1
|
Luiz E, de Azambuja F, Solé-Daura A, Puiggalí-Jou J, Mullaliu A, Carbó JJ, Xavier FR, Peralta RA, Parac-Vogt TN. Phosphoester bond hydrolysis by a discrete zirconium-oxo cluster: mechanistic insights into the central role of the binuclear Zr IV-Zr IV active site. Chem Sci 2024:d4sc03946g. [PMID: 39416298 PMCID: PMC11474385 DOI: 10.1039/d4sc03946g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Effective degradation of non-natural phosphate triesters (PTs) widely used in pesticides and warfare agents is of paramount relevance for human and environmental safety, particularly under acidic conditions where they are highly stable. Here, we present a detailed reactivity and mechanistic study pioneering discrete {Zr6O8} clusters, which are commonly employed as building blocks for Zr-MOFs and as non-classical soluble coordination compounds for the degradation of PTs using the pesticide ethyl paraoxon as a model. Combined computational studies, mechanistic experiments, and EXAFS analysis show that the reactivity of these clusters arises from their ZrIV-ZrIV bimetallic sites, which hydrolyze ethyl paraoxon under acidic conditions through an intramolecular pathway. Remarkably, the energetics of the reaction is dependent on the protonation state of the active sites, and a weakly acidic medium favors the reaction. Moreover, catalyst stability allowed for its recovery and reuse. Such a mechanism is in close analogy to enzymatic reactions and different from that previously reported for Zr-MOFs. These findings outline the potential of MIV-MIV active sites for PT degradation under challenging aqueous acidic conditions and contribute to the development of bioinspired catalysts and materials.
Collapse
Affiliation(s)
- Edinara Luiz
- Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium
- Departamento de Química, Universidade Federal de Santa Catarina Florianópolis Santa Catarina 88040-900 Brazil
| | | | - Albert Solé-Daura
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili Marcel·lí Domingo 1 Tarragona 43007 Spain
| | - Jordi Puiggalí-Jou
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili Marcel·lí Domingo 1 Tarragona 43007 Spain
| | - Angelo Mullaliu
- Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium
| | - Jorge J Carbó
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili Marcel·lí Domingo 1 Tarragona 43007 Spain
| | - Fernando R Xavier
- Departamento de Química, Universidade do Estado de Santa Catarina Joinville Santa Catarina 89219-710 Brazil
| | - Rosely A Peralta
- Departamento de Química, Universidade Federal de Santa Catarina Florianópolis Santa Catarina 88040-900 Brazil
| | | |
Collapse
|
2
|
Leonard MB, Li T, Rodriguez EE. Low-Temperature Decomposition and Oxidation of the Nerve Agent Simulant on Mesoporous Nickel Oxide and Cu-Doped Nickel Oxide. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38757-38767. [PMID: 38988229 DOI: 10.1021/acsami.4c07620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In an effort to develop the next frontier filtration material for chemical warfare agent (CWA) decomposition, we synthesized mesoporous NiO and CuxNi1-xO (x = 0.10 and 0.20) and studied the decomposition of CWA simulant diisopropyl fluorophosphate (DIFP) on their surfaces. Mesoporous NiO and CuxNi1-xO were fully characterized and found to be a solid solution with no phase separation up to 20% copper dopant. The synthesized materials were successfully templated producing ordered mesoporous metal oxides with high surface areas (67.89- 94.38 m2/g). Through Raman spectroscopy, we showed that pure NiO contained a high concentration of Ni2+ vacancies, while Cu2+ reduced these defects. Through in situ infrared spectroscopy, we determined the surface species formed, potential pathways, and driving factors for decomposition. Upon exposure of DIFP, all materials produced similar decomposition products CO, CO2, carbonyls, and carbonates. However, decomposition reactions were sustained longer on mesoporous NiO, facilitated by the higher Ni2+ vacancy concentration. NiO was further studied with DIFP, first at low dosing temperatures (-50 °C), which still resulted in the production of CO and carbonates, and then, second, with a higher pretreatment temperature, which showed the importance of terminal hydroxyls/water to fully oxidize decomposition products to CO2. Mesoporous NiO demonstrated high decomposition and oxidation capabilities at temperatures below room temperature, all without any external excitation or noble metals, making it a promising frontier filtration material for CWA decomposition.
Collapse
Affiliation(s)
- Matthew B Leonard
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Tianyu Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Materials Department and Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Efrain E Rodriguez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
3
|
Wu G, Zhang B, Zhang H, Zhang X, Hu X, Meng X, Wu J, Hou H. Morphology Regulation of UiO-66-2I Supporting Systematic Investigations of Shape-Dependent Catalytic Activity for Degradation of an Organophosphate Nerve Agent Simulant. Inorg Chem 2024; 63:12658-12666. [PMID: 38916863 DOI: 10.1021/acs.inorgchem.4c02028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Phosphonate-based nerve agents, as a kind of deadly chemical warfare agent, are a persistent and evolving threat to humanity. Zirconium-based metal-organic frameworks (Zr-MOFs) are a kind of highly porous crystalline material that includes Zr-OH-Zr sites and imitates the active sites of the phosphotriesterase enzyme, representing significant potential for the adsorption and catalytic hydrolysis of phosphonate-based nerve agents. In this work, we present a new Zr-MOF, UiO-66-2I, which attaches two iodine atoms in the micropore of the MOF and exhibits excellent catalytic activity on the degradation of a nerve agent simulant, dimethyl 4-nitrophenyl phosphate (DMNP), as the result of the formation of halogen bonds between the phosphate ester bonds and iodine groups. Furthermore, various morphologies of UiO-66-2I, such as blocky-shaped nanoparticles (NPs), two-dimensional (2D) nanosheets, hexahedral NPs, stick-like NPs, colloidal microspheres, and colloidal NPs, have been obtained by adding acetic acid (AA), formic acid (FA), propionic acid (PA), valeric acid (VA), benzoic acid (BA), and trifluoroacetic acid (TFA) as modulators, respectively, and show different catalytic hydrolysis activities. Specifically, the catalytic activities follow the trend UiO-66-2I-FA (t1/2 = 1 min) > UiO-66-2I-AA-NP (t1/2 = 4 min) ≈ UiO-66-2I-VA (t1/2 = 4 min) > UiO-66-2I-BA (t1/2 = 5 min) > UiO-66-2I-PA (t1/2 = 15 min) > UiO-66-2I-TFA (t1/2 = 18 min). The experimental results show that the catalytic hydrolysis activity of Zr-MOF is regulated by the crystallinity, defect quantity, morphologies, and hydrophilicity of these samples, which synergistically affect the accessibility of catalytic sites and the diffusion of phosphate in the pores of Zr-MOFs.
Collapse
Affiliation(s)
- Gaigai Wu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Bin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Heyao Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiying Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiaomeng Hu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiangru Meng
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jie Wu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hongwei Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
4
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
5
|
Marlar T, Harb JN. MOF-Enabled Electrochemical Sensor for Rapid and Robust Sensing of V-Series Nerve Agents at Low Concentrations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9569-9580. [PMID: 38329224 DOI: 10.1021/acsami.3c19185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Among nerve agents, V-series nerve agents are some of the most toxic, making low-concentration detection critical for the protection of individuals, populations, and strategic resources. Electrochemical sensors are ideally suited for the real-time and in-field sensing of these agents. While V-series nerve agents are inherently nonelectroactive, they can be hydrolyzed to electroactive products compatible with electrochemical sensing. Zr(IV) MOFs are next-generation nanoporous materials that have been shown to rapidly catalyze the hydrolysis of nerve agents. This work makes use of these nanomaterials to develop, for the first time, an MOF-enabled electrochemical sensor for V-series nerve agents. Our work demonstrates that the VX thiol hydrolysis product can be electrochemically detected at low concentrations using commercially available gold electrodes. We demonstrate that low-concentration thiol oxidation is an irreversible reaction that is dependent on both mass transport and adsorption. Demeton-S-methylsulfon, a VX simulant, is used to demonstrate the full range of sensor operation that includes hydrolysis and electrochemical detection. We demonstrate that MOF-808 rapidly, selectively, and completely hydrolyzes demeton-S-methylsulfon to less-hazardous dimethyl phosphate and 2-ethylsulfonylethanethiol. Low-concentration measurements of 2-ethylsulfonylethanethiol are performed by using electrochemical techniques. This sensor has a limit of detection of 30 nM or 7.87 μg/L for 2-ethylsulfonylethanethiol, which is near the nerve agent exposure limit for water samples established by the United States military. Our work demonstrates the feasibility of rapid, robust electrochemical sensing of V-series nerve agents at low concentrations for in-field applications.
