1
|
Harimoto T, Ishigaki Y. Recent Advances in NIR-Switchable Multi-Redox Systems Based on Organic Molecules. Chemistry 2025; 31:e202403273. [PMID: 39503432 DOI: 10.1002/chem.202403273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Indexed: 11/24/2024]
Abstract
Electrochromic systems capable of switching absorption in the near-infrared (NIR) region (750-2500 nm) are attractive from the viewpoint of applications for material and life science, and thus several examples have been reported to date. In general, the development of organic-based systems is needed to reduce the environmental impact and improve biocompatibility. Although extending the switchable spectral range is crucial for the application of organic electrochromic molecules, the switching of NIR absorption based on redox interconversion is still a challenging issue regarding reversibility and durability during interconversion. To overcome this potential instability, the introduction of heteroatoms into the molecular backbone and/or π-extension could be useful strategies in terms of effective delocalization of charge and spin in the corresponding redox states. In this review, we focus on redox-active well-defined small molecules that enable ON/OFF switching of NIR absorption based on precise control of the redox states, and present recent studies on their intrinsic electrochemical and spectroscopic properties and/or structural characterization of their charged states.
Collapse
Affiliation(s)
- Takashi Harimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
- Present address: Institute for Molecular Science, Myodaiji, Okazaki, 444-8787, Japan
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
2
|
Qin H, Zhao L, Zheng L, Ma Z, Liao M, Sun J, Sun C, Chen H. Non-alternant Benzodifluoranthene Tetraimides from 7,8,9,10-Fluoranthene Diimides: Synthesis, Structure, and Optical-Limiting Properties. Chemistry 2025; 31:e202403332. [PMID: 39472414 DOI: 10.1002/chem.202403332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Indexed: 11/21/2024]
Abstract
A novel tetraimide-functionalized non-alternant π-conjugated system, namely, benzodifluoranthene tetraimides (BDFTI), has been designed and synthesized through highly efficient UV-photocyclization of a vinyl-bridged fluoranthene diimide dimer (i. e., FDI-V). The synthesis of FDI-V starts from a straightforward three-step route to produce novel 7,8,9,10-fluoranthene diimide (FDIs) building-blocks, followed by nearly complete bromination and then Stille-coupling reaction to give the desired dimer. The analysis by X-ray crystallography confirms a near-coplanar geometry for FDIs, while BDFTI shows a U-shaped and distorted backbone configuration proven by theoretical optimizations. The tetraimide BDFTI exhibits several advantages over the FDI cores, including an extended absorption band and a red-shift in photoluminescence spectra. This enhancement can be attributed to the presence of additional electron-deficient imide units, which promotes increased intramolecular charge transfer and improved electron affinity. All the imides show a local aromatic characteristic owing to the incorporation of pentagon rings in the π-frameworks. The fully fused BDFTI exhibits nonlinear optical properties as analyzed by the open-aperture Z-scan technique, demonstrating superior optical-limiting performance compared to vinyl-bridged FDI-V. The versatile UV-photocyclization chemistries provide a pathway for developing complex and unique multiimide-functionalized π-conjugated systems, paving the way for creating high-performance optical-limiting materials.
Collapse
Affiliation(s)
- Hanwen Qin
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Lingli Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Liping Zheng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Zhipeng Ma
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Miaoli Liao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Jibin Sun
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chenghua Sun
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huajie Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| |
Collapse
|
3
|
Wiencierz A, Lis T, Chmielewski PJ, Cybińska J, Stępień M. Heptannulated Perylene Diimides: Formation and Reactivity of Electron-Deficient Tropylium Cations and Heptafulvenes. Angew Chem Int Ed Engl 2024:e202419899. [PMID: 39545351 DOI: 10.1002/anie.202419899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
The development of new π-conjugated motifs opens pathways to previously unexplored classes of organic semiconductors and functional dyes. In this study, five- and seven-membered carbocycles were fused at the ortho and bay regions of electron-deficient perylenes, starting from a common dialdehyde precursor. Structural analysis of the resulting perylene tetraesters, dianhydrides, and diimides (PDIs) revealed three distinct ring-fusion patterns and defined stereochemistry. The fused PDI cycloheptatrienes demonstrated susceptibility to acid-catalyzed transarylation, involving tropylium cation intermediates, which can be used preparatively. Under superacidic conditions, the PDI tropylium cations were directly observed and shown to undergo hydride-transfer reductions. Additionally, a fused PDI bis(heptafulvene) was synthesized by dehydrogenating a suitably substituted PDI cycloheptatriene. The final system contains two quinomethane units, which can be protonated to yield a stable tropylium-like dication.
Collapse
Affiliation(s)
- Agata Wiencierz
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Tadeusz Lis
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Piotr J Chmielewski
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Joanna Cybińska
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
- Polski Ośrodek Rozwoju Technologii (PORT), ul. Stabłowicka 147, 54-066, Wrocław, Poland
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
4
|
Kumar R, Chmielewski PJ, Lis T, Czarnecki M, Stępień M. Pentacosacyclenes: cruciform molecular nanocarbons based on cyclooctatetraene. Chem Sci 2024:d4sc05938g. [PMID: 39464614 PMCID: PMC11499954 DOI: 10.1039/d4sc05938g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
Pentacosacyclene (PC) and pentacosacyclene tetraimide (PCTI) were obtained in concise syntheses involving radial extension of tridecacyclene. PC is an electron-rich hydrocarbon with a C88 π-conjugated framework, whereas PCTI is electron-deficient and contains a C96N4 core. PC and PCTI both have non-planar saddle-shaped conformations, and PC was found to self-assemble with C60 to produce a uniquely structured supramolecular crystalline phase. In solution, PCTI undergoes eight single-electron reductions, while PC exhibits two reversible oxidations and three reversible reduction events. Chemically generated anions of PC and PCTI showcase extended near-infrared to infrared absorptions, with the lowest energy bands observed at >3200 nm for the PCTI monoanion and ca. 2800 nm for the PCTI dianion. The electronic and redox properties of pentacosacyclenes can be explained using molecular orbital and valence bond theories as originating from changes in the local aromaticity of five- and eight-membered rings.
Collapse
Affiliation(s)
- Rakesh Kumar
- Wydział Chemii, Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Piotr J Chmielewski
- Wydział Chemii, Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Tadeusz Lis
- Wydział Chemii, Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Mirosław Czarnecki
- Wydział Chemii, Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| |
Collapse
|
5
|
Li J, Liu T, Liu J, Zhang C, Yang Y, Tan G, You J. Construction of acenaphthylenes via C-H activation-based tandem penta- and hexaannulation reactions. Nat Commun 2024; 15:8319. [PMID: 39333237 PMCID: PMC11436931 DOI: 10.1038/s41467-024-52652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Acenaphthylene-containing polycyclic aromatic hydrocarbons (AN-PAHs) are noteworthy structural motifs for organic functional materials due to their non-alternant electronic structure, which increases electron affinity. However, the synthesis of AN-PAHs has traditionally required multiple sequential synthetic steps, limiting structural diversity. Herein, we present a tandem C-H penta- and hexaannulation reaction of aryl alkyl ketone with acetylenedicarboxylate. This integrated approach enhances overall efficiency and selectivity, marking a significant advancement in AN-PAH synthesis. Mechanistic studies unveil an orchestrated extension of five- and six-membered rings through C-H activation-annulation and Diels-Alder reaction. Additionally, the tandem annulation reaction can be performed stepwise, further validating the proposed mechanism and increasing the structural diversity of AN-PAHs.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Tao Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Junjie Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Cheng Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Guangying Tan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China.
