States
| |
Collapse
|
31
|
Hernando H, Hernández-Giménez AM, Gutiérrez-Rubio S, Fakin T, Horvat A, Danisi RM, Pizarro P, Fermoso J, Heracleous E, Bruijnincx PCA, Lappas AA, Weckhuysen BM, Serrano DP. Scaling-Up of Bio-Oil Upgrading during Biomass Pyrolysis over ZrO 2 /ZSM-5-Attapulgite. CHEMSUSCHEM 2019; 12:2428-2438. [PMID: 30912622 DOI: 10.1002/cssc.201900534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Ex situ catalytic biomass pyrolysis was investigated at both laboratory and bench scale by using a zeolite ZSM-5-based catalyst for selectively upgrading the bio-oil vapors. The catalyst consisted of nanocrystalline ZSM-5, modified by incorporation of ZrO2 and agglomerated with attapulgite (ZrO2 /n-ZSM-5-ATP). Characterization of this material by means of different techniques, including CO2 and NH3 temperature-programmed desorption (TPD), NMR spectroscopy, UV/Vis microspectroscopy, and fluorescence microscopy, showed that it possessed the right combination of accessibility and acid-base properties for promoting the conversion of the bulky molecules formed by lignocellulose pyrolysis and their subsequent deoxygenation to upgraded liquid organic fractions (bio-oil). The results obtained at the laboratory scale by varying the catalyst-to-biomass ratio (C/B) indicated that the ZrO2 /n-ZSM-5-ATP catalyst was more efficient for bio-oil deoxygenation than the parent zeolite n-ZSM-5, producing upgraded bio-oils with better combinations of mass and energy yields with respect to the oxygen content. The excellent performance of the ZrO2 /n-ZSM-5-ATP system was confirmed by working with a continuous bench-scale plant. The scale-up of the process, even with different raw biomasses as the feedstock, reaction conditions, and operation modes, was in line with the laboratory-scale results, leading to deoxygenation degrees of approximately 60 % with energy yields of approximately 70 % with respect to those of the thermal bio-oil.
Collapse
Affiliation(s)
- Héctor Hernando
- Thermochemical Processes Unit, IMDEA Energy Institute, 28935, Móstoles, Madrid, Spain
- Chemical and Environmental Engineering Group, ESCET, Rey Juan Carlos University, 28933, Móstoles, Madrid, Spain
| | - Ana M Hernández-Giménez
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | | | - Tomaz Fakin
- SILKEM, d.o.o., Tovarniška cesta 10, SI-2325, Kidričevo, Slovenia
| | - Andrej Horvat
- SILKEM, d.o.o., Tovarniška cesta 10, SI-2325, Kidričevo, Slovenia
| | - Rosa M Danisi
- Institute of Applied Geosciences-Technical Petrophysics, Karlsruhe Institute of Technology, Adenauerring 20b, 76131, Karlsruhe, Germany
| | - Patricia Pizarro
- Thermochemical Processes Unit, IMDEA Energy Institute, 28935, Móstoles, Madrid, Spain
- Chemical and Environmental Engineering Group, ESCET, Rey Juan Carlos University, 28933, Móstoles, Madrid, Spain
| | - Javier Fermoso
- Thermochemical Processes Unit, IMDEA Energy Institute, 28935, Móstoles, Madrid, Spain
| | - Eleni Heracleous
- Chemical Process and Energy Resource Institute (CPERI), Centre for Research and Technology Hellas (CERTH), 57001, Thermi, Thessaloniki, Greece
| | - Pieter C A Bruijnincx
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Angelos A Lappas
- Chemical Process and Energy Resource Institute (CPERI), Centre for Research and Technology Hellas (CERTH), 57001, Thermi, Thessaloniki, Greece
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - David P Serrano
- Thermochemical Processes Unit, IMDEA Energy Institute, 28935, Móstoles, Madrid, Spain
- Chemical and Environmental Engineering Group, ESCET, Rey Juan Carlos University, 28933, Móstoles, Madrid, Spain
| |
Collapse
|
32
|
Qiu K, Fato TP, Yuan B, Long YT. Toward Precision Measurement and Manipulation of Single-Molecule Reactions by a Confined Space. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805426. [PMID: 30924293 DOI: 10.1002/smll.201805426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/28/2019] [Indexed: 06/09/2023]