Collapse
Affiliation(s)
- Tyler Marlar
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - John N Harb
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
6
|
Xu W, Wu Y, Gu W, Du D, Lin Y, Zhu C. Atomic-level design of metalloenzyme-like active pockets in metal-organic frameworks for bioinspired catalysis. Chem Soc Rev 2024; 53:137-162. [PMID: 38018371 DOI: 10.1039/d3cs00767g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Natural metalloenzymes with astonishing reaction activity and specificity underpin essential life transformations. Nevertheless, enzymes only operate under mild conditions to keep sophisticated structures active, limiting their potential applications. Artificial metalloenzymes that recapitulate the catalytic activity of enzymes can not only circumvent the enzymatic fragility but also bring versatile functions into practice. Among them, metal-organic frameworks (MOFs) featuring diverse and site-isolated metal sites and supramolecular structures have emerged as promising candidates for metalloenzymes to move toward unparalleled properties and behaviour of enzymes. In this review, we systematically summarize the significant advances in MOF-based metalloenzyme mimics with a special emphasis on active pocket engineering at the atomic level, including primary catalytic sites and secondary coordination spheres. Then, the deep understanding of catalytic mechanisms and their advanced applications are discussed. Finally, a perspective on this emerging frontier research is provided to advance bioinspired catalysis.
Collapse
Affiliation(s)
- Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
7
|
Trinh TK, Jian T, Jin B, Nguyen DT, Zuckermann RN, Chen CL. Designed Metal-Containing Peptoid Membranes as Enzyme Mimetics for Catalytic Organophosphate Degradation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:51191-51203. [PMID: 37879106 PMCID: PMC10636725 DOI: 10.1021/acsami.3c11816] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
The detoxification of lethal organophosphate (OP) residues in the environment is crucial to prevent human exposure and protect modern society. Despite serving as excellent catalysts for OP degradation, natural enzymes require costly preparation and readily deactivate upon exposure to environmental conditions. Herein, we designed and prepared a series of phosphotriesterase mimics based on stable, self-assembled peptoid membranes to overcome these limitations of the enzymes and effectively catalyze the hydrolysis of dimethyl p-nitrophenyl phosphate (DMNP)─a nerve agent simulant. By covalently attaching metal-binding ligands to peptoid N-termini, we attained enzyme mimetics in the form of surface-functionalized crystalline nanomembranes. These nanomembranes display a precisely controlled arrangement of coordinated metal ions, which resemble the active sites found in phosphotriesterases to promote DMNP hydrolysis. Moreover, using these highly programmable peptoid nanomembranes allows for tuning the local chemical environment of the coordinated metal ion to achieve enhanced hydrolysis activity. Among the crystalline membranes that are active for DMNP degradation, those assembled from peptoids containing bis-quinoline ligands with an adjacent phenyl side chain showed the highest hydrolytic activity with a 219-fold rate acceleration over the background, demonstrating the important role of the hydrophobic environment in proximity to the active sites. Furthermore, these membranes exhibited remarkable stability and were able to retain their catalytic activity after heating to 60 °C and after multiple uses. This work provides insights into the principal features to construct a new class of biomimetic materials with high catalytic efficiency, cost-effectiveness, and reusability applied in nerve agent detoxification.
Collapse
Affiliation(s)
- Thi Kim
Hoang Trinh
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Tengyue Jian
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Biao Jin
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Dan-Thien Nguyen
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Ronald N. Zuckermann
- Molecular
Foundry, Lawrence Berkeley National
Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, United States
| | - Chun-Long Chen
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
8
|
Zhang Y, Tao CA. Metal-Organic Framework Gels for Adsorption and Catalytic Detoxification of Chemical Warfare Agents: A Review. Gels 2023; 9:815. [PMID: 37888388 PMCID: PMC10606365 DOI: 10.3390/gels9100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Chemical warfare agents (CWAs) have brought great threats to human life and social stability, and it is critical to investigate protective materials. MOF (metal-organic framework) gels are a class with an extended MOF architecture that are mainly formed using metal-ligand coordination as an effective force to drive gelation, and these gels combine the unique characteristics of MOFs and organic gel materials. They have the advantages of a hierarchically porous structure, a large specific surface area, machinable block structures and rich metal active sites, which inherently meet the requirements for adsorption and catalytic detoxification of CWAs. A series of advances have been made in the adsorption and catalytic detoxification of MOF gels as chemical warfare agents; however, overall, they are still in their infancy. This review briefly introduces the latest advances in MOF gels, including pure MOF gels and MOF composite gels, and discusses the application of MOF gels in the adsorption and catalytic detoxification of CWAs. Meanwhile, the influence of microstructures (pore structures, metal active site, etc.) on the detoxification performance of protective materials is also discussed, which is of great significance in the exploration of high-efficiency protective materials. Finally, the review looks ahead to next priorities. Hopefully, this review can inspire more and more researchers to enrich the performance of MOF gels for applications in chemical protection and other purification and detoxification processes.
Collapse
Affiliation(s)
| | - Cheng-An Tao
- College of Science, National University of Defense Technology, Changsha 410073, China;
| |
Collapse
|
9
|
Qin Y, Ouyang Y, Willner I. Nucleic acid-functionalized nanozymes and their applications. NANOSCALE 2023; 15:14301-14318. [PMID: 37646290 DOI: 10.1039/d3nr02345a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Nanozymes are inorganic, organic and metal-organic framework nanoparticles that reveal catalytic functions by emulating native enzyme activities. Recently, these nanozymes have attracted growing scientific interest, finding diverse analytical and medical applications. However, the catalytic activities and functions of nanozymes are limited, due to the lack of substrate binding sites that concentrate on the substrate at the catalytic site (molarity effect), introduce substrate specificity and allow functional complexity of the catalysts (cascaded, switchable and cooperative catalysis). The modification of nanozymes with functional nucleic acids provides means to overcome these limitations and engineer nucleic acid/nanozyme hybrids for diverse applications. This is exemplified with the synthesis of aptananozymes, which are supramolecular aptamer-modified nanozymes. Aptananozymes exhibit combined specific binding and catalytic properties that drive diverse chemical transformations, revealing enhanced catalytic activities, as compared to the separated nanozyme/aptamer constituents. Relationships of structure-catalytic functions in the aptananozyme constructs are demonstrated. In addition, modification of nanozymes exhibiting multimodal catalytic functions with aptamers allows the engineering of nanozyme-based bioreactors for cascaded catalysis. Also, the functionalization of reactive oxygen species (ROS)-generating nanozymes with cancer cell-recognizing aptamers yields aptananozymes for targeted chemodynamic treatment of cancer cells and cancer tumors elicited in mice. Finally, nucleic acid-modified enzyme (glucose oxidase)-loaded metal-organic framework nanoparticles yield switchable biocatalytic nanozymes that drive the ON/OFF biocatalyzed oxidation of Amplex Red, dopamine or the generation of chemiluminescence. Herein, future challenges of the topic are addressed.
Collapse
Affiliation(s)
- Yunlong Qin
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Yu Ouyang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
10
|
Qiu X, Cao M, Li Y. Metal-Organic Framework Sub-Nanochannels Formed inside Solid-State Nanopore with Proton Ultra-High Selectivity. Chemistry 2023; 29:e202300976. [PMID: 37221145 DOI: 10.1002/chem.202300976] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Metal-Organic frameworks (MOFs) have the advantages of high porosity, angstrom-scale pore size, and unique structure. In this work, a kind of MOFs, UiO-66 and its derivatives (including aminated UiO-66-(NH2 )2 and sulfonated UiO-66-(NH-SAG)2 ), were constructed on the inner surface of solid-state nanopores for ultra-selective proton transport. UiO-66 and UiO-66-(NH2 )2 nanocrystal particles were in-situ grown at the orifice of glass nanopores firstly, which were used to investigate the ionic current responses in LiCl and HCl solutions when the monovalent anions (Cl- ) were unchanged. Compared with UiO-66-modifed nanopores, the aminated MOFs modification (UiO-66-(NH2 )2 ) can improve the proton selectivity obviously. However, when the UiO-66-(NH-SAG)2 nanopore is prepared by further post-modification with sulfo-acetic acid, lithium ions can hardly pass through the channel, and the interaction between protons and sulfonic acid groups can promote the transport of protons, thus achieving ultra-high selectivity to protons. This work provides a new way to achieve sub-nanochannels with high selectivity, which can widely be used in ion separation, sensing and energy conversion.
Collapse
Affiliation(s)
- Xia Qiu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| | - Mengya Cao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| | - Yongxin Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P.R. China
| |
Collapse
|
11
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
12
|
Chen YJ, Liu M, Chen J, Huang X, Li QH, Ye XL, Wang GE, Xu G. Dangling bond formation on COF nanosheets for enhancing sensing performances. Chem Sci 2023; 14:4824-4831. [PMID: 37181787 PMCID: PMC10171198 DOI: 10.1039/d3sc00562c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
Dangling bond formation for COF materials in a rational manner is an enormous challenge, especially through post-treatment which is a facile strategy while has not been reported yet. In this work, a "chemical scissor" strategy is proposed for the first time to rationally design dangling bonds in COF materials. It is found that Zn2+ coordination in post-metallization of TDCOF can act as an "inducer" which elongates the target bond and facilitates its fracture in hydrolyzation reactions to create dangling bonds. The number of dangling bonds is well-modulated by controlling the post-metallization time. Zn-TDCOF-12 shows one of the highest sensitivities to NO2 in all reported chemiresistive gas sensing materials operating under visible light and room temperature. This work opens an avenue to rationally design a dangling bond in COF materials, which could increase the active sites and improve the mass transport in COFs to remarkably promote their various chemical applications.
