1
|
Tripathy M, Srivastava A, Sastry S, Rao M. Protein as evolvable functionally constrained amorphous matter. J Biosci 2022. [DOI: 10.1007/s12038-022-00313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
2
|
Alvarado YJ, Olivarez Y, Lossada C, Vera-Villalobos J, Paz JL, Vera E, Loroño M, Vivas A, Torres FJ, Jeffreys LN, Hurtado-León ML, González-Paz L. Interaction of the new inhibitor paxlovid (PF-07321332) and ivermectin with the monomer of the main protease SARS-CoV-2: A volumetric study based on molecular dynamics, elastic networks, classical thermodynamics and SPT. Comput Biol Chem 2022; 99:107692. [PMID: 35640480 PMCID: PMC9107165 DOI: 10.1016/j.compbiolchem.2022.107692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023]
Abstract
The COVID-19 pandemic has accelerated the study of drugs, most notably ivermectin and more recently Paxlovid (PF-07321332) which is in phase III clinical trials with experimental data showing covalent binding to the viral protease Mpro. Theoretical developments of catalytic site-directed docking support thermodynamically feasible non-covalent binding to Mpro. Here we show that Paxlovid binds non-covalently at regions other than the catalytic sites with energies stronger than reported and at the same binding site as the ivermectin B1a homologue, all through theoretical methodologies, including blind docking. We volumetrically characterize the non-covalent interaction of the ivermectin homologues (avermectins B1a and B1b) and Paxlovid with the mMpro monomer, through molecular dynamics and scaled particle theory (SPT). Using the fluctuation-dissipation theorem (FDT), we estimated the electric dipole moment fluctuations at the surface of each of complex involved in this study, with similar trends to that observed in the interaction volume. Using fluctuations of the intrinsic volume and the number of flexible fragments of proteins using anisotropic and Gaussian elastic networks (ANM+GNM) suggests the complexes with ivermectin are more dynamic and flexible than the unbound monomer. In contrast, the binding of Paxlovid to mMpro shows that the mMpro-PF complex is the least structurally dynamic of all the species measured in this investigation. The results support a differential molecular mechanism of the ivermectin and PF homologues in the mMpro monomer. Finally, the results showed that Paxlovid despite beingbound in different sites through covalent or non-covalent forms behaves similarly in terms of its structural flexibility and volumetric behaviour.
Collapse
Affiliation(s)
- Ysaias José Alvarado
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Bolivarian Republic of Venezuela.
| | - Yosmari Olivarez
- Universidad del Zulia (LUZ). Facultad Experimental de Ciencias (FEC), Departamento de Quimica, Laboratorio de Electronica Molecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Carla Lossada
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Joan Vera-Villalobos
- Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Laboratorio de Análisis Químico Instrumental (LAQUINS), Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - José Luis Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Eddy Vera
- Universidad del Zulia (LUZ). Facultad Experimental de Ciencias (FEC), Departamento de Quimica, Laboratorio de Electronica Molecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Marcos Loroño
- Departamento Académico de Química Analítica e Instrumental, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Alejandro Vivas
- Universidad del Zulia (LUZ). Facultad Experimental de Ciencias (FEC), Departamento de Quimica, Laboratorio de Electronica Molecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Fernando Javier Torres
- Grupo de Química Computacional y Teórica (QCT-UR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Grupo de Química Computacional y Teórica (QCT-USFQ), Instituto de Simulación Computacional (ISC-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| | - Laura N Jeffreys
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - María Laura Hurtado-León
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), Maracaibo 4001, Zulia, Bolivarian Republic of Venezuela
| | - Lenin González-Paz
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), Maracaibo 4001, Zulia, Bolivarian Republic of Venezuela; Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Estudios Botanicos y Agroforestales, (CEBA), Laboratorio de Proteccion Vegetal, 4001 Maracaibo, Bolivarian Republic of Venezuela.
