1
|
Robertson M, Qian J, Qiang Z. Polymer Sorbent Design for the Direct Air Capture of CO 2. ACS APPLIED POLYMER MATERIALS 2024; 6:14169-14189. [PMID: 39697843 PMCID: PMC11650649 DOI: 10.1021/acsapm.3c03199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/27/2024] [Accepted: 03/15/2024] [Indexed: 12/20/2024]
Abstract
Anthropogenic activities have resulted in enormous increases in atmospheric CO2 concentrations particularly since the onset of the Industrial Revolution, which have potential links with increased global temperatures, rising sea levels, increased prevalence, and severity of natural disasters, among other consequences. To enable a carbon-neutral and sustainable society, various technologies have been developed for CO2 capture from industrial process streams as well as directly from air. Here, direct air capture (DAC) represents an essential need for reducing CO2 concentration in the atmosphere to mitigate the negative consequences of greenhouse effects, involving systems that can reversibly adsorb and release CO2, in which polymers have played an integral role. This work provides insights into the development of polymer sorbents for DAC of CO2, specifically from the perspective of material design principles. We discuss how physical properties and chemical identities of amine-containing polymers can impact their ability to uptake CO2, as well as be efficiently regenerated. Additionally, polymers which use ionic interactions to react with CO2 molecules, such as poly(ionic liquids), are also common DAC sorbent materials. Finally, a perspective is provided on the future research and technology opportunities of developing polymer-derived sorbents for DAC.
Collapse
Affiliation(s)
- Mark Robertson
- School of
Polymer Science and Engineering, The University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jin Qian
- School of
Polymer Science and Engineering, The University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Zhe Qiang
- School of
Polymer Science and Engineering, The University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
2
|
Li H, Zick ME, Trisukhon T, Signorile M, Liu X, Eastmond H, Sharma S, Spreng TL, Taylor J, Gittins JW, Farrow C, Lim SA, Crocellà V, Milner PJ, Forse AC. Capturing carbon dioxide from air with charged-sorbents. Nature 2024; 630:654-659. [PMID: 38839965 PMCID: PMC11186774 DOI: 10.1038/s41586-024-07449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/19/2024] [Indexed: 06/07/2024]
Abstract
Emissions reduction and greenhouse gas removal from the atmosphere are both necessary to achieve net-zero emissions and limit climate change1. There is thus a need for improved sorbents for the capture of carbon dioxide from the atmosphere, a process known as direct air capture. In particular, low-cost materials that can be regenerated at low temperatures would overcome the limitations of current technologies. In this work, we introduce a new class of designer sorbent materials known as 'charged-sorbents'. These materials are prepared through a battery-like charging process that accumulates ions in the pores of low-cost activated carbons, with the inserted ions then serving as sites for carbon dioxide adsorption. We use our charging process to accumulate reactive hydroxide ions in the pores of a carbon electrode, and find that the resulting sorbent material can rapidly capture carbon dioxide from ambient air by means of (bi)carbonate formation. Unlike traditional bulk carbonates, charged-sorbent regeneration can be achieved at low temperatures (90-100 °C) and the sorbent's conductive nature permits direct Joule heating regeneration2,3 using renewable electricity. Given their highly tailorable pore environments and low cost, we anticipate that charged-sorbents will find numerous potential applications in chemical separations, catalysis and beyond.
Collapse
Affiliation(s)
- Huaiguang Li
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Mary E Zick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Teedhat Trisukhon
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Matteo Signorile
- Chemistry Department, NIS and INSTM Reference Centre, University of Torino, Torino, Italy
| | - Xinyu Liu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Helen Eastmond
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Shivani Sharma
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Tristan L Spreng
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jack Taylor
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jamie W Gittins
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Cavan Farrow
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - S Alexandra Lim
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Valentina Crocellà
- Chemistry Department, NIS and INSTM Reference Centre, University of Torino, Torino, Italy
| | - Phillip J Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Alexander C Forse
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Sardo M, Morais T, Soares M, Vieira R, Ilkaeva M, Lourenço MAO, Marín-Montesinos I, Mafra L. Unravelling the structure of CO 2 in silica adsorbents: an NMR and computational perspective. Chem Commun (Camb) 2024; 60:4015-4035. [PMID: 38525497 PMCID: PMC11003455 DOI: 10.1039/d3cc05942a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
This comprehensive review describes recent advancements in the use of solid-state NMR-assisted methods and computational modeling strategies to unravel gas adsorption mechanisms and CO2 speciation in porous CO2-adsorbent silica materials at the atomic scale. This work provides new perspectives for the innovative modifications of these materials rendering them more amenable to the use of advanced NMR methods.
Collapse
Affiliation(s)
- Mariana Sardo
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Tiago Morais
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
- Department of Chemistry, University of Iceland, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | - Márcio Soares
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ricardo Vieira
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Marina Ilkaeva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
- Department of Chemical and Environmental Engineering, University of Oviedo, Av. Julián Clavería 8, 33006 Oviedo, Spain
| | - Mirtha A O Lourenço
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ildefonso Marín-Montesinos
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Luís Mafra
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Wang X, Zeng W, Hu P, Liu S, Lin Y, He Z, Xin C, Kong X, Xu J. Effect of Additives on CO 2 Adsorption of Polyethylene Polyamine-Loaded MCM-41. Molecules 2024; 29:1006. [PMID: 38474518 DOI: 10.3390/molecules29051006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Organic amine-modified mesoporous carriers are considered potential CO2 sorbents, in which the CO2 adsorption performance was limited by the agglomeration and volatility of liquid amines. In this study, four additives of ether compounds were separately coimpregnated with polyethylene polyamine (PEPA) into MCM-41 to prepare the composite chemisorbents for CO2 adsorption. The textural pore properties, surface functional groups and elemental contents of N for MCM-41 before and after functionalization were characterized; the effects of the type and amount of additives, adsorption temperature and influent velocity on CO2 adsorption were investigated; the amine efficiency was calculated; and the adsorption kinetics and regeneration for the optimized sorbent were studied. For 40 wt.% PEPA-loaded MCM-41, the CO2 adsorption capacity and amine efficiency at 60 °C were 1.34 mmol/g and 0.18 mol CO2/mol N, when the influent velocity of the simulated flue gas was 30 mL/min, which reached 1.81 mmol/g and 0.23 mol CO2/mol N after coimpregnating 10 wt.% of 2-propoxyethanol (1E). The maximum adsorption capacity of 2.16 mmol/g appeared when the influent velocity of the simulated flue gas was 20 mL/min. In addition, the additive of 1E improved the regeneration and kinetics of PEPA-loaded MCM-41, and the CO2 adsorption process showed multiple adsorption routes.
Collapse
Affiliation(s)
- Xia Wang
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| | - Wulan Zeng
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| | - Peidan Hu
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| | - Shengxin Liu
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| | - Yuechao Lin
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| | - Zhaowen He
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| | - Chunling Xin
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| | - Xiangjun Kong
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| | - Jinghan Xu
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
5
|
Leenders SHAM, Pankratova G, Wijenberg J, Romanuka J, Gharavi F, Tsou J, Infantino M, van Haandel L, van Paasen S, Just PE. Amine Adsorbents Stability for Post-Combustion CO 2 Capture: Determination and Validation of Laboratory Degradation Rates in a Multi-staged Fluidized Bed Pilot Plant. CHEMSUSCHEM 2023; 16:e202300930. [PMID: 37589250 DOI: 10.1002/cssc.202300930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023]
Abstract
Alternative to current liquid amine technologies for post-combustion CO2 capture, new technologies such as adsorbent-based processes are developed, wherein material lifetime and degradation is important. Herein a robust method to determine degradation rates in a laboratory setup is developed, which was validated with a continuous multi-staged fluidized bed pilot plant designed to capture 1 ton CO2 per day. An amine functionalized polystyrene adsorbent showed very good agreement between the experimental 1000-hour laboratory degradation rates and 2200 hours of degradation in a pilot plant. This validates how laboratory experiments can be extrapolated for sorbent screening and for scale-up. Resulting, the oxidative degradation in the desorber at high temperatures (120 °C) and low O2 concentrations (150 ppmv) is 3 times higher compared to the adsorber at low temperatures and high O2 (56 °C, 7 vol %). Laboratory degradation experiments can hence be used to further optimize process operations to limit degradation or screen for potential new adsorbents.
Collapse
Affiliation(s)
- Stefan H A M Leenders
- Shell Global Solutions International B.V., Grasweg 31, 1031 HW, Amsterdam, the Netherlands
| | - Galina Pankratova
- Shell Global Solutions International B.V., Grasweg 31, 1031 HW, Amsterdam, the Netherlands
| | - John Wijenberg
- Shell Global Solutions International B.V., Grasweg 31, 1031 HW, Amsterdam, the Netherlands
| | - Julija Romanuka
- Shell Global Solutions International B.V., Grasweg 31, 1031 HW, Amsterdam, the Netherlands
| | - Farahnaz Gharavi
- Shell Global Solutions International B.V., Grasweg 31, 1031 HW, Amsterdam, the Netherlands
| | - Joana Tsou
- Shell Global Solutions International B.V., Grasweg 31, 1031 HW, Amsterdam, the Netherlands
| | - Melina Infantino
- Shell Global Solutions International B.V., Grasweg 31, 1031 HW, Amsterdam, the Netherlands
| | - Lennart van Haandel
- Shell Global Solutions International B.V., Grasweg 31, 1031 HW, Amsterdam, the Netherlands
| | - Sander van Paasen
- Shell Global Solutions International B.V., Grasweg 31, 1031 HW, Amsterdam, the Netherlands
| | - Paul-Emmanuel Just
- Shell Global Solutions International B.V., Grasweg 31, 1031 HW, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Casey É, Breen R, Gómez JS, Kentgens APM, Pareras G, Rimola A, Holmes JD, Collins G. Ligand-Aided Glycolysis of PET Using Functionalized Silica-Supported Fe 2O 3 Nanoparticles. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:15544-15555. [PMID: 37920799 PMCID: PMC10618922 DOI: 10.1021/acssuschemeng.3c03585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/04/2023] [Indexed: 11/04/2023]
Abstract
The development of efficient catalysts for the chemical recycling of poly(ethylene terephthalate) (PET) is essential to tackling the global issue of plastic waste. There has been intense interest in heterogeneous catalysts as a sustainable catalyst system for PET depolymerization, having the advantage of easy separation and reuse after the reaction. In this work, we explore heterogeneous catalyst design by comparing metal-ion (Fe3+) and metal-oxide nanoparticle (Fe2O3 NP) catalysts immobilized on mesoporous silica (SiO2) functionalized with different N-containing amine ligands. Quantitative solid-state nuclear magnetic resonance (NMR) spectroscopy confirms successful grafting and elucidates the bonding mode of the organic ligands on the SiO2 surface. The surface amine ligands act as organocatalysts, enhancing the catalytic activity of the active metal species. The Fe2O3 NP catalysts in the presence of organic ligands outperform bare Fe2O3 NPs, Fe3+-ion-immobilized catalysts and homogeneous FeCl3 salts, with equivalent Fe loading. X-ray photoelectron spectroscopy analysis indicates charge transfer between the amine ligands and Fe2O3 NPs and the electron-donating ability of the N groups and hydrogen bonding may also play a role in the higher performance of the amine-ligand-assisted Fe2O3 NP catalysts. Density functional theory (DFT) calculations also reveal that the reactivity of the ion-immobilized catalysts is strongly correlated to the ligand-metal binding energy and that the products in the glycolysis reaction catalyzed by the NP catalysts are stabilized, showing a significant exergonic character compared to single ion-immobilized Fe3+ ions.
