1
|
Li NL, Wei J, Ran XY, Li J, Shen L, Zhang F, Dai Q, Wang W, Li K, Wan XK. All-Alkynyl Protected Rod-Shaped Au 9(AgCu) 126 Nanocluster with Remarkable Photothermal Conversion. Angew Chem Int Ed Engl 2025; 64:e202503036. [PMID: 40012439 DOI: 10.1002/anie.202503036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 02/28/2025]
Abstract
High-nuclearity intermetallic nanoclusters are important for investigating the evolution of alloy materials from atoms to plasmonic alloy nanoparticles. However, the synthesis of large-size alloy nanoclusters (∼2 nm) is still challenging. In this work, an all-alkynyl protected trimetallic nanocluster of unprecedented size, Au9Ag126- xCux(PhCC)68(BF4)5 (x = 0-20) (1) (PhCC = phenylacetylene), has been synthesized and its total structure determined by single crystal X-ray diffraction (SCXRD). The metal core of 1 is rod-like in structure, with a length of 1.92 nm and a width of 1.45 nm. Cluster 1 contains a concentric metal kernel in the manner of shell-by-shell arrangements of Au3Ag34@Au6Ag64@(AgCu)28 protected by 68 PhCC ligands with 15 distinct alkynyl-metal binding configurations. Theoretic calculation reveals that 1 features a HOMO-LUMO energy gap of 0.29 eV. This suggests that 1 is situated at the boundary of the transition from a molecular to a metallic state. Remarkably, compared to other reported Au/Ag/Cu/Pd based nanoclusters, 1 exhibits significantly enhanced photothermal conversion capability. A substantial temperature rise of ∼51.5 °C within 5 min (λex = 660 nm, 0.5 W cm-2) and a record high photothermal conversion efficiency of 84.7% at 12 µM in N,N-dimethylformamide (DMF) were observed. Time-resolved transient absorption (TA) spectroscopy reveals that the electron-phonon coupling (τe-ph) of excited 1 occurs on the femtosecond timescale, resulting in an ultrafast electronic relaxation process and excellent photothermal performance. Cluster 1, when employed as a photothermal material, shows promise in biothermal therapy, photothermal catalysis, and photothermal imaging.
Collapse
Affiliation(s)
- Nian-Ling Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, P.R. China
| | - Jianyu Wei
- School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia, 750021, P.R. China
| | - Xiao-Yun Ran
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, P.R. China
| | - Jing Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, P.R. China
| | - Li Shen
- Tianfu Xinglong Lake Laboratory, Chengdu, Sichuan, 610065, P.R. China
| | - Fawang Zhang
- Tianfu Xinglong Lake Laboratory, Chengdu, Sichuan, 610065, P.R. China
| | - Qi Dai
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, P.R. China
| | - Wei Wang
- College of Physics, Sichuan University, Chengdu, Sichuan, 610065, P.R. China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, P.R. China
| | - Xian-Kai Wan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, P.R. China
| |
Collapse
|
2
|
Yoo S, Kim D, Deng G, Chen Y, Lee K, Yoo S, Liu X, Tang Q, Hwang YJ, Hyeon T, Bootharaju MS. Impact of Heterocore Atoms on CO 2 Electroreduction in Atomically Precise Silver Nanoclusters. J Am Chem Soc 2025; 147:12546-12554. [PMID: 40185682 DOI: 10.1021/jacs.4c17770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Understanding the effect of internal atoms in metal nanoparticles on heterogeneous catalytic processes is crucial for achieving high activity and selectivity. This requires meticulous synthetic control over the size, composition, and atomic arrangement of nanoparticles. Here, we report the design of ligand-exchange-induced structure transformation and nanomolecule-templated atomic-level galvanic exchange strategies to synthesize PtAg24(IPBT)18 (denoted as PtAg24) and AuAg24(IPBT)18 (denoted as AuAg24) nanoclusters (NCs). Both NCs exhibit identical total metal atom and ligand (IPBT: 2-isopropylbenzenethiolate) counts, as well as atomic-level structure, except for the difference in the core atom (Pt and Au). Using these model NCs, we uncover the impact of heterocore atoms on the electrochemical CO2 reduction reaction (eCO2RR) activity and selectivity. The central Pt atom in PtAg24 is less favorable for eCO2RR activity, with an activity approximately 4 times smaller than that of Au in AuAg24. The eCO2RR product CO selectivity is <30% for PtAg24, while it exceeds 70% for AuAg24, revealing the critical role of the central atom in surface catalytic pathways. Furthermore, AuAg24 exhibits high activity, with a CO partial current density of -202.2 mA cm-2, and stability over 24 h, retaining 90% CO selectivity in a membrane electrode assembly configuration. Operando spectroscopy and density functional theory calculations suggest the weaker adsorption of *CO intermediates and smaller energy barrier facilitate CO production on AuAg24 compared to PtAg24, providing valuable atomistic insights into the reaction intermediates and mechanism. The findings in this work will inspire the design of more atomically precise model nanocatalysts to explore the role of their remarkable features in the catalytic activity and selectivity for renewable energy conversion and storage.
Collapse
Affiliation(s)
- Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dayeon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Suhwan Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Yun Jeong Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Hu XN, Zhong XH, Zhong RR, Zhang LM, Hao DB, Xu Q, Wei HZ, Zhou R, Wei J, Liu KG, Yuan SF, Li DS, Wu T. Significantly enhanced NIR emission of solid-state clusters based on Cu 4Pt 2 triggered with volatile organic compounds. NANOSCALE 2025; 17:5829-5837. [PMID: 39930878 DOI: 10.1039/d4nr04371e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Near-infrared (NIR) emitting metal clusters, recognized for their low toxicity, large Stokes shift, and exceptional photostability, hold considerable promise as stimuli-responsive luminescent materials for applications including organic vapor sensing, pollutant detection, and photoluminescent thermometers. However, their limited quantum yield (QY) for NIR emission poses a challenge, highlighting the need for developing light-up sensors with NIR emitting metal clusters to broaden the scope of applications. Herein, the carbazole-alkyne ligand-incorporated novel bimetallic cluster, Cu4Pt2(CZ-PrA)4(dppy)4(PF6)2 (CZ-Cu4Pt2, CZ-PrAH = 9-(Prop-2-yn-1-yl)-9H-carbazole; dppy = diphenyl-2-pyridylphosphine), was synthesized, which exhibits NIR emission centered at 740 nm in the solid state and shows a significant blue shift compared to the previously reported analogues. Temperature-dependent luminescence tests demonstrated an increase in emission intensity with decreasing temperature and a blue shift in the emission peak. Remarkably, its photoluminescence (PL) intensity increased significantly upon exposure to solvents like ethyl acetate, formaldehyde (HCHO), and chlorobenzene, raising the QY from an initial 16.1% to a range of 46.7%-70.3%. HCHO, in particular, boosted the emission intensity by over 200 times. The emission enhancement mechanism, elucidated through UV-vis diffuse reflectance spectroscopy, powder X-ray diffraction, femtosecond transient absorption spectroscopy, and single-crystal X-ray diffraction, reveals that weak intermolecular interactions, particularly hydrogen bonding between solvent molecules and ligands, restrict intramolecular rotations and vibrations, thus promoting radiative transitions. The CZ-Cu4Pt2 cluster shows potential applications in non-contact fluorescence thermometry and organic vapor detection.
Collapse
Affiliation(s)
- Xue-Ning Hu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, P. R. China.
| | - Xu-Hang Zhong
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, P. R. China.
| | - Rui-Ru Zhong
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, P. R. China.
| | - Lin-Mei Zhang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, P. R. China.
| | - De-Bo Hao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, P. R. China.
| | - Qian Xu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, P. R. China.
| | - Hui-Zhi Wei
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, P. R. China.
| | - Rui Zhou
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, P. R. China.
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, 510632, P. R. China
| | - Jianyu Wei
- Ningxia Key Laboratory for Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Kuan-Guan Liu
- Ningxia Key Laboratory for Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Shang-Fu Yuan
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, P. R. China.
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Tao Wu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, P. R. China.
| |
Collapse
|
4
|
Liu H, Huang B, Shao Y, Pei Y. Hetero and Homo Metal Exchange of Au 25(SR) 18 - and Ag 25(SR) 18 - Clusters with Metal-Thiolate Complexes: Ab Initio Molecular Dynamics Simulation Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403520. [PMID: 39109564 DOI: 10.1002/smll.202403520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/28/2024] [Indexed: 11/21/2024]
Abstract
The hetero and homo metal exchange of Au25(SR)18 - and Ag25(SR)18 - nanoclusters with metal-thiolate (M-SR) complexes (AuI(SR), AgI(SR), CuI(SR), and CuII(SR)2) are studied using ab initio molecular dynamics (AIMD) simulations. The AIMD simulation results unveil that the M-SR complexes directly displace Au(SR) or Ag(SR) units on the gold or silver core surface through an "anchoring effect". The whole process of metal-exchange reactions can be divided into three steps, including the adsorption of M-SR complexes on clusters, the formation of new staple motif, and the displacement of Au(SR) or Ag(SR) units by M-SR complexes. The key role of sulfur atoms in metal exchange reactions in M-SR complexes is revealed, which facilitates formation of new staple motifs and doping of M-SR complexes into gold and silver cores. This work provides a theoretical basis for further exploring the metal exchange reaction between noble metal nanoclusters and metal-thiolate complexes, as well as the isotope exchange reactions.
Collapse
Affiliation(s)
- Hengzhi Liu
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, 411105, China
| | - Baoyu Huang
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, P. R. China
| | - Youyuan Shao
- School of Chemical Engineering and Energy Technology, Guangdong Provincial Key Laboratory of Distributed Energy System, Dongguan University of Technology, Dongguan, 523808, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, 411105, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming, 650093, China
| |
Collapse
|
5
|
Rodríguez-Kessler PL, Muñoz-Castro A. Intermediate Intercluster Bond Orders. Electronic Communication in Au 38(SR) 24 Superatomic Molecules. Chemphyschem 2024; 25:e202400183. [PMID: 38831496 DOI: 10.1002/cphc.202400183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/23/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Ligand-protected gold clusters remain potential building blocks for envisaged molecular materials. The archetypal Au38(SR)24 cluster can be viewed as a robust template for the fusion of two Au25(SR)18 - cluster units, retaining a bi-icosahedral Au23 core. Via electrochemical properties, the overall charge state can be selectively tuned, enabling the access of 14 valence electron (ve) species featuring a single intercluster bond and nearby charge from -1 to +3, achieving related species bearing 15- to 11-ve with variable intercluster bond orders. Here, we explore the characteristics of intermediate intercluster bond orders in order to provide insights into the plausible electron communication between the constituent building blocks, with Au38(SR)24, as a representative template. Our results denote a small structural variation along -1 to +3 charge states, provided by the core-protecting ligand interaction, which is enhanced towards more oxidized species. The remaining unpaired electron from intermediate intercluster bond orders of 1.5 for Au38(SR)24 1-, 1.5 for Au38(SR)24 1+, and 2.5 for Au38(SR)24 3+, holds delocalized characteristics between the building block units, favoring electron communication for conductive and cooperative cluster aggregates. Such features are relevant for the formation of molecular electronic device applications, favoring the rationalization prior to engaging in explorative synthesis of larger ligand-protected cluster aggregates.