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China.
| |
Collapse
|
6
|
Ishikawa S, Maeda H, Segi M, Furuyama T. Dehydro[12]- and [18]annulene-Fused Ball-Shaped Ruthenium Complex Oligomers: Synthesis, Aromatic/Antiaromatic Effect, and Symmetry for Near-Infrared Optical Properties. Chemistry 2024; 30:e202400407. [PMID: 38486467 DOI: 10.1002/chem.202400407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 04/11/2024]
Abstract
The appropriate arrangement of near-infrared (NIR) chromophores allows for the modification of the peak wavelength in the NIR region and efficient use of NIR light. However, the preparation of novel NIR chromophores using simple procedures remains a formidable challenge. Herein, we report the synthesis of ball-shaped ruthenium complex oligomers. The metal complexes can be synthesized in a single step and interact strongly with NIR light. Alkyne-substituted low-symmetry ball-shaped ruthenium complexes were synthesized and subjected to Eglinton coupling to obtain dehydro[12] and [18]annulene-fused dimers and trimers. Fine-tuning of the reaction conditions led to the selective synthesis of the target oligomers. NMR spectroscopy confirmed that the 18π-aromatic and 12π-antiaromatic properties of the annulene influenced the ruthenium complex chromophore, and magnetic circular dichroism spectroscopy showed changes in the electronic structure of their excited state owing to molecular-symmetry differences. The absorption coefficient in the NIR region of the absorption spectra of the oligomers increased significantly, supporting the efficient use of light by oligomerization. The formation of oligomers using ball-shaped metal complexes is a simple and effective strategy for controlling NIR optical properties.
Collapse
Affiliation(s)
- Sari Ishikawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hajime Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Masahito Segi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Taniyuki Furuyama
- NanoMaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
7
|
Chen Y, Zhao Y, Zhao Y, Chen X, Liu X, Li L, Cao D, Wang S, Zhang L. A Novel Homoconjugated Propellane Triimide: Synthesis, Structural Analyses, and Gas Separation. Angew Chem Int Ed Engl 2024; 63:e202401706. [PMID: 38419479 DOI: 10.1002/anie.202401706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Rigid three-dimensional (3D) polycyclic propellanes have garnered interest due to their unique conformational spaces, which display great potential use in selectivity, separation and as models to study through-space electronic interactions. Herein we report the synthesis of a novel rigid propellane, trinaphtho[3.3.3]propellane triimide, which comprises three imide groups embedded on a trinaphtho[3.3.3]propellane. This propellane triimide exhibits large bathochromic shift, amplified molar absorptivity, enhanced fluorescence, and lower reduction potential when compared to the subunits. Computational and experimental studies reveal that the effective through-space π-orbitals interacting (homoconjugation) occurs between the subunits. Single-crystal XRD analysis reveals that the propellane triimide has a highly quasi-D3h symmetric skeleton and readily crystallizes into different superstructures by changing alkyl chains at the imide positions. In particular, the porous 3D superstructure with S-shaped channels is promising for taking up ethane (C2H6) with very good selectivity over ethylene (C2H4), which can purify C2H4 from C2H6/C2H4 in a single separation step. This work showcases a new class of rare 3D polycyclic propellane with intriguing electronic and supramolecular properties.
Collapse
Affiliation(s)
- Yan Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Yongting Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Yubo Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Xiangping Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Xinyue Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Lin Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, 300350, Tianjin, P. R. China
| | - Dapeng Cao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Shitao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
| |
Collapse
|
8
|
Kumar S, Lis T, Bury W, Chmielewski PJ, Garbicz M, Stępień M. Hierarchical Self-Assembly of Curved Aromatics: From Donor-Acceptor Porphyrins to Triply Periodic Minimal Surfaces. Angew Chem Int Ed Engl 2024; 63:e202316243. [PMID: 38198178 DOI: 10.1002/anie.202316243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/16/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
A saddle-shaped π-extended zinc porphyrin containing a peripheral pyridyl ligand undergoes quantitative self-assembly into a cyclic trimer. The trimer has a prismatic structure with negatively curved side walls, which promote the formation of supramolecular organic frameworks stabilized by dispersion interactions. The first framework type, UWr-1, has the npo topology, with a hexagonal structure analogous to the Schwartz H triply periodic minimal surface. Co-crystallization of the trimer with either C60 and C70 produces the isomorphous cubic UWr-2 and UWr-3 phases, characterized by the ctn network topology and a structural relationship to the Fischer-Koch minimal surface S. All three phases contain complex labyrinths of solvent-filled channels, corresponding to very large probe-accessible volumes (68 % to 76 %). The UWr-2 network could be partly desolvated while retaining its long range dimensional order, indicating remarkable strength of the dispersion interactions in the crystal. A theoretical analysis of noncovalent interactions shows the role of geometrical matching between the negatively curved porphyrin units and positively curved fullerenes.
Collapse
Affiliation(s)
- Sunit Kumar
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Tadeusz Lis
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Wojciech Bury
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Piotr J Chmielewski
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Mateusz Garbicz
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
9
|
Matuszczyk D, Lee YJ, Kang S, Chmielewski PJ, Cybińska J, Kim D, Stępień M. π-Extended Hexapyrrolylbenzenes: Exploring Charge-Transfer Phenomena in Donor-Acceptor Propellers. Chemistry 2023; 29:e202302429. [PMID: 37624878 DOI: 10.1002/chem.202302429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
A family of propeller-shaped donor-acceptor hexapyrrolylbenzenes (HPBs) were designed and synthesized by sequential nucleophilic substitution of hexafluorobenzene with π-extended pyrroles. In particular, four hybrids were obtained, containing various combinations of electron-rich and electron-poor acenaphthylene-fused pyrroles. Additionally, to probe the efficiency of ortho transfer interactions, a system was designed containing unique donor and acceptor subunits spatially separated with four unfunctionalized pyrroles. DFT calculations showed propeller-shaped geometries of all HPB molecules and separation of frontier molecular orbitals between donor and acceptor subunits. Steady-state and time-resolved photophysical measurements revealed charge-transfer (CT) character of the emission with strong positive dependence on solvent polarity. The principal CT pathway involves ortho-positioned pairs of donors and acceptors and requires bending of the acceptor in the excited state.
Collapse
Affiliation(s)
- Daniel Matuszczyk
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Yu Jin Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seongsoo Kang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Piotr J Chmielewski
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Joanna Cybińska
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
- Polski, Ośrodek Rozwoju Technologii (PORT), ul. Stabłowicka147, 54-066, Wrocław, Poland
| | - Dongho Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
10
|
Gámez-Valenzuela S, Torres-Moya I, Sánchez A, Donoso B, López Navarrete JT, Ruiz Delgado MC, Prieto P, Ponce Ortiz R. Extended π-Conjugation and Structural Planarity Effects of Symmetrical D-π-A-π-D Naphthalene and Perylene Diimide Semiconductors on n-type Electrical Properties. Chemistry 2023; 29:e202301639. [PMID: 37265227 DOI: 10.1002/chem.202301639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/03/2023]
Abstract
A series of donor-π-acceptor-π-donor (D-π-A-π-D) compounds based on naphthalendiimide (NDI) and perylenediimide (PDI) central cores combined with triphenylamine and phenylcarbazole donor groups have been synthesized, characterized and tested in top-contact/bottom gate organic field-effect transistors (OFETs). The results showed high electron mobilities, up to 0.3 cm2 V-1 s-1 , in the case of NDI derivatives and moderate values of around 10-3 cm2 V-1 s-1 for PDI-based semiconductors. Quantum chemical calculations were performed in order to support the experimental data. The results suggest that adequate molecular characteristics and larger crystalline domains in NDI vs. PDI semiconducting films may be the reasons behind the enhanced electrical properties of NDI derivatives. Furthermore, when the lateral donor substituents are triphenylamine groups, the mobilities were slightly higher in comparison to phenylcarbazole donor groups due to an improved electron-donating character. Other characterization techniques, such as AFM, X-ray diffraction or spectroelectrochemistry, among others, have been performed to analyze supramolecular order, charge carriers' nature and stability, parameters closely related to charge transport characteristics.