| |
Collapse
|
3
|
Golla H, Kannan A, Gopi S, Murugan S, Perumalsamy LR, Naganathan AN. Structural-Energetic Basis for Coupling between Equilibrium Fluctuations and Phosphorylation in a Protein Native Ensemble. ACS CENTRAL SCIENCE 2022; 8:282-293. [PMID: 35233459 PMCID: PMC8880421 DOI: 10.1021/acscentsci.1c01548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The functioning of proteins is intimately tied to their fluctuations in the native ensemble. The structural-energetic features that determine fluctuation amplitudes and hence the shape of the underlying landscape, which in turn determine the magnitude of the functional output, are often confounded by multiple variables. Here, we employ the FF1 domain from human p190A RhoGAP protein as a model system to uncover the molecular basis for phosphorylation of a buried tyrosine, which is crucial to the transcriptional activity associated with transcription factor TFII-I. Combining spectroscopy, calorimetry, statistical-mechanical modeling, molecular simulations, and in vitro phosphorylation assays, we show that the FF1 domain samples a diverse array of conformations in its native ensemble, some of which are phosphorylation-competent. Upon eliminating unfavorable charge-charge interactions through a single charge-reversal (K53E) or charge-neutralizing (K53Q) mutation, we observe proportionately lower phosphorylation extents due to the altered structural coupling, damped equilibrium fluctuations, and a more compact native ensemble. We thus establish a conformational selection mechanism for phosphorylation in the FF1 domain with K53 acting as a "gatekeeper", modulating the solvent exposure of the buried tyrosine. Our work demonstrates the role of unfavorable charge-charge interactions in governing functional events through the modulation of native ensemble characteristics, a feature that could be prevalent in ordered protein domains.
Collapse
Affiliation(s)
- Hemashree Golla
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Adithi Kannan
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soundhararajan Gopi
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sowmiya Murugan
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Lakshmi R Perumalsamy
- Department
of Biomedical Sciences, Sri Ramachandra
Institute of Higher Education and Research, Chennai 600116, India
| | - Athi N. Naganathan
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
4
|
The native state conformational heterogeneity in the energy landscape of protein folding. Biophys Chem 2022; 283:106761. [DOI: 10.1016/j.bpc.2022.106761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/18/2022]
|
5
|
Kutlu Y, Ben-Tal N, Haliloglu T. Global Dynamics Renders Protein Sites with High Functional Response. J Phys Chem B 2021; 125:4734-4745. [PMID: 33914546 DOI: 10.1021/acs.jpcb.1c02511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deep mutational scanning enables examination of the effects of many mutations at each amino acid position in a query protein, readily disclosing positions that are particularly sensitive. Mutations in these positions alter protein function the most. Here, on the premise that dynamics underlie function, we explore to what extent the measured sensitivity to mutations could be linked to-perhaps be explained by-the structural dynamics of the protein. We employ a minimalist perturbation-response approach based on the Gaussian Network Model (GNM) on a data set of seven proteins with deep mutational scanning data. The analysis shows that the mutation-sensitive positions are often of capacity to modulate the global dynamics and to intermediate allosteric interactions in the structure. With that, upon strain perturbation, these positions decrease residue fluctuations the most, affecting function via entropy changes. This is particularly relevant for positions that are distant from binding sites or other functional regions of the protein and are sensitive to mutations, nevertheless. Our results indicate that mutations in these positions allosterically manipulate protein function.
Collapse
Affiliation(s)
- Yiǧit Kutlu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Turkan Haliloglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Bebek, Istanbul 34342, Turkey
| |
Collapse
|
6
|
Fargason T, Wang T, De Silva NIU, Zhang Z, McKelvey H, Knapp T, Zaharias S, Zhang J. Amide additives improve RDC measurements in polyacrylamide. JOURNAL OF BIOMOLECULAR NMR 2020; 74:119-124. [PMID: 32056065 DOI: 10.1007/s10858-020-00305-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
Residual dipolar couplings (RDCs) provide valuable NMR parameters that can be used for structural calculation and verification. Measuring RDCs requires aligning macromolecules using one of various types of alignment media. Of different alignment media options, stretched or compressed polyacrylamide gels are advantageous due to their chemical stability. However, polyacrylamide interacts with proteins and significantly broadens NMR resonances. In this study, we found that the amide-containing compounds asparagine, glutamine and propionamide improve spectral quality of proteins in polyacrylamide gel without significantly reducing the magnitude of RDC values. Moreover, we showed that propionamide is an attractive additive that increases protein solubility without interfering with protein stability, ligand binding or NMR pulse width, suggesting its potential applications for our NMR methods.
Collapse
Affiliation(s)
- Talia Fargason
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA
| | - Ting Wang
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA
| | - Naiduwadura Ivon Upekala De Silva
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA
| | - Zihan Zhang
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA
| | - Heather McKelvey
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA
| | - Taylor Knapp
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA
| | - Steve Zaharias
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA
| | - Jun Zhang
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA.