Collapse
Affiliation(s)
- Peter L Rodríguez-Kessler
- Centro de Investigaciones en Óptica A.C., Loma del Bosque 115, Col. Lomas del Campestre, León, Guanajuato, 37150, Mexico
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile
| |
Collapse
|
6
|
Feng Y, Lv Y, Wei X, Yu H, Kang X, Zhu M. Relationship between Structural Defects and Free Electrons in Icosahedral Nanoclusters. J Phys Chem Lett 2024; 15:8910-8916. [PMID: 39172035 DOI: 10.1021/acs.jpclett.4c02179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
According to the classic superatom model, metal nanoclusters with a "magic number" of free valence electrons display high stability, manifesting as the closed-shell-dependent electronic robustness. The icosahedral nanobuilding blocks containing eight free electrons were the most common in constructing metal nanoclusters; however, the structure defect-dependent variations of the free electron count in icosahedral configurations are still far from thorough research. Here, we reported a hydride-containing [Pt2Ag15(SAdm)4(DPPOE)4H]2+ nanocluster with two largely defective Pt1Ag8 icosahedral cores. Together with previously reported complete or slightly defective icosahedra in metal nanoclusters, the largely defective Pt1Ag8 core provided important clues to reveal the evolutionary mode of structural defects and free electrons in icosahedral nanoclusters; the free electron count of icosahedron was reduced two-by-two (i.e., from 8e to 6e and then to 4e) accompanied by the structure defection. Overall, the work presented a novel Pt2Ag15 nanocluster with a largely defective core structure that enables an atomic-level understanding of the relationship between structural defects and free electrons in icosahedral nanoclusters.
Collapse
Affiliation(s)
- Yan Feng
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
7
|
Chiu TH, Pillay MN, Wu YY, Niihori Y, Negishi Y, Chen JY, Chen YJ, Kahlal S, Saillard JY, Liu CW. Controlled aggregation of Pt/PtH/Rh/RhH doped silver superatomic nanoclusters into 16-electron supermolecules. Chem Sci 2024:d4sc02920h. [PMID: 39246344 PMCID: PMC11376050 DOI: 10.1039/d4sc02920h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024] Open
Abstract
The assembly of discrete superatomic nanoclusters into larger constructs is a significant stride towards developing a new set of artificial/pseudo-elements. Herein, we describe a novel series of 16-electron supermolecules derived from the combination of discrete 8-electron superatomic synthons containing interstitial hydrides as vertex-sharing building blocks. The symmetric (RhH)2Ag33[S2P(OPr)2]17 (1) and asymmetric PtHPtAg32[S2P(OPr)2]17 (2) are characterized by ESI-MS, SCXRD, NMR, UV-vis absorption spectra, electrochemical and computational methods. Cluster 1 represents the first group 9-doped 16-electron supermolecule, composed of two icosahedral (RhH)@Ag12 8-electron superatoms sharing a silver vertex. Cluster 2 results from the assembly of two distinct icosahedral units, Pt@Ag12, and (PtH)@Ag12. In both cases, the presence of the interstitial hydrides is unprecedented. The stability of the supermolecules is investigated, and 2 spontaneously transforms into Pt2Ag33[S2P(OPr)2]17 (3) with thermal treatment. The lability of the hydride within the icosahedral framework in solution at low-temperature was confirmed by the VT-NMR.
Collapse
Affiliation(s)
- Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University Hualien 97401 Taiwan Republic of China
| | - Michael N Pillay
- Department of Chemistry, National Dong Hwa University Hualien 97401 Taiwan Republic of China
| | - Ying-Yann Wu
- Department of Chemistry, National Dong Hwa University Hualien 97401 Taiwan Republic of China
| | - Yoshiki Niihori
- Department of Applied Chemistry, Tokyo University of Science 1-3 Kagurazaka, Shinjuku Tokyo 162-8601 Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Tokyo University of Science 1-3 Kagurazaka, Shinjuku Tokyo 162-8601 Japan
| | - Jie-Ying Chen
- Department of Chemistry, Fu Jen Catholic University New Taipei City 24205 Taiwan Republic of China
| | - Yuan Jang Chen
- Department of Chemistry, Fu Jen Catholic University New Taipei City 24205 Taiwan Republic of China
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226 F-35000 Rennes France
| | | | - C W Liu
- Department of Chemistry, National Dong Hwa University Hualien 97401 Taiwan Republic of China
| |
Collapse
|
8
|
Liu X, Ki T, Deng G, Yoo S, Lee K, Lee BH, Hyeon T, Bootharaju MS. Recent advances in synthesis and properties of silver nanoclusters. NANOSCALE 2024; 16:12329-12344. [PMID: 38860477 DOI: 10.1039/d4nr01788a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Achieving atomic precision in nanostructured materials is essential for comprehending formation mechanisms and elucidating structure-property relationships. Within the realm of nanoscience and technology, atomically precise ligand-protected noble metal nanoclusters (NCs) have emerged as a rapidly expanding area of interest. These clusters manifest quantum confinement-induced optoelectronic, photophysical, and chemical properties, along with remarkable catalytic capabilities. Among coinage metals, silver distinguishes itself for the fabrication of stable nanoclusters, primarily due to its cost-effectiveness compared to gold. This minireview provides an overview of recent advancements since 2020 in synthetic methodologies and ligand selections toward attaining NCs boasting a minimum of two free valence electrons. Additionally, it explores strategies for fine-tuning optical properties. The discussion extends to surface reactivity, elucidating how exposure to ligands, heat, and light induces transformations in size and structure. Of paramount significance are the applications of silver NCs in catalytic reactions for energy and chemical conversion, supplemented by in-depth mechanistic insights. Furthermore, the review delineates challenges and outlines future directions in the NC field, with an eye toward the design of new functional materials and prospective applications in diverse technologies, including optoelectronics, energy conversion, and fine chemical synthesis.
Collapse
Affiliation(s)
- Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeyoung Ki
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Byoung-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Deng G, Ki T, Yoo S, Liu X, Lee K, Bootharaju MS, Hyeon T. [Au 9Ag 6(CCR) 10(DPPM) 2Cl 2](PPh 4): a four-electron cluster with a bi-decahedral twisted metal core. NANOSCALE 2024; 16:11090-11095. [PMID: 38766759 DOI: 10.1039/d4nr01471e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The assembly of cluster units in a distinct manner can give rise to nanoclusters exhibiting unique geometrical structures and properties. Herein, we present a one-pot synthesis and structural characterization of a AuAg alloy cluster, [Au9Ag6(CCR)10(DPPM)2Cl2](PPh4), denoted as Au9Ag6 (where HCCR is 3,5-bis(trifluoromethyl)phenylacetylene, and DPPM is bis(diphenylphosphino)methane). Single-crystal X-ray diffraction data analysis reveals that Au9Ag6 features a distinctive Au7Ag6 bi-decahedral core, formed by a twisted assembly of two Au4Ag3 decahedra sharing one vertex. The Au4Ag3 building blocks are bridged by two gold atoms on opposite sides of the bi-decahedral core. The Au9Ag6 cluster is monoanionic and it is stabilized by two chloride, two DPPM and ten alkynyl ligands. This cluster represents the first instance of a cluster of clusters built upon decahedral units.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeyoung Ki
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
11
|
Zhong RR, Xie M, Luan CZ, Zhang LM, Hao DB, Yuan SF, Wu T. Highly intense NIR emissive Cu 4Pt 2 bimetallic clusters featuring Pt(i)-Cu 4-Pt(i) sandwich kernel. Chem Sci 2024; 15:7552-7559. [PMID: 38784728 PMCID: PMC11110137 DOI: 10.1039/d4sc01022a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Metal nanoclusters (NCs) capable of near-infrared (NIR) photoluminescence (PL) are gaining increasing interest for their potential applications in bioimaging, cell labelling, and phototherapy. However, the limited quantum yield (QY) of NIR emission in metal NCs, especially those emitting beyond 800 nm, hinders their widespread applications. Herein, we present a bright NIR luminescence (PLQY up to 36.7%, ∼830 nm) bimetallic Cu4Pt2 NC, [Cu4Pt2(MeO-C6H5-C[triple bond, length as m-dash]C)4(dppy)4]2+ (dppy = diphenyl-2-pyridylphosphine), with a high yield (up to 67%). Furthermore, by modifying the electronic effects of R in RC[triple bond, length as m-dash]C- (R = MeO-C6H5, F-C6H5, CF3-C6H5, Nap, and Biph), we can effectively modulate phosphorescence properties, including the PLQY, emission wavelength, and excited state decay lifetime. Experimental and computational studies both demonstrate that in addition to the electron effects of substituents, ligand modification enhances luminescence intensity by suppressing non-radiation transitions through intramolecular interactions. Simultaneously, it allows the adjustment of emitting wavelengths by tuning the energy gaps and first excited triplet states through intermolecular interactions of ligand substituents. This study provides a foundation for rational design of the atomic-structures of alloy metal NCs to enhance their PLQY and tailor the PL wavelength of NIR emission.