Collapse
Affiliation(s)
- Yong-Jun Chen
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques Toward Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences (UCAS) Beijing 100049 P. R. China
| | - Ming Liu
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Jie Chen
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques Toward Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 P. R. China
| | - Xin Huang
- Jiangsu Key Laboratory of Biofunctional Material, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 P. R. China
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques Toward Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 P. R. China
| | - Xiao-Liang Ye
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques Toward Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 P. R. China
| | - Guan-E Wang
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques Toward Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 P. R. China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques Toward Techniques Toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences (UCAS) Beijing 100049 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
13
|
Yan Z, Liu X, Ding B, Yu J, Si Y. Interfacial engineered superelastic metal-organic framework aerogels with van-der-Waals barrier channels for nerve agents decomposition. Nat Commun 2023; 14:2116. [PMID: 37055384 PMCID: PMC10101950 DOI: 10.1038/s41467-023-37693-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Chemical warfare agents (CWAs) significantly threaten human peace and global security. Most personal protective equipment (PPE) deployed to prevent exposure to CWAs is generally devoid of self-detoxifying activity. Here we report the spatial rearrangement of metal-organic frameworks (MOFs) into superelastic lamellar-structured aerogels based on a ceramic network-assisted interfacial engineering protocol. The optimized aerogels exhibit efficient adsorption and decomposition performance against CWAs either in liquid or aerosol forms (half-life of 5.29 min, dynamic breakthrough extent of 400 L g-1) due to the preserved MOF structure, van-der-Waals barrier channels, minimized diffusion resistance (~41% reduction), and stability over a thousand compressions. The successful construction of the attractive materials offers fascinating perspectives on the development of field-deployable, real-time detoxifying, and structurally adaptable PPE that could be served as outdoor emergency life-saving devices against CWAs threats. This work also provides a guiding toolbox for incorporating other critical adsorbents into the accessible 3D matrix with enhanced gas transport properties.
Collapse
Affiliation(s)
- Zishuo Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaoyan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.
| |
Collapse
|
14
|
Emelianova A, Reed A, Basharova EA, Kolesnikov AL, Gor GY. Closer Look at Adsorption of Sarin and Simulants on Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18559-18567. [PMID: 36976256 DOI: 10.1021/acsami.3c02713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of effective protection against exposure to chemical warfare agents (CWAs), such as sarin, relies on studies of its adsorption on the capturing materials and seeking candidates capable of adsorbing large amounts of sarin gas. Many metal-organic frameworks (MOFs) are promising materials for the effective capture and degradation of sarin and simulant substances. Among the simulants capable of mimicking thermodynamic properties of the agent, not all of them have been investigated on the ability to act similarly in the adsorption process, in particular, whether the agent and a simulant have similar mechanisms of binding to the MOF surface. Molecular simulation studies not only provide a safe way to investigate the aforementioned processes but can also help reveal the mechanisms of interactions between the adsorbents and the adsorbing compounds at the molecular level. We performed Monte Carlo simulations of the adsorption of sarin and three simulants, dimethyl methylphosphonate (DMMP), diisopropyl methylphosphonate (DIMP), and diisopropyl fluorophosphate (DIFP), on selected MOFs that have previously shown strong capabilities to adsorb sarin. On the basis of the calculated adsorption isotherms, enthalpy of adsorption, and radial distribution functions, we revealed common mechanisms among the particularly efficient adsorbents as well as the ability of simulants to mimic them. The findings can help in selecting a suitable simulant compound to study CWA adsorption on MOFs and guide further synthesis of efficient MOFs for the capture of organophosphorus compounds.
Collapse
Affiliation(s)
- Alina Emelianova
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | - Allen Reed
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | | | - Andrei L Kolesnikov
- Institut für Nichtklassische Chemie e.V., Permoserstraße 15, 04318 Leipzig, Germany
| | - Gennady Y Gor
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| |
Collapse
|
15
|
Leonard MB, Bruni E, Hall M, Li T, Rodriguez EE, Durke EM. Experimental Study of the Adsorption and Decomposition of Sarin on Dry Copper(II) Oxide. J Phys Chem Lett 2022; 13:11663-11668. [PMID: 36508258 DOI: 10.1021/acs.jpclett.2c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organophosphonates were originally developed as insecticides but were quickly identified as highly toxic acetylcholinesterase inhibitors, leading to their exploitation as chemical warfare agents (CWA). To develop next generation filtration technologies, there must be a fundamental understanding of the molecular interactions occurring with toxic chemicals, such as CWAs. In this paper, we investigate the interaction between dry CuO nanoparticles and sarin (GB), using infrared (IR) spectroscopy in an effort to build an atomic understanding. We show sarin strongly interacts with CuO and then quickly degrades, primarily through the cleavage of the P-F bond, creating a bridging species on the CuO surface with the assistance of lattice oxygen. Upon heating, the decomposition product isopropyl methyl phosphonic acid (IMPA) does not continue to decompose but desorbs from the surface. These observations are further elaborated through theoretical models of sarin on dry CuO (111).
Collapse
Affiliation(s)
- Matthew B Leonard
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Eric Bruni
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Morgan Hall
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Tianyu Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Efrain E Rodriguez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Erin M Durke
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| |
Collapse
|
16
|
Ouyang Y, Fadeev M, Zhang P, Carmieli R, Li J, Sohn YS, Karmi O, Nechushtai R, Pikarsky E, Fan C, Willner I. Aptamer-Modified Au Nanoparticles: Functional Nanozyme Bioreactors for Cascaded Catalysis and Catalysts for Chemodynamic Treatment of Cancer Cells. ACS NANO 2022; 16:18232-18243. [PMID: 36286233 PMCID: PMC9706657 DOI: 10.1021/acsnano.2c05710] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Polyadenine-stabilized Au nanoparticles (pA-AuNPs) reveal dual nanozyme catalytic activities toward the H2O2-mediated oxidation of dopamine to aminochrome and toward the aerobic oxidation of glucose to gluconic acid and H2O2. The conjugation of a dopamine-binding aptamer (DBA) to the pA-AuNPs yields aptananozyme structures catalyzing simultaneously the H2O2-mediated oxidation of dopamine to aminochrome through the aerobic oxidation of glucose. A set of aptananozymes consisting of DBA conjugated through the 5'- or 3'-end directly or spacer bridges to pA-AuNPs were synthesized. The set of aptananozymes revealed enhanced catalytic activities toward the H2O2-catalyzed oxidation of dopamine to dopachrome, as compared to the separated pA-AuNPs and DBA constituents, and structure-function relationships within the series of aptananozymes were demonstrated. The enhanced catalytic function of the aptananozymes was attributed to the concentration of the dopamine at the catalytic interfaces by means of aptamer-dopamine complexes. The dual catalytic activities of aptananozymes were further applied to design bioreactors catalyzing the effective aerobic oxidation of dopamine in the presence of glucose. Mechanistic studies demonstrated that the aptananozymes generate reactive oxygen species. Accordingly, the AS1411 aptamer, recognizing the nucleolin receptor associated with cancer cells, was conjugated to the pA-AuNPs, yielding a nanozyme for the chemodynamic treatment of cancer cells. The AS1411 aptamer targets the aptananozyme to the cancer cells and facilitates the selective permeation of the nanozyme into the cells. Selective cytotoxicity toward MDA-MB-231 breast cancer cells (ca. 70% cell death) as compared to MCF-10A epithelial cells (ca. 2% cell death) is demonstrated.