Collapse
Affiliation(s)
- Sergio Gámez-Valenzuela
- Department of Physical Chemistry, University of Malaga Campus de Teatinos s/n, Malaga, 29071, Spain
| | - Iván Torres-Moya
- Department of Inorganic, Organic Chemistry and Biochemistry University of Castilla-La Mancha-IRICA, Faculty of Science and Chemical Technologies, Ciudad Real, 13071, Spain
- Department of Organic Chemistry, University of Murcia Campus of Espinardo, Murcia, 30005, Spain
| | - Abelardo Sánchez
- Department of Inorganic, Organic Chemistry and Biochemistry University of Castilla-La Mancha-IRICA, Faculty of Science and Chemical Technologies, Ciudad Real, 13071, Spain
| | - Beatriz Donoso
- Department of Inorganic, Organic Chemistry and Biochemistry University of Castilla-La Mancha-IRICA, Faculty of Science and Chemical Technologies, Ciudad Real, 13071, Spain
| | | | - M Carmen Ruiz Delgado
- Department of Physical Chemistry, University of Malaga Campus de Teatinos s/n, Malaga, 29071, Spain
| | - Pilar Prieto
- Department of Inorganic, Organic Chemistry and Biochemistry University of Castilla-La Mancha-IRICA, Faculty of Science and Chemical Technologies, Ciudad Real, 13071, Spain
| | - Rocío Ponce Ortiz
- Department of Physical Chemistry, University of Malaga Campus de Teatinos s/n, Malaga, 29071, Spain
| |
Collapse
|
11
|
Labella J, Torres T. Subphthalocyanines: contracted porphyrinoids with expanded applications. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
12
|
Kumar R, Chmielewski PJ, Lis T, Volkmer D, Stępień M. Tridecacyclene Tetraimide: An Easily Reduced Cyclooctatetraene Derivative. Angew Chem Int Ed Engl 2022; 61:e202207486. [PMID: 35819871 PMCID: PMC9545420 DOI: 10.1002/anie.202207486] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Indexed: 11/06/2022]
Abstract
Tridecacyclene tetraimide, TCTI, an electron-deficient non-benzenoid nanocarbon with a C56 N4 polycyclic framework was obtained in a concise synthesis. TCTI has a non-planar structure and forms π-stacked dimers in the solid state. In solution, it undergoes eight single-electron reductions, yielding a range of negatively charged states up to an octaanion. Except for the latter species, which has a remarkably large electronic gap, the anions feature extended near-infrared absorptions, with a particularly strong band at 1692 nm observed for the dianion. A computational analysis of the TCTI anions shows that their stability originates from the combined effects of electron-deficient imide groups and the local aromaticity of reduced acenaphthylene units. The properties of TCTI make it potentially useful in electrochromic and charge storage applications.
Collapse
Affiliation(s)
- Rakesh Kumar
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot-Curie 1450-383WrocławPoland
| | | | - Tadeusz Lis
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot-Curie 1450-383WrocławPoland
| | - Dirk Volkmer
- Institute of PhysicsChair of Solid State and Materials ScienceAugsburg UniversityUniversitätsstrasse 186159AugsburgGermany
| | - Marcin Stępień
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot-Curie 1450-383WrocławPoland
| |
Collapse
|
13
|
Krzeszewski M, Modrzycka S, Bousquet MHE, Jacquemin D, Drąg M, Gryko DT. Green-Emitting 4,5-Diaminonaphthalimides in Activity-Based Probes for the Detection of Thrombin. Org Lett 2022; 24:5602-5607. [PMID: 35863755 PMCID: PMC9361357 DOI: 10.1021/acs.orglett.2c02320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The natures of electron-donating groups as well as the bridge between them determine the fate of substituted 1,8-naphthalimide molecules in the excited state. An activity-based probe constructed from a selective peptide sequence, a reactive warhead, and the brightest green-emitting fluorophore displays impressive performance for thrombin protease detection in a newly constructed series of 1,8-naphthalimides.
Collapse
Affiliation(s)
- Maciej Krzeszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Sylwia Modrzycka
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wybrezeże Wyspiańskiego 27, Wrocław 50-370, Poland
| | | | - Denis Jacquemin
- CEISAM UMR CNRS 6230, Nantes University, Nantes 44000, France
| | - Marcin Drąg
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wybrezeże Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| |
Collapse
|
14
|
Kumar R, Chmielewski P, Lis T, Volkmer D, Stępień M. Tridecacyclene Tetraimide: An Easily Reduced Cyclooctatetraene Derivative. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rakesh Kumar
- University of Wroclaw: Uniwersytet Wroclawski Faculty of Chemistry POLAND
| | - Piotr Chmielewski
- University of Wroclaw: Uniwersytet Wroclawski Faculty of Chemistry POLAND
| | - Tadeusz Lis
- University of Wroclaw: Uniwersytet Wroclawski Faculty of Chemistry POLAND
| | - Dirk Volkmer
- Augsburg University Institute of Physics, Chair of Solid State and Materials Science GERMANY
| | - Marcin Stępień
- University of Wroclaw Department of Chemistry ul. F. Joliot-Curie 14 50-383 Wroclaw POLAND
| |
Collapse
|
15
|
Maurya YK, Chmielewski PJ, Cybińska J, Prajapati B, Lis T, Kang S, Lee S, Kim D, Stępień M. Naphthalimide-Fused Dipyrrins: Tunable Halochromic Switches and Photothermal NIR-II Dyes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105886. [PMID: 35174648 PMCID: PMC9259717 DOI: 10.1002/advs.202105886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/18/2022] [Indexed: 06/14/2023]
Abstract
A family of tunable halochromic switches is developed using a naphthalimide-fused dipyrrin as the core π-conjugated motif. Electronic properties of these dipyrrins are tuned by substitution of their alpha and meso positions with aryl groups of variable donor-acceptor strength. The first protonation results in a conformational change that enhances electronic coupling between the dipyrrin chromophore and the meso substituent, leading to halochromic effects that occasionally exceed 200 nm and switch the absorption between the near-infrared (NIR)-I and NIR-II ranges. A NIR-II photothermal effect, switchable by acid-base chemistry is demonstrated for selected dipyrrins. Further protonation is possible for derivatives bearing additional amino groups, leading to up to four halochromic switching step. The most electron-rich dipyrrins are also susceptible to chemical oxidation, yielding NIR-absorbing radical cations and closed-shell dications.
Collapse
Affiliation(s)
- Yogesh Kumar Maurya
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot‐Curie 14Wrocław50‐383Poland
| | | | - Joanna Cybińska
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot‐Curie 14Wrocław50‐383Poland
- PORT – Polski Ośrodek Rozwoju Technologiiul. Stabłowicka 147Wrocław54‐066Poland
| | - Bibek Prajapati
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot‐Curie 14Wrocław50‐383Poland
| | - Tadeusz Lis
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot‐Curie 14Wrocław50‐383Poland
| | - Seongsoo Kang
- Department of Chemistry and Spectroscopy Laboratory for Functional π‐Electronic SystemsYonsei UniversitySeoul03722Korea
| | - Seokwon Lee
- PORT – Polski Ośrodek Rozwoju Technologiiul. Stabłowicka 147Wrocław54‐066Poland
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π‐Electronic SystemsYonsei UniversitySeoul03722Korea
| | - Marcin Stępień
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot‐Curie 14Wrocław50‐383Poland
| |
Collapse
|
16
|
Cao G, Baryshnikov G, Chen C, Chen L, Zhao T, Fu S, Jiang Z, Liu X, Li Q, Xie Y, Li C. Porphyrindiene-Based Tandem Diels-Alder Reaction for Preparing Low-Symmetry π-Extended Porphyrins with Push-Pull Skeletons. J Org Chem 2022; 87:9001-9010. [PMID: 35748309 DOI: 10.1021/acs.joc.2c00699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tandem Diels-Alder reactions of masked porphyrindienes (i.e., sulfolenoporphyrins) with benzoquinones and stilbenes, followed by aromatization, have been developed to load porphyrin with mixed annulation units (i.e., terphenyl and naphthoquinone), furnishing the low-symmetry π-extended porphyrins (DxAy) with push-pull skeletons. All low-symmetrical chromophores display panchromatic absorption spectra, which look like a spectral combination of symmetrical congeners (D4/A4) in a certain ratio. Among them, tD2A2 with trans-arrangement of push/pull units possesses the largest maximum centered at 766 nm with the onset around 900 nm. The fusion of the electron-deficient naphthoquinone moiety on the porphyrin core results in the approximately quantitative regulation of the Eox1 and HOMOs (i.e., 0.10-0.13 V increase for the Eox1 and 0.14-0.16 eV decrease for the HOMOs per naphthoquinone unit). In brief, this work provides a new way to construct low-symmetry π-extended porphyrins with tunable properties resorting to the ratios and locations of the annulated push-pull units.