Collapse
Affiliation(s)
- Rui-Ru Zhong
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Mo Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Cui-Zhou Luan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Lin-Mei Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - De-Bo Hao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Shang-Fu Yuan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Tao Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
12
|
Yang JS, Zhao YJ, Li XM, Dong XY, Si YB, Xiao LY, Hu JH, Yu Z, Zang SQ. Staggered Assembly of a Dimeric Au 13 Cluster: Impacts on Coupling of Geometric Isomerism. Angew Chem Int Ed Engl 2024; 63:e202318030. [PMID: 38308534 DOI: 10.1002/anie.202318030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
The specific states of aggregation of metal atoms in sub-nanometer-sized gold clusters are related to the different quantum confinement volumes of electrons, leading to novel optical and electronic properties. These volumes can be tuned by changing the relative positions of the gold atoms to generate isomers. Studying the isomeric gold core and the electron coupling between the basic units is fundamentally important for nanoelectronic devices and luminescence; however, appropriate cases are lacking. In this study, the structure of the first staggered di-superatomic Au25 -S was solved using single-crystal X-ray diffraction. The optical properties of Au25 -S were studied by comparing with eclipsed Au25 -E. From Au25 -E to Au25 -S, changes in the electronic structures occurred, resulting in significantly different optical absorptions originating from the coupling between the two Au13 modules. Au25 -S shows a longer electron decay lifetime of 307.7 ps before populating the lowest triplet emissive state, compared to 1.29 ps for Au25 -E. The experimental and theoretical results show that variations in the geometric isomerism lead to distinct photophysical processes owing to isomerism-dependent electronic coupling. This study offers new insights into the connection between the geometric isomerism of nanosized building blocks and the optical properties of their assemblies, opening new possibilities for constructing function-specific nanomaterials.
Collapse
Affiliation(s)
- Jin-Sen Yang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 454000, Jiaozuo, China
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Yu-Jing Zhao
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Xin-Mao Li
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Xi-Yan Dong
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 454000, Jiaozuo, China
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Yu-Bing Si
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Lu-Yao Xiao
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Jia-Hua Hu
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Zhihao Yu
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| |
Collapse
|
13
|
Wang Z, Zhao H, Li YZ, Zhang C, Gupta RK, Tung CH, Sun D. Thiacalix[4]arene-Protected Silver Nanoclusters Encapsulating Different Two-Electron Superatom Oligomers. NANO LETTERS 2024; 24:458-465. [PMID: 38148139 DOI: 10.1021/acs.nanolett.3c04307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The subvalent silver kernel represents the nascent state of silver cluster formation, yet the growth mechanism has long been elusive. Herein, two silver nanoclusters (Ag30 and Ag34) coprotected by TC4A4- (H4TC4A = p-tert-butylthiacalix[4]arene) and TBPMT- (TBPMTH = 4-tert-butylbenzenemethanethiol) containing 6e and 4e silver kernels are synthesized and characterized. The trimer of the 2e superatom Ag14 kernel in Ag30 is built from a central Ag6 octahedron sandwiched by two orthogonally oriented Ag5 trigonal bipyramids through sharing vertexes, whereas a double-octahedral Ag10 kernel in Ag34 is a dimer of 2e superatoms. They manifest disparate polyhedron fusion growth patterns at the beginning of the silver cluster formation. Their excellent solution stabilities are contributed by the multisite and multidentate coordination fashion of TC4A4- and the special valence electron structures. This work demonstrates the precise control of silver kernel growth by the solvent strategy and lays a foundation for silver nanocluster application in photothermal conversion.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Hui Zhao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Ying-Zhou Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250353, People's Republic of China
| | - Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Rakesh Kumar Gupta
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| |
Collapse
|
14
|
Wang M, Wang L, Wu H, Sun J, Xu X, Guo S, Jia Y, Li S, Guan ZJ, Shen H. PtAg 18 superatoms costabilized by phosphines and halides: synthesis, structure, and catalysis. NANOSCALE 2023; 15:17818-17824. [PMID: 37668358 DOI: 10.1039/d3nr02196c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Reported herein is the facial synthesis, molecular structure, and catalysis of a Pt/Ag nanocluster costabilized by organic ligands of phosphines and inorganic ligands of chlorides. The nanocluster with molecular formula of [PtAg18(dppp)6Cl8](SbF6)2 has been obtained facilely by the one pot method. The structure of the cluster could be anatomized as the stabilizaiton of PtAg12-centered icosahedral core by the metalloligand of dppp-Ag-Cl, in which Cl- not only caps the surface Ag atoms but also binds the core and surface motifs. Featuring eight free electrons in its structure, the cluster exhibits high stability. More interestingly, the exposure of surface metal sites endows the cluster with counterintutively high catalytic activity in hydrogenation reactions.
Collapse
Affiliation(s)
- Meng Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Lin Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Haoyuan Wu
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Jing Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Xiaoxuan Xu
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Yanyuan Jia
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
15
|
Wang M, Li S, Tang X, Zuo D, Jia Y, Guo S, Guan ZJ, Shen H. One-step preparation of Pt/Ag nanoclusters for CO 2 transformation. Phys Chem Chem Phys 2023; 25:30373-30380. [PMID: 37909301 DOI: 10.1039/d3cp02736h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Structurally precise metal nanoclusters with a facile synthetic process and high catalytic performance have been long pursued. These atomically precise nanocatalysts are regarded as model systems to study structure-performance relationships, surface coordination chemistry, and the reaction mechanism of heterogeneous metal catalysts. Nevertheless, the research on silver-based nanoclusters for driving chemical transformations is sluggish in comparison to gold counterparts. Herein, we report the one-step synthesis of Pt/Ag alloy nanoclusters of [PtAg9(C18H12Br3P)7Cl3](C18H12Br3P), which are highly active in catalysing cycloaddition reactions of CO2 and epoxides. The cluster was obtained in a rather simple way with the reduction of silver and platinum salts in the presence of ligands in one pot. The molecular structure of the titled cluster describes the protection of the Pt-centred Ag9 crown by the shell of phosphine ligands and halides. Its electronic structure, as revealed by density function theoretical calculations, adopts a superatomic geometry with 1S21P6 configuration. Interestingly, the cluster displays high activity in the formation of cyclic carbonates from CO2 under mind conditions.
Collapse
Affiliation(s)
- Meng Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Xiongkai Tang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongjie Zuo
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Yanyuan Jia
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
16
|
He X, Liu S, Hu X, Huang X, Zhang H, Mao X. Precious metal clusters as fundamental agents in bioimaging usability. Front Chem 2023; 11:1296036. [PMID: 38025077 PMCID: PMC10665568 DOI: 10.3389/fchem.2023.1296036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Fluorescent nanomaterials (NMs) are widely used in imaging techniques in biomedical research. Especially in bioimaging systems, with the rapid development of imaging nanotechnology, precious metal clusters such as Au, Ag, and Cu NMs have emerged with different functional agents for biomedical applications. Compared with traditional fluorescent molecules, precious metal clusters have the advantages of high optical stability, easy regulation of shape and size, and multifunctionalization. In addition, NMs possess strong photoluminescent properties with good photostability, high release rate, and sub-nanometer size. They could be treated as fundamental agents in bioimaging usability. This review summarizes the recent advances in bioimaging utilization, it conveys that metal clusters refer to Au, Ag, and Cu fluorescent clusters and could provide a generalized overview of their full applications. It includes optical property measurement, precious metal clusters in bioimaging systems, and a rare earth element-doped heterogeneous structure illustrated in biomedical imaging with specific examples, that provide new and innovative ideas for fluorescent NMs in the field of bioimaging usability.
Collapse
Affiliation(s)
- Xiaoxiao He
- Department of Medical Engineering, Daping Hospital, Army Medical University, Chongqing, China
| | - Shaojun Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xi Hu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xiongyi Huang
- Department of Medical Engineering, Daping Hospital, Army Medical University, Chongqing, China
| | - Hehua Zhang
- Department of Medical Engineering, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiang Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Fang L, Fan W, Bian G, Wang R, You Q, Gu W, Xia N, Liao L, Li J, Deng H, Yan N, Wu Z. Sandwich-Kernelled AgCu Nanoclusters with Golden Ratio Geometry and Promising Photothermal Efficiency. Angew Chem Int Ed Engl 2023; 62:e202305604. [PMID: 37208858 DOI: 10.1002/anie.202305604] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/21/2023]
Abstract
Metal nanoclusters have recently attracted extensive interest from the scientific community. However, unlike carbon-based materials and metal nanocrystals, they rarely exhibit a sheet kernel structure, probably owing to the instability caused by the high exposure of metal atoms (particularly in the relatively less noble Ag or Cu nanoclusters) in such a structure. Herein, we synthesized a novel AgCu nanocluster with a sandwich-like kernel (diameter≈0.9 nm and length≈0.25 nm) by introducing the furfuryl mercaptan ligand (FUR) and the alloying strategy. Interestingly, the kernel consists of a centered silver atom and two planar Ag10 pentacle units with completely mirrored symmetry after a rotation of 36 degrees. The two Ag10 pentacles and some extended structures show an unreported golden ratio geometry, and the two inner five-membered rings and the centered Ag atom form an unanticipated full-metal ferrocene-like structure. The featured kernel structure causes the dominant radial direction transition of excitation electrons, as determined via time-dependent density functional theory calculations, which affords the protruding absorption at 612 nm and contributes to the promising photothermal conversion efficiency of 67.6 % of the as-obtained nanocluster, having important implications for structure-property correlation and the development of nanocluser-based photothermal materials.
Collapse
Grants
- 21925303, 21829501, 22171267, 22171268, 21701179, 21771186, 21501181, 21222301, 21171170, and 21528303 National Natural Science Foundation of China
- 2008085MB31, 2108085MB56 Anhui Provincial Natural Science Foundation
- YZJJ202102 and YZJJ202306-TS Special Foundation of President of HFIPS
- 2020HSC-CIP005, 2022HSC-CIP018 Collaborative Innovation Program of Hefei Science Center, CAS
- 2023468 Youth Innovation Promotion Association CAS
Collapse
Affiliation(s)
- Liang Fang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Guoqing Bian
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Runguo Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Nan Yan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
18
|
Tang J, Ge T, Wang W, Liu C, Huang J. Electronic structure modulation of Pd n ( n = 2-5) nanoclusters in the hydrogenation of cinnamaldehyde. Chem Commun (Camb) 2023. [PMID: 37377033 DOI: 10.1039/d3cc01794j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Studying the modulation of nanoclusters at an atomic scale is essential to comprehend the connection between properties and catalytic performance. Herein, we synthesized and characterized Pdn (n = 2-5) nanoclusters coordinated with di-1-adamantylphosphine. Pd5 nanoclusters showed the best catalytic performance (conversion = 99.3%, selectivity = 95.3%) for the hydrogenation of cinnamaldehyde to hydrocinnamaldehyde, with XPS identifying Pdδ+ as the key active component. This work aimed to explore the relationship among the number of Pd atoms, their electronic structure and catalytic activity.