| |
Collapse
|
7
|
Tang QY, Kaneko K. Long-range correlation in protein dynamics: Confirmation by structural data and normal mode analysis. PLoS Comput Biol 2020; 16:e1007670. [PMID: 32053592 PMCID: PMC7043781 DOI: 10.1371/journal.pcbi.1007670] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/26/2020] [Accepted: 01/21/2020] [Indexed: 11/18/2022] Open
Abstract
Proteins in cellular environments are highly susceptible. Local perturbations to any residue can be sensed by other spatially distal residues in the protein molecule, showing long-range correlations in the native dynamics of proteins. The long-range correlations of proteins contribute to many biological processes such as allostery, catalysis, and transportation. Revealing the structural origin of such long-range correlations is of great significance in understanding the design principle of biologically functional proteins. In this work, based on a large set of globular proteins determined by X-ray crystallography, by conducting normal mode analysis with the elastic network models, we demonstrate that such long-range correlations are encoded in the native topology of the proteins. To understand how native topology defines the structure and the dynamics of the proteins, we conduct scaling analysis on the size dependence of the slowest vibration mode, average path length, and modularity. Our results quantitatively describe how native proteins balance between order and disorder, showing both dense packing and fractal topology. It is suggested that the balance between stability and flexibility acts as an evolutionary constraint for proteins at different sizes. Overall, our result not only gives a new perspective bridging the protein structure and its dynamics but also reveals a universal principle in the evolution of proteins at all different sizes. The long-range correlated fluctuations are closely related to many biological processes of the proteins, such as catalysis, ligand binding, biomolecular recognition, and transportation. In this paper, we elucidate the structural origin of the long-range correlation and describe how native contact topology defines the slow-mode dynamics of the native proteins. Our result suggests an evolutionary constraint for proteins at different sizes, which may shed light on solving many biophysical problems such as structure prediction, multi-scale molecular simulations, and the design of molecular machines. Moreover, in statistical physics, as the long-range correlations are notable signs of the critical point, unveiling the origin of such criticality can extend our understanding of the organizing principle of a large variety of complex systems.
Collapse
Affiliation(s)
- Qian-Yuan Tang
- Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Kunihiko Kaneko
- Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Baksh KA, Zamble DB. Allosteric control of metal-responsive transcriptional regulators in bacteria. J Biol Chem 2020; 295:1673-1684. [PMID: 31857375 PMCID: PMC7008368 DOI: 10.1074/jbc.rev119.011444] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many transition metals are essential trace nutrients for living organisms, but they are also cytotoxic in high concentrations. Bacteria maintain the delicate balance between metal starvation and toxicity through a complex network of metal homeostasis pathways. These systems are coordinated by the activities of metal-responsive transcription factors-also known as metal-sensor proteins or metalloregulators-that are tuned to sense the bioavailability of specific metals in the cell in order to regulate the expression of genes encoding proteins that contribute to metal homeostasis. Metal binding to a metalloregulator allosterically influences its ability to bind specific DNA sequences through a variety of intricate mechanisms that lie on a continuum between large conformational changes and subtle changes in internal dynamics. This review summarizes recent advances in our understanding of how metal sensor proteins respond to intracellular metal concentrations. In particular, we highlight the allosteric mechanisms used for metal-responsive regulation of several prokaryotic single-component metalloregulators, and we briefly discuss current open questions of how metalloregulators function in bacterial cells. Understanding the regulation and function of metal-responsive transcription factors is a fundamental aspect of metallobiochemistry and is important for gaining insights into bacterial growth and virulence.
Collapse
Affiliation(s)
- Karina A Baksh
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Deborah B Zamble
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|
9
|
Munshi S, Rajendran D, Ramesh S, Subramanian S, Bhattacharjee K, Kumar MR, Naganathan AN. Controlling Structure and Dimensions of a Disordered Protein via Mutations. Biochemistry 2019; 59:171-174. [PMID: 31557007 PMCID: PMC7115935 DOI: 10.1021/acs.biochem.9b00678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dimensions of intrinsically disordered proteins (IDPs) are sensitive to small energetic-entropic differences between intramolecular and protein–solvent interactions. This is commonly observed on modulating solvent composition and temperature. However, the inherently heterogeneous conformational landscape of IDPs is also expected to be influenced by mutations that can (de)stabilize pockets of local and even global structure, native and non-native, and hence the average dimensions. Here, we show experimental evidence for the remarkably tunable landscape of IDPs by employing the DNA-binding domain of CytR, a high-sequence-complexity IDP, as a model system. CytR exhibits a range of structure and compactness upon introducing specific mutations that modulate microscopic terms, including main-chain entropy, hydrophobicity, and electrostatics. The degree of secondary structure, as monitored by far-UV circular dichroism (CD), is strongly correlated to average ensemble dimensions for 14 different mutants of CytR and is consistent with the Uversky–Fink relation. Our experiments highlight how average ensemble dimensions can be controlled via mutations even in the disordered regime, the prevalence of non-native interactions and provide testable controls for molecular simulations.