Collapse
Affiliation(s)
- Éadaoin Casey
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Rachel Breen
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Jennifer S. Gómez
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Arno P. M. Kentgens
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Gerard Pareras
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, Catalonia 08193, Spain
| | - Albert Rimola
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, Catalonia 08193, Spain
| | - Justin. D. Holmes
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Gillian Collins
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| |
Collapse
|
7
|
Ilkaeva M, Vieira R, Pereira JMP, Sardo M, Marin-Montesinos I, Mafra L. Assessing CO 2 Capture in Porous Sorbents via Solid-State NMR-Assisted Adsorption Techniques. J Am Chem Soc 2023; 145:8764-8769. [PMID: 37037457 PMCID: PMC10141401 DOI: 10.1021/jacs.3c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Adsorption isotherms obtained through volumetric measurements are widely used to estimate the gas adsorption performance of porous materials. Nonetheless, there is always ambiguity regarding the contributions of chemi- and physisorption processes to the overall retained gas volume. In this work, we propose, for the first time, the use of solid-state NMR (ssNMR) to generate isotherms of CO2 adsorbed onto an amine-modified silica sorbent. This method enables the separation of six individual isotherms for chemi- and physisorbed CO2 components, a feat only possible using the discrimination power of NMR spectroscopy. The adsorption mechanism for each adsorbed species was ascertained by tracking their adsorption profiles at various pressures. The proposed method was validated against conventional volumetric adsorption measurements. The isotherm curves obtained by the proposed ssNMR-assisted approach enable advanced analysis of the sorbents, revealing the potential of variable-pressure NMR experiments in gas adsorption applications.
Collapse
Affiliation(s)
- Marina Ilkaeva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Vieira
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João M P Pereira
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Mariana Sardo
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ildefonso Marin-Montesinos
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Luís Mafra
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Isegawa M. Chemical modification of dimethylpolysiloxane for enhancement of CO 2 binding enthalpy. Phys Chem Chem Phys 2023; 25:7881-7892. [PMID: 36857716 DOI: 10.1039/d2cp02790a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The intermittent increase in CO2 concentration in the atmosphere is a serious problem that contributes to climate change; the combustion of fossil fuels produces the majority of CO2, and technology is needed to capture it efficiently. Various CO2 capture materials have been developed so far. Membrane separation, in particular, has an advantage over other capture technologies due to its ease of use. Poly(dimethylsiloxane) (PDMS) has been widely used as a membrane material for CO2 capture because of its high gas permeability. However, despite their high CO2 permeance, PDMS membranes are still in their infancy, especially regarding CO2 selectivity due to the weak interaction between CO2 and PDMS. Here we evaluated the CO2 interaction with the PDMS chain at the atomic scale and attempted to improve the CO2 affinity of the PDMS chain using density functional theory (DFT). Specifically, we substituted elements in the Si-O framework with other elements and substituted the methyl groups with other chemical groups, and incorporated metallic elements such as Mg and Ti. All the chemical modifications by main group elements resulted in physisorption, but chemisorption of CO2 was observed in PDMS incorporating metallic elements. Since several modes of CO2 binding were observed in PDMS with incorporated metal elements, the binding enthalpy and binding mode were analyzed. As a result of various chemical modifications, it was found that introducing earth metal elements into PDMS was the most effective way to enhance the interaction between PDMS and CO2.
Collapse
Affiliation(s)
- Miho Isegawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
9
|
Hao Y, Akiyama S, Hung Y, Kazarian SG, Shimoyama Y. Norfloxacin-CO2 crystal formed under supercritical CO2 and enhanced Norfloxacin dissolution properties. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
10
|
Pereira D, Fonseca R, Marin-Montesinos I, Sardo M, Mafra L. Understanding CO2 adsorption mechanisms in porous adsorbents: a solid-state NMR survey. Curr Opin Colloid Interface Sci 2023. [DOI: 10.1016/j.cocis.2023.101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
11
|
Pugh SM, Forse AC. Nuclear magnetic resonance studies of carbon dioxide capture. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 346:107343. [PMID: 36512903 DOI: 10.1016/j.jmr.2022.107343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Carbon dioxide capture is an important greenhouse gas mitigation technology that can help limit climate change. The design of improved capture materials requires a detailed understanding of the mechanisms by which carbon dioxide is bound. Nuclear magnetic resonance (NMR) spectroscopy methods have emerged as a powerful probe of CO2 sorption and diffusion in carbon capture materials. In this article, we first review the practical considerations for carrying out NMR measurements on capture materials dosed with CO2 and we then present three case studies that review our recent work on NMR studies of CO2 binding in metal-organic framework materials. We show that simple 13C NMR experiments are often inadequate to determine CO2 binding modes, but that more advanced experiments such as multidimensional NMR experiments and 17O NMR experiments can lead to more conclusive structural assignments. We further discuss how pulsed field gradient (PFG) NMR can be used to explore diffusion of adsorbed CO2 through the porous framework. Finally, we provide an outlook on the challenges and opportunities for the further development of NMR methodologies that can improve our understanding of carbon capture.
Collapse
Affiliation(s)
- Suzi M Pugh
- Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge CB21EW, UK
| | - Alexander C Forse
- Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge CB21EW, UK.
| |
Collapse
|
12
|
Berge AH, Pugh SM, Short MIM, Kaur C, Lu Z, Lee JH, Pickard CJ, Sayari A, Forse AC. Revealing carbon capture chemistry with 17-oxygen NMR spectroscopy. Nat Commun 2022; 13:7763. [PMID: 36522319 PMCID: PMC9755136 DOI: 10.1038/s41467-022-35254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Carbon dioxide capture is essential to achieve net-zero emissions. A hurdle to the design of improved capture materials is the lack of adequate tools to characterise how CO2 adsorbs. Solid-state nuclear magnetic resonance (NMR) spectroscopy is a promising probe of CO2 capture, but it remains challenging to distinguish different adsorption products. Here we perform a comprehensive computational investigation of 22 amine-functionalised metal-organic frameworks and discover that 17O NMR is a powerful probe of CO2 capture chemistry that provides excellent differentiation of ammonium carbamate and carbamic acid species. The computational findings are supported by 17O NMR experiments on a series of CO2-loaded frameworks that clearly identify ammonium carbamate chain formation and provide evidence for a mixed carbamic acid - ammonium carbamate adsorption mode. We further find that carbamic acid formation is more prevalent in this materials class than previously believed. Finally, we show that our methods are readily applicable to other adsorbents, and find support for ammonium carbamate formation in amine-grafted silicas. Our work paves the way for investigations of carbon capture chemistry that can enable materials design.
Collapse
Affiliation(s)
- Astrid H Berge
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Suzi M Pugh
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Marion I M Short
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Chanjot Kaur
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Ziheng Lu
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Chris J Pickard
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
- Advanced Institute for Materials Research, Tohoku University, Aoba, Sendai, 980-8577, Japan
| | - Abdelhamid Sayari
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Alexander C Forse
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
13
|
Bordonhos M, Galvão TLP, Gomes JRB, Gouveia JD, Jorge M, Lourenço MAO, Pereira JM, Pérez‐Sánchez G, Pinto ML, Silva CM, Tedim J, Zêzere B. Multiscale Computational Approaches toward the Understanding of Materials. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marta Bordonhos
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
- CERENA, Department of Chemical Engineering Instituto Superior Técnico University of Lisbon Avenida Rovisco Pais, No. 1 Lisbon 1049‐001 Portugal
| | - Tiago L. P. Galvão
- CICECO ‐ Aveiro Institute of Materials Department of Materials and Ceramic Engineering University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - José R. B. Gomes
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - José D. Gouveia
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Miguel Jorge
- Department of Chemical and Process Engineering University of Strathclyde 75 Montrose Street Glasgow G1 1XJ UK
| | - Mirtha A. O. Lourenço
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - José M. Pereira
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Germán Pérez‐Sánchez
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Moisés L. Pinto
- CERENA, Department of Chemical Engineering Instituto Superior Técnico University of Lisbon Avenida Rovisco Pais, No. 1 Lisbon 1049‐001 Portugal
| | - Carlos M. Silva
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - João Tedim
- CICECO ‐ Aveiro Institute of Materials Department of Materials and Ceramic Engineering University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Bruno Zêzere
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| |
Collapse
|
14
|
Zhou Y, Qiu J, Zhao H, Wang Y, Li J, Zou C. Amine-Functionalized Black Phosphorus Nanosheets toward Ultrafast and Room-Temperature Trace Carbon Dioxide Sensing. J Phys Chem Lett 2022; 13:9599-9606. [PMID: 36206487 DOI: 10.1021/acs.jpclett.2c02788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carbon dioxide (CO2) poses a significant effect on global climate, indoor activity, and crop yield, thus necessitating real-time and high-performance detection. Traditional CO2-sensing materials always suffer from weak and sluggish reaction, elevated operation temperature, and poor detection limit. To surmount these obstacles, in this work a series of amine-rich polymer functionalized black phosphorus nanosheets (BP) were prepared for room-temperature CO2 detection. Superior to TMMAP or 3-DEAPTES modified counterparts, the BP-10% APTES sensor delivered a response of 28.5% and ultrafast response/recovery time of 4.7 s/4.8 s toward 10 ppm of CO2 under 36% RH at 22 °C, a lowest detection limit of 5 ppm, as well as excellent selectivity. Also, a nice repeatability and long-term operation stability were demonstrated. Thus, BP-APTES composites offer a promising strategy for high-performance CO2 detection in terms of high sensitivity, low power-consumption, and convenient fabrication, and showcase brilliant prospects in portable optoelectronic detection systems and the Internet of Things.