Collapse
Affiliation(s)
- Jie Tang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Ge
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxuan Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Chao Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiahui Huang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
19
|
Horita Y, Ishimi M, Negishi Y. Anion-templated silver nanoclusters: precise synthesis and geometric structure. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2203832. [PMID: 37251258 PMCID: PMC10215029 DOI: 10.1080/14686996.2023.2203832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023]
Abstract
Metal nanoclusters (NCs) are gaining much attention in nanoscale materials research because they exhibit size-specific physicochemical properties that are not observed in the corresponding bulk metals. Among them, silver (Ag) NCs can be precisely synthesized not only as pure Ag NCs but also as anion-templated Ag NCs. For anion-templated Ag NCs, we can expect the following capabilities: 1) size and shape control by regulating the central anion (anion template); 2) stabilization by adjusting the charge interaction between the central anion and surrounding Ag atoms; and 3) functionalization by selecting the type of central anion. In this review, we summarize the synthesis methods and influences of the central anion on the geometric structure of anion-templated Ag NCs, which include halide ions, chalcogenide ions, oxoanions, polyoxometalate, or hydride/deuteride as the central anion. This summary provides a reference for the current state of anion-templated Ag NCs, which may promote the development of anion-templated Ag NCs with novel geometric structures and physicochemical properties.
Collapse
Affiliation(s)
- Yusuke Horita
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Mai Ishimi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Japan
| |
Collapse
|
20
|
Miyajima S, Hossain S, Ikeda A, Kosaka T, Kawawaki T, Niihori Y, Iwasa T, Taketsugu T, Negishi Y. Key factors for connecting silver-based icosahedral superatoms by vertex sharing. Commun Chem 2023; 6:57. [PMID: 36977829 PMCID: PMC10050180 DOI: 10.1038/s42004-023-00854-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Metal nanoclusters composed of noble elements such as gold (Au) or silver (Ag) are regarded as superatoms. In recent years, the understanding of the materials composed of superatoms, which are often called superatomic molecules, has gradually progressed for Au-based materials. However, there is still little information on Ag-based superatomic molecules. In the present study, we synthesise two di-superatomic molecules with Ag as the main constituent element and reveal the three essential conditions for the formation and isolation of a superatomic molecule comprising two Ag13-xMx structures (M = Ag or other metal; x = number of M) connected by vertex sharing. The effects of the central atom and the type of bridging halogen on the electronic structure of the resulting superatomic molecule are also clarified in detail. These findings are expected to provide clear design guidelines for the creation of superatomic molecules with various properties and functions.
Collapse
Affiliation(s)
- Sayuri Miyajima
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Sakiat Hossain
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.
| | - Ayaka Ikeda
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Taiga Kosaka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yoshiki Niihori
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Takeshi Iwasa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
- WPI-ICReDD, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
- WPI-ICReDD, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.
| |
Collapse
|
21
|
Deng G, Lee K, Deng H, Malola S, Bootharaju MS, Häkkinen H, Zheng N, Hyeon T. Alkynyl-Protected Chiral Bimetallic Ag 22 Cu 7 Superatom with Multiple Chirality Origins. Angew Chem Int Ed Engl 2023; 62:e202217483. [PMID: 36581588 DOI: 10.1002/anie.202217483] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Understanding the origin of chirality in the nanostructured materials is essential for chiroptical and catalytic applications. Here we report a chiral AgCu superatomic cluster, [Ag22 Cu7 (C≡CR)16 (PPh3 )5 Cl6 ](PPh4 ), Ag22 Cu7 , protected by an achiral alkynyl ligand (HC≡CR: 3,5-bis(trifluoromethyl)phenylacetylene). Its crystal structure comprises a rare interpenetrating biicosahedral Ag17 Cu2 core, which is stabilized by four different types of motifs: one Cu(C≡CR)2 , four -C≡CR, two chlorides and one helical Ag5 Cu4 (C≡CR)10 (PPh3 )5 Cl4 . Structural analysis reveals that Ag22 Cu7 exhibits multiple chirality origins, including the metal core, the metal-ligand interface and the ligand layer. Furthermore, the circular dichroism spectra of R/S-Ag22 Cu7 are obtained by employing appropriate chiral molecules as optical enrichment agents. DFT calculations show that Ag22 Cu7 is an eight-electron superatom, confirm that the cluster is chirally active, and help to analyze the origins of the circular dichroism.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hongwen Deng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Nanfeng Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
22
|
Tan Y, Lv Y, Xu L, Li Q, Chai J, Yang S, Yu H, Zhu M. Cd Atom Goes into the Interior of Cluster Induced by Directional Consecutive Assembly of Tetrahedral Units on an Icosahedron Kernel. J Am Chem Soc 2023; 145:4238-4245. [PMID: 36779635 DOI: 10.1021/jacs.2c13075] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
"Core sliding" in metal nanoclusters drives the reconstruction of external structural units and provides an ideal platform for mapping their precise transformation mechanism and evolution pathway. However, observing the movement behavior of metal atoms in experiments is still challenging because of the uncertain stability of intermediates. In this work, a series of Au-Cd alloy nanoclusters with continuously assembled kernels (one icosahedral building block assembled with 0 to 3 tetrahedral units) were constructed. As the assembly continued, it eventually led to the Cd atom doping into the inner positions of the clusters. Importantly, the Cd doped into the interior of the cluster exhibits a different behavior than the surface or external Cd atoms (dispersion doping vs localized occupy), which provides experimental evidence of the sliding behavior in the nanocluster kernel. Furthermore, density functional theory (DFT) calculations reveal that this sliding behavior in the inner sites of nanoclusters is an energetically favorable process. In addition, these Au-Cd nanoclusters exhibit tunable optical properties with different assembly patterns in their kernels.
Collapse
Affiliation(s)
- Yesen Tan
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Ying Lv
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Liyun Xu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Qinzhen Li
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Jinsong Chai
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Sha Yang
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Haizhu Yu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
23
|
Wu X, Weng S, Lv Y, He S, Yu H. DFT Insights into the Variety in the Coordination Modes of the Equatorial Halides in [Au 13 Ag 12 (PR 3 ) 10 X 8 ] + (X=Cl/Br) Clusters. Chemphyschem 2023; 24:e202200526. [PMID: 36173928 DOI: 10.1002/cphc.202200526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/29/2022] [Indexed: 01/19/2023]
Abstract
The bonding character within metal nanoclusters represents an intriguing topic, shedding light on the inherent driving force for the packing preference in nanomaterials. Herein, density functional theory (DFT) calculations were conducted to investigate the correlation of the series of isomeric [Au13 Ag12 (PR3 )10 X8 ]+ (X=Cl/Br) clusters, which are mainly differentiated by the coordination mode of the equatorial halides (μ2 -, μ3 - and μ4 -) in the rod-like, bi-icosahedral framework. The theoretical simulation corroborates the variety in the configuration of the Au13 Ag12 clusters and elucidates the fast isomerization kinetics among the different configurations. The easy tautomerization and the variety in chloride binding modes correspond to a fluxionality character of the equatorial halides and are verified by the potential energy curve analysis. The structural flexibility of the central Au3 Ag10 block is the main driving force, while the relatively stronger Ag-X bonding interaction (compared to that of Au-X), and a sufficient number of halides are also requisite for the associating Ag-X tautomerizations.
Collapse
Affiliation(s)
- Xiaohang Wu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Shiyin Weng
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Shuping He
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
24
|
Zhou C, Pan P, Wei X, Lin Z, Chen C, Kang X, Zhu M. Horizontal expansion of biicosahedral M 13-based nanoclusters: resolving decades-long questions. NANOSCALE HORIZONS 2022; 7:1397-1403. [PMID: 36196687 DOI: 10.1039/d2nh00321j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
For metal nanoclusters with the "cluster of clusters" intramolecular evolution pattern, most efforts have been made towards the vertical superposition of icosahedral nanobuilding blocks (e.g., from mono-icosahedral Au13 to bi-icosahedral Au25 and tri-icosahedral Au37), while the horizontal expansion of these rod-shaped multi-icosahedral aggregates was largely neglected. We herein report the horizontal expansion of the biicosahedral M25 cluster framework, yielding an [Au19Ag12(S-Adm)6(DPPM)6Cl7]2+ nanocluster that contains an Au13Ag12 kernel and six Au1(DPPM)1(S-Adm)1 peripheral wings. The structural determination of [Au19Ag12(S-Adm)6(DPPM)6Cl7]2+ resolved a decades-long question towards rod-shaped multi-icosahedral aggregates: how to load bidentate phosphine and bulky thiol ligands onto the nanocluster framework? The structural comparison between [Au19Ag12(S-Adm)6(DPPM)6Cl7]2+ and previously reported [Au13Ag12(PPh3)10Cl8]2+ or [Au13Ag12(SR)5(PPh3)10Cl2]2+ rationalized the unique packing of Au1(DPPM)1(S-Adm)1 motif structures on the surface of the former nanocluster. Overall, this work presents the horizontal expansion of rod-shaped multi-icosahedral nanoclusters, which provides new insights into the preparation of novel icosahedron-based aggregates with both vertically and horizontally growing extensions.
Collapse
Affiliation(s)
- Chuanjun Zhou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Peiyao Pan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Zidong Lin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Cheng Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
25
|
Liu X, Wang E, Zhou M, Wan Y, Zhang Y, Liu H, Zhao Y, Li J, Gao Y, Zhu Y. Asymmetrically Doping a Platinum Atom into a Au 38 Nanocluster for Changing the Electron Configuration and Reactivity in Electrocatalysis. Angew Chem Int Ed Engl 2022; 61:e202207685. [PMID: 35638166 DOI: 10.1002/anie.202207685] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/25/2022]
Abstract
It is an obstacle to precisely manipulate a doped heteroatom into a desired position in a metal nanocluster. Herein, we overcome this difficulty to obtain Pt1 Au37 (SCH2 Pht Bu)24 and Pt2 Au36 (SCH2 Pht Bu)24 nanoclusters via controllably doping Pt atoms into the kernels of Au38 (SCH2 Pht Bu)24 . We reveal that asymmetrical doping of one Pt atom into either of the cores of Au38 (SCH2 Pht Bu)24 elevates the relative energy of the HOMO (highest occupied molecular orbital) accompanied by one valence electron loss of Pt1 Au37 (SCH2 Pht Bu)24 , compared to Au38 (SCH2 Pht Bu)24 with 14 electrons, while symmetrical doping of two Pt atoms into the cores of Au38 (SCH2 Pht Bu)24 narrows the HOMO-LUMO gap (LUMO: lowest unoccupied molecular orbital) of Pt2 Au36 (SCH2 Pht Bu)24 with two valence electrons less. Consequently, Pt1 Au37 (SCH2 Pht Bu)24 shows an electron-spin-induced high activity for CO2 electroreduction, whereas Pt2 Au36 (SCH2 Pht Bu)24 is least efficient and Au38 (SCH2 Pht Bu)24 has a decent performance.