Collapse
Affiliation(s)
- Sneha Munshi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Divya Rajendran
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Samyuktha Ramesh
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Sandhyaa Subramanian
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Kabita Bhattacharjee
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Meagha Ramana Kumar
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|
10
|
Kitahara R, Oyama K, Kawamura T, Mitsuhashi K, Kitazawa S, Yasunaga K, Sagara N, Fujimoto M, Terauchi K. Pressure accelerates the circadian clock of cyanobacteria. Sci Rep 2019; 9:12395. [PMID: 31455816 PMCID: PMC6712028 DOI: 10.1038/s41598-019-48693-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/07/2019] [Indexed: 11/10/2022] Open
Abstract
Although organisms are exposed to various pressure and temperature conditions, information remains limited on how pressure affects biological rhythms. This study investigated how hydrostatic pressure affects the circadian clock (KaiA, KaiB, and KaiC) of cyanobacteria. While the circadian rhythm is inherently robust to temperature change, KaiC phosphorylation cycles that were accelerated from 22 h at 1 bar to 14 h at 200 bars caused the circadian-period length to decline. This decline was caused by the pressure-induced enhancement of KaiC ATPase activity and allosteric effects. Because ATPase activity was elevated in the CI and CII domains of KaiC, while ATP hydrolysis had negative activation volumes (ΔV≠), both domains played key roles in determining the period length of the KaiC phosphorylation cycle. The thermodynamic contraction of the structure of the active site during the transition state might have positioned catalytic residues and lytic water molecules favourably to facilitate ATP hydrolysis. Internal cavities might represent sources of compaction and structural rearrangement in the active site. Overall, the data indicate that pressure differences could alter the circadian rhythms of diverse organisms with evolved thermotolerance, as long as enzymatic reactions defining period length have a specific activation volume.
Collapse
Affiliation(s)
- Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan. .,Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Katsuaki Oyama
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Takahiro Kawamura
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Keita Mitsuhashi
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Soichiro Kitazawa
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Kazuhiro Yasunaga
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Natsuno Sagara
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Megumi Fujimoto
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Kazuki Terauchi
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.,College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
11
|
Mishra P, Jha SK. Slow Motion Protein Dance Visualized Using Red-Edge Excitation Shift of a Buried Fluorophore. J Phys Chem B 2019; 123:1256-1264. [PMID: 30640479 DOI: 10.1021/acs.jpcb.8b11151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been extremely challenging to detect protein structures with a dynamic core, such as dry molten globules, that remain in equilibrium with the tightly packed native (N) state and that are important for a myriad of entropy-driven protein functions. Here, we detect the higher entropy conformations of a human serum protein, using red-edge excitation shift experiments. We covalently introduced a fluorophore inside the protein core and observed that in a subset of native population, the side chains of the polar and buried residues have different spatial arrangements than the mean population and that they solvate the fluorophore on a timescale much slower than the nanosecond timescale of fluorescence. Our results provide direct evidence for the dense fluidity of protein core and show that alternate side-chain packing arrangements exist in the core that might be important for multiple binding functions of this protein.
Collapse
Affiliation(s)
- Prajna Mishra
- Physical and Materials Chemistry Division, Academy of Scientific and Innovative Research (AcSIR) , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411008 , Maharashtra , India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, Academy of Scientific and Innovative Research (AcSIR) , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411008 , Maharashtra , India
| |
Collapse
|
12
|
Liu X, Fuentes EJ. Emerging Themes in PDZ Domain Signaling: Structure, Function, and Inhibition. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 343:129-218. [PMID: 30712672 PMCID: PMC7185565 DOI: 10.1016/bs.ircmb.2018.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Post-synaptic density-95, disks-large and zonula occludens-1 (PDZ) domains are small globular protein-protein interaction domains widely conserved from yeast to humans. They are composed of ∼90 amino acids and form a classical two α-helical/six β-strand structure. The prototypical ligand is the C-terminus of partner proteins; however, they also bind internal peptide sequences. Recent findings indicate that PDZ domains also bind phosphatidylinositides and cholesterol. Through their ligand interactions, PDZ domain proteins are critical for cellular trafficking and the surface retention of various ion channels. In addition, PDZ proteins are essential for neuronal signaling, memory, and learning. PDZ proteins also contribute to cytoskeletal dynamics by mediating interactions critical for maintaining cell-cell junctions, cell polarity, and cell migration. Given their important biological roles, it is not surprising that their dysfunction can lead to multiple disease states. As such, PDZ domain-containing proteins have emerged as potential targets for the development of small molecular inhibitors as therapeutic agents. Recent data suggest that the critical binding function of PDZ domains in cell signaling is more than just glue, and their binding function can be regulated by phosphorylation or allosterically by other binding partners. These studies also provide a wealth of structural and biophysical data that are beginning to reveal the physical features that endow this small modular domain with a central role in cell signaling.