Abstract
All chemical reactions can be divided into a series of single molecule reactions (SMRs), the elementary steps that involve only isomerization of, dissociation from, and addition to an individual molecule. Analyzing SMRs is of paramount importance to identify the intrinsic molecular mechanism of a complex chemical reaction, which is otherwise implausible to reveal in an ensemble fashion, owing to the significant static and dynamic heterogeneity of real-world chemical systems. The single-molecule measurement and manipulation methods developed recently are playing an increasingly irreplaceable role to detect and recognize short-lived intermediates, visualize their transient existence, and determinate the kinetics and dynamics of single bond breaking and formation. Notably, none of the above SMRs characterizations can be realized without the aid of a confined space. Therefore, this Review aims to highlight the recent progress in the development of confined space enabled single-molecule sensing, imaging, and tuning methods to study chemical reactions. Future prospects of SMRs research are also included, including a push toward the physical limit on transduction of information to signals and vice versa, transmission and recording of signals, computational modeling and simulation, and rational design of a confined space for precise SMRs.
Collapse
Affiliation(s)
- Kaipei Qiu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Tano Patrice Fato
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Bo Yuan
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yi-Tao Long
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
33
|
Easter QT, Garcia A, Blum SA. Single-Polymer–Particle Growth Kinetics with Molecular Catalyst Speciation and Single-Turnover Imaging. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Quinn T. Easter
- Department of Chemistry, University of California, Irvine, Irvine, California 92697−2925, United States
| | - Antonio Garcia
- Department of Chemistry, University of California, Irvine, Irvine, California 92697−2925, United States
| | - Suzanne A. Blum
- Department of Chemistry, University of California, Irvine, Irvine, California 92697−2925, United States
| |
Collapse
|
34
|
A Spectroscopic Study of Tautomeric Equilibrium of Salicylideneaniline in ZSM-5 Zeolites. Molecules 2019; 24:molecules24040795. [PMID: 30813273 PMCID: PMC6412596 DOI: 10.3390/molecules24040795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 11/30/2022] Open
Abstract
Salicylideneaniline (SA) sorbed in cation-exchanged M-ZSM-5 (M = H+, Li+, Na+, K+, Rb+, Cs+ and Zn2+) zeolites was studied by spectroscopic techniques assisted by quantum-chemical calculations. The nature of extra-framework cations present in the zeolite void was found to affect the spectral signature of the sorbed SA molecule that points to the shift of tautomeric equilibrium between the enol and keto forms. Small size cations, such as H+ and Li+, stabilize a cis-keto SA tautomer along with a enol one in the zeolite structure. The calculations indicate that the sorbed cis-keto tautomer may have the dipole large enough to be considered as a zwitterion. New features appearing in the spectra with the increase of the cation size were attributed to the presence of trans-keto SA tautomer, which up to now has been observed only in time-resolved spectroscopic experiments. A strong interaction of the molecule with cations in Zn-ZSM-5 zeolite results in the chelation of enol SA with the divalent Zn2+ ions. The results of the study suggest that the tautomeric equilibrium of molecules belonging to the Schiff base family can be tuned by the confinement in the nanoporous materials via a choice of topology of zeolite framework and the nature of extra-framework cations.