Collapse
Affiliation(s)
- Xu Liu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Endong Wang
- Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuankun Zhang
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Haoqi Liu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yi Gao
- Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yan Zhu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
26
|
Liu X, Wang E, Zhou M, Wan Y, Zhang Y, Liu H, Zhao Y, Li J, Gao Y, Zhu Y. Asymmetrically Doping a Platinum Atom into a Au
38
Nanocluster for Changing the Electron Configuration and Reactivity in Electrocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xu Liu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Endong Wang
- Interdisciplinary Research Center, Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale Department of Chemical Physics University of Science and Technology of China Hefei 230026 China
| | - Yan Wan
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Yuankun Zhang
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Haoqi Liu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Yue Zhao
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences School of Life Sciences Tsinghua University Beijing 100084 China
| | - Yi Gao
- Interdisciplinary Research Center, Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Yan Zhu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
27
|
Chen A, Yin B, Huang B, Liu Y, Chen S, Pei Y, Zhu M. Insight into the Mechanism of Single-Metal-Atom Tailoring on the Surface of Au-Cu Alloy Nanoclusters. J Phys Chem Lett 2022; 13:4139-4144. [PMID: 35506875 DOI: 10.1021/acs.jpclett.2c00905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tailoring the surface structure of nanomaterials is desirable for investigating their mechanisms and properties from a nanochemistry perspective. The modification of the surface of metal nanoparticles with a single metal atom has proven difficult, which has hindered the understanding of the contribution of different motifs in nanoclusters to their properties. Herein, we report single-metal-atom surface tailoring by thermally etching the nanocluster AuxCu15-x(DPPMH)3(SPhCl2)9 (x = 8 or 9) to obtain AuxCu16-x(DPPMH)2(DPPM)(SPhCl2)9 (x = 9 or 10) nanoclusters. An Au7Cu4 core was observed in both nanoclusters, which can be regarded as part of an icosahedron. Experiments and theoretical simulations revealed the tailoring processes of the icosahedron. Both nanoclusters displayed an NIR-II emission, and the introduction of the surface metal atom led to a red-shift in the emission band from 983 to 1025 nm. This work contributes to the development of precisely tailored nanocluster structures and provides an understanding of structure-property correlations.
Collapse
Affiliation(s)
- Along Chen
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Bing Yin
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Baoyu Huang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Ying Liu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Shuang Chen
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
28
|
Ma XH, Si Y, Luo LL, Wang ZY, Zang SQ, Mak TCW. Directional Doping and Cocrystallizing an Open-Shell Ag 39 Superatom via Precursor Engineering. ACS NANO 2022; 16:5507-5514. [PMID: 35353504 DOI: 10.1021/acsnano.1c09911] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal precursors employed in the bottom-up synthesis of metal nanoclusters (NCs) are of great importance in directing their composition and geometrical structure. In this work, a silver nanocluster co-protected by phosphine and thiolate, namely, [Ag39(PFBT)24(TPP)8]2- (Ag39, PFBT = pentafluorobenzenethiol, TPP = triphenylphosphine), was isolated and structurally characterized. It adopts a three-layered Ag13@Ag18@Ag8S24P8 core-shell structure. The Ag13@Ag18 kernel is unusual in multilayer noble metal NCs. By introducing a copper precursor in the synthesis, a bimetallic nanocluster [Ag37Cu2(PFBT)24(TPP)8]2- (Ag37Cu2) with an identical structure to Ag39 apart from two outer Ag atoms being substituted by Cu atoms was obtained. Astoundingly, the Cu precursor used in the synthesis was found to be critical in determining the final structure. The alteration of the Cu precursor led to the cocrystallization of the above alloy nanocluster with a Ag14 nanocluster, namely, [Ag37Cu2(PFBT)24(TPP)8]2-·[Ag14(PFBT)6(TPP)8] (Ag37Cu2·Ag14). The electronic structure analyzed by theoretical calculation reveals that Ag39 is a 17-electron open-shell superatom. The optical absorption of Ag39, Ag37Cu2, and Ag37Cu2·Ag14 was compared and studied in detail. This work not only enriches the family of alloy metallic nanoclusters but also provides a metal NC-based cocrystal platform for in-depth study of its crystal growth and photophysical property.
Collapse
Affiliation(s)
- Xiao-Hong Ma
- Green Catalysis Center and Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, College of Chemistry, Zhengzhou 450001, China
| | - Yubing Si
- Green Catalysis Center and Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, College of Chemistry, Zhengzhou 450001, China
| | - Lan-Lan Luo
- Green Catalysis Center and Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, College of Chemistry, Zhengzhou 450001, China
| | - Zhao-Yang Wang
- Green Catalysis Center and Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, College of Chemistry, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Green Catalysis Center and Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, College of Chemistry, Zhengzhou 450001, China
| | - Thomas C W Mak
- Green Catalysis Center and Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, College of Chemistry, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| |
Collapse
|
29
|
Lummis PA, Osten KM, Levchenko TI, Sabooni Asre Hazer M, Malola S, Owens-Baird B, Veinot AJ, Albright EL, Schatte G, Takano S, Kovnir K, Stamplecoskie KG, Tsukuda T, Häkkinen H, Nambo M, Crudden CM. NHC-Stabilized Au 10 Nanoclusters and Their Conversion to Au 25 Nanoclusters. JACS AU 2022; 2:875-885. [PMID: 35557749 PMCID: PMC9088291 DOI: 10.1021/jacsau.2c00004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 05/25/2023]
Abstract
Herein, we describe the synthesis of a toroidal Au10 cluster stabilized by N-heterocyclic carbene and halide ligands via reduction of the corresponding NHC-Au-X complexes (X = Cl, Br, I). The significant effect of the halide ligands on the formation, stability, and further conversions of these clusters is presented. While solutions of the chloride derivatives of Au10 show no change even upon heating, the bromide derivative readily undergoes conversion to form a biicosahedral Au25 cluster at room temperature. For the iodide derivative, the formation of a significant amount of Au25 was observed even upon the reduction of NHC-Au-I. The isolated bromide derivative of the Au25 cluster displays a relatively high (ca. 15%) photoluminescence quantum yield, attributed to the high rigidity of the cluster, which is enforced by multiple CH-π interactions within the molecular structure. Density functional theory computations are used to characterize the electronic structure and optical absorption of the Au10 cluster. 13C-Labeling is employed to assist with characterization of the products and to observe their conversions by NMR spectroscopy.
Collapse
Affiliation(s)
- Paul A. Lummis
- Department
of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L
3N6, Canada
| | - Kimberly M. Osten
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan
| | - Tetyana I. Levchenko
- Department
of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L
3N6, Canada
| | - Maryam Sabooni Asre Hazer
- Departments
of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Sami Malola
- Departments
of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Bryan Owens-Baird
- Department
of Chemistry, Iowa State University, 2415 Osborn Drive, Ames, Iowa 50011, United States
- U.S.
Department of Energy, Ames Laboratory, Ames, Iowa 50011, United States
| | - Alex J. Veinot
- Department
of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L
3N6, Canada
| | - Emily L. Albright
- Department
of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L
3N6, Canada
| | - Gabriele Schatte
- Department
of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L
3N6, Canada
| | - Shinjiro Takano
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kirill Kovnir
- Department
of Chemistry, Iowa State University, 2415 Osborn Drive, Ames, Iowa 50011, United States
- U.S.
Department of Energy, Ames Laboratory, Ames, Iowa 50011, United States
| | - Kevin G. Stamplecoskie
- Department
of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L
3N6, Canada
| | - Tatsuya Tsukuda
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hannu Häkkinen
- Departments
of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Masakazu Nambo
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan
| | - Cathleen M. Crudden
- Department
of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L
3N6, Canada
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
30
|
Negishi Y. Metal-nanocluster Science and Technology: My Personal History and Outlook. Phys Chem Chem Phys 2022; 24:7569-7594. [DOI: 10.1039/d1cp05689a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal nanoclusters (NCs) are among the leading targets in research of nanoscale materials, and elucidation of their properties (science) and development of control techniques (technology) have been continuously studied for...
Collapse
|
31
|
Jana A, Jash M, Poonia AK, Paramasivam G, Islam MR, Chakraborty P, Antharjanam S, Machacek J, Ghosh S, Adarsh KNVD, Base T, Pradeep T. Light-Activated Intercluster Conversion of an Atomically Precise Silver Nanocluster. ACS NANO 2021; 15:15781-15793. [PMID: 34605625 DOI: 10.1021/acsnano.1c02602] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Noble metal nanoclusters protected with carboranes, a 12-vertex, nearly icosahedral boron-carbon framework system, have received immense attention due to their different physicochemical properties. We have synthesized ortho-carborane-1,2-dithiol (CBDT) and triphenylphosphine (TPP) coprotected [Ag42(CBDT)15(TPP)4]2- (shortly Ag42) using a ligand-exchange induced structural transformation reaction starting from [Ag18H16(TPP)10]2+ (shortly Ag18). The formation of Ag42 was confirmed using UV-vis absorption spectroscopy, mass spectrometry, transmission electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and multinuclear magnetic resonance spectroscopy. Multiple UV-vis optical absorption features, which exhibit characteristic patterns, confirmed its molecular nature. Ag42 is the highest nuclearity silver nanocluster protected with carboranes reported so far. Although these clusters are thermally stable up to 200 °C in their solid state, light-irradiation of its solutions in dichloromethane results in its structural conversion to [Ag14(CBDT)6(TPP)6] (shortly Ag14). Single crystal X-ray diffraction of Ag14 exhibits Ag8-Ag6 core-shell structure of this nanocluster. Other spectroscopic and microscopic studies also confirm the formation of Ag14. Time-dependent mass spectrometry revealed that this light-activated intercluster conversion went through two sets of intermediate clusters. The first set of intermediates, [Ag37(CBDT)12(TPP)4]3- and [Ag35(CBDT)8(TPP)4]2- were formed after 8 h of light irradiation, and the second set comprised of [Ag30(CBDT)8(TPP)4]2-, [Ag26(CBDT)11(TPP)4]2-, and [Ag26(CBDT)7(TPP)7]2- were formed after 16 h of irradiation. After 24 h, the conversion to Ag14 was complete. Density functional theory calculations reveal that the kernel-centered excited state molecular orbitals of Ag42 are responsible for light-activated transformation. Interestingly, Ag42 showed near-infrared emission at 980 nm (1.26 eV) with a lifetime of >1.5 μs, indicating phosphorescence, while Ag14 shows red luminescence at 626 nm (1.98 eV) with a lifetime of 550 ps, indicating fluorescence. Femtosecond and nanosecond transient absorption showed the transitions between their electronic energy levels and associated carrier dynamics. Formation of the stable excited states of Ag42 is shown to be responsible for the core transformation.