Collapse
Affiliation(s)
- Xu Liu
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Ernesto J. Fuentes
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
- Corresponding author: E-mail:
| |
Collapse
|
13
|
Wu H, Chen Y, Zhang L, Anamimoghadam O, Shen D, Liu Z, Cai K, Pezzato C, Stern CL, Liu Y, Stoddart JF. A Dynamic Tetracationic Macrocycle Exhibiting Photoswitchable Molecular Encapsulation. J Am Chem Soc 2018; 141:1280-1289. [DOI: 10.1021/jacs.8b10526] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Huang Wu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, P. R. China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ommid Anamimoghadam
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dengke Shen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhichang Liu
- School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Kang Cai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Cristian Pezzato
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L. Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| |
Collapse
|
14
|
Characterization of low-lying excited states of proteins by high-pressure NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:350-358. [PMID: 30366154 DOI: 10.1016/j.bbapap.2018.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 12/26/2022]
Abstract
Hydrostatic pressure alters the free energy of proteins by a few kJ mol-1, with the amount depending on their partial molar volumes. Because the folded ground state of a protein contains cavities, it is always a state of large partial molar volume. Therefore pressure always destabilises the ground state and increases the population of partially and completely unfolded states. This is a mild and reversible conformational change, which allows the study of excited states under thermodynamic equilibrium conditions. Many of the excited states studied in this way are functionally relevant; they also seem to be very similar to kinetic folding intermediates, thus suggesting that evolution has made use of the 'natural' dynamic energy landscape of the protein fold and sculpted it to optimise function. This includes features such as ligand binding, structural change during the catalytic cycle, and dynamic allostery.
Collapse
|
15
|
Gautier C, Laursen L, Jemth P, Gianni S. Seeking allosteric networks in PDZ domains. Protein Eng Des Sel 2018; 31:367-373. [PMID: 30690500 PMCID: PMC6508479 DOI: 10.1093/protein/gzy033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
Ever since Ranganathan and coworkers subjected the covariation of amino acid residues in the postsynaptic density-95/Discs large/Zonula occludens 1 (PDZ) domain family to a statistical correlation analysis, PDZ domains have represented a paradigmatic family to explore single domain protein allostery. Nevertheless, several theoretical and experimental studies in the past two decades have contributed contradicting results with regard to structural localization of the allosteric networks, or even questioned their actual existence in PDZ domains. In this review, we first describe theoretical and experimental approaches that were used to probe the energetic network(s) in PDZ domains. We then compare the proposed networks for two well-studied PDZ domains namely the third PDZ domain from PSD-95 and the second PDZ domain from PTP-BL. Our analysis highlights the contradiction between the different methods and calls for additional work to better understand these allosteric phenomena.
Collapse
Affiliation(s)
- Candice Gautier
- Istituto Pasteur—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche ‘A. Rossi Fanelli’ and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Louise Laursen
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Stefano Gianni
- Istituto Pasteur—Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche ‘A. Rossi Fanelli’ and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
16
|
Narayan A, Naganathan AN. Switching Protein Conformational Substates by Protonation and Mutation. J Phys Chem B 2018; 122:11039-11047. [PMID: 30048131 DOI: 10.1021/acs.jpcb.8b05108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein modules that regulate the availability and conformational status of transcription factors determine the rapidity, duration, and magnitude of cellular response to changing conditions. One such system is the single-gene product Cnu, a four-helix bundle transcription co-repressor, which acts as a molecular thermosensor regulating the expression of virulence genes in enterobacteriaceae through modulation of its native conformational ensemble. Cnu and related genes have also been implicated in pH-dependent expression of virulence genes. We hypothesize that protonation of a conserved buried histidine (H45) in Cnu promotes large electrostatic frustration, thus disturbing the H-NS, a transcription factor, binding face. Spectroscopic and calorimetric methods reveal that H45 exhibits a suppressed p Ka of ∼5.1, the protonation of which switches the conformation to an alternate native ensemble in which the fourth helix is disordered. The population redistribution can also be achieved through a mutation H45V, which does not display any switching behavior at pH values greater than 4. The Wako-Saitô-Muñoz-Eaton (WSME) statistical mechanical model predicts specific differences in the conformations and fluctuations of the fourth and first helices of Cnu determining the observed pH response. We validate these predictions through fluorescence lifetime measurements of a sole tryptophan, highlighting the presence of both native and non-native interactions in the regions adjoining the binding face of Cnu. Our combined experimental-computational study thus shows that Cnu acts both as a thermo- and pH-sensor orchestrated via a subtle but quantifiable balance between the weak packing of a structural element and protonation of a buried histidine that promotes electrostatic frustration.
