1
|
Peng XH, Shang T, Zheng J, Liu M, Zheng Q, Guo FS. Enhancing the magnetic properties of Dy(III) single-molecule magnets in octahedral coordination symmetry by tuning the equatorial ligands. Dalton Trans 2024; 53:16709-16715. [PMID: 39344482 DOI: 10.1039/d4dt02482f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Conventionally, octahedral (Oh) coordination symmetry of lanthanide centers is not ideal for constructing high-performance single-molecule magnets (SMMs). However, introducing a strong ligand field in the axial direction to increase crystal field splitting can potentially overcome this limitation. Herein, we successfully obtained two dysprosium(III) single-molecule magnets, [Dy(OCtBu3)X2(py)3] (X = Cl (1), I (2), py = pyridine), in Oh coordination symmetry. The two complexes differ only in the coordinating anions on the equatorial plane, yet their magnetic performances are distinctly different. When chloride is replaced by a weaker donor iodide, the energy barrier is dramatically improved from 29 cm-1 (1) to 860 cm-1 (2), highlighting the importance of weakening the transverse ligand field and maximizing the axial ligand field for high-performance SMMs.
Collapse
Affiliation(s)
- Xiao-Han Peng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
| | - Tao Shang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
| | - Jieyu Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ming Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
| | - Qi Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
| | - Fu-Sheng Guo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
| |
Collapse
|
2
|
Delano F, Benner F, Jang S, Greer SM, Demir S. Construction of intermolecular σ-hole interactions in rare earth metallocene complexes using a 2,3,4,5-tetraiodopyrrolyl anion. Chem Sci 2024; 15:13389-13404. [PMID: 39183902 PMCID: PMC11339973 DOI: 10.1039/d4sc03786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 08/27/2024] Open
Abstract
The generation of noncovalent intermolecular interactions represents a powerful method to control molecular vibrations and rotations. Combining these with the axial ligand field enforced by the metallocene ligand scaffold provides a dual-pronged approach in controlling the magnetic-relaxation pathways for dysprosium-based single-molecule magnets (SMMs). Here, we present the first implementation of 2,3,4,5-tetraiodopyrrole (TIPH) in its anionic form [TIP]- as a ligand in three isostructural rare-earth metal complexes Cp*2RE(TIP) (1-RE, RE = Y, Gd, and Dy; Cp* = pentamethylcylopentadienyl), where the TIP ligand binds through the nitrogen and one iodine atom κ2(N,I) to the metal centre. The shallow potential energy surface of the intermolecular σ-hole interaction yields distortions of the interatomic distances at elevated temperatures which were investigated by variable-temperature SCXRD. 1-RE constitute the first crystallographically characterized molecules containing TIP as a ligand for any metal ion, and 1-Dy is the first SMM that employs the TIP ligand. The structural dependence on temperature allowed the mechanism of magnetic relaxation to be explored through ab initio calculations at different temperatures. The electronic influence of the coordinated iodine substituent was probed via magnetometry and cw-EPR spectroscopy on 1-Gd. To further scrutinize the impact of the iodine substituents on the physical properties, a second set of new complexes Cp*2RE(DMP) (2-RE, RE = Y, and Dy) where DMP = 2,5-dimethylpyrrolyl were synthesized. Here, the DMP ligand binds similarly to the TIP ligand and represents an all-hydrocarbon analogue to 1-RE. 2-Dy constitutes the first SMM bearing a DMP ligand.