Collapse
Affiliation(s)
- Guanyue Cao
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Glib Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden
| | - Chen Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Liyuan Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Tengjiao Zhao
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Shuyi Fu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Zhenhui Jiang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xiujun Liu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qizhao Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yongshu Xie
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Chengjie Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
17
|
Kumar S, Maurya YK, Lis T, Stępień M. Synthesis of a donor-acceptor heterodimer via trifunctional completive self-sorting. Nat Commun 2022; 13:3204. [PMID: 35680883 PMCID: PMC9184498 DOI: 10.1038/s41467-022-30859-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
Abstract
Selective self-assembly of heterodimers consisting of two non-identical subunits plays important roles in Nature but is rarely encountered in synthetic supramolecular systems. Here we show that photocleavage of a donor–acceptor porphyrin complex produces an heterodimeric structure with surprising selectivity. The system forms via a multi-step sequence that starts with an oxidative ring opening, which produces an equimolar mixture of two isomeric degradation products (zinc(II) bilatrien-abc-ones, BTOs). These two isomers are susceptible to water addition, yielding the corresponding zinc(II) 15-hydroxybiladien-ab-ones (HBDOs). However, in the photocleavage experiment only one HBDO isomer is formed, and it quantitatively combines with the remaining BTO isomer. The resulting heterodimer is stabilized by a Zn–O coordination bond and extended dispersion interactions between the overlapping π-surfaces of the monomers. The observed selectivity can be seen as a case of completive self-sorting, simultaneously controlled by three types of complementary interactions. The preparation of heterodimeric structures via self-assembly processes is challenging. Here, the authors report the photooxidation of a donor–acceptor metalloporphyrin, which enables a self-sorting process that yields an heterodimer quantitatively.
Collapse
Affiliation(s)
- Sunit Kumar
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Yogesh Kumar Maurya
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Tadeusz Lis
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland.
| |
Collapse
|
18
|
Balahoju SA, Maurya YK, Chmielewski PJ, Lis T, Kondratowicz M, Cybińska J, Stępień M. Helicity Modulation in NIR-Absorbing Porphyrin-Ryleneimides. Angew Chem Int Ed Engl 2022; 61:e202200781. [PMID: 35130373 PMCID: PMC9303407 DOI: 10.1002/anie.202200781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/17/2022]
Abstract
Peripheral substitution of a π-extended porphyrin with bulky groups produces a curved chromophore with four helical stereogenic units. The curvature and stereochemistry of such porphyrins can be controlled by varying the substituents, coordinated metal ions, and apical ligands. In particular, when the achiral saddle-shaped free bases are treated with large metal ions, i.e., CdII or HgII , the resulting complexes convert to chiral propeller-like configurations. X-ray diffraction analyses show that apical coordination of a water molecule is sufficient to induce a notable bowl-like distortion of the cadmium complex, which however retains its chiral structure. For phenyl- and tolyl-substituted derivatives, the conversion is thermodynamically controlled, whereas complexes bearing bulky 4-(tert-butyl)phenyl groups transform into their chiral forms upon heating. In the latter case, the chiral Hg porphyrin was converted into the corresponding free base and other metal complexes without any loss of configurational purity, ultimately providing access to stable, enantiopure porphyrin propellers.
Collapse
Affiliation(s)
| | - Yogesh Kumar Maurya
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot-Curie 1450-383WrocławPoland
| | | | - Tadeusz Lis
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot-Curie 1450-383WrocławPoland
| | | | - Joanna Cybińska
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot-Curie 1450-383WrocławPoland
- (PORT) Polski Ośrodek Rozwoju Technologiiul. Stabłowicka 14754-066WrocławPoland
| | - Marcin Stępień
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot-Curie 1450-383WrocławPoland
| |
Collapse
|
19
|
Balahoju SA, Maurya YK, Chmielewski PJ, Lis T, Kondratowicz M, Cybińska J, Stępień M. Helicity Modulation in NIR‐Absorbing Porphyrin‐Ryleneimides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Yogesh Kumar Maurya
- Wydział Chemii Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Piotr J. Chmielewski
- Wydział Chemii Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Tadeusz Lis
- Wydział Chemii Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Mateusz Kondratowicz
- Wydział Chemii Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Joanna Cybińska
- Wydział Chemii Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
- (PORT) Polski Ośrodek Rozwoju Technologii ul. Stabłowicka 147 54-066 Wrocław Poland
| | - Marcin Stępień
- Wydział Chemii Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| |
Collapse
|
20
|
Knippen K, Matuszczyk D, Kraft M, Bredenkötter B, Eickerling G, Lis T, Volkmer D, Stępień M. Acenaphtho[1,2-d][1,2,3]triazole and Its Kuratowski Complex: A π-Extended Tecton for Supramolecular and Coordinative Self-Assembly. Chemistry 2022; 28:e202103480. [PMID: 34713520 PMCID: PMC9299806 DOI: 10.1002/chem.202103480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/13/2022]
Abstract
π-Extended acenaphtho[1,2-d][1,2,3]triazoles, the unsubstituted Anta-H and its di-tert-butyl derivative Dibanta-H, as well as 5,6,7,8-tetrahydro-1H-naphtho[2,3-d][1,2,3]triazole Cybta-H were obtained in concise syntheses. In the solid state, Dibanta-H forms an unprecedented hydrogen-bonded cyclic tetrad, stabilized by dispersion interactions of the bulky tBu substituents, whereas a cyclic triad was found in the crystal structure of Anta-H. These cyclic assemblies form infinite slipped stacks in the crystals. Evidence for analogous hydrogen-bonded self-assembly in solution was provided by low-temperature NMR spectroscopy and computational analyses. Kuratowski-type pentanuclear complexes [Zn5 Cl4 (Dibanta)6 ] and [Zn5 Cl4 (Cybta)6 ] were prepared from the respective triazoles. In the Dibanta complexes, the π-aromatic surfaces of the ligands extend from the edges of the tetrahedral Zn5 core, yielding an enlarged structure with significant internal molecular free volume and red-shifted fluorescence.