Collapse
Affiliation(s)
- Abhishek Narayan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|
17
|
Capdevila DA, Edmonds KA, Campanello GC, Wu H, Gonzalez-Gutierrez G, Giedroc DP. Functional Role of Solvent Entropy and Conformational Entropy of Metal Binding in a Dynamically Driven Allosteric System. J Am Chem Soc 2018; 140:9108-9119. [PMID: 29953213 PMCID: PMC6425489 DOI: 10.1021/jacs.8b02129] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Allostery is a regulatory phenomenon whereby ligand binding to one site influences the binding of the same or a different ligand to another site on a macromolecule. The physical origins of allosteric regulation remain under intense investigation. In general terms, ligand-induced structural changes, perturbations of residue-specific dynamics, and surrounding solvent molecules all potentially contribute to the global energetics of allostery. While the role of solvent is generally well understood in regulatory events associated with major protein structural rearrangements, the degree to which protein dynamics impact solvent degrees of freedom is unclear, particularly in cases of dynamically driven allostery. With the aid of new crystal structures, extensive calorimetric and residue-specific dynamics studies over a range of time scales and temperatures, we dissect for the first time the relative degree to which changes in solvent entropy and residue-specific dynamics impact dynamically driven, allosteric inhibition of DNA binding by Zn in the zinc efflux repressor, CzrA (chromosomal zinc-regulated repressor). We show that non-native residue-specific dynamics in allosterically impaired CzrA mutants are accompanied by significant perturbations in solvent entropy that cannot be predicted from crystal structures. We conclude that functional dynamics are not necessarily restricted to protein residues but involve surface water molecules that may be responding to ligand (Zn)-mediated perturbations in protein internal motions that define the conformational ensemble, rather than major structural rearrangements.
Collapse
Affiliation(s)
- Daiana A. Capdevila
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102 United States
| | - Katherine A. Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102 United States
| | - Gregory C. Campanello
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102 United States
| | - Hongwei Wu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102 United States
| | - Giovanni Gonzalez-Gutierrez
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405 United States
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102 United States
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405 United States
| |
Collapse
|
18
|
Huang T, Zhu Z, Xue R, Wu T, Liao P, Liu Z, Xiao Y, Huang J, Yan Y. Allosteric Self-Assembly of Coordinating Terthiophene Amphiphile for Triggered Light Harvesting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5935-5942. [PMID: 29708341 DOI: 10.1021/acs.langmuir.8b00759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Allosteric regulation is extensively employed by nature to achieve functional control of protein or deoxyribonucleic acid through triggered conformational change at a remote site. We report that a similar strategy can be utilized in artificial self-assembly to control the self-assembled structure and its function. We show that on binding of metal ions to the headgroup of an amphiphile TTC4L, the conformational change may lead to change of the dipole orientation of the energy donor at the chain end. This on the one hand leads to a drastically different self-assembled structure; on the other hand, it enables light harvesting between the donor-acceptor. Because the Forster resonance fluorescence transfer efficiency is gated by metal ions, controlling the feeding of metal ions allows switching on and off of light harvesting. We expect that using allosteric self-assembly, we will be able to create abundant structures with distinct function from limited molecules, which show prominent potential for the postorganic modification of the structure and function of self-assembled materials.
Collapse
|
19
|
Ettayapuram Ramaprasad AS, Uddin S, Casas-Finet J, Jacobs DJ. Decomposing Dynamical Couplings in Mutated scFv Antibody Fragments into Stabilizing and Destabilizing Effects. J Am Chem Soc 2017; 139:17508-17517. [PMID: 29139290 DOI: 10.1021/jacs.7b09268] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Conformational fluctuations within scFv antibodies are characterized by a novel perturbation-response decomposition of molecular dynamics trajectories. Both perturbation and response profiles are stratified into stabilizing and destabilizing conditions. The linker between the VH and VL domains exhibits the dominant dynamical response by being coupled to nearly the entire protein, responding to both stabilizing and destabilizing perturbations. Perturbations within complementarity-determining regions (CDR) induce rich behavior in dynamic response. Among many effects, stabilizing any CDR loop in the VH domain triggers a destabilizing response in all CDR loops in the VL domain and vice versa. Destabilizing residues within the VL domain are likely to stabilize all CDR loops in the VH domain, and, when these residues are not buried, the CDR loops in the VL domain are also likely to be stabilized. These effects, described by shifts in normal mode characteristics, initiate a propensity for dynamic allostery with possible functional implications in bispecific antibodies.