Collapse
Affiliation(s)
- Francis Delano
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
| | - Florian Benner
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
| | - Seoyun Jang
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
| | - Samuel M Greer
- Los Alamos National Laboratory (LANL) Los Alamos New Mexico 87545 USA
| | - Selvan Demir
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
| |
Collapse
|
3
|
Wang JL, Chen JT, Yan H, Wang TT, Zhang YQ, Sun WB. Constructing high axiality mononuclear dysprosium molecular magnets via a regulation-of-co-ligands strategy. Dalton Trans 2024; 53:10982-10990. [PMID: 38874222 DOI: 10.1039/d4dt00040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Two lanthanide complexes with formulae [DyIII(LN5)(pentafluoro-PhO)3] (1) and [DyIII(LN5)(2,6-difluoro-PhO)2](BPh4) (2) (LN5 = 2,14-dimethyl-3,6,10,13,19-pentaazabicyclo[13.3.1]nonadecal (19),2,13,15,17-pentaene) were structurally and magnetically characterized. DyIII ions lie in the cavity of a five coordinate nitrogen macrocycle, and in combination with the introduction of multi-fluorinated monodentate phenoxyl coligands a high axiality coordination symmetry is built. Using the pentafluorophenol co-ligand, complex 1 with a D2d coordination environment, is obtained and displays moderate single-molecule magnets (SMMs) behavior. When difluorophenol co-ligands were used, a higher local axisymmetric pentagonal bipyramidal coordination geometry was observed in complex 2, which displays apparent slow magnetic relaxation behavior with a hysteresis temperature of up to 5 K. Further magnetic studies of diluted samples combined with ab initio calculations indicate that the high axiality plays a crucial role in suppressing quantum tunneling of magnetization (QTM) and consequently results in good slow magnetic relaxation behavior. Different fluoro-substituted phenoxyl co-ligands have phenoloxy oxygen atoms with different electrostatic potentials as well as a different number of phenoloxy coligands along the magnetic axis, resulting in different ligand field strengths and coordination symmetries.
Collapse
Affiliation(s)
- Jia-Ling Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | - Ji-Tun Chen
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | - Han Yan
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | - Tian-Tian Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Wen-Bin Sun
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| |
Collapse
|
4
|
Zhu SD, Zhou YL, Liu F, Lei Y, Liu SJ, Wen HR, Shi B, Zhang SY, Liu CM, Lu YB. A Pair of Multifunctional Cu(II)-Dy(III) Enantiomers with Zero-Field Single-Molecule Magnet Behaviors, Proton Conduction Properties and Magneto-Optical Faraday Effects. Molecules 2023; 28:7506. [PMID: 38005227 PMCID: PMC10673516 DOI: 10.3390/molecules28227506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Multifunctional materials with a coexistence of proton conduction properties, single-molecule magnet (SMM) behaviors and magneto-optical Faraday effects have rarely been reported. Herein, a new pair of Cu(II)-Dy(III) enantiomers, [DyCu2(RR/SS-H2L)2(H2O)4(NO3)2]·(NO3)·(H2O) (R-1 and S-1) (H4L = [RR/SS] -N,N'-bis [3-hydroxysalicylidene] -1,2-cyclohexanediamine), has been designed and prepared using homochiral Schiff-base ligands. R-1 and S-1 contain linear Cu(II)-Dy(III)-Cu(II) trinuclear units and possess 1D stacking channels within their supramolecular networks. R-1 and S-1 display chiral optical activity and strong magneto-optical Faraday effects. Moreover, R-1 shows a zero-field SMM behavior. In addition, R-1 demonstrates humidity- and temperature-dependent proton conductivity with optimal values of 1.34 × 10-4 S·cm-1 under 50 °C and 98% relative humidity (RH), which is related to a 1D extended H-bonded chain constructed by water molecules, nitrate and phenol groups of the RR-H2L ligand.
Collapse
Affiliation(s)
- Shui-Dong Zhu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Yu-Lin Zhou
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Fang Liu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Yu Lei
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Sui-Jun Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - He-Rui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Bin Shi
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Shi-Yong Zhang
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Chinese Academy of Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying-Bing Lu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| |
Collapse
|
5
|
Tarannum I, Moorthy S, Singh SK. Understanding electrostatics and covalency effects in highly anisotropic organometallic sandwich dysprosium complexes [Dy(C mR m) 2] (where R = H, SiH 3, CH 3 and m = 4 to 9): a computational perspective. Dalton Trans 2023; 52:15576-15589. [PMID: 37786345 DOI: 10.1039/d3dt01646c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