Collapse
|
35
|
Visualizing pore architecture and molecular transport boundaries in catalyst bodies with fluorescent nanoprobes. Nat Chem 2018; 11:23-31. [PMID: 30397319 DOI: 10.1038/s41557-018-0163-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 09/24/2018] [Indexed: 11/08/2022]
Abstract
The performances of porous materials are closely related to the accessibility and interconnectivity of their porous domains. Visualizing pore architecture and its role on functionality-for example, mass transport-has been a challenge so far, and traditional bulk and often non-visual pore measurements have to suffice in most cases. Here, we present an integrated, facile fluorescence microscopy approach to visualize the pore accessibility and interconnectivity of industrial-grade catalyst bodies, and link it unequivocally with their catalytic performance. Fluorescent nanoprobes of various sizes were imaged and correlated with the molecular transport of fluorescent molecules formed during a separate catalytic reaction. A direct visual relationship between the pore architecture-which depends on the pore sizes and interconnectivity of the material selected-and molecular transport was established. This approach can be applied to other porous materials, and the insight gained may prove useful in the design of more efficient heterogeneous catalysts.
Collapse
|
36
|
Ristanović Z, Chowdhury AD, Brogaard RY, Houben K, Baldus M, Hofkens J, Roeffaers MBJ, Weckhuysen BM. Reversible and Site-Dependent Proton-Transfer in Zeolites Uncovered at the Single-Molecule Level. J Am Chem Soc 2018; 140:14195-14205. [PMID: 30280894 PMCID: PMC6213027 DOI: 10.1021/jacs.8b08041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
![]()
Zeolite
activity and selectivity is often determined by the underlying
proton and hydrogen-transfer reaction pathways. For the first time,
we use single-molecule fluorescence microscopy to directly follow
the real-time behavior of individual styrene-derived carbocationic
species formed within zeolite ZSM-5. We find that intermittent fluorescence
and remarkable photostability of carbocationic intermediates strongly
depend on the local chemical environment imposed by zeolite framework
and guest solvent molecules. The carbocationic stability can be additionally
altered by changing para-substituent on the styrene
moiety, as suggested by DFT calculations. Thermodynamically unstable
carbocations are more likely to switch between fluorescent (carbocationic)
and dark (neutral) states. However, the rate constants of this reversible
change can significantly differ among individual carbocations, depending
on their exact location in the zeolite framework. The lifetimes of
fluorescent states and reversibility of the process can be additionally
altered by changing the interaction between dimeric carbocations and
solvated Brønsted acid sites in the MFI framework. Advanced multidimensional
magic angle spinning solid-state NMR spectroscopy has been employed
for the accurate structural elucidation of the reaction products during
the zeolite-catalyzed dimerization of styrene in order to corroborate
the single-molecule fluorescence microscopy data. This complementary
approach of single-molecule fluorescence microscopy, NMR, and DFT
collectively indicates that the relative stability of the carbocationic
and the neutral states largely depends on the substituent and the
local position of the Brønsted acid site within the zeolite framework.
As a consequence, new insights into the host–guest chemistry
between the zeolite and aromatics, in terms of their surface mobility
and reactivity, have been obtained.
Collapse
Affiliation(s)
- Zoran Ristanović
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Abhishek Dutta Chowdhury
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Rasmus Y Brogaard
- Department of Chemistry , University of Oslo , Postboks 1126 Blindern, 0318 Oslo , Norway
| | - Klaartje Houben
- NMR Research Group, Bijvoet Centre for Biomolecular Research , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Marc Baldus
- NMR Research Group, Bijvoet Centre for Biomolecular Research , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| | - Johan Hofkens
- Department of Chemistry , KU Leuven , Celestijnenlaan 200 F , B-3001 Leuven , Belgium
| | - Maarten B J Roeffaers
- Centre for Surface Chemistry and Catalysis , KU Leuven , Kasteelpark Arenberg 23 , 3001 Heverlee , Belgium
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| |
Collapse
|
37
|
Easter QT, Blum SA. Kinetics of the Same Reaction Monitored over Nine Orders of Magnitude in Concentration: When Are Unique Subensemble and Single‐Turnover Reactivity Displayed? Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Quinn T. Easter
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| | - Suzanne A. Blum
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| |
Collapse
|
38
|
Easter QT, Blum SA. Kinetics of the Same Reaction Monitored over Nine Orders of Magnitude in Concentration: When Are Unique Subensemble and Single‐Turnover Reactivity Displayed? Angew Chem Int Ed Engl 2018; 57:12027-12032. [DOI: 10.1002/anie.201807317] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Quinn T. Easter
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| | - Suzanne A. Blum
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| |
Collapse
|
39
|
Dery S, Kim S, Haddad D, Cossaro A, Verdini A, Floreano L, Toste FD, Gross E. Identifying site-dependent reactivity in oxidation reactions on single Pt particles. Chem Sci 2018; 9:6523-6531. [PMID: 30310583 PMCID: PMC6115685 DOI: 10.1039/c8sc01956h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/03/2018] [Indexed: 01/13/2023] Open
Abstract
IR nanospectroscopy measurements revealed the influence of oxidizing reaction conditions on the reactivity of different surface sites on Pt particles.