Collapse
Affiliation(s)
- Katharina Knippen
- Institute of PhysicsChair of Solid State and Materials ScienceAugsburg UniversityUniversitätsstrasse 186159AugsburgGermany
| | - Daniel Matuszczyk
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot-Curie 1450-383WrocławPoland
| | - Maryana Kraft
- Institute of PhysicsChair of Solid State and Materials ScienceAugsburg UniversityUniversitätsstrasse 186159AugsburgGermany
| | - Björn Bredenkötter
- Institute of PhysicsChair of Solid State and Materials ScienceAugsburg UniversityUniversitätsstrasse 186159AugsburgGermany
| | - Georg Eickerling
- Institute of PhysicsChair of Chemical Physics and Materials ScienceAugsburg UniversityUniversitätsstrasse 186159AugsburgGermany
| | - Tadeusz Lis
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot-Curie 1450-383WrocławPoland
| | - Dirk Volkmer
- Institute of PhysicsChair of Solid State and Materials ScienceAugsburg UniversityUniversitätsstrasse 186159AugsburgGermany
| | - Marcin Stępień
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot-Curie 1450-383WrocławPoland
| |
Collapse
|
21
|
Borissov A, Maurya YK, Moshniaha L, Wong WS, Żyła-Karwowska M, Stępień M. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chem Rev 2022; 122:565-788. [PMID: 34850633 PMCID: PMC8759089 DOI: 10.1021/acs.chemrev.1c00449] [Citation(s) in RCA: 260] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/21/2022]
Abstract
This review surveys recent progress in the chemistry of polycyclic heteroaromatic molecules with a focus on structural diversity and synthetic methodology. The article covers literature published during the period of 2016-2020, providing an update to our first review of this topic (Chem. Rev. 2017, 117 (4), 3479-3716).
Collapse
Affiliation(s)
| | | | | | | | | | - Marcin Stępień
- Wydział Chemii, Uniwersytet
Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
22
|
Hager J, Kang S, Chmielewski PJ, Lis T, Kim D, Stępień M. Acenaphthylene-Fused Ullazines: Fluorescent π-Extended Monopyrroles with Tunable Electronic Gaps. Org Chem Front 2022. [DOI: 10.1039/d2qo00421f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
π-Extended dibenzoullazines containing an acenaphthylene subunit were designed and synthesized. Two different synthetic strategies were employed: route A, based on Pd-catalyzed cyclodehydrohalogenation of α,α-disubstituted N-arylpyrroles, and route B, using a...
Collapse
|
23
|
Łapkowski M. Perinone-New Life of an Old Molecule. MATERIALS 2021; 14:ma14226880. [PMID: 34832283 PMCID: PMC8620774 DOI: 10.3390/ma14226880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
A review of publications on the synthesis and properties of a family of compounds called perinones was carried out. The basic molecule has been known for several decades mainly as a photostable pigment, and in recent years it has become increasingly used in organic electronics. This paper describes the methods of synthesis of low molecular weight compounds and polymers based on that molecule; the basic spectroscopic, photochemical, electrochemical and electronic properties important for the construction of organic electronics and optoelectronics devices are also discussed.
Collapse
Affiliation(s)
- Mieczysław Łapkowski
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland;
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland
| |
Collapse
|
24
|
Extended porphyrinoid chromophores: heteroporphyrins fused to phenanthrene and acenaphthylene. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Full J, Panchal SP, Götz J, Krause A, Nowak‐Król A. Modular Synthesis of Organoboron Helically Chiral Compounds: Cutouts from Extended Helices. Angew Chem Int Ed Engl 2021; 60:4350-4357. [PMID: 33244880 PMCID: PMC7898935 DOI: 10.1002/anie.202014138] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/25/2020] [Indexed: 11/12/2022]
Abstract
Two types of helically chiral compounds bearing one and two boron atoms were synthesized by a modular approach. Formation of the helical scaffolds was executed by the introduction of boron to flexible biaryl and triaryl derived from small achiral building blocks. All-ortho-fused azabora[7]helicenes feature exceptional configurational stability, blue or green fluorescence with quantum yields (Φfl ) of 18-24 % in solution, green or yellow solid-state emission (Φfl up to 23 %), and strong chiroptical response with large dissymmetry factors of up to 1.12×10-2 . Azabora[9]helicenes consisting of angularly and linearly fused rings are blue emitters exhibiting Φfl of up to 47 % in CH2 Cl2 and 25 % in the solid state. As revealed by the DFT calculations, their P-M interconversion pathway is more complex than that of H1. Single-crystal X-ray analysis shows clear differences in the packing arrangement of methyl and phenyl derivatives. These molecules are proposed as primary structures of extended helices.
Collapse
Affiliation(s)
- Julian Full
- Institut für Anorganische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Santosh P. Panchal
- Institut für Anorganische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Julian Götz
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Ana‐Maria Krause
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Agnieszka Nowak‐Król
- Institut für Anorganische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
26
|
Full J, Panchal SP, Götz J, Krause A, Nowak‐Król A. Modulare Synthese helikal‐chiraler Organobor‐Verbindungen: Ausschnitte verlängerter Helices. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Julian Full
- Institut für Anorganische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Santosh P. Panchal
- Institut für Anorganische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Julian Götz
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Ana‐Maria Krause
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Agnieszka Nowak‐Król
- Institut für Anorganische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
27
|
Chen C, Li D, Cao G, Qin Z, Xu Y, Liu X, Li Q, Xie Y, Li C. Solvent-regulated biomorphs from the intense π,π-mediated assemblies of tetracenequinone fused porphyrin. CrystEngComm 2021. [DOI: 10.1039/d1ce01173a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tetracenequninone fused porphyrin exhibits remarkable π,π-stacking, which can be regulated by solvents to afford various biomorphs or cubic-shaped architectures.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, China
| | - Dan Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, China
| | - Guanyue Cao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, China
| | - Zhonghe Qin
- Shanghai World Foreign Language Academy, 200237, Shanghai, China
| | - Yi Xu
- Shanghai World Foreign Language Academy, 200237, Shanghai, China
| | - Xiujun Liu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, China
| | - Qizhao Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, China
| | - Yongshu Xie
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, China
| | - Chengjie Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science & Technology, 200237, Shanghai, China
| |
Collapse
|
28
|
|
29
|
Diels-Alder Cycloaddition to the Bay Region of Perylene and Its Derivatives as an Attractive Strategy for PAH Core Expansion: Theoretical and Practical Aspects. Molecules 2020; 25:molecules25225373. [PMID: 33213037 PMCID: PMC7698498 DOI: 10.3390/molecules25225373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022] Open
Abstract
PAHs (polycyclic aromatics hydrocarbons), the compound group that contains perylene and its derivatives, including functionalized ones, have attracted a great deal of interest in many fields of science and modern technology. This review presents all of the research devoted to modifications of PAHs that are realized via the Diels–Alder (DA) cycloaddition of various dienophiles to the bay regions of PAHs, leading to the π-extension of the starting molecule. This type of annulative π-extension (APEX) strategy has emerged as a powerful and efficient synthetic method for the construction of polycyclic aromatic hydrocarbons and their functionalized derivatives, nanographenes, and π-extended fused heteroarenes. Then, [4 + 2] cycloadditions of ethylenic dienophiles, -N=N-, i.e., diazo-dienophiles and acetylenic dienophiles, are presented. This subject is discussed from the organic synthesis point of view but supported by theoretical calculations. The possible applications of DA cycloaddition to PAH bay regions in various science and technology areas, and the prospects for the development of this synthetic method, are also discussed.
Collapse
|
30
|
Ramirez CE, Chen S, Powers-Riggs NE, Schlesinger I, Young RM, Wasielewski MR. Symmetry-Breaking Charge Separation in the Solid State: Tetra(phenoxy)perylenediimide Polycrystalline Films. J Am Chem Soc 2020; 142:18243-18250. [DOI: 10.1021/jacs.0c09185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carolyn E. Ramirez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Su Chen
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Natalia E. Powers-Riggs
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Itai Schlesinger
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M. Young
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
31
|
Lee B, Willis AC, Ward JS, Smith WT, Lan P, Banwell MG. Iterative Suzuki-Miyaura Cross-coupling/Bromo-desilylation Reaction Sequences for the Assembly of Chemically Well-defined, Acyclic Oligopyrrole/Benzenoid Hybrids Embodying Mixed Modes of Connectivity. Chem Asian J 2020; 15:3059-3081. [PMID: 32749069 DOI: 10.1002/asia.202000740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/30/2020] [Indexed: 11/12/2022]
Abstract
Syntheses of a range of chemically well-defined oligopyrrole/benzenoid hybrids are described using tandem Suzuki-Miyaura cross-coupling/bromo-desilyation reaction sequences for linking borylated pyrroles, halogenated pyrroles and/or dibromobenzenes to one another. By such means, including iterative variants, a range of all α-linked, all β-linked oligopyrroles as well as certain combinations thereof have been assembled, some of them for the first time. The conductivities of iodine-treated thin films formed from certain such systems have been determined.