Collapse
Affiliation(s)
- Yu Ouyang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Michael Fadeev
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Pu Zhang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Jiang Li
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- The
Interdisciplinary Research Center, Shanghai Synchrotron Radiation
Facility, Zhangjiang Laboratory, Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yang Sung Sohn
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Ola Karmi
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Rachel Nechushtai
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Eli Pikarsky
- The Lautenberg
Center for Immunology and Cancer Research, IMRIC, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Itamar Willner
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
17
|
Rouvière N, Brach JP, Honnecker T, Christoforidis KC, Robert D, Keller V. UiO-66/TiO2 nanostructures as adsorbent/photocatalytic composites for air treatment towards dry dimethyl methylphosphonate-laden air flow as a Chemical Warfare Agent analog. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Wu S, Wang L, Zhu H, Liang J, Ge L, Li C, Miao T, Li J, Cheng Z. Catalytic degradation of CWAs with MOF-808 and PCN-222: Toward practical application. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221138061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chemical warfare agents, such as nerve agents (GD and VX) and blister agents (HD), have strong toxicities to mankind. In recent years, zirconium-based metal-organic frameworks have been found to be attractive materials for chemical warfare agent degradation. Among them, metal-organic framework-808 (MOF-808) and porous coordination network-222 (PCN-222) were the best. However, few papers pay attention to their practical application. In this work, we prepared MOF-808 and PCN-222 using water phase and organic solvothermal methods, respectively. Their performance for the catalytic degradation of chemical warfare agents under practical decontamination conditions was studied. The results showed that MOF-808 displayed a high potency for catalytic hydrolysis of VX (10,000 mg L−1) in unbuffered solution. PCN-222 exhibited weaker reactivity with a half-life ( t1/2) of 28.8 min. Their different performances might stem from the different connectivity of the Zr6 nodes and framework structures. The results illustrated that the hydrolysis of high-concentration GD required a strong alkaline buffer to neutralize the hydrolysis product of hydrofluoric acid (HF) to avoid catalyst poisoning. When H2O2 was used as the oxidant instead of O2, both zirconium-based metal-organic frameworks performed with effective catalytic potency for HD degradation without any special lighting and so was suitable for practical application, whereas the products obtained from HD, such as HDO2 and V-HDO2, still possessed vesicant toxicity. Overall, MOF-808 prepared via a water-phase synthesis performed with effective catalysis for the degradation of high-concentration VX, GD, and HD with t1/2 of < 0.5, 3.1 and 2.2 min, respectively, exhibiting its potential for practical applications.
Collapse
Affiliation(s)
| | | | - Haiyan Zhu
- Institute of NBC Defence, Beijing, P. R. China
| | - Jing Liang
- Institute of NBC Defence, Beijing, P. R. China
| | - Liang Ge
- Institute of NBC Defence, Beijing, P. R. China
| | - Cong Li
- Institute of NBC Defence, Beijing, P. R. China
| | - Ting Miao
- Institute of NBC Defence, Beijing, P. R. China
| | - Jian Li
- Institute of NBC Defence, Beijing, P. R. China
| | | |
Collapse
|
19
|
Wang QY, Sun ZB, Zhang M, Zhao SN, Luo P, Gong CH, Liu WX, Zang SQ. Cooperative Catalysis between Dual Copper Centers in a Metal–Organic Framework for Efficient Detoxification of Chemical Warfare Agent Simulants. J Am Chem Soc 2022; 144:21046-21055. [DOI: 10.1021/jacs.2c05176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qian-You Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi-Bing Sun
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shu-Na Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Luo
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Chun-Hua Gong
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wen-Xiao Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
20
|
|
21
|
Tesvara C, Walenta C, Sautet P. Oxidative decomposition of dimethyl methylphosphonate on rutile TiO 2(110): the role of oxygen vacancies. Phys Chem Chem Phys 2022; 24:23402-23419. [PMID: 36128829 DOI: 10.1039/d2cp02246j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The decomposition of dimethyl methylphosphonate (DMMP, (CH3O)2P(O)(CH3)), a simulant to the toxic nerve agent Sarin, on the rutile TiO2(110) surface has been studied with temperature programmed desorption (TPD) and density functional theory (DFT) calculations. The reactivity of the TiO2(110) surface for DMMP decomposition is shown to be low, with mainly molecular desorption and only a small fraction of methanol and formaldehyde decomposition products seen from TPD at around 650 K. In addition, this amount of products is similar to the number of O vacancies on the surface. DFT calculations show that O vacancies are key for P-OCH3 bond cleavage of DMMP, lowering the barrier by 0.7 eV and enabling the reactive process to occur at around 600 K. This is explained by the closer position of DMMP with respect to the surface in the presence of O vacancies. Calculations show that the produced methoxy groups can transform into gas phase formaldehyde and methanol at the considered temperature (600 K), in agreement with experiments. O-C bond cleavage of DMMP is also a viable pathway at such a high temperature (600 K) for DMMP decomposition on r-TiO2, even in the absence of O vacancies, but the formation of a gas phase product is energetically unfavorable. O vacancies hence are the active sites for decomposition of DMMP into gas phase products on r-TiO2(110).
Collapse
Affiliation(s)
- Celine Tesvara
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, CA 90095, USA.
| | - Constantin Walenta
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Philippe Sautet
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, CA 90095, USA. .,Chemistry and Biochemistry Department, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Fonseca J, Gong T. Fabrication of metal-organic framework architectures with macroscopic size: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Liao Y, Song J, Si Y, Yu J, Ding B. Superelastic and Photothermal RGO/Zr-Doped TiO 2 Nanofibrous Aerogels Enable the Rapid Decomposition of Chemical Warfare Agents. NANO LETTERS 2022; 22:4368-4375. [PMID: 35621708 DOI: 10.1021/acs.nanolett.2c00776] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To date, the reckless use of deadly chemical warfare agents (CWAs) has posed serious risks to humanity, property, and ecological environment. Therefore, necessary materials able to rapidly adsorb and securely decompose these hazardous toxics are in urgent demand. Herein, three-dimensional (3D) reduced graphene oxide/Zr-doped TiO2 nanofibrous aerogels (RGO/ZT NAs) are synthesized by feasibly combining sol-gel electrospinning technology and a unidirectional freeze-drying approach. Benefiting from the synergetic coassembly of flexible ZT nanofibers and pliable RGO nanosheets, the hierarchically entangled fibrous frameworks feature ultralow density, superior elasticity, and robust fatigue resistance over 106 compressive cycles. In particular, the RGO incorporation is attributed to the achieved increased surface area, stronger light absorption, and decreased recombination of charge-carriers for photocatalysis. The highly porous 3D RGO/ZT NAs deliver enhanced photothermal catalytic activity for CWA degradation as well as excellent recyclability and good photostability. This work opens fresh horizons for developing advanced 3D aerogel-based photocatalysts in a controlled fashion.
Collapse
Affiliation(s)
- Yalong Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jun Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
24
|
Pan MM, Ouyang Y, Song YL, Si LQ, Jiang M, Yu X, Xu L, Willner I. Au 3+ -Functionalized UiO-67 Metal-Organic Framework Nanoparticles: O 2•- and •OH Generating Nanozymes and Their Antibacterial Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200548. [PMID: 35460191 DOI: 10.1002/smll.202200548] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The synthesis and characterization of Au3+ -modified UiO-67 metal-organic framework nanoparticles, Au3+ -NMOFs, are described. The Au3+ -NMOFs reveal dual oxidase-like and peroxidase-like activities and act as an active catalyst for the catalyzed generation of O2•- under aerobic conditions or •OH in the presence of H2 O2 . The two reactive oxygen species (ROS) agents O2•- and •OH are cooperatively formed by Au3+ -NMOFs under aerobic conditions, and in the presence of H2 O2. The Au3+ -NMOFs are applied as an effective catalyst for the generation ROS agents for antibacterial and wound healing applications. Effective antibacterial cell death and inhibition of cell proliferation of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterial colonies are demonstrated in the presence of the Au3+ -NMOFs. In addition, in vivo experiments demonstrate effective wound healing of mice wounds infected by S. aureus, treated by the Au3+ -NMOFs.
Collapse
Affiliation(s)
- Meng-Meng Pan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Yu Ouyang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yong-Li Song
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Lu-Qin Si
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Ming Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Xu Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
25
|
Abstract
Nanozyme is a collection of nanomaterials with enzyme-like activity but higher environmental tolerance and long-term stability than their natural counterparts. Improving the catalytic activity and expanding the category of nanozymes are prerequisites to complement or even supersede enzymes. However, the development of hydrolytic nanozymes is still challenged by diverse hydrolytic substrates and following complicated mechanisms. Here, two strategies are informed by data to screen and predict catalytic active sites of MOF (metal-organic framework) based hydrolytic nanozymes: (1) to increase the intrinsic activity by finely tuned Lewis acidity of the metal clusters; (2) to improve the density of active sites by shortening the length of ligands. Finally, as-obtained Ce-FMA-MOF-based hydrolytic nanozyme is capable of cleaving phosphate bonds, amide bonds, glycosidic bonds, and even their mixture, biofilms. This work provides a rational methodology to design hydrolytic nanozyme, enriches the diversity of nanozymes, and potentially sheds light on future evolution of enzyme engineering.