Catalytic nanoparticles are heterogeneous in their nature and even within the simplest particle various surface sites exist and influence the catalytic reactivity. Thus, detailed chemical information at the nanoscale is essential for understanding how surface properties and reaction conditions direct the reactivity of different surface sites of catalytic nanoparticles. In this work, hydroxyl-functionalized N-heterocyclic carbene molecules (NHCs) were anchored to the surface of Pt particles and utilized as chemical markers to detect reactivity variations between different surface sites under liquid and gas phase oxidizing conditions. Differences in the chemical reactivity of surface-anchored NHCs were identified using synchrotron-radiation-based infrared nanospectroscopy with a spatial resolution of 20 nanometers. By conducting IR nanospectroscopy measurements, along with complementary spatially averaged IR and X-ray spectroscopy measurements, we identified that enhanced reactivity occurred on the particles' periphery under both gas and liquid phase oxidizing conditions. Under gas phase reaction conditions the NHCs' hydroxyl functional groups underwent preferential oxidization to the acid along the perimeter of the particle. Exposure of the sample to harsher, liquid phase oxidizing conditions induced modification of the NHCs, which was mostly identified at the particle's periphery. Analysis of X-ray absorption spectroscopy measurements revealed that exposure of the sample to oxidizing conditions induced aromatization of the NHCs, presumably due to oxidative dehydrogenation reaction, along with reorientation of the NHCs from perpendicular to parallel to the Pt surface. These results, based on single particle measurements, demonstrate the high reactivity of surface sites that are located at the nanoparticle's periphery and the influence of reaction conditions on site-dependent reactivity.
Collapse
Affiliation(s)
- Shahar Dery
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel . .,The Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Suhong Kim
- Department of Chemistry , University of California , Berkeley , California 94720 , USA .
| | - David Haddad
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel . .,The Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Albano Cossaro
- CNR-IOM , Laboratorio Nazionale TASC , Basovizza SS-14 , Trieste 34012 , Italy
| | - Alberto Verdini
- CNR-IOM , Laboratorio Nazionale TASC , Basovizza SS-14 , Trieste 34012 , Italy
| | - Luca Floreano
- CNR-IOM , Laboratorio Nazionale TASC , Basovizza SS-14 , Trieste 34012 , Italy
| | - F Dean Toste
- Department of Chemistry , University of California , Berkeley , California 94720 , USA .