In this article, we have thoroughly studied the electronic structure and 4f-ligand covalency of six mononuclear dysprosium organometallic sandwich complexes [Dy(CmRm)2]n+/- (where R = H, SiH3, CH3; m = 4 to 9; n = 1, 3) using both the scalar relativistic density functional and complete active space self-consistent field (CASSCF) and N-electron valence perturbation theory (NEVPT2) method to shed light on the ligand field effects in fine-tuning the magnetic anisotropy of these complexes. Energy decomposition analysis (EDA) and ab initio-based ligand field theory AILFT calculations predict the sizable 4f-ligand covalency in all these complexes. The analysis of CASSCF/NEVPT2 computed spin-Hamiltonian (SH) parameters indicates the stabilization of mJ |±15/2〉 for [Dy(C4(SiH3)4)2]- (1), [Dy(C5(CH3)5)2]+ (2) and [Dy(C6H6)2]3+ (3) complexes with the Ucal value of 1867.5, 1621.5 and 1070.8 cm-1, respectively. On the other hand, we observed mJ |±9/2〉 as the ground state for [Dy(C7H7)2]3- (4) and [Dy(C8H8)2]- (5) complexes with significantly smaller Ucal values of 237.1 and 38.6 cm-1 respectively. For the nine-membered ring [Dy(C9H9)2]+ (6) complex, we observed the stabilization of the mJ |±1/2〉 ground state, with the first excited state being located ∼29 cm-1 higher in energy. AILFT-NEVPT2 ligand field splitting analysis indicates that the presence of π-type 4f-ligand interactions in complexes 1-3 help generate the axial-ligand field, while the δ-type interactions in complexes 4-5 generate the equatorial ligand field despite the ligands approaching from the axial direction. As the ring size increases, φ-type interactions dominate, generating a pure equatorial ligand field stabilising mJ |±1/2〉 as the ground state for 6. Calculations suggest that the nature of the ligand field mainly governs the Ucal values in the following order: 4f-Lσ > 4f-Lπ > 4f-Lδ > 4f-Lφ. Calculations were performed by replacing ligands with CHELPG charges to access the crystal field (CF) effects which suggests the stabilization of pure mJ |±15/2〉 in all the charge-embedded models (1Q-6Q). Our findings point out that the crystal field and ligand field effects complement each other and generate a giant barrier for magnetic relaxation in the small ring complexes 1-3, while a relatively weak crystal field and adverse 4f-Lδ/4f-Lφ interactions diminish the SMM behaviour in the large ring complexes 4-6.
Collapse
Affiliation(s)
- Ibtesham Tarannum
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| | - Shruti Moorthy
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| |
Collapse
|
6
|
Mao PD, Zhang SH, Yao NT, Sun HY, Yan FF, Zhang YQ, Meng YS, Liu T. Regulating Magnetic Relaxations of Cyano-Bridged {Dy III Mo V } Systems by Tuning the N-Sites in β-Diketone Ligands. Chemistry 2023; 29:e202301262. [PMID: 37272418 DOI: 10.1002/chem.202301262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Cyano-bridged 4d-4f molecular nanomagnets have re-called increasing research interests in molecular magnetism since they offer more possibilities in achieving novel nanomagnets with versatile structures and magnetic interactions. In this work, four β-diketone ligands bearing different substitution N-sites were designed and synthesized, namely 1-(2-pyridyl)-3-(3-pyridyl)-1,3-propanedione (HL1 ), 1,3-Bis (3-pyridyl)-1,3-propanedione (HL2 ), 1-(4-pyridyl)-3-(3-pyridyl)-1,3-propanedione (HL3 ), and 1,3-Bis (4-pyridyl)-1,3-propanedione (HL4 ), to tune the magnetic relaxation behaviors of cyano-bridged {DyIII MoV } systems. By reacting with DyCl3 ⋅ 6H2 O and K4 Mo(CN)8 ⋅ 2H2 O, four cyano-bridged complexes, namely {[Dy[MoV (CN)8 ](HL1 )2 (H2 O)3 ]} ⋅ 6H2 O (1), {[Dy[MoV (CN)8 ](HL2 )(H2 O)3 (CH3 OH)]}2 ⋅ 2CH3 OH ⋅ 3H2 O (2), {[Dy[MoV (CN)8 ](HL3 )(H2 O)2 (CH3 OH)] ⋅ H2 O}n (3), and {[Dy[MoV (CN)8 ](HL4 )2 (H2 O)3 ]} ⋅ 2H2 O⋅CH3 OH (4) were obtained. Structural analyses revealed that 1 and 4 are binuclear complexes, 2 has a tetragonal structure, and 3 exhibits a stair-like polymer chain structure. The DyIII ions in all complexes have eight-coordinated configurations with the coordination spheres DyO7 N1 for 1 and 4, DyO6 N2 for 2, and DyO5 N3 for 3. Magnetic measurements indicate that 1 is a zero-field single-molecule magnet (SMM) and complexes 2-4 are field-induced SMMs, with complex 4 featuring a two-step relaxation process. The magnetic characterizations and ab initio calculations revealed that changing the N-sites in the β-diketone ligands can effectively alter the structures and magnetic properties of cyano-bridged 4d-4f nanomagnets by adjusting the coordination environments of the DyIII centers.