Collapse
Affiliation(s)
- Arijit Jana
- DST Unit of Nanoscience (DST UNS), and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai-600036, India
| | - Madhuri Jash
- DST Unit of Nanoscience (DST UNS), and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai-600036, India
| | - Ajay Kumar Poonia
- Department of Physics, Indian Institute of Science Education, and Research Bhopal, Bhopal-462066, India
| | - Ganesan Paramasivam
- DST Unit of Nanoscience (DST UNS), and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai-600036, India
| | - Md Rabiul Islam
- DST Unit of Nanoscience (DST UNS), and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai-600036, India
| | - Papri Chakraborty
- DST Unit of Nanoscience (DST UNS), and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai-600036, India
| | - Sudhadevi Antharjanam
- Sophisticated Analytical Instruments Facility (SAIF), Indian Institute of Technology, Madras, Chennai-600036, India
| | - Jan Machacek
- Department of Synthesis, Institute of Inorganic Chemistry, The Czech Academy of Science, 1001 Husinec-Rez, 25068 Rez, Czech Republic
| | - Sundargopal Ghosh
- DST Unit of Nanoscience (DST UNS), and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai-600036, India
| | | | - Tomas Base
- Department of Synthesis, Institute of Inorganic Chemistry, The Czech Academy of Science, 1001 Husinec-Rez, 25068 Rez, Czech Republic
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS), and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology, Madras, Chennai-600036, India
| |
Collapse
|
32
|
Lin X, Tang J, Zhang J, Yang Y, Ren X, Liu C, Huang J. The doping engineering and crystal structure of rod-like Au 8Ag 17 nanoclusters. J Chem Phys 2021; 155:074301. [PMID: 34418932 DOI: 10.1063/5.0060292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alloy nanoclusters protected by ligands were widely studied due to the synergistic effect of metal atoms, and they exhibit enhanced properties in different fields, such as bio-imaging and catalysis. Herein, we obtained Au8Ag17(PPh3)10Cl10 nanoclusters via one-step simple synthesis. The atomically precise crystal structure was determined by x-ray crystallography. It is found that the rod-like Au8Ag17 nanoclusters were composed of two Au4Ag9 icosahedrons via sharing the same Ag atom. Two Au atoms occupy the center of icosahedrons, and the other six Au atoms are all at the neck sites. Four kinds of Cl-Ag connecting modes were observed in Au8Ag17 nanoclusters. Moreover, the ultraviolet-visible absorption spectrum shows that the prominent absorption peaks of Au8Ag17 nanoclusters are at ∼395 and 483 nm. This work provides a feasible strategy to synthesize alloy nanoclusters with precise composition via doping engineering.
Collapse
Affiliation(s)
- Xinzhang Lin
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jie Tang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jubo Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yang Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiuqing Ren
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chao Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiahui Huang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
33
|
Cai X, Sun Y, Xu J, Zhu Y. Contributions of Internal Atoms of Atomically Precise Metal Nanoclusters to Catalytic Performances. Chemistry 2021; 27:11539-11547. [PMID: 34096132 DOI: 10.1002/chem.202101310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 12/28/2022]
Abstract
Every atom of a heterogeneous catalyst can play a direct or indirect role in its overall catalytic properties. However, it is extremely challenging to determine explicitly which atom(s) of a catalyst can contribute most to its catalytic performance because the observed performance usually reflects an average of all the atoms in the catalyst. The emergence of atomically precise metal nanoclusters brings unprecedented opportunities to address these central issues, as the crystal structures of such nanoclusters have been solved, and hence very fundamental understanding of nanocatalysis can be attained at an atomic level. This minireview focuses on recent efforts to reveal the contributions of the internal atoms or vacancies of nanocluster catalysts to the catalytic processes, including how the catalytic activity can be dramatically changed by the central doping of a foreign atom, how catalytic activation and inactivation can be reversibly switched by shuttling the central atom into and out of nanoclusters, and how evolution in catalytic activity can be driven by structural periodicity in the inner kernels of the nanoclusters. We anticipate that progress in this research area could represent a novel conceptual framework for understanding the crucial roles of internal atoms of the catalysts in tuning the catalytic properties.
Collapse
Affiliation(s)
- Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Yongnan Sun
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Jiayu Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
34
|
Lee S, Bootharaju MS, Deng G, Malola S, Häkkinen H, Zheng N, Hyeon T. [Pt 2Cu 34(PET) 22Cl 4] 2-: An Atomically Precise, 10-Electron PtCu Bimetal Nanocluster with a Direct Pt-Pt Bond. J Am Chem Soc 2021; 143:12100-12107. [PMID: 34314590 DOI: 10.1021/jacs.1c04002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heteroatom-doped metal nanoclusters (NCs) are highly desirable to gain fundamental insights into the effect of doping on the electronic structure and catalytic properties. Unfortunately, their controlled synthesis is highly challenging when the metal atomic sizes are largely different (e.g., Cu and Pt). Here, we design a metal-exchange strategy that enables simultaneous doping and resizing of NCs. Specifically, [Pt2Cu34(PET)22Cl4]2- NC, the first example of a Pt-doped Cu NC, is synthesized by utilizing the unique reactivity of [Cu32(PET)24Cl2H8]2- NC with Pt4+ ions. The single-crystal X-ray structure reveals that two directly bonded Pt atoms occupy the two centers of an unusually interpenetrating, incomplete biicosahedron core (Pt2Cu18), which is stabilized by a Cu16(PET)22Cl4 shell. The molecular structure and composition of the NC are validated by combined experimental and theoretical results. Electronic structure calculations, using the density functional theory, show that the Pt2Cu34 NC is a 10-electron superatom. The computed absorption spectrum matches well with the measured data and allows for assignment of the absorption peaks. The calculations also rationalize energetics for ligand exchange observed in the mass spectrometry data. The synergistic effects induced by Pt doping are found to enhance the catalytic activity of Cu NCs by ∼300-fold in silane to silanol conversion under mild conditions. Furthermore, our synthetic strategy has potential to produce Ni-, Pd-, and Au-doped Cu NCs, which will open new avenues to uncover their molecular structures and catalytic properties.
Collapse
Affiliation(s)
- Sanghwa Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Guocheng Deng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Nanfeng Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
35
|
Hossain S, Miyajima S, Iwasa T, Kaneko R, Sekine T, Ikeda A, Kawawaki T, Taketsugu T, Negishi Y. [Ag 23Pd 2(PPh 3) 10Cl 7] 0: A new family of synthesizable bi-icosahedral superatomic molecules. J Chem Phys 2021; 155:024302. [PMID: 34266257 DOI: 10.1063/5.0057005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Icosahedral noble-metal 13-atom nanoclusters (NCs) can form connected structures, which can be regarded as superatomic molecules, by vertex sharing. However, there have been very few reports on the superatomic molecules formed using silver (Ag) as the base element. In this study, we synthesized [Ag23Pd2(PPh3)10Cl7]0 (Pd = palladium, PPh3 = triphenylphosphine, Cl = chloride), in which two icosahedral 13-atom NCs are connected, and elucidated its geometric and electronic structures to clarify what type of superatomic molecules can be synthesized. The results revealed that [Ag23Pd2(PPh3)10Cl7]0 is a synthesizable superatomic molecule. Single crystal x-ray diffraction analysis showed that the metal-metal distances in and between the icosahedral structures of [Ag23Pd2(PPh3)10Cl7]0 are slightly shorter than those of previously reported [Ag23Pt2(PPh3)10Cl7]0, whereas the metal-PPh3 distances are slightly longer. On the basis of several experiments and density functional theory calculations, we concluded that [Ag23Pd2(PPh3)10Cl7]0 and previously reported [Ag23Pt2(PPh3)10Cl7]0 are more stable than [Ag25(PPh3)10Cl7]2+ because of their stronger superatomic frameworks (metal cores). These findings are expected to lead to clear design guidelines for creation of new superatomic molecules.
Collapse
Affiliation(s)
- Sakiat Hossain
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sayuri Miyajima
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku 162-8601, Japan
| | - Takeshi Iwasa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Ryo Kaneko
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku 162-8601, Japan
| | - Taishu Sekine
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku 162-8601, Japan
| | - Ayaka Ikeda
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku 162-8601, Japan
| | - Tokuhisa Kawawaki
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yuichi Negishi
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
36
|
Bootharaju MS, Lee S, Deng G, Chang H, Baek W, Hyeon T. High photoluminescence from self-assembled Ag 2Cl 2(dppe) 2 clusters through metallophilic interactions. J Chem Phys 2021; 155:014307. [PMID: 34241379 DOI: 10.1063/5.0057356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ligand protected metal nanoclusters (NCs) are an emerging class of functional materials with intriguing photophysical and chemical properties. The size and molecular structure play an important role in endowing NCs with characteristic optical and electronic properties. Modulation of these properties through the chemical reactivity of NCs is largely unexplored. Here, we report on the synthesis of self-assembled Ag2Cl2(dppe)2 clusters through the ligand-exchange-induced transformation of [Pt2Ag23Cl7(PPh3)10] NCs [(dppe): 1,2-bis(diphenylphosphino)ethane; (PPh3): triphenylphosphine]. The single crystal x-ray structure reveals that two Ag atoms are bridged by one dppe and two Cl ligands, forming a Ag2Cl2(dppe) cluster, which is subsequently self-assembled through dppe ligands to form [Ag2Cl2(dppe)2]n. Importantly, the Ag2Cl2(dppe)2 cluster assembly exhibits high photoluminescence quantum yield: ∼18%, which is attributed to the metallophilic interactions and rigidification of the ligand shell. We hope that this work will motivate the exploitation of the chemical reactivity of NCs as a new path to attain cluster assemblies endowed with enhanced photophysical properties.