Collapse
Affiliation(s)
- Yong Zhou
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing400044, People's Republic of China
| | - Jiyu Qiu
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing400044, People's Republic of China
| | - Hongchao Zhao
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing400044, People's Republic of China
| | - Yanjie Wang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing400044, People's Republic of China
| | - Jing Li
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing400044, People's Republic of China
| | - Cheng Zou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, People's Republic of China
| |
Collapse
|
15
|
Liu S, Chen Y, Yue B, Wang C, Qin B, Chai Y, Wu G, Li J, Han X, da‐Silva I, Manuel P, Day SJ, Thompson SP, Guan N, Yang S, Li L. Regulating Extra‐Framework Cations in Faujasite Zeolites for Capture of Trace Carbon Dioxide. Chemistry 2022; 28:e202201659. [PMID: 35726763 PMCID: PMC9545100 DOI: 10.1002/chem.202201659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 12/16/2022]
Affiliation(s)
- Shanshan Liu
- School of Materials Science and Engineering Nankai University Tianjin 300350 P. R. China
| | - Yinlin Chen
- Department of Chemistry The University of Manchester Manchester M13 9PL UK
| | - Bin Yue
- School of Materials Science and Engineering Nankai University Tianjin 300350 P. R. China
| | - Chang Wang
- School of Materials Science and Engineering Nankai University Tianjin 300350 P. R. China
| | - Bin Qin
- School of Materials Science and Engineering Nankai University Tianjin 300350 P. R. China
| | - Yuchao Chai
- School of Materials Science and Engineering Nankai University Tianjin 300350 P. R. China
| | - Guangjun Wu
- School of Materials Science and Engineering Nankai University Tianjin 300350 P. R. China
| | - Jiangnan Li
- Department of Chemistry The University of Manchester Manchester M13 9PL UK
| | - Xue Han
- Department of Chemistry The University of Manchester Manchester M13 9PL UK
| | - Ivan da‐Silva
- ISIS Facility STFC Rutherford Appleton Laboratory Chilton Oxfordshire OX11 0QX UK
| | - Pascal Manuel
- ISIS Facility STFC Rutherford Appleton Laboratory Chilton Oxfordshire OX11 0QX UK
| | - Sarah J. Day
- Diamond Light Source Harwell Science Campus Didcot Oxfordshire OX11 0DE UK
| | | | - Naijia Guan
- School of Materials Science and Engineering Nankai University Tianjin 300350 P. R. China
| | - Sihai Yang
- Department of Chemistry The University of Manchester Manchester M13 9PL UK
| | - Landong Li
- School of Materials Science and Engineering Nankai University Tianjin 300350 P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 P. R. China
| |
Collapse
|
16
|
Fonseca R, Vieira R, Sardo M, Marin-Montesinos I, Mafra L. Exploring Molecular Dynamics of Adsorbed CO 2 Species in Amine-Modified Porous Silica by Solid-State NMR Relaxation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:12582-12591. [PMID: 35968194 PMCID: PMC9358655 DOI: 10.1021/acs.jpcc.2c02656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Previous studies on CO2 adsorbents have mainly addressed the identification and quantification of adsorbed CO2 species in amine-modified porous materials. Investigation of molecular motion of CO2 species in confinement has not been explored in depth yet. This work entails a comprehensive study of molecular dynamics of the different CO2 species chemi- and physisorbed at amine-modified silica materials through the determination of the rotating frame spin-lattice relaxation times (T 1ρ) by solid-state NMR. Rotational correlation times (τC) were also estimated using spin relaxation models based on the Bloch, Wangsness, and Redfield and the Bloembergen-Purcell-Pound theories. As expected, the τC values for the two physisorbed CO2 species are considerably shorter (32 and 20 μs) than for the three identified chemisorbed CO2 species (162, 62, and 123 μs). The differences in molecular dynamics between the different chemisorbed species correlate well with the structures previously proposed. In the case of the physisorbed CO2 species, the τC values of the CO2 species displaying faster molecular dynamics falls in the range of viscous liquids, whereas the species presenting slower dynamics exhibit T 1ρ and τC values compatible with a CO2 layer of weakly interacting molecules with the silica surface. The values for chemical shift anisotropy (CSA) and 1H-13C heteronuclear dipolar couplings have also been estimated from T 1ρ measurements, for each adsorbed CO2 species. The CSA tensor parameters obtained from fitting the relaxation data agree with the experimentally measured CSA values, thus showing that the theories are well suited to study CO2 dynamics in silica surfaces.
Collapse
Affiliation(s)
- Rita Fonseca
- CICECO—Aveiro Institute of Materials,
Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Vieira
- CICECO—Aveiro Institute of Materials,
Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Mariana Sardo
- CICECO—Aveiro Institute of Materials,
Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ildefonso Marin-Montesinos
- CICECO—Aveiro Institute of Materials,
Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Luís Mafra
- CICECO—Aveiro Institute of Materials,
Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Zhu X, Xie W, Wu J, Miao Y, Xiang C, Chen C, Ge B, Gan Z, Yang F, Zhang M, O'Hare D, Li J, Ge T, Wang R. Recent advances in direct air capture by adsorption. Chem Soc Rev 2022; 51:6574-6651. [PMID: 35815699 DOI: 10.1039/d1cs00970b] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significant progress has been made in direct air capture (DAC) in recent years. Evidence suggests that the large-scale deployment of DAC by adsorption would be technically feasible for gigatons of CO2 capture annually. However, great efforts in adsorption-based DAC technologies are still required. This review provides an exhaustive description of materials development, adsorbent shaping, in situ characterization, adsorption mechanism simulation, process design, system integration, and techno-economic analysis of adsorption-based DAC over the past five years; and in terms of adsorbent development, affordable DAC adsorbents such as amine-containing porous materials with large CO2 adsorption capacities, fast kinetics, high selectivity, and long-term stability under ultra-low CO2 concentration and humid conditions. It is also critically important to develop efficient DAC adsorptive processes. Research and development in structured adsorbents that operate at low-temperature with excellent CO2 adsorption capacities and kinetics, novel gas-solid contactors with low heat and mass transfer resistances, and energy-efficient regeneration methods using heat, vacuum, and steam purge is needed to commercialize adsorption-based DAC. The synergy between DAC and carbon capture technologies for point sources can help in mitigating climate change effects in the long-term. Further investigations into DAC applications in the aviation, agriculture, energy, and chemical industries are required as well. This work benefits researchers concerned about global energy and environmental issues, and delivers perspective views for further deployment of negative-emission technologies.
Collapse
Affiliation(s)
- Xuancan Zhu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Wenwen Xie
- Institute of Technical Thermodynamics, Karlsruhe Institute of Technology, 76131, Germany
| | - Junye Wu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yihe Miao
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China
| | - Chengjie Xiang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Chunping Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Bingyao Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhuozhen Gan
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Fan Yang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Man Zhang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jia Li
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China.,Jiangmen Laboratory for Carbon and Climate Science and Technology, No. 29 Jinzhou Road, Jiangmen, 529100, China.,The Hong Kong University of Science and Technology (Guangzhou), No. 2 Huan Shi Road South, Nansha, Guangzhou, 511458, China
| | - Tianshu Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Ruzhu Wang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
18
|
CO 2 Adsorption on the N- and P-Modified Mesoporous Silicas. NANOMATERIALS 2022; 12:nano12071224. [PMID: 35407342 PMCID: PMC9000677 DOI: 10.3390/nano12071224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023]
Abstract
SBA-15 and MCM-48 mesoporous silicas were modified with functionalized (3-aminopropyl)triethoxysilane (APTES) by using the post-synthesis method, thus introducing N- and P-containing groups to the pore surface. The structure of the newly synthesized modifiers (aldimine and aminophosphonate derivatives of (3-aminopropyl)triethoxysilane and their grafting onto the porous matrix were proved by applying multinuclear NMR and FTIR spectroscopies. The content of the grafted functional groups was determined via thermogravimetric analysis. The physicochemical properties of the adsorbent samples were studied by nitrogen physisorption and UV–Vis spectroscopy. The adsorption capacity of CO2 was measured in a dynamic CO2 adsorption regime. The modified silicas displayed an enhanced adsorption capacity compared to the initial material. The 13C NMR spectra with high-power proton decoupling proved the presence of physically captured CO2. A value of 4.60 mmol/g was achieved for the MCM-48 material grafted with the Schiff base residues. The total CO2 desorption was achieved at 40 °C. A slight decrease of about 5% in CO2 adsorption capacities was registered for the modified silicas in three adsorption/desorption cycles, indicating their performance stability.
Collapse
|
19
|
Ye Y, Vega Martín L, Sánchez Montero MJ, López-Díaz D, Velázquez MM, Merchán MD. Optimizing the Properties of Hybrids Based on Graphene Oxide for Carbon Dioxide Capture. Ind Eng Chem Res 2022; 61:1332-1343. [PMID: 35110829 PMCID: PMC8796650 DOI: 10.1021/acs.iecr.1c02922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 01/27/2023]
Abstract
The reduction of CO2 emissions and its elimination from the atmosphere has become one of the major problems worldwide, since CO2 is the main cause of the greenhouse effect and climate change. In recent years, a great number of carbonaceous materials that can be used as CO2 adsorbents have been synthesized. The strategy is usually to synthesize the materials and determine their adsorption capacity without studying previously the factors that influence this capacity. In this work, different properties of the adsorbents are analyzed to study their influence on the CO2 adsorption capacity. For this purpose, 10 adsorbents have been synthesized using different strategies and characterized with X-ray photoelectron spectroscopy, X-ray diffraction, and micro-Raman spectroscopy. The percentage of sp2 carbons, the position of the D + D' peak of the second-order Raman spectrum, the micropore volume, and the grain size of the C sp2 domains have been related to the amount of CO2 adsorbed by the adsorbents. The results confirm a linear relationship between the volume of the micropores and the CO2 uptake and it proves that CO2 retention is favored in those materials that, in addition to having a high volume of micropores, also have low grain size of C.