Collapse
Affiliation(s)
| | - Shahid Uddin
- Formulation Sciences, MedImmune Ltd. , Cambridge CB21 6GH, United Kingdom
| | - Jose Casas-Finet
- Analytical Biochemistry Department, MedImmune LLC , Gaithersburg, Maryland 20878, United States
| | - Donald J Jacobs
- Department of Physics and Optical Science, University of North Carolina at Charlotte , Charlotte, North Carolina 28223, United States
| |
Collapse
|
20
|
Rajasekaran N, Sekhar A, Naganathan AN. A Universal Pattern in the Percolation and Dissipation of Protein Structural Perturbations. J Phys Chem Lett 2017; 8:4779-4784. [PMID: 28910120 DOI: 10.1021/acs.jpclett.7b02021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Understanding the extent to which information is transmitted through the intramolecular interaction network of proteins upon a perturbation, that is, an allosteric effect, has long remained an unsolved problem. Through an analysis of high-resolution NMR data from the literature on 28 different proteins and 49 structural perturbations, we show that the extent of induced structural changes through mutations and molecular events including protein-protein, protein-peptide, protein-ligand binding, and post-translational modifications exhibit a near-universal exponential functional form. The extent of percolation into the protein structures can be up to 20-25 Å despite no apparent change in the 3D structures. These observations are also consistent with theoretical expectations, elementary graph theoretic analysis of protein structures, detailed molecular dynamics simulations, and experimental double-mutant cycles. Our analysis highlights that most molecular events would contribute to allosteric effects independent of protein structure, topology, or identity and provides a simple avenue to test and potentially model their effects.
Collapse
Affiliation(s)
- Nandakumar Rajasekaran
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras , Chennai 600036, India
| | - Ashok Sekhar
- Departments of Molecular Genetics, Biochemistry, and Chemistry, The University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras , Chennai 600036, India
| |
Collapse
|
21
|
Addressing the role of the α-helical extension in the folding of the third PDZ domain from PSD-95. Sci Rep 2017; 7:12593. [PMID: 28974728 PMCID: PMC5626748 DOI: 10.1038/s41598-017-12827-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/14/2017] [Indexed: 01/22/2023] Open
Abstract
PDZ domains are one of the most important protein-protein interaction domains in human. While presenting a conserved three dimensional structure, a substantial number of PDZ domains display structural extensions suggested to be involved in their folding and binding mechanisms. The C-terminal α-helix extension (α3) of the third PDZ domain from PSD-95 (PDZ3) has been reported to have a role in function of the domain as well as in the stabilization of the native fold. Here we report an evaluation of the effect of the truncation of this additional helix on the folding and unfolding kinetics of PDZ3. Fluorescent variants of full length and truncated PDZ3 were produced and stopped-flow fluorescence measurements were made under different experimental conditions (pH, ionic strength and temperature) to investigate the folding kinetics of the respective variant. The results show that folding of PDZ3 is robust and that the mechanism is only marginally affected by the truncation, which contributes to a destabilization of the native state, but otherwise do not change the overall observed kinetics. Furthermore, the increase in the unfolding rate constants, but not the folding rate constant upon deletion of α3 suggests that the α-helical extension is largely unstructured in the folding transition state.
Collapse
|
22
|
Mishra P, Jha SK. An Alternatively Packed Dry Molten Globule-like Intermediate in the Native State Ensemble of a Multidomain Protein. J Phys Chem B 2017; 121:9336-9347. [DOI: 10.1021/acs.jpcb.7b07032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Prajna Mishra
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry
Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
23
|
New insight on the S100A1–STIP1 complex highlights the important relationship between allostery and entropy in protein function. Biochem J 2017; 474:2977-2980. [DOI: 10.1042/bcj20170275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 01/24/2023]
Abstract
Calcium signaling serves as a nexus of many vital cellular processes. Of particular importance is the role the calcium signaling plays in the prevention of protein misfolding, and the S100 family of calcium-binding proteins is a key player in this pathway. While the S100 proteins carry out a range of roles, the interaction of S100A1 and the stress-inducible phosphoprotein 1 (STIP1) has been shown to be particularly important. A recent study by Maciejewski et al. in Biochemical Journal (Biochemical Journal (2017) 474, 1853–1866) revealed new insights into the nature of the S100A1–STIP1 interaction. Not only did the present paper indicate the stoichiometry of binding for this interaction (three S100A1 dimers : one STIP1), it also demonstrated that the binding interaction is highly co-operative and that each S100A1–STIP1-binding interaction is entropically driven. The findings presented raise important new questions regarding the relationship between entropy and allostery in protein function. Recently, the dynamical underpinnings of allostery in protein function have become a topic of increased interest. A broad range of investigations have demonstrated that allostery can be mediated by entropic processes such as changes in the flexibility of the protein backbone and in the range of motions explored by side chains. The S100A1–STIP1 complex as described by Maciejewski et al. suggests a new system in which an allosteric-binding interaction driven by entropic processes may be systematically dissected in the future.