Collapse
Affiliation(s)
- BoRa Lee
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Anthony C Willis
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Jas S Ward
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | | | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632/, Zhuhai, 519070, Guangdong, China
| | - Martin G Banwell
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia.,Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632/, Zhuhai, 519070, Guangdong, China
| |
Collapse
|
32
|
Kumar S, Maurya YK, Kang S, Chmielewski P, Lis T, Cybińska J, Kim D, Stępień M. Porphyrin-Ryleneimide Hybrids: Tuning of Visible and Near-Infrared Absorption by Chromophore Desymmetrization. Org Lett 2020; 22:7202-7207. [PMID: 32857521 PMCID: PMC7506948 DOI: 10.1021/acs.orglett.0c02544] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Unsymmetrically fused
porphyrins containing one or two naphthalimide
subunits were prepared in modular syntheses relying on electron-rich
and electron-poor pyrrole building blocks. These new chromophores
show progressive changes in their electron-deficient character, while
retaining comparably small optical and electrochemical band gaps.
The intrinsic curvature and extended optical absorption of these systems
make them of interest as mono- and difunctional components of multichromophoric
assemblies.
Collapse
Affiliation(s)
- Sunit Kumar
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Yogesh Kumar Maurya
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Seongsoo Kang
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Piotr Chmielewski
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Tadeusz Lis
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Joanna Cybińska
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.,PORT - Polski Ośrodek Rozwoju Technologii, ul. Stabłowicka 147, 54-066 Wrocław, Poland
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
33
|
Janiga E, Kim G, Chmielewski PJ, Lis T, Kim D, Stępień M. Porphyrin-Ryleneimide Hybrids: Low-Bandgap Acceptors in Energy-Transfer Cassettes. Chem Asian J 2020; 15:2854-2858. [PMID: 32667127 DOI: 10.1002/asia.202000762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 11/06/2022]
Abstract
Energy-transfer cassettes consisting of naphthaleneimide-fused metalloporphyrin acceptors (M=Zn and Pd) and BODIPY donors have been designed and synthesized. These systems have rigid pseudo-tetrahedral structures with a donor-acceptor separation of ca. 17.5 Å. Spectroscopic investigations, including femtosecond transient absorption measurements, showed efficient excitation energy transfer (EET) occurring according to the Förster mechanism. Strong fluorescence of the donor units and significant spectral overlap of the donor and acceptor subunits are prerequisites for the efficient EET in these systems.
Collapse
Affiliation(s)
- Ewelina Janiga
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Gakhyun Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Korea
| | - Piotr J Chmielewski
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Tadeusz Lis
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Korea
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
34
|
Galstyan A, Maurya YK, Zhylitskaya H, Bae YJ, Wu YL, Wasielewski MR, Lis T, Dobrindt U, Stępień M. π-Extended Donor-Acceptor Porphyrins and Metalloporphyrins for Antimicrobial Photodynamic Inactivation. Chemistry 2020; 26:8262-8266. [PMID: 31968144 PMCID: PMC7384002 DOI: 10.1002/chem.201905372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 12/26/2022]
Abstract
Free base, zinc and palladium π‐extended porphyrins containing fused naphthalenediamide units were employed as photosensitizers in antimicrobial photodynamic therapy (aPDT). Their efficacy, assessed by photophysical and in vitro photobiological studies on Gram‐positive bacteria, was found to depend on metal coordination, showing a dramatic enhancement of photosensitizing activity for the palladium complex.
Collapse
Affiliation(s)
- Anzhela Galstyan
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Yogesh Kumar Maurya
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50383, Wrocław, Poland
| | - Halina Zhylitskaya
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50383, Wrocław, Poland
| | - Youn Jue Bae
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois, 60208-3113, USA
| | - Yi-Lin Wu
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois, 60208-3113, USA.,Current address: School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois, 60208-3113, USA
| | - Tadeusz Lis
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50383, Wrocław, Poland
| | - Ulrich Dobrindt
- Institute of Hygiene, Westfälische Wilhelms-Universität Münster, Mendelstraße 7, 48149, Münster, Germany
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50383, Wrocław, Poland
| |
Collapse
|
35
|
Moshniaha L, Żyła-Karwowska M, Cybińska J, Chmielewski PJ, Favereau L, Stępień M. Bipyrrole boomerangs via Pd-mediated tandem cyclization-oxygenation. Controlling reaction selectivity and electronic properties. Beilstein J Org Chem 2020; 16:895-903. [PMID: 32461771 PMCID: PMC7214875 DOI: 10.3762/bjoc.16.81] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Boomerang-shaped bipyrroles containing donor-acceptor units were obtained through a tandem palladium-mediated reaction consisting of a cyclization step, involving double C-H bond activation, and a double α-oxygenation. The latter reaction can be partly suppressed for the least reactive systems, providing access to α-unsubstituted boomerangs for the first time. These "α-free" systems are highly efficient fluorophores, with emission quantum yields exceeding 80% in toluene. Preliminary measurements show that helicene-like boomerangs may be usable as circularly polarized luminescent materials.
Collapse
Affiliation(s)
- Liliia Moshniaha
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Marika Żyła-Karwowska
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Joanna Cybińska
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.,PORT - Polski Ośrodek Rozwoju Technologii, ul. Stabłowicka 147, 54-066 Wrocław, Poland
| | - Piotr J Chmielewski
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Ludovic Favereau
- Université Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, F-35000 Rennes, France
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
36
|
Shukla J, Singh VP, Mukhopadhyay P. Molecular and Supramolecular Multiredox Systems. ChemistryOpen 2020; 9:304-324. [PMID: 32154051 PMCID: PMC7050954 DOI: 10.1002/open.201900339] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/30/2020] [Indexed: 12/19/2022] Open
Abstract
The design and synthesis of molecular and supramolecular multiredox systems have been summarized. These systems are of great importance as they can be employed in the next generation of materials for energy storage, energy transport, and solar fuel production. Nature provides guiding pathways and insights to judiciously incorporate and tune the various molecular and supramolecular design aspects that result in the formation of complex and efficient systems. In this review, we have classified molecular multiredox systems into organic and organic-inorganic hybrid systems. The organic multiredox systems are further classified into multielectron acceptors, multielectron donors and ambipolar molecules. Synthetic chemists have integrated different electron donating and electron withdrawing groups to realize these complex molecular systems. Further, we have reviewed supramolecular multiredox systems, redox-active host-guest recognition, including mechanically interlocked systems. Finally, the review provides a discussion on the diverse applications, e. g. in artificial photosynthesis, water splitting, dynamic random access memory, etc. that can be realized from these artificial molecular or supramolecular multiredox systems.