Collapse
Affiliation(s)
- Yating Ye
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E-37008 Salamanca, Spain
| | - L. Vega Martín
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E-37008 Salamanca, Spain
| | - M. J. Sánchez Montero
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E-37008 Salamanca, Spain
- Grupo
de Nanotecnología, Universidad de
Salamanca, E37008 Salamanca, Spain
- Laboratorio
de Nanoelectrónica y Nanomateriales, USAL-NANOLAB, Universidad de Salamanca, E37008 Salamanca, Spain
| | - D. López-Díaz
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E-37008 Salamanca, Spain
- Departamento
de Química Analítica, Química Física e
Ingeniería Química, Universidad
de Alcalá. 28871 Alcalá de Henares, Madrid, Spain
| | - M. M. Velázquez
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E-37008 Salamanca, Spain
- Grupo
de Nanotecnología, Universidad de
Salamanca, E37008 Salamanca, Spain
- Laboratorio
de Nanoelectrónica y Nanomateriales, USAL-NANOLAB, Universidad de Salamanca, E37008 Salamanca, Spain
| | - M. D. Merchán
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E-37008 Salamanca, Spain
- Grupo
de Nanotecnología, Universidad de
Salamanca, E37008 Salamanca, Spain
- Laboratorio
de Nanoelectrónica y Nanomateriales, USAL-NANOLAB, Universidad de Salamanca, E37008 Salamanca, Spain
| |
Collapse
|
20
|
CO 2 Adsorption on Modified Mesoporous Silicas: The Role of the Adsorption Sites. NANOMATERIALS 2021; 11:nano11112831. [PMID: 34835596 PMCID: PMC8621056 DOI: 10.3390/nano11112831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023]
Abstract
The post-synthesis procedure for cyclic amine (morpholine and 1-methylpiperazine) modified mesoporous MCM-48 and SBA-15 silicas was developed. The procedure for preparation of the modified mesoporous materials does not affect the structural characteristics of the initial mesoporous silicas strongly. The initial and modified materials were characterized by XRD, N2 physisorption, thermal analysis, and solid-state NMR. The CO2 adsorption of the obtained materials was tested under dynamic and equilibrium conditions. The NMR data revealed the formation of different CO2 adsorbed forms. The materials exhibited high CO2 absorption capacity lying above the benchmark value of 2 mmol/g and stretching out to the outstanding 4.4 mmol/g in the case of 1-methylpiperazin modified MCM-48. The materials are reusable, and their CO2 adsorption capacities are slightly lower in three adsorption/desorption cycles.
Collapse
|
21
|
Wadi B, Golmakani A, Manovic V, Nabavi SA. Evaluation of Moderately Grafted Primary, Diamine, and Triamine Sorbents for CO 2 Adsorption from Ambient Air: Balancing Kinetics and Capacity under Humid Conditions. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Basil Wadi
- Centre for Climate and Environmental Protection, Cranfield University, Bedford, Bedfordshire MK43 0AL, U.K
| | - Ayub Golmakani
- Centre for Climate and Environmental Protection, Cranfield University, Bedford, Bedfordshire MK43 0AL, U.K
| | - Vasilije Manovic
- Centre for Climate and Environmental Protection, Cranfield University, Bedford, Bedfordshire MK43 0AL, U.K
| | - Seyed Ali Nabavi
- Centre for Climate and Environmental Protection, Cranfield University, Bedford, Bedfordshire MK43 0AL, U.K
| |
Collapse
|
22
|
Qi G, Wang Q, Xu J, Deng F. Solid-state NMR studies of internuclear correlations for characterizing catalytic materials. Chem Soc Rev 2021; 50:8382-8399. [PMID: 34115080 DOI: 10.1039/d0cs01130d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Understanding the nature of heterogeneous catalysts is critical for the rational design of highly active catalysts, which necessitates in-depth characterization of the structure and properties of catalysts as well as reaction mechanisms. Solid-state NMR correlation spectroscopy is becoming increasingly recognized as a powerful tool in the study of catalysts and catalytic reactions because of its capability to provide atomic-level insights into the structure, interaction and dynamics of molecules by establishing connectivity and proximity between the same or distinct nuclei. This tutorial review focuses on the fundamentals and state-of-the-art applications of solid-state NMR correlation techniques to structural characterization of catalytic materials including zeolites, metal oxides, organometallic complexes and MOFs as well as relevant studies regarding synthesis, synergistic catalysis, host-guest interactions and reaction mechanisms. Various correlation NMR methods that have been employed to address the challenging issues in heterogeneous catalysis are highlighted. This review concludes with outlooks on the promising applications and potential developments of solid-state NMR correlation spectroscopy in catalytic materials.
Collapse
Affiliation(s)
- Guodong Qi
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | | | | | | |
Collapse
|
23
|
Buijs W. Molecular Modeling Study to the Relation between Structure of LPEI, Including Water-Induced Phase Transitions and CO 2 Capturing Reactions. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- W. Buijs
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
24
|
Mostoni S, D’Arienzo M, Di Credico B, Armelao L, Rancan M, Dirè S, Callone E, Donetti R, Susanna A, Scotti R. Design of a Zn Single-Site Curing Activator for a More Sustainable Sulfur Cross-Link Formation in Rubber. Ind Eng Chem Res 2021; 60:10180-10192. [PMID: 34483477 PMCID: PMC8411846 DOI: 10.1021/acs.iecr.1c01580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022]
Abstract
ZnO is a worldwide used activator for a rubber vulcanization process, which promotes fast curing kinetics and high cross-linking densities of rubber nanocomposites (NCs). However, its extended use together with leaching phenomena occurring during the production and life cycle of rubber products, especially tires, entails potential environmental risks, as ecotoxicity toward aquatic organisms. Pushed by this issue, a novel activator was developed, which introduces highly dispersed and active zinc species in the vulcanization process, reducing the amount of employed ZnO and keeping high the curing efficiency. The activator is constituted by Zn(II) single sites, anchored on the surface of SiO2 nanoparticles (NPs) through the coordination with functionalizing amino silane groups. It behaves as a double-function material, acting at the same time as a rubber reinforcing filler and a curing activator. The higher availability and reactivity of the single-site Zn(II) centers toward curative agents impart faster kinetics and higher efficiency to the vulcanization process of silica/isoprene NCs, compared to conventionally used ZnO activators. Moreover, the NCs show a high cross-linking degree and improved dynamic mechanical properties, despite the remarkably lower amount of zinc employed than that normally used for rubber composites in tires. Finally, the structural stability of Zn(II) single sites during the curing reactions and in the final materials may represent a turning point toward the elimination of zinc leaching phenomena.
Collapse
Affiliation(s)
- Silvia Mostoni
- Department
of Materials Science, INSTM, University
of Milano-Bicocca, Via R. Cozzi 55, Milano 20125, Italy
| | - Massimiliano D’Arienzo
- Department
of Materials Science, INSTM, University
of Milano-Bicocca, Via R. Cozzi 55, Milano 20125, Italy
| | - Barbara Di Credico
- Department
of Materials Science, INSTM, University
of Milano-Bicocca, Via R. Cozzi 55, Milano 20125, Italy
| | - Lidia Armelao
- Institute
of Condensed Matter Chemistry and Technologies for Energy, National Research Council of Italy, ICMATE-CNR, via Marzolo 1, Padua 35131, Italy
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, Padua 35131, Italy
- Department
of Chemical Sciences and Materials Technologies, National Research Council of Italy, DSCTM-CNR, Piazzale A. Moro 7, Rome 00185, Italy
| | - Marzio Rancan
- Institute
of Condensed Matter Chemistry and Technologies for Energy, National Research Council of Italy, ICMATE-CNR, via Marzolo 1, Padua 35131, Italy
| | - Sandra Dirè
- “Klaus
Müller” Magnetic Resonance Lab., Dept. of Industrial
Engineering, University of Trento, Via Sommarive 9, Trento 38123, Italy
| | - Emanuela Callone
- “Klaus
Müller” Magnetic Resonance Lab., Dept. of Industrial
Engineering, University of Trento, Via Sommarive 9, Trento 38123, Italy
| | | | | | - Roberto Scotti
- Department
of Materials Science, INSTM, University
of Milano-Bicocca, Via R. Cozzi 55, Milano 20125, Italy
| |
Collapse
|
25
|
Vieira R, Marin-Montesinos I, Pereira J, Fonseca R, Ilkaeva M, Sardo M, Mafra L. "Hidden" CO 2 in Amine-Modified Porous Silicas Enables Full Quantitative NMR Identification of Physi- and Chemisorbed CO 2 Species. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:14797-14806. [PMID: 34567337 PMCID: PMC8456409 DOI: 10.1021/acs.jpcc.1c02871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Although spectroscopic investigation of surface chemisorbed CO2 species has been the focus of most studies, identifying different domains of weakly interacting (physisorbed) CO2 molecules in confined spaces is less trivial as they are often indistinguishable resorting to (isotropic) NMR chemical shift or vibrational band analyses. Herein, we undertake for the first time a thorough solid-state NMR analysis of CO2 species physisorbed prior to and after amine-functionalization of silica surfaces; combining 13C NMR chemical shift anisotropy (CSA) and longitudinal relaxation times (T 1). These methods were used to quantitatively distinguish otherwise overlapping physisorbed CO2 signals, which contributed to an empirical model of CO2 speciation for the physi- and chemisorbed fractions. The quantitatively measured T 1 values confirm the presence of CO2 molecular dynamics on the microsecond, millisecond, and second time scales, strongly supporting the existence of up to three physisorbed CO2 species with proportions of about 15%, 15%, and 70%, respectively. Our approach takes advantage from using adsorbed 13C-labeled CO2 as probe molecules and quantitative cross-polarization magic-angle spinning to study both physi- and chemisorbed CO2 species, showing that 45% of chemisorbed CO2 versus 55% of physisorbed CO2 is formed from the overall confined CO2 in amine-modified hybrid silicas. A total of six distinct CO2 environments were identified from which three physisorbed CO2 were discriminated, coined here as "gas, liquid, and solid-like" CO2 species. The complex nature of physisorbed CO2 in the presence and absence of chemisorbed CO2 species is revealed, shedding light on what fractions of weakly interacting CO2 are affected upon pore functionalization. This work extends the current knowledge on CO2 sorption mechanisms providing new clues toward CO2 sorbent optimization.