Collapse
|
26
|
Wang X, Su R, Zhao Y, Guo W, Gao S, Li K, Liang G, Luan Z, Li L, Xi H, Zou R. Enhanced Adsorption and Mass Transfer of Hierarchically Porous Zr-MOF Nanoarchitectures toward Toxic Chemical Removal. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58848-58861. [PMID: 34855367 DOI: 10.1021/acsami.1c20369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zirconium-based metal-organic frameworks (Zr-MOFs) have shown tremendous prospects as highly efficient adsorbents against toxic chemicals under ambient conditions. Here, we report for the first time the enhanced toxic chemical adsorption and mass transfer properties of hierarchically porous Zr-MOF nanoarchitectures. A general and scalable sol-gel-based strategy combined with facile ambient pressure drying (APD) was utilized to construct MOF-808, MOF-808-NH2, and UiO-66-NH2 xerogel monoliths, denoted as G808, G808-NH2, and G66-NH2, respectively. The resulting Zr-MOF xerogels demonstrated 3D porous networks assembled by nanocrystal aggregates, with substantially higher mesoporosities than the precipitate analogues. Microbreakthrough tests on powders and tube breakthrough experiments on engineered granules were conducted at different relative humidities to comprehensively evaluate the NO2 adsorption capabilities. The Zr-MOF xerogels showed considerably better NO2 removal abilities than the precipitates, whether intrinsically or under simulated respirator canister/protection filter environment conditions. Multiple physicochemical characterizations were conducted to illuminate the NO2 filtration mechanisms. Analysis on adsorption kinetics and mass transfer patterns in Zr-MOF xerogels was further performed to visualize the underlying structure-activity relationship using the gravimetric uptake and zero length column methods with cyclohexane and acetaldehyde as probes. The results revealed that the synergy of hierarchical porosities and nanosized crystals could effectively expedite the intracrystalline diffusion for the G66-NH2 xerogel as well as alleviate the surface resistance for the G808-NH2 xerogel, which led to accelerated overall adsorption uptake and thus enhanced performance toward toxic chemical removal.
Collapse
Affiliation(s)
- Xinbo Wang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Ruyue Su
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Yue Zhao
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Wenhan Guo
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering and Institute of Clean Energy, Peking University, Beijing 100871, China
| | - Song Gao
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering and Institute of Clean Energy, Peking University, Beijing 100871, China
| | - Kai Li
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Guojie Liang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Zhiqiang Luan
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Li Li
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Hailing Xi
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing 100191, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering and Institute of Clean Energy, Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Su H, Huang P, Wu FY. Visualizing the degradation of nerve agent simulants using functionalized Zr-based MOFs: from solution to hydrogels. Chem Commun (Camb) 2021; 57:11681-11684. [PMID: 34673857 DOI: 10.1039/d1cc05199g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Visual monitoring of the degradation of nerve agent simulants based on the switchable fluorescence of UiO-66-NH2 was developed. In the hydrolysis, the decomposition products perturbed the linker-to-cluster charge transfer and stimulated the fluorescence recovery. Moreover, a "soft" solid-state platform utilizing agarose hydrogels was proposed to visualize the degradation of gaseous simulants without bulk water.
Collapse
Affiliation(s)
- Hongyan Su
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Pengcheng Huang
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Fang-Ying Wu
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
28
|
Gibbons B, Bartlett EC, Cai M, Yang X, Johnson EM, Morris AJ. Defect Level and Particle Size Effects on the Hydrolysis of a Chemical Warfare Agent Simulant by UiO-66. Inorg Chem 2021; 60:16378-16387. [PMID: 34672622 DOI: 10.1021/acs.inorgchem.1c02224] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Defect engineering in metal-organic frameworks (MOFs) has recently become an area of significant research due to the possibility of enhancing material properties such as internal surface area and catalytic activity while maintaining stable 3D structures. Through a modulator screening study, the model Zr4+ MOF, UiO-66, has been synthesized with control of particle sizes (100-1900 nm) and defect levels (2-24%). By relating these properties, two series were identified where one property remained constant, allowing for independent analysis of the defect level or particle size, which frequently change coincident with the modulator choice. The series were used to compare UiO-66 reactivity for the hydrolysis of a chemical warfare agent simulant, dimethyl 4-nitrophenylphosphate (DMNP). The rate of DMNP hydrolysis displayed high dependence on the external surface area, supporting a reaction dominated by surface interactions. Moderate to high concentrations of defects (14-24%) allow for the accessibility of some interior MOF nodes but do not substantially promote diffusion into the framework. Individual control of defect levels and particle sizes through modulator selection may provide useful materials for small molecular catalysis and provide a roadmap for similar engineering of other zirconium frameworks.
Collapse
Affiliation(s)
- Bradley Gibbons
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Eamon C Bartlett
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Meng Cai
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaozhou Yang
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Eric M Johnson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amanda J Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
29
|
Liao Y, Yang F, Si Y, Yu J, Ding B. Nanoflake-Engineered Zirconic Fibrous Aerogels with Parallel-Arrayed Conduits for Fast Nerve Agent Degradation. NANO LETTERS 2021; 21:8839-8847. [PMID: 34617763 DOI: 10.1021/acs.nanolett.1c03246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chemical warfare agents (CWAs) pose huge threats to ecological environments, agriculture, and human health due to the turbulent international situation in contemporary society. Zirconium hydroxide (Zr(OH)4) has captured the prime focus as an effective candidate for CWA decomposition but is often hindered by the isolated powder form. Here, we demonstrate a scalable three-dimensional space-confined synthetic strategy to fabricate nanoflake-engineered zirconic fibrous aerogels (NZFAs). Our strategy enables the stereoscopic Zr(OH)4 nanoflakes vertically and evenly in situ grown on the interconnected fibrous framework, remarkably enlarging the surface area and providing rich active sites for CWA catalysis. The as-synthesized NZFAs exhibit intriguing properties of ultralow density (>0.37 mg cm-3), shape-memory behavior under 90% strain, and robust fatigue resistance over 106 compression cycles at 40% strain. Meanwhile, the high air permeability, prominent adsorptivity, and reusability make them state-of-the-art chemical protective materials. This work may provide an avenue for developing next-generation aerogel-based catalysts and beyond.
Collapse
Affiliation(s)
- Yalong Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Fengjin Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
30
|
Cheung YH, Ma K, van Leeuwen HC, Wasson MC, Wang X, Idrees KB, Gong W, Cao R, Mahle JJ, Islamoglu T, Peterson GW, de Koning MC, Xin JH, Farha OK. Immobilized Regenerable Active Chlorine within a Zirconium-Based MOF Textile Composite to Eliminate Biological and Chemical Threats. J Am Chem Soc 2021; 143:16777-16785. [PMID: 34590851 DOI: 10.1021/jacs.1c08576] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The most recent global health crisis caused by the SARS-CoV-2 outbreak and the alarming use of chemical warfare agents highlight the necessity to produce efficient protective clothing and masks against biohazard and chemical threats. However, the development of a multifunctional protective textile is still behind to supply adequate protection for the public. To tackle this challenge, we designed multifunctional and regenerable N-chlorine based biocidal and detoxifying textiles using a robust zirconium metal-organic framework (MOF), UiO-66-NH2, as a chlorine carrier which can be easily coated on textile fibers. A chlorine bleaching converted the amine groups located on the MOF linker to active N-chlorine structures. The fibrous composite exhibited rapid biocidal activity against both Gram-negative bacteria (E. coli) and Gram-positive bacteria (S. aureus) with up to a 7 log reduction within 5 min for each strain as well as a 5 log reduction of SARS-CoV-2 within 15 min. Moreover, the active chlorine loaded MOF/fiber composite selectively and rapidly degraded sulfur mustard and its chemical simulant 2-chloroethyl ethyl sulfide (CEES) with half-lives less than 3 minutes. The versatile MOF-based fibrous composite designed here has the potential to serve as protective cloth against both biological and chemical threats.
Collapse
Affiliation(s)
- Yuk Ha Cheung
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 122001, SAR
| | - Kaikai Ma
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | | | - Megan C Wasson
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karam B Idrees
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Wei Gong
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ran Cao
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - John J Mahle
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Timur Islamoglu
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Gregory W Peterson
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | | | - John H Xin
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 122001, SAR
| | - Omar K Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Tao F, Yu J, Zhang L, Zhou Y, Zhong Y, Huang C, Wang Y. Integrating Two Highly Active Components into One for Decontaminating Sulfur Mustard and Sarin. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fangsheng Tao
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jialin Yu
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lijuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yunshan Zhou
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuxu Zhong
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Chengcheng Huang
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yong’An Wang
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
32
|
Yang J, He X, Dai J, Tian R, Yuan D. Photo-assisted enhancement performance for rapid detoxification of chemical warfare agent simulants over versatile ZnIn 2S 4/UiO-66-NH 2 nanocomposite catalysts. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126056. [PMID: 33992917 DOI: 10.1016/j.jhazmat.2021.126056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Constructing versatile materials with self-detoxification properties are highly desired for emergency destruction of chemical warfare agents (CWAs). Herein, we first reported in-situ fabrication of ZnIn2S4/UiO-66-NH2 nanocomposites (ZnInS/UiO) and their application in catalytic detoxification of two CWA simulants. For nerve agent simulant dimethyl 4-nitrophenyl phosphate (DMNP), the optimal ZnInS/UiO-23.9 displayed 5.9 times increase in hydrolysis rate having the turnover frequency (TOF) of 0.0586 s-1 under simulated solar light (SSL), which is superior to the reported UiO-based catalysts. Photo-assisted enhancement in DMNP detoxification was due to photothermal effect of ZnInS and close interfacial contact in ZnInS/UiO heterostructures, facilitating instantaneous heat transfer from ZnInS to UiO catalytic sites. As for mustard gas surrogate 2-chloroethyl ethyl sulfide (CEES), under SSL irradiation for 15 min, ZnInS/UiO-23.9 can eliminate 96.7% of CEES in droplet experiment, being 4.17 and 3.24 times of ZnInS and UiO accordingly. It was ascribed to spatial separation of photoinduced electron-hole pairs and photothermally-assisted charge transfer in ZnInS/UiO composites, improving catalytic activity for CEES detoxification. Besides, the detected products suggested that CEES conversion underwent reductive dechlorination, radical reactions and hydrolysis. This study can be extended to other multifunctional catalysts based on metal-organic frameworks and provides new opportunities for photoassisted enhanced detoxification of CWAs.