| | - Elad Gross
- Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel . .,The Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| |
Collapse
|
40
|
Zou N, Chen G, Mao X, Shen H, Choudhary E, Zhou X, Chen P. Imaging Catalytic Hotspots on Single Plasmonic Nanostructures via Correlated Super-Resolution and Electron Microscopy. ACS NANO 2018; 12:5570-5579. [PMID: 29860829 DOI: 10.1021/acsnano.8b01338] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Surface-plasmon (SP) enhanced catalysis on plasmonic nanostructures brings opportunities to increase catalytic efficiency and alter catalytic selectivity. Understanding the underlying mechanism requires quantitative measurements of catalytic enhancement on these nanostructures, whose intrinsic structural heterogeneity presents experimental challenges. Using correlated super-resolution fluorescence microscopy and electron microscopy, here we report a quantitative visualization of SP-enhanced catalytic activity at the nanoscale within single plasmonic nanostructures. We focus on two Au- and Ag-based linked nanostructures that present plasmonic hotspots at nanoscale gaps. Spatially localized higher reaction rates at these gaps vs nongap regions report the SP-induced catalytic enhancements, which show direct correlations with the nanostructure geometries and local electric field enhancements. Furthermore, the catalytic enhancement scales quadratically with the local actual light intensity, attributable to hot electron involvement in the catalytic enhancement mechanism. These discoveries highlight the effectiveness of correlated super-resolution and electron microscopy in interrogating nanoscale catalytic properties.
Collapse
Affiliation(s)
- Ningmu Zou
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Guanqun Chen
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Xianwen Mao
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Hao Shen
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Eric Choudhary
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Xiaochun Zhou
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Peng Chen
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
41
|
Kosinov N, Liu C, Hensen EJM, Pidko EA. Engineering of Transition Metal Catalysts Confined in Zeolites. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2018; 30:3177-3198. [PMID: 29861546 PMCID: PMC5973782 DOI: 10.1021/acs.chemmater.8b01311] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/26/2018] [Indexed: 05/09/2023]
Abstract
Transition metal-zeolite composites are versatile catalytic materials for a wide range of industrial and lab-scale processes. Significant advances in fabrication and characterization of well-defined metal centers confined in zeolite matrixes have greatly expanded the library of available materials and, accordingly, their catalytic utility. In this review, we summarize recent developments in the field from the perspective of materials chemistry, focusing on synthesis, postsynthesis modification, (operando) spectroscopy characterization, and computational modeling of transition metal-zeolite catalysts.
Collapse
Affiliation(s)
- Nikolay Kosinov
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- E-mail: (N.K.)
| | - Chong Liu
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Emiel J. M. Hensen
- Schuit
Institute of Catalysis, Laboratory of Inorganic Materials Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- E-mail: (E.J.M.H.)
| | - Evgeny A. Pidko
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- TheoMAT
group, ITMO University, Lomonosova str. 9, St. Petersburg 191002, Russia
- E-mail: (E.A.P.)
| |
Collapse
|
42
|
Hesari M, Mao X, Chen P. Charge Carrier Activity on Single-Particle Photo(electro)catalysts: Toward Function in Solar Energy Conversion. J Am Chem Soc 2018; 140:6729-6740. [DOI: 10.1021/jacs.8b04039] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mahdi Hesari
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xianwen Mao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
43
|
Cooperative communication within and between single nanocatalysts. Nat Chem 2018; 10:607-614. [DOI: 10.1038/s41557-018-0022-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 02/05/2018] [Indexed: 11/08/2022]
|
44
|
Li B, Zhang G, Yang C, Li Z, Chen R, Qin C, Gao Y, Huang H, Xiao L, Jia S. Fast recognition of single quantum dots from high multi-exciton emission and clustering effects. OPTICS EXPRESS 2018; 26:4674-4685. [PMID: 29475315 DOI: 10.1364/oe.26.004674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Recognition of single quantum dots (QDs) from high multi-exciton emission and clustering effects is challenging using the conventional second-order correlation function method. Here we demonstrate a method for fast recognizing single QDs based on the probabilities of detecting single- and two-photon events. The time-tagged, time-resolved and time-correlated single-photon counting technique is applied to effectively remove multi-exciton emission and low-counting background. By this way, single QDs can be fastly recognized by the spatial coincidence-counting model. In addition, the fast recognition of single QDs by using the collected photons during the confocal scanning imaging process has been achieved synchronously.