Collapse
Affiliation(s)
| | | | - João Pereira
- CICECO − Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - Rita Fonseca
- CICECO − Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - Marina Ilkaeva
- CICECO − Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - Mariana Sardo
- CICECO − Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - Luís Mafra
- CICECO − Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
26
|
Başaran K, Topçubaşı BU, Davran-Candan T. Theoretical investigation of CO2 adsorption mechanism over amine-functionalized mesoporous silica. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Sardo M, Afonso R, Juźków J, Pacheco M, Bordonhos M, Pinto ML, Gomes JRB, Mafra L. Unravelling moisture-induced CO 2 chemisorption mechanisms in amine-modified sorbents at the molecular scale. JOURNAL OF MATERIALS CHEMISTRY. A 2021; 9:5542-5555. [PMID: 34671479 PMCID: PMC8459418 DOI: 10.1039/d0ta09808f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/08/2021] [Indexed: 05/03/2023]
Abstract
This work entails a comprehensive solid-state NMR and computational study of the influence of water and CO2 partial pressures on the CO2-adducts formed in amine-grafted silica sorbents. Our approach provides atomic level insights on hypothesised mechanisms for CO2 capture under dry and wet conditions in a tightly controlled atmosphere. The method used for sample preparation avoids the use of liquid water slurries, as performed in previous studies, enabling a molecular level understanding, by NMR, of the influence of controlled amounts of water vapor (down to ca. 0.7 kPa) in CO2 chemisorption processes. Details on the formation mechanism of moisture-induced CO2 species are provided aiming to study CO2 : H2O binary mixtures in amine-grafted silica sorbents. The interconversion between distinct chemisorbed CO2 species was quantitatively monitored by NMR under wet and dry conditions in silica sorbents grafted with amines possessing distinct bulkiness (primary and tertiary). Particular attention was given to two distinct carbonyl environments resonating at δ C ∼161 and 155 ppm, as their presence and relative intensities are greatly affected by moisture depending on the experimental conditions. 1D and 2D NMR spectral assignments of both these 13C resonances were assisted by density functional theory calculations of 1H and 13C chemical shifts on model structures of alkylamines grafted onto the silica surface that validated various hydrogen-bonded CO2 species that may occur upon formation of bicarbonate, carbamic acid and alkylammonium carbamate ion pairs. Water is a key component in flue gas streams, playing a major role in CO2 speciation, and this work extends the current knowledge on chemisorbed CO2 structures and their stabilities under dry/wet conditions, on amine-modified solid surfaces.
Collapse
Affiliation(s)
- Mariana Sardo
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Rui Afonso
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Joanna Juźków
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Marlene Pacheco
- CERENA, Instituto Superior Técnico, University of Lisbon Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Marta Bordonhos
- CERENA, Instituto Superior Técnico, University of Lisbon Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Moisés L Pinto
- CERENA, Instituto Superior Técnico, University of Lisbon Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - José R B Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Luís Mafra
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| |
Collapse
|
28
|
Klinkenberg N, Kraft S, Polarz S. Great Location: About Effects of Surface Bound Neighboring Groups for Passive and Active Fine-Tuning of CO 2 Adsorption Properties in Model Carbon Capture Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007734. [PMID: 33470469 PMCID: PMC11468674 DOI: 10.1002/adma.202007734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Improved carbon capture materials are crucial for managing the CO2 level in the atmosphere. The past focus was on increasing adsorption capacities. It is widely known that controlling the heat of adsorption (ΔHads ) is equally important. If it is too low, CO2 uptake takes place at unfavorable conditions and with insufficient selectivity. If it is too high, chemisorption occurs, and the materials can hardly be regenerated. The conventional approach for influencing ΔHads is the modification of the adsorbing center. This paper proposes an alternative strategy. The hypothesis is that fine-tuning of the molecular environment around the adsorbing center is a powerful tool for the adjustment of CO2 -binding properties. Via click chemistry, any desired neighboring group (NG) can be incorporated on the surfaces of the nanoporous organosilica model materials. Passive NGs induce a change in the polarity of the surface, whereas active NGs are capable of direct interaction with the active center/CO2 pair. The effects on ΔHads and on the selectivity are studied. A situation can be realized which resembles frustrated Lewis acid-base pairs, and the investigation of the binding-species by solid-state NMR indicates that the push-pull effects could play an essential role not only in CO2 adsorption but also in its activation.
Collapse
Affiliation(s)
- Nele Klinkenberg
- Department of ChemistryUniversity of KonstanzUniversitätsstr. 10Konstanz78464Germany
| | - Sophia Kraft
- Department of ChemistryUniversity of KonstanzUniversitätsstr. 10Konstanz78464Germany
| | - Sebastian Polarz
- Department of ChemistryUniversity of KonstanzUniversitätsstr. 10Konstanz78464Germany
- Institute of Inorganic ChemistryLeibniz University HannoverCallinstr. 9Hannover30167Germany
| |
Collapse
|
29
|
Vilela SMF, Navarro JAR, Barbosa P, Mendes RF, Pérez-Sánchez G, Nowell H, Ananias D, Figueiredo F, Gomes JRB, Tomé JPC, Paz FAA. Multifunctionality in an Ion-Exchanged Porous Metal–Organic Framework. J Am Chem Soc 2021; 143:1365-1376. [DOI: 10.1021/jacs.0c10421] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sérgio M. F. Vilela
- Department of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Chemistry, LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jorge A. R. Navarro
- Department of Inorganic Chemistry, University of Granada, 18071 Granada, Spain
| | - Paula Barbosa
- Department of Materials & Ceramic Engineering, CICECO−Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo F. Mendes
- Department of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Germán Pérez-Sánchez
- Department of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Harriott Nowell
- Diamond Light Source, Didcot OX11 0DE, Oxfordshire, United Kingdom
| | - Duarte Ananias
- Department of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Physics, CICECO−Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipe Figueiredo
- Department of Materials & Ceramic Engineering, CICECO−Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José R. B. Gomes
- Department of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João P. C. Tomé
- Departamento de Engenharia Química, Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Filipe A. Almeida Paz
- Department of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
30
|
Forse AC, Milner PJ. New chemistry for enhanced carbon capture: beyond ammonium carbamates. Chem Sci 2020; 12:508-516. [PMID: 34163780 PMCID: PMC8178975 DOI: 10.1039/d0sc06059c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/04/2020] [Indexed: 11/21/2022] Open
Abstract
Carbon capture and sequestration is necessary to tackle one of the biggest problems facing society: global climate change resulting from anthropogenic carbon dioxide (CO2) emissions. Despite this pressing need, we still rely on century-old technology-aqueous amine scrubbers-to selectively remove CO2 from emission streams. Amine scrubbers are effective due to their exquisite chemoselectivity towards CO2 to form ammonium carbamates and (bi)carbonates, but suffer from several unavoidable limitations. In this perspective, we highlight the need for CO2 capture via new chemistry that goes beyond the traditional formation of ammonium carbamates. In particular, we demonstrate how ionic liquid and metal-organic framework sorbents can give rise to capture products that are not favourable for aqueous amines, including carbamic acids, carbamate-carbamic acid adducts, metal bicarbonates, alkyl carbonates, and carbonic acids. These new CO2 binding modes may offer advantages including higher sorption capacities and lower regeneration energies, though additional research is needed to fully explore their utility for practical applications. Overall, we outline the unique challenges and opportunities involved in engineering new CO2 capture chemistry into next-generation technologies.
Collapse
Affiliation(s)
- Alexander C Forse
- Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Phillip J Milner
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| |
Collapse
|
31
|
Functionalization of Silica SBA-15 with [3-(2-Aminoethylamino)Propyl] Trimethoxysilane in Supercritical CO2 Modified with Methanol or Ethanol for Carbon Capture. ENERGIES 2020. [DOI: 10.3390/en13215804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The CO2 adsorption process using amine-grafted silica is a promising technology for reducing the CO2 emissions from the power and industry sectors. In this work, silica SBA-15 was functionalized using [3-(2-aminoethylamino)propyl] trimethoxysilane (AEAPTS) in supercritical CO2 (scCO2) modified with 10% mol methanol or ethanol. The functionalization experiments were carried out at 323 K and 12.5 MPa, and with reaction times of 2 and 3 h. The molar fraction of AEAPTS in scCO2 plus 10% mol alcohol ranged from 0.5 × 10−3 to 1.8 × 10−3. It was found that as the molar fraction of AEAPTS increased, the amino-grafting density steadily rose, and the pore volume, surface area and pore size of the functionalized silica SBA-15 also decreased gradually. The scCO2 functionalization method was compared to the traditional toluene method. The diamine-SBA-15 prepared in the scCO2 process shows a slightly lower amine-grafting density but a higher surface area and pore volume than the ones obtained using the traditional method. Finally, the excess CO2 adsorption capacity of the materials at different temperatures and low pressure was measured. The diamine-silica SBA-15 displayed moderate excess CO2 adsorption capacities, 0.7–0.9 mmol∙g−1, but higher amine efficiency, ca. 0.4, at 298 K, due to the chemisorption of CO2. These findings show that diamine-grafted silica for post-combustion capture or direct air capture can be obtained using a media more sustainable than organic solvents.
Collapse
|
32
|
Said RB, Kolle JM, Essalah K, Tangour B, Sayari A. A Unified Approach to CO 2-Amine Reaction Mechanisms. ACS OMEGA 2020; 5:26125-26133. [PMID: 33073140 PMCID: PMC7557993 DOI: 10.1021/acsomega.0c03727] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 05/19/2023]
Abstract
A unified CO2-amine reaction mechanism applicable to absorption in aqueous or nonaqueous solutions and to adsorption on immobilized amines in the presence of both dry and humid conditions is proposed. Key findings supported by theoretical calculations and experimental evidence are as follows: (1) The formation of the 1,3-zwitterion, RH2N+-COO-, is highly unlikely because not only the associated four-membered mechanism has a high energy barrier, but also it is not consistent with the orbital symmetry requirements for chemical reactions. (2) The nucleophilic attack of CO2 by amines requires the catalytic assistance of a Bro̷nsted base through a six-membered mechanism to achieve proton transfer/exchange. An important consequence of this concerted mechanism is that the N and H atoms added to the C=O double bond do not originate from a single amine group. Using ethylenediamine for illustration, detailed description of the reaction pathway is reported using the reactive internal reaction coordinate as a new tool to visualize the reaction path. (3) In the presence of protic amines, the formation of ammonium bicarbonate/carbonate does not take place through the widely accepted hydration of carbamate/carbamic acid. Instead, water behaves as a nucleophile that attacks CO2 with catalytic assistance by amine groups, and carbamate/carbamic acid decomposes back to amine and CO2. (4) Generalization of the catalytic assistance concept to any Bro̷nsted base established through theoretical calculations was supported by infrared measurements. A unified six-membered mechanism was proposed to describe all possible interactions of CO2 with amines and water, each playing the role of a nucleophile and/or Bro̷nsted base, depending on the actual conditions.