Collapse
Affiliation(s)
- Pan-Dong Mao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Shi-Hui Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Fei-Fei Yan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
7
|
Yang QQ, Wang YF, Wang YX, Tang MJ, Yin B. Ab initio prediction of key parameters and magneto-structural correlation of tetracoordinated lanthanide single-ion magnets. Phys Chem Chem Phys 2023. [PMID: 37401358 DOI: 10.1039/d3cp01766d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Single-molecule magnets (SMMs) have great potential in becoming revolutionary materials for micro-electronic devices. As one type of SMM and holding the performance record, lanthanide single-ion magnets (Ln-SIMs) stand at the forefront of the family. Lowering the coordination number (CN) is an important strategy to improve the performance of Ln-SIMs. Here, we report a theoretical study on a typical group of low-CN Ln-SIMs, i.e., tetracoordinated structures. Our results are consistent with those of experiments and they identify the same three best Ln-SIMs via a concise criterion, i.e., the co-existence of long τQTM and high Ueff. Compared to the record-holding dysprosocenium systems, the best SIMs here possess τQTM values that are shorter by several orders of magnitude and Ueff values that are lower by ∼1000 Kelvin (K). These are important reasons for the fact that the tetracoordinated Ln-SIMs are clearly inferior to dysprosocenium. A simple but intuitive crystal-field analysis leads to several routes to improve the performance of a given Ln-SIM, including compression of the axial bond length, widening the axial bond angle, elongation of the equatorial bond length and usage of weaker equatorial donor ligands. Although these routes are not brand-new, the most efficient option and the degree of improvement resulting from it are not known in advance. Consequently, a theoretical magneto-structural study, covering various routes, is carried out for the best Ln-SIM here and the most efficient route is shown to be widening the axial ∠O-Dy-O angle. The most optimistic case, having a ∠O-Dy-O of 180°, could have a τQTM (up to 103 s) and Ueff (∼2400 K) close to those of the record-holders. Subsequently, a blocking temperature (TB) of 64 K is predicted to be possible for it. A more practical case, with ∠O-Dy-O being 160°, could have a τQTM of up to 400 s, Ueff of around 2200 K and the possibility of a TB of 57 K. Although having an inherent precision limit, these predictions provide a guide to performance improvement, starting from an existing system.
Collapse
Affiliation(s)
- Qi-Qi Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism (LTMM), College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Yu-Fei Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism (LTMM), College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Yu-Xi Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism (LTMM), College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Ming-Jing Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism (LTMM), College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Bing Yin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism (LTMM), College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| |
Collapse
|
8
|
Yang K, Sun R, Zhao J, Deng C, Wang B, Gao S, Huang W. A Combined Synthetic, Magnetic, and Theoretical Study on Enhancing Ligand-Field Axiality for Dy(III) Single-Molecule Magnets Supported by Ferrocene Diamide Ligands. Inorg Chem 2023. [PMID: 37311100 DOI: 10.1021/acs.inorgchem.3c00896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular design is crucial for improving the performance of single-molecule magnets (SMMs). For dysprosium(III) SMMs, enhancing ligand-field axiality is a well-suited strategy to achieve high-performance SMMs. We synthesized a series of dysprosium(III) complexes, (NNTIPS)DyBr(THF)2 (1, NNTIPS = fc(NSiiPr3)2; fc = 1,1'-ferrocenediyl, THF = tetrahydrofuran), [(NNTIPS)Dy(THF)3][BPh4] (2), (NNTIPS)DyI(THF)2 (3), and [(NNTBS)Dy(THF)3][BPh4] (4, NNTBS = fc(NSitBuMe2)2), supported by ferrocene diamide ligands. X-ray crystallography shows that the rigid ferrocene backbone enforces a nearly axial ligand field with weakly coordinating equatorial ligands. Dysprosium(III) complexes 1-4 all exhibit slow magnetic relaxation under zero fields and possess high effective barriers (Ueff) around 1000 K, comparable to previously reported (NNTBS)DyI(THF)2 (5). We probed the influences of structural variations on SMM behaviors by theoretical calculations and found that the distribution of negative charges defined by rq, i.e., the ratio of the charges on the axial ligands to the charges on the equatorial ligands, plays a decisive role. Moreover, theoretical calculations on a series of model complexes 1'-5' without equatorial ligands unveil that the axial crystal-field parameters B20 are directly proportional to the N-Dy-N angles and support the hypothesis that enhancing the ligand-field axiality could improve SMM performance.