Collapse
Affiliation(s)
- Jyoti Shukla
- Supramolecular and Material Chemistry Lab School of Physical SciencesJawaharlal Nehru UniversityNew Delhi110067India
| | - Vijay Pal Singh
- Supramolecular and Material Chemistry Lab School of Physical SciencesJawaharlal Nehru UniversityNew Delhi110067India
| | - Pritam Mukhopadhyay
- Supramolecular and Material Chemistry Lab School of Physical SciencesJawaharlal Nehru UniversityNew Delhi110067India
| |
Collapse
|
37
|
Moshniaha L, Żyła-Karwowska M, Chmielewski PJ, Lis T, Cybińska J, Gońka E, Oschwald J, Drewello T, Rivero SM, Casado J, Stępień M. Aromatic Nanosandwich Obtained by σ-Dimerization of a Nanographenoid π-Radical. J Am Chem Soc 2020; 142:3626-3635. [PMID: 31997634 PMCID: PMC7467677 DOI: 10.1021/jacs.9b13942] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A 139-π-electron
nanographenoid radical was obtained by expanding
the periphery of a naphthalimide–azacoronene hybrid with a
methine bridge. The radical was isolated in the form of its σ-dimer,
which was shown to possess a conformationally restricted two-layer
structure both in the solid state and in solution. The dimer is cleaved
into its parent radicals when exposed to ultraviolet or visible radiation
in toluene solutions but is resistant to thermally induced dissociation.
Under inert conditions, the radicals recombine quantitatively into
the σ-dimer with observable kinetics, but they are oxidized
into a ketone derivative in the presence of atmospheric oxygen. Combined
structural, spectroscopic, and theoretical evidence shows that the
σ-dimer contains a weak C(sp3)–C(sp3) bond, but is stabilized against thermal dissociation by a very
strong dispersive interaction between the overlapping π surfaces.
Collapse
Affiliation(s)
- Liliia Moshniaha
- Wydział Chemii , Uniwersytet Wrocławski , ul. F. Joliot-Curie 14 , 50-383 Wrocław , Poland
| | - Marika Żyła-Karwowska
- Wydział Chemii , Uniwersytet Wrocławski , ul. F. Joliot-Curie 14 , 50-383 Wrocław , Poland
| | - Piotr J Chmielewski
- Wydział Chemii , Uniwersytet Wrocławski , ul. F. Joliot-Curie 14 , 50-383 Wrocław , Poland
| | - Tadeusz Lis
- Wydział Chemii , Uniwersytet Wrocławski , ul. F. Joliot-Curie 14 , 50-383 Wrocław , Poland
| | - Joanna Cybińska
- Wydział Chemii , Uniwersytet Wrocławski , ul. F. Joliot-Curie 14 , 50-383 Wrocław , Poland.,PORT-Polski Ośrodek Rozwoju Technologii , ul. Stabłowicka 147 , 54-066 Wrocław , Poland
| | - Elżbieta Gońka
- Wydział Chemii , Uniwersytet Wrocławski , ul. F. Joliot-Curie 14 , 50-383 Wrocław , Poland
| | - Johannes Oschwald
- Department of Chemistry and Pharmacy , Friedrich-Alexander University Erlangen-Nuremberg , Egerlandstraße 3 , 91058 Erlangen , Germany
| | - Thomas Drewello
- Department of Chemistry and Pharmacy , Friedrich-Alexander University Erlangen-Nuremberg , Egerlandstraße 3 , 91058 Erlangen , Germany
| | - Samara Medina Rivero
- Departamento Quı́mica Fı́sica , Universidad de Málaga , Andalucia-Tech Campus de Teatinos s/n , 29071 Málaga , Spain
| | - Juan Casado
- Departamento Quı́mica Fı́sica , Universidad de Málaga , Andalucia-Tech Campus de Teatinos s/n , 29071 Málaga , Spain
| | - Marcin Stępień
- Wydział Chemii , Uniwersytet Wrocławski , ul. F. Joliot-Curie 14 , 50-383 Wrocław , Poland
| |
Collapse
|
38
|
Xu Y, Gsänger S, Minameyer MB, Imaz I, Maspoch D, Shyshov O, Schwer F, Ribas X, Drewello T, Meyer B, von Delius M. Highly Strained, Radially π-Conjugated Porphyrinylene Nanohoops. J Am Chem Soc 2019; 141:18500-18507. [DOI: 10.1021/jacs.9b08584] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Youzhi Xu
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sebastian Gsänger
- Interdisciplinary Center for Molecular Materials (ICMM) and Computer-Chemistry-Center (CCC), Friedrich-Alexander University Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| | - Martin B. Minameyer
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Oleksandr Shyshov
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Fabian Schwer
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, 17003 Girona, Catalonia, Spain
| | - Thomas Drewello
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Bernd Meyer
- Interdisciplinary Center for Molecular Materials (ICMM) and Computer-Chemistry-Center (CCC), Friedrich-Alexander University Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| | - Max von Delius
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
39
|
Navakouski M, Zhylitskaya H, Chmielewski PJ, Żyła-Karwowska M, Stępień M. Electrophilic Aromatic Coupling of Hexapyrrolylbenzenes. A Mechanistic Analysis. J Org Chem 2019; 85:187-194. [DOI: 10.1021/acs.joc.9b02556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maksim Navakouski
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Halina Zhylitskaya
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Piotr J. Chmielewski
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Marika Żyła-Karwowska
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
40
|
Abstract
More than 50 years have passed since the first observation of graphitic cones in the pyrolysis of carbon. However, to date there has been no report in the literature on the synthesis of such carbon allotropes. Here we present the first synthesis of a carbon nanocone, which comprises a pentagon encircled by 30 hexagons, by means of a palladium-catalyzed cross-coupling reaction. In this synthetic approach, 15 C-C bonds were constructed from a cone-shaped aromatic scaffold, corannulene, and five naphthalene dicarboximide moieties through a cascade of [3 + 3] and [4 + 2] annulations. The conical geometry of the first synthetic carbon nanocone was confirmed by X-ray crystallography. The optical and electronic properties of this graphitic cone were elucidated by UV/vis and fluorescence spectroscopy and cyclic voltammetry.
Collapse
Affiliation(s)
- Kazutaka Shoyama
- Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Frank Würthner
- Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany.,Center for Nanosystems Chemistry (CNC) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| |
Collapse
|
41
|
Bae YJ, Christensen JA, Kang G, Zhou J, Young RM, Wu YL, Van Duyne RP, Schatz GC, Wasielewski MR. Substituent effects on energetics and crystal morphology modulate singlet fission in 9,10-bis(phenylethynyl)anthracenes. J Chem Phys 2019; 151:044501. [PMID: 31370542 DOI: 10.1063/1.5110411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Singlet fission (SF) converts a singlet exciton into two triplet excitons in two or more electronically coupled organic chromophores, which may then be used to increase solar cell efficiency. Many known SF chromophores are unsuitable for device applications due to chemical instability or low triplet state energies. The results described here show that efficient SF occurs in derivatives of 9,10-bis(phenylethynyl)anthracene (BPEA), which is a highly robust and tunable chromophore. Fluoro and methoxy substituents at the 4- and 4'-positions of the BPEA phenyl groups control the intermolecular packing in the crystal structure, which alters the interchromophore electronic coupling, while also changing the SF energetics. The lowest excited singlet state (S1) energy of 4,4'-difluoro-BPEA is higher than that of BPEA so that the increased thermodynamic favorability of SF results in a (16 ± 2 ps)-1 SF rate and a 180% ± 16% triplet yield, which is about an order of magnitude faster than BPEA with a comparable triplet yield. By contrast, 4-fluoro-4'-methoxy-BPEA and 4,4'-dimethoxy-BPEA have slower SF rates, (90 ± 20 ps)-1 and (120 ± 10 ps)-1, and lower triplet yields, (110 ± 4)% and (168 ± 7)%, respectively, than 4,4'-difluoro-BPEA. These differences are attributed to changes in the crystal structure controlling interchromophore electronic coupling as well as SF energetics in these polycrystalline solids.