Collapse
Affiliation(s)
- Ridha Ben Said
- Department
of Chemistry, College of Science and Arts, Qassim University, Ar Rass 51941, Saudi Arabia
| | - Joel Motaka Kolle
- Centre
for Catalysis Research and Innovation, Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Khaled Essalah
- IPEIEM,
Research Unit on Fundamental Sciences and Didactics, Université de Tunis El Manar, Campus Farhat Hached, Tunis 2092, Tunisia
| | - Bahoueddine Tangour
- IPEIEM,
Research Unit on Fundamental Sciences and Didactics, Université de Tunis El Manar, Campus Farhat Hached, Tunis 2092, Tunisia
| | - Abdelhamid Sayari
- Centre
for Catalysis Research and Innovation, Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| |
Collapse
|
33
|
Mao VY, Milner PJ, Lee JH, Forse AC, Kim EJ, Siegelman RL, McGuirk CM, Porter-Zasada LB, Neaton JB, Reimer JA, Long JR. Cooperative Carbon Dioxide Adsorption in Alcoholamine- and Alkoxyalkylamine-Functionalized Metal-Organic Frameworks. Angew Chem Int Ed Engl 2020; 59:19468-19477. [PMID: 31880046 DOI: 10.1002/anie.201915561] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 11/11/2022]
Abstract
A series of structurally diverse alcoholamine- and alkoxyalkylamine-functionalized variants of the metal-organic framework Mg2 (dobpdc) are shown to adsorb CO2 selectively via cooperative chain-forming mechanisms. Solid-state NMR spectra and optimized structures obtained from van der Waals-corrected density functional theory calculations indicate that the adsorption profiles can be attributed to the formation of carbamic acid or ammonium carbamate chains that are stabilized by hydrogen bonding interactions within the framework pores. These findings significantly expand the scope of chemical functionalities that can be utilized to design cooperative CO2 adsorbents, providing further means of optimizing these powerful materials for energy-efficient CO2 separations.
Collapse
Affiliation(s)
- Victor Y Mao
- Department of Chemical and Biomolecular Engineering, The University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Phillip J Milner
- Department of Chemistry, The University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jung-Hoon Lee
- Department of Physics, The University of California, Berkeley, Berkeley, CA, 94720, USA.,The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA.,The Kavli Energy Nanosciences Institute, The University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Alexander C Forse
- Department of Chemical and Biomolecular Engineering, The University of California, Berkeley, Berkeley, CA, 94720, USA.,Department of Chemistry, The University of California, Berkeley, Berkeley, CA, 94720, USA.,Berkeley Energy and Climate Institute, The University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Eugene J Kim
- Department of Chemistry, The University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Rebecca L Siegelman
- Department of Chemistry, The University of California, Berkeley, Berkeley, CA, 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - C Michael McGuirk
- Department of Chemistry, The University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Leo B Porter-Zasada
- Department of Chemistry, The University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jeffrey B Neaton
- Department of Physics, The University of California, Berkeley, Berkeley, CA, 94720, USA.,The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, 94720, USA.,The Kavli Energy Nanosciences Institute, The University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jeffrey A Reimer
- Department of Chemical and Biomolecular Engineering, The University of California, Berkeley, Berkeley, CA, 94720, USA.,Berkeley Energy and Climate Institute, The University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jeffrey R Long
- Department of Chemical and Biomolecular Engineering, The University of California, Berkeley, Berkeley, CA, 94720, USA.,Department of Chemistry, The University of California, Berkeley, Berkeley, CA, 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
34
|
Mao VY, Milner PJ, Lee J, Forse AC, Kim EJ, Siegelman RL, McGuirk CM, Porter‐Zasada LB, Neaton JB, Reimer JA, Long JR. Cooperative Carbon Dioxide Adsorption in Alcoholamine‐ and Alkoxyalkylamine‐Functionalized Metal–Organic Frameworks. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Victor Y. Mao
- Department of Chemical and Biomolecular Engineering The University of California, Berkeley Berkeley CA 94720 USA
| | - Phillip J. Milner
- Department of Chemistry The University of California, Berkeley Berkeley CA 94720 USA
| | - Jung‐Hoon Lee
- Department of Physics The University of California, Berkeley Berkeley CA 94720 USA
- The Molecular Foundry Lawrence Berkeley National Laboratory 1 Cyclotron Rd. Berkeley CA 94720 USA
- The Kavli Energy Nanosciences Institute The University of California, Berkeley Berkeley CA 94720 USA
| | - Alexander C. Forse
- Department of Chemical and Biomolecular Engineering The University of California, Berkeley Berkeley CA 94720 USA
- Department of Chemistry The University of California, Berkeley Berkeley CA 94720 USA
- Berkeley Energy and Climate Institute The University of California, Berkeley Berkeley CA 94720 USA
| | - Eugene J. Kim
- Department of Chemistry The University of California, Berkeley Berkeley CA 94720 USA
| | - Rebecca L. Siegelman
- Department of Chemistry The University of California, Berkeley Berkeley CA 94720 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - C. Michael McGuirk
- Department of Chemistry The University of California, Berkeley Berkeley CA 94720 USA
| | - Leo B. Porter‐Zasada
- Department of Chemistry The University of California, Berkeley Berkeley CA 94720 USA
| | - Jeffrey B. Neaton
- Department of Physics The University of California, Berkeley Berkeley CA 94720 USA
- The Molecular Foundry Lawrence Berkeley National Laboratory 1 Cyclotron Rd. Berkeley CA 94720 USA
- The Kavli Energy Nanosciences Institute The University of California, Berkeley Berkeley CA 94720 USA
| | - Jeffrey A. Reimer
- Department of Chemical and Biomolecular Engineering The University of California, Berkeley Berkeley CA 94720 USA
- Berkeley Energy and Climate Institute The University of California, Berkeley Berkeley CA 94720 USA
| | - Jeffrey R. Long
- Department of Chemical and Biomolecular Engineering The University of California, Berkeley Berkeley CA 94720 USA
- Department of Chemistry The University of California, Berkeley Berkeley CA 94720 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
35
|
Yoo CJ, Park SJ, Jones CW. CO2 Adsorption and Oxidative Degradation of Silica-Supported Branched and Linear Aminosilanes. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04205] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chun-Jae Yoo
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, NW, Atlanta, Georgia 30332, United States
| | - Sang Jae Park
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, NW, Atlanta, Georgia 30332, United States
| | - Christopher W. Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
36
|
Siegelman RL, Milner PJ, Forse AC, Lee JH, Colwell KA, Neaton JB, Reimer JA, Weston SC, Long JR. Water Enables Efficient CO 2 Capture from Natural Gas Flue Emissions in an Oxidation-Resistant Diamine-Appended Metal-Organic Framework. J Am Chem Soc 2019; 141:13171-13186. [PMID: 31348649 DOI: 10.1021/jacs.9b05567] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Supported by increasingly available reserves, natural gas is achieving greater adoption as a cleaner-burning alternative to coal in the power sector. As a result, carbon capture and sequestration from natural gas-fired power plants is an attractive strategy to mitigate global anthropogenic CO2 emissions. However, the separation of CO2 from other components in the flue streams of gas-fired power plants is particularly challenging due to the low CO2 partial pressure (∼40 mbar), which necessitates that candidate separation materials bind CO2 strongly at low partial pressures (≤4 mbar) to capture ≥90% of the emitted CO2. High partial pressures of O2 (120 mbar) and water (80 mbar) in these flue streams have also presented significant barriers to the deployment of new technologies for CO2 capture from gas-fired power plants. Here, we demonstrate that functionalization of the metal-organic framework Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) with the cyclic diamine 2-(aminomethyl)piperidine (2-ampd) produces an adsorbent that is capable of ≥90% CO2 capture from a humid natural gas flue emission stream, as confirmed by breakthrough measurements. This material captures CO2 by a cooperative mechanism that enables access to a large CO2 cycling capacity with a small temperature swing (2.4 mmol CO2/g with ΔT = 100 °C). Significantly, multicomponent adsorption experiments, infrared spectroscopy, magic angle spinning solid-state NMR spectroscopy, and van der Waals-corrected density functional theory studies suggest that water enhances CO2 capture in 2-ampd-Mg2(dobpdc) through hydrogen-bonding interactions with the carbamate groups of the ammonium carbamate chains formed upon CO2 adsorption, thereby increasing the thermodynamic driving force for CO2 binding. In light of the exceptional thermal and oxidative stability of 2-ampd-Mg2(dobpdc), its high CO2 adsorption capacity, and its high CO2 capture rate from a simulated natural gas flue emission stream, this material is one of the most promising adsorbents to date for this important separation.
Collapse
Affiliation(s)
| | | | | | | | | | - Jeffrey B Neaton
- Kavli Energy Nanosciences Institute at Berkeley , Berkeley , California 94720 , United States
| | | | - Simon C Weston
- Corporate Strategic Research , ExxonMobil Research and Engineering Company , Annandale , New Jersey 08801 , United States
| | | |
Collapse
|
37
|
Martins ICB, Sardo M, Čendak T, Gomes JRB, Rocha J, Duarte MT, Mafra L. Hydrogen bonding networks in gabapentin protic pharmaceutical salts: NMR and in silico studies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:243-255. [PMID: 30475406 DOI: 10.1002/mrc.4809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Hydrogen bonds (HBs) play a key role in the supramolecular arrangement of crystalline solids and, although they have been extensively studied, the influence of their strength and geometry on crystal packing remains poorly understood. Here we describe the crystal structures of two novel protic gabapentin (GBP) pharmaceutical salts prepared with the coformers methanesulfonic acid (GBP:METHA) and ethanesulfonic acid (GBP:ETHA). This study encompasses experimental and computational electronic structure analyses of 1 H NMR chemical shifts (CSs), upon in silico HB cleavage. GBP:METHA and GBP:ETHA crystal packing comprise two main structural domains: an ionic layer (characterized by the presence of charge-assisted + NHGBP ⋯O-METHA/ETHA HB interactions) and a neutral layer generated in a different way for each salt, mainly due to the presence of bifurcated HB interactions. A comprehensive study of HB networks is presented for GBP:METHA, by isolating molecular fragments involved in distinct HB types (NH⋯O, OH⋯O, and CH⋯O) obtained from in silico disassembling of an optimized three-dimensional packing structure. Formation of HB leads to calculated 1 H NMR CS changes from 0.4 to ~5.8 ppm. This study further attempts to assess how 1 H NMR CS of protons engaged in certain HB are affected when other nearby HB, involving bifurcated or geminal/vicinal hydrogen atoms, are removed.
Collapse
Affiliation(s)
- Inês C B Martins
- CQE - Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mariana Sardo
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Tomaž Čendak
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - José R B Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - João Rocha
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - M Teresa Duarte
- CQE - Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Luís Mafra
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
38
|
Afonso R, Sardo M, Mafra L, Gomes JRB. Unravelling the Structure of Chemisorbed CO 2 Species in Mesoporous Aminosilicas: A Critical Survey. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2758-2767. [PMID: 30730709 DOI: 10.1021/acs.est.8b05978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Chemisorbent materials, based on porous aminosilicas, are among the most promising adsorbents for direct air capture applications, one of the key technologies to mitigate carbon emissions. Herein, a critical survey of all reported chemisorbed CO2 species, which may form in aminosilica surfaces, is performed by revisiting and providing new experimental proofs of assignment of the distinct CO2 species reported thus far in the literature, highlighting controversial assignments regarding the existence of chemisorbed CO2 species still under debate. Models of carbamic acid, alkylammonium carbamate with different conformations and hydrogen bonding arrangements were ascertained using density functional theory (DFT) methods, mainly through the comparison of the experimental 13C and 15N NMR chemical shifts with those obtained computationally. CO2 models with variable number of amines and silanol groups were also evaluated to explain the effect of amine aggregation in CO2 speciation under confinement. In addition, other less commonly studied chemisorbed CO2 species (e.g., alkylammonium bicarbonate, ditethered carbamic acid and silylpropylcarbamate), largely due to the difficulty in obtaining spectroscopic identification for those, have also been investigated in great detail. The existence of either neutral or charged (alkylammonium siloxides) amine groups, prior to CO2 adsorption, is also addressed. This work extends the molecular-level understanding of chemisorbed CO2 species in amine-oxide hybrid surfaces showing the benefit of integrating spectroscopy and theoretical approaches.