Collapse
Affiliation(s)
- Kexin Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Rong Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jingliang Zhao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Chong Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Bingwu Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510641, P. R. China
| | - Wenliang Huang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
9
|
Zou Q, Wang GL, Chen YQ, Huang XD, Wen GH, Qin MF, Bao SS, Zhang YQ, Zheng LM. X-Ray Triggered Coordination-Bond Breakage in Dysprosium-Organic Framework and its Impact on Magnetic Properties. Chemistry 2023; 29:e202203454. [PMID: 36445817 DOI: 10.1002/chem.202203454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Photosensitive lanthanide-based single-molecule magnets (Ln-SMM) are very attractive for their potential applications in information storage, switching, and sensors. However, the light-driven structural transformation in Ln-SMMs hardly changes the coordination number of the lanthanide ion. Herein, for the first time it is reported that X-ray (λ=0.71073 Å) irradiation can break the coordination bond of Dy-OH2 in the three-dimensional (3D) metal-organic framework Dy2 (amp2 H2 )3 (H2 O)6 ⋅ 4H2 O (MDAF-5), in which the {Dy2 (OPO)2 } dimers are cross-linked by dianthracene-phosphonate ligands. The structural transformation proceeds in a single-crystal-to-single-crystal (SC-SC) fashion, forming the new phase Dy2 (amp2 H2 )3 (H2 O)4 ⋅ 4H2 O (MDAF-5-X). The phase transition is accompanied by a significant change in magnetic properties due to the alteration in coordination geometry of the DyIII ion from a distorted pentagonal bipyramid in MDAF-5 to a distorted octahedron in MDAF-5-X.
Collapse
Affiliation(s)
- Qian Zou
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China
| | - Guo-Lu Wang
- Jiangsu Key Laboratory for NSLSCS School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, P.R. China
| | - Yi-Qing Chen
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China
| | - Ge Hua Wen
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China
| | - Ming-Feng Qin
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, P.R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, P.R. China
| |
Collapse
|
10
|
Zhang B, Guo X, Tan P, Lv W, Bai X, Zhou Y, Yuan A, Chen L, Liu D, Cui HH, Wang R, Chen XT. Axial Ligand as a Critical Factor for High-Performance Pentagonal Bipyramidal Dy(III) Single-Ion Magnets. Inorg Chem 2022; 61:19726-19734. [PMID: 36417790 DOI: 10.1021/acs.inorgchem.2c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The choice of axial ligands is of great importance for the construction of high-performance Dy-based single-molecule magnets (SMMs). Here, combining axial ligands Ph3SiO- (anion of triphenylsilanol) and 2,6-dichloro-4-nitro-PhO- (the anion of 2,6-dichloro-4-nitrophenol) with a neutral macrocyclic ligand 2,14-dimethyl-3,6,10,13,19-pentaazabicyclo[13.3.1]nonadeca-1(19),2,13,15,17-pentaene (L2N5) generates two new pentagonal bipyramidal Dy(III) complexes [DyIII(L2N5) (X)2](BPh4) (X = Ph3SiO-, 1; 2,6-dichloro-4-nitro-PhO-, 2) with strong axial ligand fields. Magnetic characterizations show that 1 possesses a large energy barrier above 1000 K and a magnetic hysteresis up to 9 K, whereas 2 only displays field-induced peaks of alternating-current susceptibilities without the hysteresis loop, even though 2 has a similar coordination geometry with 1. Detailed Ab initio calculations indicate an apparent difference in the axial negative charge between both complexes, which is caused by the diverse electron-donating properties of the axial ligands. The present work provides an efficient strategy to enhance the SMMs' properties, which highlights that the electron-donating property of the axial ligands is especially important for constructing the high-performance Dy-based SMMs.