Collapse
Affiliation(s)
- Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea
| | - Sanghwa Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea
| | - Guocheng Deng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, and National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hogeun Chang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea
| | - Woonhyuk Baek
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea
| |
Collapse
|
37
|
Yang J, Pang R, Song D, Li MB. Tailoring silver nanoclusters via doping: advances and opportunities. NANOSCALE ADVANCES 2021; 3:2411-2422. [PMID: 36134170 PMCID: PMC9419084 DOI: 10.1039/d1na00077b] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/08/2021] [Indexed: 05/28/2023]
Abstract
Atomically precise noble metal nanoclusters (especially Au and Ag) have been pursued due to their fascinating molecule-like properties. In spite of the significant progress on Au nanoclusters (NCs), the structure and property evolution of Ag NCs is still in high demand. Doping is a useful strategy for improving the physicochemical performances of Ag NCs. Herein we summarize the recent advances in tailoring silver NC structures and properties via doping. First, we reviewed the recent studies on the synthesis of hetero metal atom doped silver bimetallic nanoclusters, which are classified by the dopants, including Au, Pt, Pd, Cu, Ni and Cd. Second, the doping effects on their properties were reviewed, including the locations of hetero metal atoms, the influence on their stability, and the charge state evolution. Moreover, we highlighted the doping-dependent improvement of the photo-luminescence (PL) performance and catalytic activity of Ag NCs.
Collapse
Affiliation(s)
- Jie Yang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology Zhenjiang 212003 China
| | - Runqiang Pang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology Zhenjiang 212003 China
| | - Dongpo Song
- School of Materials Science and Engineering, Jiangsu University of Science and Technology Zhenjiang 212003 China
| | - Man-Bo Li
- Institute of Physical Science and Information Technology, Anhui University Hefei Anhui 230601 P. R. China
- Hefei National Laboratory for Physical Sciences at the Microscale Hefei Anhui 230026 P. R. China
| |
Collapse
|
38
|
Alamer B, Bootharaju MS, Kozlov SM, Cao Z, Shkurenko A, Nematulloev S, Maity P, Mohammed OF, Eddaoudi M, Cavallo L, Basset JM, Bakr OM. [Ag 9(1,2-BDT) 6] 3-: How Square-Pyramidal Building Blocks Self-Assemble into the Smallest Silver Nanocluster. Inorg Chem 2021; 60:4306-4312. [PMID: 33726492 PMCID: PMC8041283 DOI: 10.1021/acs.inorgchem.1c00334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 11/29/2022]
Abstract
The emerging promise of few-atom metal catalysts has driven the need for developing metal nanoclusters (NCs) with ultrasmall core size. However, the preparation of metal NCs with single-digit metallic atoms and atomic precision is a major challenge for materials chemists, particularly for Ag, where the structure of such NCs remains unknown. In this study, we developed a shape-controlled synthesis strategy based on an isomeric dithiol ligand to yield the smallest crystallized Ag NC to date: [Ag9(1,2-BDT)6]3- (1,2-BDT = 1,2-benzenedithiolate). The NC's crystal structure reveals the self-assembly of two Ag square pyramids through preferential pyramidal vertex sharing of a single metallic Ag atom, while all other Ag atoms are incorporated in a motif with thiolate ligands, resulting in an elongated body-centered Ag9 skeleton. Steric hindrance and arrangement of the dithiolated ligands on the surface favor the formation of an anisotropic shape. Time-dependent density functional theory based calculations reproduce the experimental optical absorption features and identify the molecular orbitals responsible for the electronic transitions. Our findings will open new avenues for the design of novel single-digit metal NCs with directional self-assembled building blocks.
Collapse
Affiliation(s)
- Badriah
J. Alamer
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
- Department
of Chemistry, College of Sciences, Taif University, Taif 11099, Saudi Arabia
| | - Megalamane S. Bootharaju
- Center
for Nanoparticle Research, Institute for
Basic Science, Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering and Institute of Chemical ProcessesSeoul National University, Seoul 08826, Republic
of Korea
| | - Sergey M. Kozlov
- Department
of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 119260, Singapore
| | - Zhen Cao
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Aleksander Shkurenko
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Functional
Materials Design, Discovery and Development Research Group, Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Saidkhodzha Nematulloev
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Functional
Materials Design, Discovery and Development Research Group, Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Partha Maity
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
- Advanced
Membranes and Porous Materials Center, Division of Physical Sciences
and Engineering, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Omar F. Mohammed
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
- Advanced
Membranes and Porous Materials Center, Division of Physical Sciences
and Engineering, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Mohamed Eddaoudi
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Functional
Materials Design, Discovery and Development Research Group, Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jean-Marie Basset
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Osman M. Bakr
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
39
|
Liu D, Du W, Chen S, Kang X, Chen A, Zhen Y, Jin S, Hu D, Wang S, Zhu M. Interdependence between nanoclusters AuAg 24 and Au 2Ag 41. Nat Commun 2021; 12:778. [PMID: 33536428 PMCID: PMC7858706 DOI: 10.1038/s41467-021-21131-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/31/2020] [Indexed: 01/25/2023] Open
Abstract
Whole series of nanoparticles have now been reported, but probing the competing or coexisting effects in their synthesis and growth remains challenging. Here, we report a bi-nanocluster system comprising two ultra-small, atomically precise nanoclusters, AuAg24(SR)18− and Au2Ag41(SR)26(Dppm)2+ (SR = cyclohexyl mercaptan, Dppm = bis(diphenylphosphino)-methane). The mechanism by which these two nanoclusters coexist is elucidated, and found to entail formation of the unstable AuAg24(SR)18−, followed by its partial conversion to Au2Ag41(SR)26(Dppm)2+ in the presence of di-phosphorus ligands, and an interdependent bi-nanocluster system is established, wherein the two oppositely charged nanoclusters protect each other from decomposition. AuAg24(SR)18 and Au2Ag41(SR)26(Dppm)2 are fully characterized by single crystal X-ray diffraction (SC-XRD) analysis – it is found that their co-crystallization results in single crystals comprising equimolar amounts of each. The findings highlight the interdependent relationship between two individual nanoclusters, which paves the way for new perspectives on nanocluster formation and stability. Despite recent progress in individual nanocluster synthesis, understanding the competing or coexisting effects between particles in solution remains challenging. Here, the authors present the synthesis of a bi-nanocluster system comprising two atomically precise nanoclusters, and map out the interdependent relationship between them.
Collapse
Affiliation(s)
- Danyu Liu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei, Anhui, People's Republic of China
| | - Wenjun Du
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei, Anhui, People's Republic of China
| | - Shuang Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, People's Republic of China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei, Anhui, People's Republic of China
| | - Along Chen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei, Anhui, People's Republic of China
| | - Yaru Zhen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, People's Republic of China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei, Anhui, People's Republic of China
| | - Shan Jin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, People's Republic of China
| | - Daqiao Hu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, People's Republic of China. .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei, Anhui, People's Republic of China.
| | - Shuxin Wang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei, Anhui, People's Republic of China. .,College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, People's Republic of China. .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei, Anhui, People's Republic of China. .,Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
40
|
Lin X, Ma W, Sun K, Sun B, Fu X, Ren X, Liu C, Huang J. [AuAg 26(SR) 18S] - Nanocluster: Open Shell Structure and High Faradaic Efficiency in Electrochemical Reduction of CO 2 to CO. J Phys Chem Lett 2021; 12:552-557. [PMID: 33378198 DOI: 10.1021/acs.jpclett.0c03416] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For atomically precise metal nanoclusters, distinctive molecular architectures and promising applications are urgently required to be intensively explored. Herein, we have first reported the open shell structure of the [AuAg26(S-Adm)18S]- nanocluster and its application in the electrochemical reduction of CO2. The X-ray crystal structure of the AuAg26 nanocluster is composed of a AuAg12 icosahedron kernel and a Ag14(SR)18S open shell. The shell includes a Ag6(SR)3S, a Ag5(SR)6, and three Ag(SR)3 motifs. It is the first time twisty propeller-like Ag5(SR)6 and trefoil-like Ag6(SR)3S motifs in metal nanoclusters have been observed. Due to the novel open shell configuration of Ag14(SR)18S, four triangular facets of the kernel are exposed. The AuAg26 nanocluster shows excellent catalytic activity in the electrochemical reduction of CO2 to CO. The Faradaic efficiency of CO is up to 98.4% under -0.97 V. The electrochemical in situ infrared study and DFT calculations demonstrate that the open shell structure of the AuAg26 nanocluster is beneficial to the forming of intermediate COOH* in the electrochemical reduction of CO2 to CO.
Collapse
Affiliation(s)
- Xinzhang Lin
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Weiguang Ma
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Keju Sun
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Bo Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xuemei Fu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Xiuqing Ren
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chao Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiahui Huang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
41
|
Khatun E, Pradeep T. New Routes for Multicomponent Atomically Precise Metal Nanoclusters. ACS OMEGA 2021; 6:1-16. [PMID: 33458454 PMCID: PMC7807469 DOI: 10.1021/acsomega.0c04832] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/08/2020] [Indexed: 05/24/2023]
Abstract
Atomically precise metal nanoclusters (NCs), protected by a monolayer of ligands, are regarded as potential building blocks for advanced technologies. They are considered as intermediates between the atomic/molecular regime and the bulk. Incorporation of foreign metals in NCs enhances several of their properties such as catalytic activity, luminescence, and so on; hence, it is of high importance for tuning their properties and broadening the scope of applications. In most of the cases, enhancement in specific properties was observed upon alloying due to the synergistic effect. In the past several years, many alloy clusters have been synthesized, which show a tremendous change in the properties than their monometallic analogs. However, controlling the synthesis and tuning the structures of alloy NCs with atomic precision are major challenges. Various synthetic methodologies have been developed so far for the controlled synthesis of alloy NCs. In this perspective, we have highlighted those diverse synthetic routes to prepare alloys, which include co-reduction, galvanic reduction, antigalvanic reduction, metal deposition, ligand exchange, intercluster reaction, and reaction of NCs with bulk metals. Advancement in synthetic procedures will help in the preparation of alloy NCs with the desired structure and composition. Future perceptions concerning the progress of alloy nanocluster science are also provided.