Collapse
Affiliation(s)
- Rui Afonso
- CICECO - Aveiro Institute of Materials, Department of Chemistry , University of Aveiro, Campus Universitário de Santiago , 3810-193 Aveiro , Portugal
| | - Mariana Sardo
- CICECO - Aveiro Institute of Materials, Department of Chemistry , University of Aveiro, Campus Universitário de Santiago , 3810-193 Aveiro , Portugal
| | - Luís Mafra
- CICECO - Aveiro Institute of Materials, Department of Chemistry , University of Aveiro, Campus Universitário de Santiago , 3810-193 Aveiro , Portugal
| | - José R B Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry , University of Aveiro, Campus Universitário de Santiago , 3810-193 Aveiro , Portugal
| |
Collapse
|
39
|
Wang X, Zeng W, Zhang H, Li D, Tian H, Hu X, Wu Q, Xin C, Cao X, Liu W. The dynamic CO2 adsorption of polyethylene polyamine-loaded MCM-41 before and after methoxypolyethylene glycol codispersion. RSC Adv 2019; 9:27050-27059. [PMID: 35528601 PMCID: PMC9070414 DOI: 10.1039/c9ra05404a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/23/2019] [Indexed: 11/25/2022] Open
Abstract
To reduce the cost of CO2 capture, polyethylene polyamine (PEPA), with a high amino density and relatively low price, was loaded into MCM-41 to prepare solid sorbents for CO2 capture from flue gases. In addition, methoxypolyethylene glycol (MPEG) was codispersed and coimpregnated with PEPA to prepare composite sorbents. The pore structures, surface functional groups, adsorption and regeneration properties for the sorbents were measured and characterized. When CO2 concentration is 15%, for 30, 40 and 50 wt% PEPA-loaded MCM-41, the equilibrium adsorption capacities were respectively determined to be 1.15, 1.47 and 1.66 mmol g−1 at 60 °C; for 30 wt% PEPA and 20 wt% MPEG, 40 wt% PEPA and 10 wt% MPEG, and 50 wt% PEPA and 5 wt% MPEG codispersed MCM-41, the equilibrium adsorption capacities were respectively determined to be 1.97, 2.22 and 2.25 mmol g−1 at 60 °C; the breakthrough and equilibrium adsorption capacities for 50 wt% PEPA and 5 wt% MPEG codispersed MCM-41 respectively reached 2.01 and 2.39 mmol g−1 at 50 °C, all values showed a significant increase compared to PEPA-modified MCM-41. After 10 regenerations, the equilibrium adsorption capacity for codispersed MCM-41 was reduced by 5.0%, with the regeneration performance being better than that of PEPA-loaded MCM-41, which was reduced by 7.8%. The CO2-TPD results indicated that the mutual interactions between PEPA and MPEG might change basic sites in MCM-41, thereby facilitating active site exposure and CO2 adsorption. To reduce the cost of CO2 capture, polyethylene polyamine (PEPA), with a high amino density and relatively low price, was loaded into MCM-41 to prepare solid sorbents for CO2 capture from flue gases.![]()
Collapse
Affiliation(s)
- Xia Wang
- Department of Chemistry and Chemical Engineering
- Weifang University
- Weifang 261061
- China
| | - Wulan Zeng
- Department of Chemistry and Chemical Engineering
- Weifang University
- Weifang 261061
- China
| | - Hongyan Zhang
- Department of Chemistry and Chemical Engineering
- Weifang University
- Weifang 261061
- China
| | - Dan Li
- Department of Chemistry and Chemical Engineering
- Weifang University
- Weifang 261061
- China
| | - Hongjing Tian
- College of Chemical Engineering
- Qingdao University of Science & Technology
- Qingdao 266042
- China
| | - Xiude Hu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Qian Wu
- Department of Chemistry and Chemical Engineering
- Weifang University
- Weifang 261061
- China
| | - Chunling Xin
- Department of Chemistry and Chemical Engineering
- Weifang University
- Weifang 261061
- China
| | - Xiaoyu Cao
- Department of Chemistry and Chemical Engineering
- Weifang University
- Weifang 261061
- China
| | - Wenjing Liu
- Department of Chemistry and Chemical Engineering
- Weifang University
- Weifang 261061
- China
| |
Collapse
|
40
|
Jahandar Lashaki M, Khiavi S, Sayari A. Stability of amine-functionalized CO 2 adsorbents: a multifaceted puzzle. Chem Soc Rev 2019; 48:3320-3405. [PMID: 31149678 DOI: 10.1039/c8cs00877a] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review focuses on important stability issues facing amine-functionalized CO2 adsorbents, including amine-grafted and amine-impregnated silicas, zeolites, metal-organic frameworks and carbons. During the past couple of decades, major advances were achieved in understanding and improving the performance of such materials, particularly in terms of CO2 adsorptive properties such as adsorption capacity, selectivity and kinetics. Nonetheless, to pave the way toward commercialization of adsorption-based CO2 capture technologies, in addition to other attributes, adsorbent materials should be stable over many thousands of adsorption-desorption cycles. Adsorbent stability, which is of utmost importance as it determines adsorbent lifetime and operational costs of CO2 capture, is a multifaceted issue involving thermal, hydrothermal, and chemical stability. Here we discuss the impact of the adsorbent physical and chemical properties, the feed gas composition and characteristics, and the adsorption-desorption operational parameters on the long-term stability of amine-functionalized CO2 adsorbents. We also review important insights associated with the underlying deactivation pathways of the adsorbents upon exposure to high temperature, oxygen, dry CO2, sulfur-containing compounds, nitrogen oxides, oxygen and steam. Finally, specific recommendations are provided to address outstanding stability issues.
Collapse
Affiliation(s)
- Masoud Jahandar Lashaki
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| | | | | |
Collapse
|
41
|
Forse AC, Milner PJ, Lee JH, Redfearn HN, Oktawiec J, Siegelman RL, Martell JD, Dinakar B, Porter-Zasada LB, Gonzalez MI, Neaton JB, Long JR, Reimer JA. Elucidating CO 2 Chemisorption in Diamine-Appended Metal-Organic Frameworks. J Am Chem Soc 2018; 140:18016-18031. [PMID: 30501180 DOI: 10.1021/jacs.8b10203] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The widespread deployment of carbon capture and sequestration as a climate change mitigation strategy could be facilitated by the development of more energy-efficient adsorbents. Diamine-appended metal-organic frameworks of the type diamine-M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) have shown promise for carbon-capture applications, although questions remain regarding the molecular mechanisms of CO2 uptake in these materials. Here we leverage the crystallinity and tunability of this class of frameworks to perform a comprehensive study of CO2 chemisorption. Using multinuclear nuclear magnetic resonance (NMR) spectroscopy experiments and van-der-Waals-corrected density functional theory (DFT) calculations for 13 diamine-M2(dobpdc) variants, we demonstrate that the canonical CO2 chemisorption products, ammonium carbamate chains and carbamic acid pairs, can be readily distinguished and that ammonium carbamate chain formation dominates for diamine-Mg2(dobpdc) materials. In addition, we elucidate a new chemisorption mechanism in the material dmpn-Mg2(dobpdc) (dmpn = 2,2-dimethyl-1,3-diaminopropane), which involves the formation of a 1:1 mixture of ammonium carbamate and carbamic acid and accounts for the unusual adsorption properties of this material. Finally, we show that the presence of water plays an important role in directing the mechanisms for CO2 uptake in diamine-M2(dobpdc) materials. Overall, our combined NMR and DFT approach enables a thorough depiction and understanding of CO2 adsorption within diamine-M2(dobpdc) compounds, which may aid similar studies in other amine-functionalized adsorbents in the future.
Collapse
Affiliation(s)
| | - Phillip J Milner
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Jung-Hoon Lee
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | | | | | - Rebecca L Siegelman
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | | | - Bhavish Dinakar
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | | | | | - Jeffrey B Neaton
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Kavli Energy Nanosciences Institute at Berkeley , Berkeley , California 94720 , United States
| | - Jeffrey R Long
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Jeffrey A Reimer
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
42
|
He H, Tang H, Chen X, Hou X, Zhou X, Chen H, Wu S, Wang S. Structure Design of Low-Temperature Regenerative Hyperbranched Polyamine Adsorbent for CO 2 Capture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14169-14179. [PMID: 30395474 DOI: 10.1021/acs.langmuir.8b02493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel low-temperature regenerative hydroxy-functionalized hyperbranched polyamine adsorbent (0.16OH-HBPA) for CO2 capture was readily prepared using glutaraldehyde to cross-link amino-terminated hyperbranched polymers (HBP) and functionalized with glycidol, followed by the reduction of the imino groups of 0.16OH-HBPA to alkyl aminos using NaBH4. Here, the HBP has been prepared through the one-pot reaction between pentaethylenehexamine and methyl acrylate. The as-prepared 0.16OH-HBPA adsorbent showed a high adsorption capacity (4.05 mmol/g) for CO2 (concentration, 10%) in the presence of water at 25 °C, and the alkyl amino utilization efficiency reached 73%. More importantly, the CO2-adsorbed 0.16OH-HBPA showed excellent regenerative performance at low temperatures (85 °C, under pure CO2 gas) due to the introduced hydroxyl that can cooperatively adsorb CO2 via the amino groups to form stable carbamic acid. This process suppressed the formation of open-chain urea and cyclic urea and could overcome the disadvantages of high regeneration temperatures (≥90 °C, under pure inert gas) of CO2-adsorbed traditional solid amine adsorbents.