Collapse
|
45
|
|
46
|
Abstract
Chemical activity of single nanoparticles can be imaged and determined by monitoring the optical signal of each individual during chemical reactions with advanced optical microscopes. It allows for clarifying the functional heterogeneity among individuals, and for uncovering the microscopic reaction mechanisms and kinetics that could otherwise be averaged out in ensemble measurements.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| |
Collapse
|
47
|
Alarcos N, Cohen B, Ziółek M, Douhal A. Photochemistry and Photophysics in Silica-Based Materials: Ultrafast and Single Molecule Spectroscopy Observation. Chem Rev 2017; 117:13639-13720. [PMID: 29068670 DOI: 10.1021/acs.chemrev.7b00422] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Silica-based materials (SBMs) are widely used in catalysis, photonics, and drug delivery. Their pores and cavities act as hosts of diverse guests ranging from classical dyes to drugs and quantum dots, allowing changes in the photochemical behavior of the confined guests. The heterogeneity of the guest populations as well as the confinement provided by these hosts affect the behavior of the formed hybrid materials. As a consequence, the observed reaction dynamics becomes significantly different and complex. Studying their photobehavior requires advanced laser-based spectroscopy and microscopy techniques as well as computational methods. Thanks to the development of ultrafast (spectroscopy and imaging) tools, we are witnessing an increasing interest of the scientific community to explore the intimate photobehavior of these composites. Here, we review the recent theoretical and ultrafast experimental studies of their photodynamics and discuss the results in comparison to those in homogeneous media. The discussion of the confined dynamics includes solvation and intra- and intermolecular proton-, electron-, and energy transfer events of the guest within the SBMs. Several examples of applications in photocatalysis, (photo)sensors, photonics, photovoltaics, and drug delivery demonstrate the vast potential of the SBMs in modern science and technology.
Collapse
Affiliation(s)
- Noemí Alarcos
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Marcin Ziółek
- Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University , Umultowska 85, 61-614 Poznań, Poland
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| |
Collapse
|
48
|
Easter QT, Blum SA. Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions. Angew Chem Int Ed Engl 2017; 56:13772-13775. [DOI: 10.1002/anie.201708284] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Indexed: 11/11/2022]
Affiliation(s)
| | - Suzanne A. Blum
- Department of Chemistry; University of California, Irvine; Irvine CA 92617 USA
| |
Collapse
|
49
|
Easter QT, Blum SA. Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Suzanne A. Blum
- Department of Chemistry University of California, Irvine Irvine CA 92617 USA
| |
Collapse
|
50
|
Fu D, Schmidt JE, Ristanović Z, Chowdhury AD, Meirer F, Weckhuysen BM. Highly Oriented Growth of Catalytically Active Zeolite ZSM-5 Films with a Broad Range of Si/Al Ratios. Angew Chem Int Ed Engl 2017; 56:11217-11221. [PMID: 28675590 PMCID: PMC5599938 DOI: 10.1002/anie.201704846] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Indexed: 11/08/2022]
Abstract
Highly b-oriented zeolite ZSM-5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al3+ usually disrupts the orientation of zeolite films. Herein, using structure-directing agents with hydroxy groups, we demonstrate a new method to prepare highly b-oriented zeolite ZSM-5 films with a broad range of Si/Al ratios (Si/Al=45 to ∞). Fluorescence micro-(spectro)scopy was used to monitor misoriented microstructures, which are invisible to X-ray diffraction, and show Al3+ framework incorporation and illustrate the differences between misoriented and b-oriented films. The methanol-to-hydrocarbons process was studied by operando UV/Vis diffuse reflectance micro-spectroscopy with on-line mass spectrometry, showing that the b-oriented zeolite ZSM-5 films are active and stable under realistic process conditions.
Collapse
Affiliation(s)
- Donglong Fu
- Inorganic Chemistry and Catalysis groupDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Joel E. Schmidt
- Inorganic Chemistry and Catalysis groupDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Zoran Ristanović
- Inorganic Chemistry and Catalysis groupDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Abhishek Dutta Chowdhury
- Inorganic Chemistry and Catalysis groupDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis groupDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis groupDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|