Collapse
Affiliation(s)
- Juan Yang
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Institute of Chemical Safety, Henan Polytechnic University, Jiaozuo 454003, China
| | - Xiaoqian He
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Jun Dai
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Institute of Chemical Safety, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Ran Tian
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Dongsheng Yuan
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| |
Collapse
|
33
|
Ouyang Y, Biniuri Y, Fadeev M, Zhang P, Carmieli R, Vázquez-González M, Willner I. Aptamer-Modified Cu 2+-Functionalized C-Dots: Versatile Means to Improve Nanozyme Activities-"Aptananozymes". J Am Chem Soc 2021; 143:11510-11519. [PMID: 34286967 PMCID: PMC8856595 DOI: 10.1021/jacs.1c03939] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The covalent linkage of aptamer binding
sites to nanoparticle nanozymes
is introduced as a versatile method to improve the catalytic activity
of nanozymes by concentrating the reaction substrates at the catalytic
nanozyme core, thereby emulating the binding and catalytic active-site
functions of native enzymes. The concept is exemplified with the synthesis
of Cu2+ ion-functionalized carbon dots (C-dots), modified
with the dopamine binding aptamer (DBA) or the tyrosinamide binding
aptamer (TBA), for the catalyzed oxidation of dopamine to aminochrome
by H2O2 or the oxygenation of l-tyrosinamide
to the catechol product, which is subsequently oxidized to amidodopachrome,
in the presence of H2O2/ascorbate mixture. Sets
of structurally functionalized DBA-modified Cu2+ ion-functionalized
C-dots or sets of structurally functionalized TBA-modified Cu2+ ion-functionalized C-dots are introduced as nanozymes of
superior catalytic activities (aptananozymes) toward the oxidation
of dopamine or the oxygenation of l-tyrosinamide, respectively.
The aptananozymes reveal enhanced catalytic activities as compared
to the separated catalyst and respective aptamer constituents. The
catalytic functions of the aptananozymes are controlled by the structure
of the aptamer units linked to the Cu2+ ion-functionalized
C-dots. In addition, the aptananozyme shows chiroselective catalytic
functions demonstrated by the chiroselective-catalyzed oxidation of l/d-DOPA to l/d-dopachrome. Binding
studies of the substrates to the different aptananozymes and mechanistic
studies associated with the catalytic transformations are discussed.
Collapse
Affiliation(s)
- Yu Ouyang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yonatan Biniuri
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michael Fadeev
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Pu Zhang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
34
|
Feng X, Song Y, Lin W. Dimensional Reduction of Lewis Acidic Metal-Organic Frameworks for Multicomponent Reactions. J Am Chem Soc 2021; 143:8184-8192. [PMID: 34018731 DOI: 10.1021/jacs.1c03561] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Owing to hindered diffusions, the application of porous catalytic materials has been limited to relatively simple organic transformations with small substrates. Herein we report a dimensional reduction strategy to construct a two-dimensional metal-organic framework (MOF), Zr6OTf-BTB, with 96% accessible Lewis acidic sites as probed by the bulky Lewis base pivalonitrile. With nearly free substrate accessibility, Zr6OTf-BTB outperformed two three-dimensional MOF counterparts of similar Lewis acidity (Zr6OTf-BPDC and Zr6OTf-BTC) in catalyzing sterically hindered multicomponent reactions (MCRs) for the construction of tetrahydroquinoline and aziridine carboxylate derivatives with high turnover numbers (TONs). Zr6OTf-BTB was also superior to the homogeneous benchmark Sc(OTf)3 with nearly 14 times higher TON and 9 times longer catalyst lifetime. Furthermore, the topology-activity relationships in these Zr-based Lewis acidic MOFs were rationalized by comparing their Lewis acidity, numbers of Lewis acidic sites, and sterically accessible Lewis acidic sites. Zr6OTf-BTB was successfully used to construct several bioactive molecules via MCRs with excellent efficiency. This dimensional reduction strategy should allow the development of other MOF catalysts for synthetically useful and complicated organic transformations.
Collapse
Affiliation(s)
- Xuanyu Feng
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Yang Song
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
35
|
Li J, Lu N, Han S, Li X, Wang M, Cai M, Tang Z, Zhang M. Construction of Bio-Nano Interfaces on Nanozymes for Bioanalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21040-21050. [PMID: 33913690 DOI: 10.1021/acsami.1c04241] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanomaterials with enzyme-like activity (nanozymes) have been of great interest in broad applications ranging from biosensing to biomedical applications. Despite that much effort has been devoted to the development of the synthesis and applications of nanozymes, it is essential to understand the interactions between nanozymes and most commonly used biomolecules, i.e., avidin, streptavidin (SA), bovine serum albumin (BSA), immunoglobulin G (IgG), and glutathione (GSH), yet they have been rarely explored. Here, a series of bio-nano interfaces were constructed through direct immobilization of proteins on a variety of iron oxide and carbon-based nanozymes with different dimensions, including Fe3O4 nanoparticles (NPs, 0D), Fe3O4@C NPs (0D), Fe3O4@C nanowires (NWs, 1D), and graphene oxide nanosheets (GO NSs, 2D). Such interfaces enabled the modulation of the catalytic activities of the nanozymes with varying degrees, which allowed a good identification of multiplex proteins with high accuracy. Given the maximum inhibition on Fe3O4@C NP by BSA, we established molecular switches based on aptamer and toehold DNA, as well as Boolean logic gates (AND and NOR) in response to both DNA and proteins. Also importantly, we developed an on-particle reaction strategy for colorimetric detection of GSH with ultrahigh sensitivity and good specificity. The proposed sensor achieved a broad dynamic range spanning 7 orders of magnitude with a detection limit down to 200 pg mL-1, which was better than that of an in-solution reaction-based biosensor by 2 orders of magnitude. Furthermore, we explored the mechanisms of the interactions at bio-nano interfaces by studying the interfacial factors, including surface coverage, salt concentration, and the curvature of the nanozyme. This study offered new opportunities in the elaborate design and better utilization of nanozymes for bioanalysis in clinical diagnosis and in vivo detection.
Collapse
Affiliation(s)
- Jie Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Suping Han
- Department of Pharmacy, Shandong Medical College, Jinan 250002, China
| | - Xuemei Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Mengqin Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Mengchao Cai
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zisheng Tang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
36
|
Kinik FP, Ortega-Guerrero A, Ongari D, Ireland CP, Smit B. Pyrene-based metal organic frameworks: from synthesis to applications. Chem Soc Rev 2021; 50:3143-3177. [PMID: 33475661 DOI: 10.1039/d0cs00424c] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pyrene is one of the most widely investigated aromatic hydrocarbons given to its unique optical and electronic properties. Hence, pyrene-based ligands have been attractive for the synthesis of metal-organic frameworks (MOFs) in the last few years. In this review, we will focus on the most important characteristics of pyrene, in addition to the development and synthesis of pyrene-based molecules as bridging ligands to be used in MOF structures. We will summarize the synthesis attempts, as well as the post-synthetic modifications of pyrene-based MOFs by the incorporation of metals or ligands in the structure. The discussion of promising results of such MOFs in several applications; including luminescence, photocatalysis, adsorption and separation, heterogeneous catalysis, electrochemical applications and bio-medical applications will be highlighted. Finally, some insights and future prospects will be given based on the studies discussed in the review. This review will pave the way for the researchers in the field for the design and development of novel pyrene-based structures and their utilization for different applications.