Collapse
Affiliation(s)
- Hui He
- College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control , Nanning 530004 , P. R. China
| | - Hanying Tang
- College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , P. R. China
| | - Xingjuan Chen
- College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , P. R. China
| | - Xudong Hou
- College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , P. R. China
| | - Xiaochong Zhou
- College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , P. R. China
| | - Hong Chen
- College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , P. R. China
| | - Shanyan Wu
- College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , P. R. China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering , Guangxi University , Nanning 530004 , P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control , Nanning 530004 , P. R. China
| |
Collapse
|
43
|
Lee JJ, Yoo CJ, Chen CH, Hayes SE, Sievers C, Jones CW. Silica-Supported Sterically Hindered Amines for CO 2 Capture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12279-12292. [PMID: 30244578 DOI: 10.1021/acs.langmuir.8b02472] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Most studies exploring the capture of CO2 on solid-supported amines have focused on unhindered amines or alkylimine polymers. It has been observed in extensive solution studies that another class of amines, namely sterically hindered amines, can exhibit enhanced CO2 capacity when compared to their unhindered counterparts. In contrast to solution studies, there has been limited research conducted on sterically hindered amines on solid supports. In this work, one hindered primary amine and two hindered secondary amines are grafted onto mesoporous silica at similar amine coverages, and their adsorption performances are investigated through fixed bed breakthrough experiments and thermogravimetric analysis. Furthermore, chemisorbed CO2 species formed on the sorbents under dry and humid conditions are elucidated using in situ Fourier-transform infrared spectroscopy. Ammonium bicarbonate formation and enhancement of CO2 adsorption capacity is observed for all supported hindered amines under humid conditions. Our experiments in this study also suggest that chemisorbed CO2 species formed on supported hindered amines are weakly bound, which may lead to reduced energy costs associated with regeneration if such materials were deployed in a practical separation process. However, overall CO2 uptake capacities of the solid supported hindered amines are modest compared to their solution counterparts. The oxidative and thermal stabilities of the supported hindered amine sorbents are also assessed to give insight into their operational lifetimes.
Collapse
Affiliation(s)
- Jason J Lee
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , 311 Ferst Drive , Atlanta , Georgia 30332 , United States
| | - Chun-Jae Yoo
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , 311 Ferst Drive , Atlanta , Georgia 30332 , United States
| | - Chia-Hsin Chen
- Department of Chemistry , Washington University , One Brookings Drive , Saint Louis , Missouri 63130 , United States
| | - Sophia E Hayes
- Department of Chemistry , Washington University , One Brookings Drive , Saint Louis , Missouri 63130 , United States
| | - Carsten Sievers
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , 311 Ferst Drive , Atlanta , Georgia 30332 , United States
| | - Christopher W Jones
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , 311 Ferst Drive , Atlanta , Georgia 30332 , United States
| |
Collapse
|
44
|
Wang X, Zeng W, Guo Q, Geng Q, Yan Y, Hu X. The further activation and functionalization of semicoke for CO 2 capture from flue gases. RSC Adv 2018; 8:35521-35527. [PMID: 35547898 PMCID: PMC9087990 DOI: 10.1039/c8ra07560c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/11/2018] [Indexed: 11/26/2022] Open
Abstract
To systematically study CO2 adsorption performance, semicoke from the low-rank lignite was further activated and functionalized for CO2 capture from flue gases. The effect of the activation conditions, such as the activation temperature, activation time and HCl washing, and the tetraethylenepentamine (TEPA)-functionalization on CO2 adsorption were investigated; the pore structure and surface morphology of the semicoke under different activation conditions were characterized. Both the surface structure and adsorption performance of the activated semicoke could be improved under appropriate activation and acid-treatment conditions. The optimal breakthrough and equilibrium adsorption capacity for the TEPA-functionalized HCl-washed activated semicoke were separately 2.68 and 3.70 mmol g−1 at 60 °C for the simulated flue gas of 15 vol% CO2 and 85 vol% N2. After ten adsorption–desorption cycles, the equilibrium adsorption capacity was still 3.43 mmol g−1, and the semicoke-based sorbent showed good regenerability. To systematically study CO2 adsorption performance, semicoke from the low-rank lignite was further activated and functionalized for CO2 capture from flue gases.![]()
Collapse
Affiliation(s)
- Xia Wang
- Department of Chemistry and Chemical Engineering, Weifang University Weifang 261061 Shandong China +86 536 8785283 +86 536 8785283
| | - Wulan Zeng
- Department of Chemistry and Chemical Engineering, Weifang University Weifang 261061 Shandong China +86 536 8785283 +86 536 8785283
| | - Qingjie Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Qijin Geng
- Department of Chemistry and Chemical Engineering, Weifang University Weifang 261061 Shandong China +86 536 8785283 +86 536 8785283
| | - Yongmei Yan
- Department of Chemistry and Chemical Engineering, Weifang University Weifang 261061 Shandong China +86 536 8785283 +86 536 8785283
| | - Xiude Hu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University Yinchuan 750021 China
| |
Collapse
|
45
|
Yang M, Wang L, Kamali Shahri SM, Rioux RM, Armaou A. Investigation of CO 2 Sorption Mechanisms in Isothermal Columns via Transient Material and Energy Balance PDE Models. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Antonios Armaou
- Department of Mechanical Engineering, Wenzhou University, Zhejiang 325005, China
| |
Collapse
|
46
|
Paul G, Bisio C, Braschi I, Cossi M, Gatti G, Gianotti E, Marchese L. Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chem Soc Rev 2018; 47:5684-5739. [PMID: 30014075 DOI: 10.1039/c7cs00358g] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding the structure-property relationship of solids is of utmost relevance for efficient chemical processes and technological applications in industries. This contribution reviews the concept of coupling three well-known characterization techniques (solid-state NMR, FT-IR and computational methods) for the study of solid state materials which possess 2D and 3D architectures and discusses the way it will benefit the scientific communities. It highlights the most fundamental and applied aspects of the proactive combined approach strategies to gather information at a molecular level. The integrated approach involving multiple spectroscopic and computational methods allows achieving an in-depth understanding of the surface, interfacial and confined space processes that are beneficial for the establishment of structure-property relationships. The role of ssNMR/FT-IR spectroscopic properties of probe molecules in monitoring the strength and distribution of catalytic active sites and their accessibility at the porous/layered surface is discussed. Both experimental and theoretical aspects will be considered by reporting relevant examples. This review also identifies and discusses the progress, challenges and future prospects in the field of synthesis and applications of layered and porous solids.
Collapse
Affiliation(s)
- Geo Paul
- Department of Science and Technological Innovation, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | | | | | | | | | | | | |
Collapse
|
47
|
Peng HL, Zhong FY, Zhang JB, Zhang JY, Wu PK, Huang K, Fan JP, Jiang LL. Graphitic Carbon Nitride Functionalized with Polyethylenimine for Highly Effective Capture of Carbon Dioxide. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02275] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hai-Long Peng
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Fu-Yu Zhong
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jian-Bo Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jia-Yin Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Ping-Keng Wu
- Department of Chemical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Kuan Huang
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jie-Ping Fan
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Li-Long Jiang
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC−CFC), School of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350002, China
| |
Collapse
|
48
|
Čendak T, Sequeira L, Sardo M, Valente A, Pinto ML, Mafra L. Detecting Proton Transfer in CO 2 Species Chemisorbed on Amine-Modified Mesoporous Silicas by Using 13 C NMR Chemical Shift Anisotropy and Smart Control of Amine Surface Density. Chemistry 2018; 24:10136-10145. [PMID: 29663545 DOI: 10.1002/chem.201800930] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Indexed: 01/24/2023]
Abstract
The wealth of site-selective structural information on CO2 speciation, obtained by spectroscopic techniques, is often hampered by the lack of easy-to-control synthetic routes. Herein, an alternative experimental protocol that relies on the high sensitivity of 13 C chemical shift anisotropy (CSA) tensors to proton transfer, is presented to unambiguously distinguish between ionic/charged and neutral CO2 species, formed upon adsorption of 13 CO2 in amine-modified porous materials. Control of the surface amine spacing was achieved through the use of amine protecting groups during functionalisation prior to CO2 adsorption. This approach enabled the formation of either "isolated" or "paired" carbamate/carbamic acid species, providing a first experimental NMR proof towards the identification of both aggregation states. Computer modelling of surface CO2 -amine adducts assisted the solid-state NMR assignments and validated various hydrogen-bond arrangements occurring upon formation of isolated/aggregated carbamic acid and alkylammonium carbamate ion species. This work extends the understanding of chemisorbed CO2 structures formed at pore surfaces and reveals structural insight about the protonation source responsible for the proton-transfer mechanism in such aggregates.
Collapse
Affiliation(s)
- Tomaž Čendak
- CICECO-Chemistry Department, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.,National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Lisa Sequeira
- CICECO-Chemistry Department, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Mariana Sardo
- CICECO-Chemistry Department, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Anabela Valente
- CICECO-Chemistry Department, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Moisés L Pinto
- CERENA-Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais n° 1, 1049-001, Lisbon, Portugal
| | - Luís Mafra
- CICECO-Chemistry Department, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
49
|
Amino acid modified montmorillonite clays as sustainable materials for carbon dioxide adsorption and separation. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Shimon D, Chen CH, Lee JJ, Didas SA, Sievers C, Jones CW, Hayes SE. 15N Solid State NMR Spectroscopic Study of Surface Amine Groups for Carbon Capture: 3-Aminopropylsilyl Grafted to SBA-15 Mesoporous Silica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1488-1495. [PMID: 29257887 DOI: 10.1021/acs.est.7b04555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Materials composed of high-porosity solid supports, such as SBA-15, containing amine-bearing moieties inside the pores, such as 3-aminopropylsilane (APS), are envisioned for carbon dioxide capture; solid-state 15N NMR can be highly informative for studying chemisorption reactions. Two 15N-enriched samples with different APS loadings were studied to probe the identity of the pendant molecules and structure of the chemisorbed CO2 species. 15N cross-polarization magic-angle spinning NMR provides unique information about the amines, whether they are rigid or dynamic, by measuring contact time curves and rotating frame, T1ρ(15N), relaxation. Both carbamate and carbamic acid are formed; carbamic acid is shown to be less stable than carbamate. After desorption, a steady state for the chemisorbed reaction product is reached, leaving behind carbamate. 15N NMR monitors the evolution of the species over time. During desorption, APS is regenerated, but the ammonium propylsilane intensity does not change, leading us to conclude that carbamic acid desorbs, while carbamate (to which ammonium propylsilane is ion paired) persists. A secondary ditehtered amine present does not react with CO2, and we posit this may be due to its rigidity. These findings demonstrate the versatility of solid-state NMR to provide information about these complex CO2 reactions with solid amine sorbents.
Collapse
Affiliation(s)
- Daphna Shimon
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Chia-Hsin Chen
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Jason J Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Stephanie A Didas
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Carsten Sievers
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Christopher W Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Sophia E Hayes
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| |
Collapse
|