Collapse
Affiliation(s)
- Esma Khatun
- Department of Chemistry,
DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence
(TUE), Indian Institute of Technology Madras, Chennai 600036, India
| | - Thalappil Pradeep
- Department of Chemistry,
DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence
(TUE), Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
42
|
Li T, Li Q, Yang S, Xu L, Chai J, Li P, Zhu M. Surface engineering of linearly fused Au 13 units using diphosphine and Cd doping. Chem Commun (Camb) 2021; 57:4682-4685. [PMID: 33977990 DOI: 10.1039/d1cc00577d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, surface engineering was delicately performed to assemble two new Au-Cd alloy nanoclusters, including [Cd2Au17(S-c-C6H11)12(DPPP)2](BPh4) and Cd2Au29(TBBT)17(DPPF)2. Both the Au13 (in Cd2Au17) and Au25 (in Cd2Au29) cores were covered by two identical Au2Cd(SR)6 motifs and two diphosphine ligands. In addition, their optical properties were explored to give clues on the kernel- and surface-dependent electronic structures.
Collapse
Affiliation(s)
- Tianrong Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China.
| | - Qinzhen Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China.
| | - Sha Yang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China.
| | - Liyun Xu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China.
| | - Jinsong Chai
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China.
| | - Peng Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China.
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui 230601, P. R. China.
| |
Collapse
|
43
|
Chen G. The nature of the Sulfur-Metallic bonds (Metal = Ni, Pd and Pt) in doped gold nanoclusters: A density functional approach. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2020.113094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Kang X, Li Y, Zhu M, Jin R. Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chem Soc Rev 2020; 49:6443-6514. [PMID: 32760953 DOI: 10.1039/c9cs00633h] [Citation(s) in RCA: 340] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal nanoclusters fill the gap between discrete atoms and plasmonic nanoparticles, providing unique opportunities for investigating the quantum effects and precise structure-property correlations at the atomic level. As a versatile strategy, alloying can largely improve the physicochemical performances compared to the corresponding homo-metal nanoclusters, and thus benefit the applications of such nanomaterials. In this review, we highlight the achievements of atomically precise alloy nanoclusters, and summarize the alloying principles and fundamentals, including the synthetic methods, site-preferences for different heteroatoms in the templates, and alloying-induced structure and property changes. First, based on various Au or Ag nanocluster templates, heteroatom doping modes are presented. The templates with electronic shell-closing configurations tend to maintain their structures during doping, while the others may undergo transformation and give rise to alloy nanoclusters with new structures. Second, alloy nanoclusters of specific magic sizes are reviewed. The arrangement of different atoms is related to the symmetry of the structures; that is, different atoms are symmetrically located in the nanoclusters of smaller sizes, and evolve into shell-by-shell structures at larger sizes. Then, we elaborate on the alloying effects in terms of optical, electrochemical, electroluminescent, magnetic and chiral properties, as well as the stability and reactivity via comparisons between the doped nanoclusters and their homo-metal counterparts. For example, central heteroatom-induced photoluminescence enhancement is emphasized. The applications of alloy nanoclusters in catalysis, chemical sensing, bio-labeling, and other fields are further discussed. Finally, we provide perspectives on existing issues and future efforts. Overall, this review provides a comprehensive synthetic toolbox and controllable doping modes so as to achieve more alloy nanoclusters with customized compositions, structures, and properties for applications. This review is based on publications available up to February 2020.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | | | | | | |
Collapse
|
45
|
Gao MY, Wang K, Sun Y, Li D, Song BQ, Andaloussi YH, Zaworotko MJ, Zhang J, Zhang L. Tetrahedral Geometry Induction of Stable Ag-Ti Nanoclusters by Flexible Trifurcate TiL 3 Metalloligand. J Am Chem Soc 2020; 142:12784-12790. [PMID: 32579354 DOI: 10.1021/jacs.0c05199] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A series of increasingly large silver nanoclusters with a varied combination of Archimedean and/or Platonic solid arrangements was constructed using a flexible trifurcate TiL3 (L = Salicylic acid or 5-fluorosalicylic acid) metalloligand: Ag4@Ag4@Ti4 (PTC-85), Ag12@Ti4 (PTC-86), Ag4@Ag6@Ag12@Ti4 (PTC-87), Ag6@Ag24@Ag12@Ti4 (PTC-88), and Ag12@Ag24@Ti4 (PTC-89). The silver nanoclusters are each capped by four TiL3 moieties, thereby forming {Ti4} supertetrahedra with average edge lengths ranging from ∼8.12 Å to ∼17.37 Å. Such {Ti4} moieties further induce the tetrahedral geometry of the encapsulated silver nanoclusters. These atomically precise metallic clusters were found to be ultrastable with respect to air for several months, and to water for more than 3 days, due to the stabilizing effects of the TiL3 metalloligand. Moreover, the obtained clusters exhibit nonlinear optical (NLO) effects in optical limiting tests and also temperature-dependent photoluminescent properties. This work provides an interesting metalloligand method not only to induce the spatial growth of metallic clusters to achieve highly symmetric structures, but also to enhance their stability which is crucial for future application.
Collapse
Affiliation(s)
- Mei-Yan Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.,Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Kai Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Yayong Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Dejing Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Bai-Qiao Song
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Yassin H Andaloussi
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Michael J Zaworotko
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
46
|
Anumula R, Reber AC, An P, Cui C, Guo M, Wu H, Luo Z, Khanna SN. Ligand accommodation causes the anti-centrosymmetric structure of Au 13Cu 4 clusters with near-infrared emission. NANOSCALE 2020; 12:14801-14807. [PMID: 32627782 DOI: 10.1039/d0nr02448a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We synthesized an [Au13Cu4(PPh3)4(SPy)8]+ nanocluster co-capped by phosphine and thiolate ligands. Interestingly, this Au13Cu4 cluster corresponds to an anti-centrosymmetric structure with the four copper atoms coordinated to the mixed ligands on the same side of the Au13 icosahedron, which is in sharp contrast to the [Au13Cu4(PPh2Py)4(SPhtBu)8]+ and [Au13Cu2(PPh3)6(SPy)6]+ clusters which possess highly symmetric structures with well-separated Cu adatoms. Both [Au13Cu4(PPh3)4(SPy)8]+ and [Au13Cu2(PPh3)6(SPy)6]+ clusters correspond to 8 valence electron superatoms with large HOMO-LUMO gaps, respectively. The difference in structure is rooted in the nature of the mixed ligands, with the bidentate SPy binding strongly to Cu on both binding sites (-N-Cu and Au-SR-Cu) leading to the co-linking of adjacent Cu atoms, while the bidentate PPh2Py binds Cu on one site and Au on the other giving rise to a separation of the Cu atoms even in the presence of relatively higher monomer concentration. Both [Au13Cu4(PPh3)4(SPy)8]+ and [Au13Cu2(PPh3)6(SPy)6]+ display emissions in the near-IR regions. TD-DFT calculations reproduce the spectroscopic results with specified excited states, shedding light on the geometric and electronic behaviors of the ligand-protected Au13Mx clusters.
Collapse
Affiliation(s)
- Rajini Anumula
- Beijing National Laboratory for Molecular Sciences (BNLMS) and State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Yang S, Zhu M. Insight of the photoluminescence of atomically precise bimetallic nanoclusters with free electrons. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Sha Yang
- Department Institutes of Physical Science and Information Technology Anhui University Hefei Anhui China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui China
| | - Manzhou Zhu
- Department Institutes of Physical Science and Information Technology Anhui University Hefei Anhui China
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui China
| |
Collapse
|
48
|
Liu X, Saranya G, Huang X, Cheng X, Wang R, Chen M, Zhang C, Li T, Zhu Y. Ag
2
Au
50
(PET)
36
Nanocluster: Dimeric Assembly of Au
25
(PET)
18
Enabled by Silver Atoms. Angew Chem Int Ed Engl 2020; 59:13941-13946. [DOI: 10.1002/anie.202005087] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/11/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Xu Liu
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | | | - Xinyu Huang
- School of Physics Nanjing University Nanjing 210093 China
| | - Xinglian Cheng
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Rui Wang
- School of Physics Nanjing University Nanjing 210093 China
| | - Mingyang Chen
- Center for Green Innovation School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 China
- Beijing Computational Science Research Center Beijing 100193 China
| | - Chunfeng Zhang
- School of Physics Nanjing University Nanjing 210093 China
| | - Tao Li
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
49
|
Liu X, Saranya G, Huang X, Cheng X, Wang R, Chen M, Zhang C, Li T, Zhu Y. Ag
2
Au
50
(PET)
36
Nanocluster: Dimeric Assembly of Au
25
(PET)
18
Enabled by Silver Atoms. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xu Liu
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | | | - Xinyu Huang
- School of Physics Nanjing University Nanjing 210093 China
| | - Xinglian Cheng
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Rui Wang
- School of Physics Nanjing University Nanjing 210093 China
| | - Mingyang Chen
- Center for Green Innovation School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 China
- Beijing Computational Science Research Center Beijing 100193 China
| | - Chunfeng Zhang
- School of Physics Nanjing University Nanjing 210093 China
| | - Tao Li
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
50
|
Sun W, Jin S, Du W, Kang X, Chen A, Wang S, Sheng H, Zhu M. Total Structure Determination of the Pt1
Ag9
[P(Ph-F)3
]7
Cl3
Nanocluster. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Wenjing Sun
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, AnHui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials; Anhui University; 230601 Hefei Anhui China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials; Anhui University, Ministry of Education; 230601 Hefei P. R. China
| | - Shan Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials; Anhui University, Ministry of Education; 230601 Hefei P. R. China
- Institutes of Physical Science and Information Technology; Anhui University; 230601 Hefei Anhui P. R. China
| | - Wenjun Du
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, AnHui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials; Anhui University; 230601 Hefei Anhui China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials; Anhui University, Ministry of Education; 230601 Hefei P. R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, AnHui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials; Anhui University; 230601 Hefei Anhui China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials; Anhui University, Ministry of Education; 230601 Hefei P. R. China
| | - Along Chen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, AnHui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials; Anhui University; 230601 Hefei Anhui China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials; Anhui University, Ministry of Education; 230601 Hefei P. R. China
| | - Shuxin Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, AnHui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials; Anhui University; 230601 Hefei Anhui China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials; Anhui University, Ministry of Education; 230601 Hefei P. R. China
| | - Hongting Sheng
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, AnHui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials; Anhui University; 230601 Hefei Anhui China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials; Anhui University, Ministry of Education; 230601 Hefei P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, AnHui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials; Anhui University; 230601 Hefei Anhui China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials; Anhui University, Ministry of Education; 230601 Hefei P. R. China
- Institutes of Physical Science and Information Technology; Anhui University; 230601 Hefei Anhui P. R. China
| |
Collapse
|