Collapse
Affiliation(s)
- F Pelin Kinik
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Andres Ortega-Guerrero
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Daniele Ongari
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Christopher P Ireland
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| |
Collapse
|
37
|
Balasubramanian S, Kulandaisamy AJ, Babu KJ, Das A, Balaguru Rayappan JB. Metal Organic Framework Functionalized Textiles as Protective Clothing for the Detection and Detoxification of Chemical Warfare Agents—A Review. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06096] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Selva Balasubramanian
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
- School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University Thanjavur, Tamil Nadu 613 401, India
| | | | - K. Jayanth Babu
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
- School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University Thanjavur, Tamil Nadu 613 401, India
| | - Apurba Das
- Department of Textile & Fibre Engineering, Indian Institute of Technology Delhi New Delhi, 110 016, India
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
- School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University Thanjavur, Tamil Nadu 613 401, India
| |
Collapse
|
38
|
Devulapalli VSD, Richard M, Luo TY, De Souza ML, Rosi NL, Borguet E. Tuning the Lewis acidity of metal-organic frameworks for enhanced catalysis. Dalton Trans 2021; 50:3116-3120. [PMID: 33565539 DOI: 10.1039/d1dt00180a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The kinetics of hydrolysis of dimethyl nitrophenyl phosphate (DMNP), a simulant of the nerve agent Soman, was studied and revealed transition metal salts as catalysts. The relative rates of DMNP hydrolysis by zirconium and hafnium chlorides are in accordance with their Lewis acidity. In situ conversion of zirconium chloride to zirconium oxy-hydroxide was identified as the key step. We propose a precursor-MOF activity relationship.
Collapse
Affiliation(s)
| | - Mélissandre Richard
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | - Tian-Yi Luo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Mattheus L De Souza
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA.
| |
Collapse
|
39
|
Zhang K, Cao X, Zhang Z, Cheng Y, Zhou YH. MIL-101(Cr) with incorporated polypyridine zinc complexes for efficient degradation of a nerve agent simulant: spatial isolation of active sites promoting catalysis. Dalton Trans 2021; 50:1995-2000. [PMID: 33522548 DOI: 10.1039/d0dt04048g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Development of an efficient catalyst for degradation of organophosphorus toxicants is highly desirable. Herein, an MIL-101(Cr)LZn catalyst was fabricated by incorporating polypyridine zinc complexes into a MOF to achieve the spatial isolation of active sites. Compared with a terpyridine zinc complex without an MIL-101 support, this catalyst was highly active for detoxification of diethyl-4-nitrophenylphosphate.
Collapse
Affiliation(s)
- Kai Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University, Wuhu, Anhui 241002, P.R. China.
| | | | | | | | | |
Collapse
|
40
|
Luo HB, Castro AJ, Wasson MC, Flores W, Farha OK, Liu Y. Rapid, Biomimetic Degradation of a Nerve Agent Simulant by Incorporating Imidazole Bases into a Metal-Organic Framework. ACS Catal 2021; 11:1424-1429. [PMID: 33614195 DOI: 10.1021/acscatal.0c04565] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metal-organic frameworks (MOFs) are excellent catalytic materials for the hydrolytic degradation of nerve agents and their simulants. However, most of the MOF-based hydrolysis catalysts to date are reliant on liquid water media buffered by a volatile liquid base. To overcome this practical limitation, we developed a simple and feasible strategy to synthesize MOF composites that structurally mimic phosphotriesterase's active site as well as its ligated histidine residues. By incorporating imidazole and its derivative into the pores of MOF-808, the obtained MOF composites achieved rapid degradation of a nerve agent simulant (dimethyl-4-nitrophenyl phosphate, DMNP) in pure water as well as in a humid environment without liquid base. Remarkably, one of the composites Im@MOF-808 displayed the highest catalytic activity for DMNP hydrolysis in unbuffered aqueous solutions among all reported MOF-based catalysts. Furthermore, solid-phase catalysis showed that Im@MOF-808 can also rapidly hydrolyze DMNP under high-humidity conditions without bulk water or external bases. This work provides a viable solution toward the implementation of MOF materials into protective equipment for practical nerve agent detoxification.
Collapse
Affiliation(s)
- Hong-Bin Luo
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| | - Anthony J. Castro
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| | - Megan C. Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Willmer Flores
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Yangyang Liu
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| |
Collapse
|
41
|
Terban MW, Ghose SK, Plonka AM, Troya D, Juhás P, Dinnebier RE, Mahle JJ, Gordon WO, Frenkel AI. Atomic resolution tracking of nerve-agent simulant decomposition and host metal-organic framework response in real space. Commun Chem 2021; 4:2. [PMID: 36697507 PMCID: PMC9814582 DOI: 10.1038/s42004-020-00439-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/27/2020] [Indexed: 01/29/2023] Open
Abstract
Gas capture and sequestration are valuable properties of metal-organic frameworks (MOFs) driving tremendous interest in their use as filtration materials for chemical warfare agents. Recently, the Zr-based MOF UiO-67 was shown to effectively adsorb and decompose the nerve-agent simulant, dimethyl methylphosphonate (DMMP). Understanding mechanisms of MOF-agent interaction is challenging due to the need to distinguish between the roles of the MOF framework and its particular sites for the activation and sequestration process. Here, we demonstrate the quantitative tracking of both framework and binding component structures using in situ X-ray total scattering measurements of UiO-67 under DMMP exposure, pair distribution function analysis, and theoretical calculations. The sorption and desorption of DMMP within the pores, association with linker-deficient Zr6 cores, and decomposition to irreversibly bound methyl methylphosphonate were directly observed and analyzed with atomic resolution.
Collapse
Affiliation(s)
- Maxwell W. Terban
- grid.419552.e0000 0001 1015 6736Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Sanjit K. Ghose
- grid.202665.50000 0001 2188 4229National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, NY 11973 USA
| | - Anna M. Plonka
- grid.36425.360000 0001 2216 9681Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, NY 11794 USA
| | - Diego Troya
- grid.438526.e0000 0001 0694 4940Department of Chemistry, Virginia Tech, Blacksburg, VA 24061 USA
| | - Pavol Juhás
- grid.202665.50000 0001 2188 4229Computational Science Initiative, Brookhaven National Laboratory, Upton, New York, NY 11973 USA
| | - Robert E. Dinnebier
- grid.419552.e0000 0001 1015 6736Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - John J. Mahle
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD 21010 USA
| | - Wesley O. Gordon
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD 21010 USA
| | - Anatoly I. Frenkel
- grid.36425.360000 0001 2216 9681Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, NY 11794 USA ,grid.202665.50000 0001 2188 4229Chemistry Division, Brookhaven National Laboratory, Upton, New York, NY 11973 USA
| |
Collapse
|
42
|
Ryu U, Jee S, Rao PC, Shin J, Ko C, Yoon M, Park KS, Choi KM. Recent advances in process engineering and upcoming applications of metal-organic frameworks. Coord Chem Rev 2021; 426:213544. [PMID: 32981945 PMCID: PMC7500364 DOI: 10.1016/j.ccr.2020.213544] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022]
Abstract
Progress in metal-organic frameworks (MOFs) has advanced from fundamental chemistry to engineering processes and applications, resulting in new industrial opportunities. The unique features of MOFs, such as their permanent porosity, high surface area, and structural flexibility, continue to draw industrial interest outside the traditional MOF field, both to solve existing challenges and to create new businesses. In this context, diverse research has been directed toward commercializing MOFs, but such studies have been performed according to a variety of individual goals. Therefore, there have been limited opportunities to share the challenges, goals, and findings with most of the MOF field. In this review, we examine the issues and demands for MOF commercialization and investigate recent advances in MOF process engineering and applications. Specifically, we discuss the criteria for MOF commercialization from the views of stability, producibility, regulations, and production cost. This review covers progress in the mass production and formation of MOFs along with future applications that are not currently well known but have high potential for new areas of MOF commercialization.