Collapse
|
24
|
Liu J, Nussinov R. Energetic redistribution in allostery to execute protein function. Proc Natl Acad Sci U S A 2017; 114:7480-7482. [PMID: 28696318 PMCID: PMC5530713 DOI: 10.1073/pnas.1709071114] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas Systems College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107;
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702;
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
25
|
The Exact Nuclear Overhauser Enhancement: Recent Advances. Molecules 2017; 22:molecules22071176. [PMID: 28708092 PMCID: PMC6152122 DOI: 10.3390/molecules22071176] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/10/2017] [Indexed: 02/04/2023] Open
Abstract
Although often depicted as rigid structures, proteins are highly dynamic systems, whose motions are essential to their functions. Despite this, it is difficult to investigate protein dynamics due to the rapid timescale at which they sample their conformational space, leading most NMR-determined structures to represent only an averaged snapshot of the dynamic picture. While NMR relaxation measurements can help to determine local dynamics, it is difficult to detect translational or concerted motion, and only recently have significant advances been made to make it possible to acquire a more holistic representation of the dynamics and structural landscapes of proteins. Here, we briefly revisit our most recent progress in the theory and use of exact nuclear Overhauser enhancements (eNOEs) for the calculation of structural ensembles that describe their conformational space. New developments are primarily targeted at increasing the number and improving the quality of extracted eNOE distance restraints, such that the multi-state structure calculation can be applied to proteins of higher molecular weights. We then review the implications of the exact NOE to the protein dynamics and function of cyclophilin A and the WW domain of Pin1, and finally discuss our current research and future directions.
Collapse
|
26
|
Narayan A, Naganathan AN. Tuning the Continuum of Structural States in the Native Ensemble of a Regulatory Protein. J Phys Chem Lett 2017; 8:1683-1687. [PMID: 28345920 PMCID: PMC5464678 DOI: 10.1021/acs.jpclett.7b00475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The mesoscale nature of proteins allows for an efficient coupling between environmental cues and conformational changes, enabling their function as molecular transducers. Delineating the precise structural origins of such a connection and the expected spectroscopic response has, however, been challenging. In this work, we perform a combination of urea-temperature double perturbation experiments and theoretical modeling to probe the conformational landscape of Cnu, a natural thermosensor protein. We observe unique ensemble signatures that point to a continuum of conformational substates in the native ensemble and that respond intricately to perturbations upon monitoring secondary and tertiary structures, distances between an intrinsic FRET pair, and hydrodynamic volumes. Binding assays further reveal a weakening of the Cnu functional complex with temperature, highlighting the molecular origins of signal transduction critical for pathogenic response in enterobacteriaceae.
Collapse
|
27
|
Acharya N, Mishra P, Jha SK. A dry molten globule-like intermediate during the base-induced unfolding of a multidomain protein. Phys Chem Chem Phys 2017; 19:30207-30216. [DOI: 10.1039/c7cp06614g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An early intermediate during the base-induced unfolding of a multidomain protein resembles a dry molten globule state in which the structure is expanded without core hydration.
Collapse
Affiliation(s)
- Nirbhik Acharya
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Prajna Mishra
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| |
Collapse
|
28
|
Donovan MA, Lutz H, Yimer YY, Pfaendtner J, Bonn M, Weidner T. LK peptide side chain dynamics at interfaces are independent of secondary structure. Phys Chem Chem Phys 2017; 19:28507-28511. [DOI: 10.1039/c7cp05897g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Real-time observation of the ultrafast motions of leucine side chains within model peptides at the water–air interface with representative folds – α-helix, 310-helix, β-strand – show that interfacial dynamics are mostly determined by surface interactions.
Collapse
Affiliation(s)
| | - Helmut Lutz
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Yeneneh Y. Yimer
- Department of Chemical Engineering
- University of Washington
- 105 Benson Hall
- Seattle
- USA
| | - Jim Pfaendtner
- Department of Chemical Engineering
- University of Washington
- 105 Benson Hall
- Seattle
- USA
| | - Mischa Bonn
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Tobias Weidner
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
- Department of Chemical Engineering
- University of Washington
| |
Collapse
|