Collapse
Affiliation(s)
- Youn Jue Bae
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Joseph A Christensen
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Gyeongwon Kang
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Jiawang Zhou
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Yi-Lin Wu
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Richard P Van Duyne
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - George C Schatz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, USA
| |
Collapse
|
42
|
Uno H, Hirose M, Honda T, Mori S, Takase M, Okujima T. Di(acenaphtho)BODIPYs and Dipyrrins as Dyes with Deep-Red To NIR Absorptions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hidemitsu Uno
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Mako Hirose
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Takayuki Honda
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Shigeki Mori
- Division of Material Science, Advanced Research Support Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Masayoshi Takase
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Tetsuo Okujima
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
43
|
Navakouski M, Zhylitskaya H, Chmielewski PJ, Lis T, Cybińska J, Stępień M. Stereocontrolled Synthesis of Chiral Heteroaromatic Propellers with Small Optical Bandgaps. Angew Chem Int Ed Engl 2019; 58:4929-4933. [DOI: 10.1002/anie.201900175] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Maksim Navakouski
- Wydział ChemiiUniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Halina Zhylitskaya
- Wydział ChemiiUniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Piotr J. Chmielewski
- Wydział ChemiiUniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Tadeusz Lis
- Wydział ChemiiUniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Joanna Cybińska
- Wydział ChemiiUniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
- PORT Polski Ośrodek Rozwoju Technologii ul. Stabłowicka 147 54-066 Wrocław Poland
| | - Marcin Stępień
- Wydział ChemiiUniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| |
Collapse
|
44
|
Navakouski M, Zhylitskaya H, Chmielewski PJ, Lis T, Cybińska J, Stępień M. Stereocontrolled Synthesis of Chiral Heteroaromatic Propellers with Small Optical Bandgaps. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900175] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maksim Navakouski
- Wydział ChemiiUniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Halina Zhylitskaya
- Wydział ChemiiUniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Piotr J. Chmielewski
- Wydział ChemiiUniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Tadeusz Lis
- Wydział ChemiiUniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Joanna Cybińska
- Wydział ChemiiUniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
- PORT Polski Ośrodek Rozwoju Technologii ul. Stabłowicka 147 54-066 Wrocław Poland
| | - Marcin Stępień
- Wydział ChemiiUniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| |
Collapse
|
45
|
Lee S, Yamashita KI, Sakata N, Hirao Y, Ogawa K, Ogawa T. Stable Singlet Biradicals of Rare-Earth-Fused Diporphyrin-Triple-Decker Complexes with Low Energy Gaps and Multi-Redox States. Chemistry 2019; 25:3240-3243. [PMID: 30609157 DOI: 10.1002/chem.201805927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/15/2018] [Indexed: 11/11/2022]
Abstract
Dinuclear rare-earth (TbIII , YIII ) triple-decker complexes with a fused diporphyrin (FP) and two tetraphenylporphyrin (TPP) ligands were synthesized in neutral, dianionic, and diprotonated forms. The neutral forms have large open shell biradical character, as determined from the temperature dependency of the magnetic susceptibility measurements and theoretical calculations. The coupling value (J=-1.4 kcal mol-1 , -487 cm-1 ) of the radical centers in the neutral form of the YIII complex indicates weak pairing interactions. Theoretical calculations on the neutral form reveal a significant biradical character (y=68 %). Furthermore, the TbIII complex exhibits multi-redox states, having more than eight clear peaks in the voltammetry curves. The optical (3700 nm, 0.33 eV) and electrochemical measurements (3400 nm, 0.36 eV) indicate that the neutral form has very small HOMO-LUMO energy gap. Despite the large biradical character, the neutral complexes are thermally stable and do not decompose on heating at 120 °C. These complexes with unique characteristics are promising candidates for use in molecular electronics, optics, and spintronics.
Collapse
Affiliation(s)
- Sunri Lee
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ken-Ichi Yamashita
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Naoya Sakata
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yasukazu Hirao
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kaya Ogawa
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Takuji Ogawa
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
46
|
Żyła‐Karwowska M, Moshniaha L, Hong Y, Zhylitskaya H, Cybińska J, Chmielewski PJ, Lis T, Kim D, Stępień M. Electron‐Deficient Bipyrrole Boomerangs: Bright Fluorophores Obtained via Double C−H Bond Activation. Chemistry 2018; 24:7525-7530. [PMID: 29570876 DOI: 10.1002/chem.201801199] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Indexed: 11/09/2022]
Affiliation(s)
| | - Liliia Moshniaha
- Wydział ChemiiUniwersytet Wrocławski ul. F. Joliot-Curie 14 50–383 Wrocław Poland
| | - Yongseok Hong
- Department of ChemistryYonsei University 50 Yonsei-ro Seoul 120–749 Korea
| | - Halina Zhylitskaya
- Wydział ChemiiUniwersytet Wrocławski ul. F. Joliot-Curie 14 50–383 Wrocław Poland
| | - Joanna Cybińska
- Wydział ChemiiUniwersytet Wrocławski ul. F. Joliot-Curie 14 50–383 Wrocław Poland
- Wrocławskie Centrum Badań EIT+ ul. Stabłowicka 147 54–066 Wrocław Poland
| | - Piotr J. Chmielewski
- Wydział ChemiiUniwersytet Wrocławski ul. F. Joliot-Curie 14 50–383 Wrocław Poland
| | - Tadeusz Lis
- Wydział ChemiiUniwersytet Wrocławski ul. F. Joliot-Curie 14 50–383 Wrocław Poland
| | - Dongho Kim
- Department of ChemistryYonsei University 50 Yonsei-ro Seoul 120–749 Korea
| | - Marcin Stępień
- Wydział ChemiiUniwersytet Wrocławski ul. F. Joliot-Curie 14 50–383 Wrocław Poland
| |
Collapse
|
47
|
Żyła-Karwowska M, Moshniaha L, Zhylitskaya H, Stępień M. Pd-Induced Double C–H Bond Activation in Annulative Syntheses of Bipyrrole Boomerangs: Mechanistic Insights from NMR Spectroscopy and Computation. J Org Chem 2018; 83:5199-5209. [DOI: 10.1021/acs.joc.8b00630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marika Żyła-Karwowska
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Liliia Moshniaha
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Halina Zhylitskaya
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
48
|
Zhylitskaya H, Stępień M. Carbocyclization approaches to electron-deficient nanographenes and their analogues. Org Chem Front 2018. [DOI: 10.1039/c8qo00423d] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Versatile π-aromatic building blocks and selective coupling transformations enable rapid assembly of complex electron-deficient molecules, useful as n-type organic semiconductors.
Collapse
Affiliation(s)
| | - Marcin Stępień
- Wydział Chemii
- Uniwersytet Wrocławski ul. F. Joliot-Curie 14
- Poland
| |
Collapse
|
49
|
Jiang KM, Jin Y, Lin J. 1,3-Dipolar cycloaddition of uracil derivatives with nitrile oxides: Synthesis of [1,2,4]oxadiazolo[4,5- c ]pyrimidine-5,7(6 H )-dione derivatives. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Seifert S, Schmidt D, Shoyama K, Würthner F. Base-Selective Five- versus Six-Membered Ring Annulation in Palladium-Catalyzed C-C Coupling Cascade Reactions: New Access to Electron-Poor Polycyclic Aromatic Dicarboximides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sabine Seifert
- Universität Würzburg; Institut für Organische Chemie; Am Hubland 97074 Würzburg Germany
| | - David Schmidt
- Universität Würzburg; Center for Nanosystems Chemistry (CNC); Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Kazutaka Shoyama
- Universität Würzburg; Institut für Organische Chemie; Am Hubland 97074 Würzburg Germany
| | - Frank Würthner
- Universität Würzburg; Institut für Organische Chemie; Am Hubland 97074 Würzburg Germany
- Universität Würzburg; Center for Nanosystems Chemistry (CNC); Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|