Collapse
Key Words
- 2,4-DNT, 2,4-dinitrotoluene
- 4-NP, 4-nitrophenol
- ABS, acrylonitril-butadiene-styrene
- BET, Brunauer–Emmett–Teller
- CA, Cellulose-acetate
- CEES, 2-Chloroethyl ethyl sulfide
- CIE, Commission international ed’Eclairage
- CNF, Cellulose nanofiber
- CNG, compressed natural gas
- CVD, Chemical vapor deposition
- CWA, Chemical warfare agent
- CWC, Chemical weapons convention
- Commercialization
- DCP, Diethylchlorophosphonate
- DDM, n-dodecyl β-D-maltoside
- DEF, N,N-Diethyl formamide
- DFP, Diisopropyl fluorophosphate
- DFT, Density functional theory
- DIFP, Diisopropylfluorophosphate
- DLS, Dynamic light scattering
- DMA, Dimethylacetamide
- DMF, N,N-Dimethyl formamide
- DMMP, Dimethyl methylphosphonate
- DRIFTS, Diffuse reflectance infrared fourier transform spectroscopy
- Dispersion
- E. Coli, Escherichia coli
- ECS, Extrusion-crushing-sieving
- EDLCs, Electrochemical double-layer capacitors
- EPA, Environmental protection agency
- EXAFS, Extended X-ray absorption fine structure
- FT-IR, Fourier-transform infrared spectroscopy
- Fn, Fusobacterium nucleatum
- Future applications
- GC–MS, Gas chromatography–mass spectrometry
- GRGDS, Gly-Arg-Gly-Asp-Ser
- ILDs, Interlayer dielectrics
- ITRS, International technology roadmap for semiconductors
- LED, Light-emitting diode
- LIBs, Lithium-ion batteries
- LMOF, Luminescent metal–organic framework
- LOD, Limit of detection
- MB, methylene blue
- MBC, Minimum bactericidal concentration
- MIC, Minimum inhibitory concentration
- MIM, Metal-insulator–metal
- MMP, Methyl methylphosphonate
- MOF, metal–organic framework
- MOGs, Metal-organic gels
- MRA, mesoporous ρ-alumina
- MRSA, Methicillin-resistant staphylococcus aureus
- MVTR, Moisture vapor transport rate
- Mass production
- Metal–organic framework
- NMP, N-methyl-2-pyrrolidone
- NMR, Nuclear magnetic resonance
- PAN, Polyacrylonitrile
- PANI, Polyaniline
- PEG-CCM, polyethylene-glycol-modified mono-functional curcumin
- PEI, Polyetherimide
- PEMFCs, Proton-exchange membrane fuel cells
- PM, Particulate matter
- POM, Polyoxometalate
- PPC, Polypropylene/polycarbonate
- PS, Polystyrene
- PSM, Post-synthetic modification
- PVA, Polyvinyl alcohol
- PVB, Polyvinyl Butyral
- PVC, Polyvinylchloride
- PVF, Polyvinylformal
- PXRD, Powder x-ray diffraction
- Pg, Porphyromonas gingivalis
- RDX, 1,3,5-trinitro-1,3,5-triazinane
- ROS, Reactive oxygen species
- SALI, Solvent assisted ligand incorporation
- SBU, Secondary building unit
- SCXRD, Single-crystal X-ray diffraction
- SEM, Scanning electron microscope
- SIBs, Sodium-ion batteries
- SSEs, Solid-state electrolytes
- STY, space–time yield, grams of MOF per cubic meter of reaction mixture per day of synthesis
- Shaping
- TEA, Triethylamine
- TIPS-HoP, Thermally induced phase separation-hot pressing
- TNP, 2,4,6-trinitrophenol
- TNT, 2,4,6-trinitrotoluene
- UPS, Ultraviolet photoelectron spectroscopy
- VOC, Volatile organic compound
- WHO, World health organization
- WLED, White light emitting diode
- XPS, X-ray photoelectron spectroscopy
- ZIF, zeolitic imidazolate framework
- hXAS, Hard X-ray absorption spectroscopy
- sXAS, Soft X-ray absorption spectroscopy
Collapse
Affiliation(s)
- UnJin Ryu
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Seohyeon Jee
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Purna Chandra Rao
- Department of Chemistry & Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeeyoung Shin
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Changhyun Ko
- Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
- Department of Applied Physics, College of Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Minyoung Yoon
- Department of Chemistry & Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyo Sung Park
- Corporation R&D, Research Park, LG Chem, LG Science Park, 30, Magokjungang-10-Ro, Gangseo-Gu, Seoul, Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
- Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| |
Collapse
|
43
|
Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM, Drenchev NL. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem Rev 2020; 121:1286-1424. [DOI: 10.1021/acs.chemrev.0c00487] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Dimitar A. Panayotov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Mihail Y. Mihaylov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Elena Z. Ivanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kristina K. Chakarova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Stanislava M. Andonova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikola L. Drenchev
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
44
|
Geravand E, Farzaneh F, Gil-San-Millan R, Carmona FJ, Navarro JAR. Mixed-Metal Cerium/Zirconium MOFs with Improved Nerve Agent Detoxification Properties. Inorg Chem 2020; 59:16160-16167. [DOI: 10.1021/acs.inorgchem.0c01434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Elham Geravand
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran 19938 91176, Iran
| | - Faezeh Farzaneh
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, Tehran 19938 91176, Iran
| | - Rodrigo Gil-San-Millan
- Departamento de Química Inorgánica, Universidad de Granada, Avenida Fuentenueva S/N, 18071 Granada, Spain
| | - Francisco J. Carmona
- Departamento de Química Inorgánica, Universidad de Granada, Avenida Fuentenueva S/N, 18071 Granada, Spain
| | - Jorge A. R. Navarro
- Departamento de Química Inorgánica, Universidad de Granada, Avenida Fuentenueva S/N, 18071 Granada, Spain
| |
Collapse
|
45
|
Feng X, Song Y, Lin W. Transforming Hydroxide-Containing Metal–Organic Framework Nodes for Transition Metal Catalysis. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Castells-Gil J, M. Padial N, Almora-Barrios N, Gil-San-Millán R, Romero-Ángel M, Torres V, da Silva I, Vieira BC, Waerenborgh JC, Jagiello J, Navarro JA, Tatay S, Martí-Gastaldo C. Heterometallic Titanium-Organic Frameworks as Dual-Metal Catalysts for Synergistic Non-buffered Hydrolysis of Nerve Agent Simulants. Chem 2020. [DOI: 10.1016/j.chempr.2020.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Affiliation(s)
- Sun Dal Kim
- Agency for Defense Development (ADD), Daejeon 34186, Korea
| | - Yong Han Lee
- Agency for Defense Development (ADD), Daejeon 34186, Korea
| |
Collapse
|
48
|
Li X, Huang L, Kochubei A, Huang J, Shen W, Xu H, Li Q. Evolution of a Metal-Organic Framework into a Brønsted Acid Catalyst for Glycerol Dehydration to Acrolein. CHEMSUSCHEM 2020; 13:5073-5079. [PMID: 32667129 DOI: 10.1002/cssc.202001377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) as solid acid catalysts provide active sites with definite structures. Here, Zr6 -based MOF-808 and its derivatives were studied as catalysts for glycerol dehydration, the products of which (acrolein vs. acetol) are very sensitive to the nature of the catalytic acid sites. Evolving MOF-808 into MOF-808-S with a 120 % increase in the number of Brønsted OH- /H2 O coordinated to ZrIV and a vanished Lewis acidity by steam treatment, the post-synthetically modified catalyst presented 100 % conversion of glycerol, 91 % selectivity to acrolein, and 0 % selectivity to acetol within the active window. Real-time analysis of the product composition indicated the in situ MOF structural evolution. Overall, the specific MOF-substrate interaction characterized by the probe reaction provides more understandings on the structural evolution of the MOFs and their impact on the performance as solid acid catalysts.
Collapse
Affiliation(s)
- Xiaomin Li
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Liang Huang
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Alena Kochubei
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, 2006, Australia
| | - Jun Huang
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, 2006, Australia
| | - Wei Shen
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Hualong Xu
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Qiaowei Li
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
49
|
Mendonca ML, Ray D, Cramer CJ, Snurr RQ. Exploring the Effects of Node Topology, Connectivity, and Metal Identity on the Binding of Nerve Agents and Their Hydrolysis Products in Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35657-35675. [PMID: 32627522 DOI: 10.1021/acsami.0c08417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent studies have shown that metal-organic frameworks (MOFs) built from hexanuclear M(IV) oxide cluster nodes are effective catalysts for nerve agent hydrolysis, where the properties of the active sites on the nodes can strongly influence the reaction energetics. The connectivity and metal identity of these M6 nodes can be easily tuned, offering extensive opportunities for computational screening to predict promising new materials. Thus, we used density functional theory (DFT) to examine the effects of node topology, connectivity, and metal identity on the binding energies of multiple nerve agents and their corresponding hydrolysis products. By computing an optimization metric based on the relative binding strengths of key hydrolysis reaction species (water, agent, and bidentate-bound products), we predicted optimal M6 nodes for hydrolyzing specific nerve agent and simulant molecules, where our results are in qualitative agreement with observed experimental trends. This analysis highlighted the notion that no single metal or node topology is optimal for all possible organophosphates, suggesting that MOFs should be selected based on the agent of interest. Using the large amount of data generated from our DFT calculations, we then derived quantitative structure-activity relationship (QSAR) models to help explain the complex trends observed in the binding energies. Through linear regression, we identified the most important descriptors for describing the binding of nerve agents and their hydrolysis products to M6 nodes. These results suggested that both molecular and node properties, including both structural and chemical features, collectively contribute to the binding energetics. By performing a thorough statistical analysis, we showed that our QSAR models are capable of making quantitatively accurate binding energy predictions for nerve agents and their hydrolysis products in a wide variety of M(IV)-MOFs. The insights gained herein can be used to guide future experiments for the synthesis of MOFs with enhanced catalytic activity for organophosphate hydrolysis.
Collapse
Affiliation(s)
- Matthew L Mendonca
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Debmalya Ray
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Christopher J Cramer
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Randall Q Snurr
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
50
|
Ebrahimi A, Nassireslami E, Zibaseresht R, Mohammadsalehi M. Ultra-fast catalytic detoxification of organophosphates by nano-zeolitic imidazolate frameworks. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|