Collapse
Affiliation(s)
- Ben Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Xuefeng Guo
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Pengfei Tan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Wei Lv
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Xiaoye Bai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Yang Zhou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Dan Liu
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Hui-Hui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu 226019, P. R. China
| | - Ruosong Wang
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
11
|
Duan Y, Rosaleny LE, Coutinho JT, Giménez-Santamarina S, Scheie A, Baldoví JJ, Cardona-Serra S, Gaita-Ariño A. Data-driven design of molecular nanomagnets. Nat Commun 2022; 13:7626. [PMID: 36494346 PMCID: PMC9734471 DOI: 10.1038/s41467-022-35336-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Three decades of research in molecular nanomagnets have raised their magnetic memories from liquid helium to liquid nitrogen temperature thanks to a wise choice of the magnetic ion and coordination environment. Still, serendipity and chemical intuition played a main role. In order to establish a powerful framework for statistically driven chemical design, here we collected chemical and physical data for lanthanide-based nanomagnets, catalogued over 1400 published experiments, developed an interactive dashboard (SIMDAVIS) to visualise the dataset, and applied inferential statistical analysis. Our analysis shows that the Arrhenius energy barrier correlates unexpectedly well with the magnetic memory. Furthermore, as both Orbach and Raman processes can be affected by vibronic coupling, chemical design of the coordination scheme may be used to reduce the relaxation rates. Indeed, only bis-phthalocyaninato sandwiches and metallocenes, with rigid ligands, consistently present magnetic memory up to high temperature. Analysing magnetostructural correlations, we offer promising strategies for improvement, in particular for the preparation of pentagonal bipyramids, where even softer complexes are protected against molecular vibrations.
Collapse
Affiliation(s)
- Yan Duan
- Instituto de Ciencia Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán 2, 46980, Paterna, Spain
- Spin-X Institute, South China University of Technology, 510641, Guangzhou, People's Republic of China
| | - Lorena E Rosaleny
- Instituto de Ciencia Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Joana T Coutinho
- Instituto de Ciencia Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán 2, 46980, Paterna, Spain.
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028, Marinha Grande, Portugal.
| | - Silvia Giménez-Santamarina
- Instituto de Ciencia Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Allen Scheie
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - José J Baldoví
- Instituto de Ciencia Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Salvador Cardona-Serra
- Instituto de Ciencia Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Alejandro Gaita-Ariño
- Instituto de Ciencia Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán 2, 46980, Paterna, Spain.
| |
Collapse
|
12
|
Li LL, Chen SS, Liu S, Yong ZH, Zhang DK, Zhang SS, Xin YC. Lanthanide metal-organic frameworks containing ferromagnetically coupled metal-carboxylate chains showing slow magnetic relaxation behavior. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Chen CP, Wang YF, Qin P, Zou HH, Liang FP. A DyIII Single-Ion Magnet with D5h Configuration. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Zhang R, Wang S, Ma X, Jiang S, Chen T, Du Y, Cheng M, Liu J, Yuan Y, Ye T, Wang S. In situ gelation strategy based on ferrocene-hyaluronic acid organic copolymer biomaterial for exudate management and multi-modal wound healing. Acta Biomater 2022; 154:180-193. [PMID: 36243366 DOI: 10.1016/j.actbio.2022.09.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022]
Abstract
Exudate management remains a major concern in slow or non-healing wound management. Therefore, there is a need to devise a massive exudate-absorbing, exudate-locking, and stable extracellular matrix structure-maintaining functional wound dressing. Inspired by metal-organic frameworks, we chemically introduced sandwich ferrocene (Fc) into hyaluronic acid (HA) to fabricate an innovative metal Fc-HA organic copolymer (FHoC) as the skeleton material for in situ gelation, which was then gently compressed into a pre-hydrogel patch (FHoCP). Fc promoted the rearrangement of polymer chains to form additional microcrystalline and hydrophobic regions, which improved hydrogel transition and the exudate-locking ability. Thus, the simple composition FHoCP(5) absorbed 150 times its weight of water and maintained a firm three-dimensional network, which contributed to reducing inflammation and acted as a physical barrier against hemostasis and anti-bacterial invasion. Meanwhile, multi-modal processes, including fibroblast migration, angiogenesis, and antibacterial effects, were integrated into the gelled FHoCP(5) guided by Fe to promote wound healing. This study suggested that FHoC biomaterial could accelerate the closure of chronic wounds. We believe that this unique FHoCP(5)-based in situ gelation strategy could provide a solid drug-loaded scaffold for cell or adjunctive drug therapies, which holds great potential for the development of multifunctional biomaterials. STATEMENT OF SIGNIFICANCE: Hydrogels that absorb excessive exudates while maintaining stable ECM-like network as well as exert multimodal wound healing activities are ideal dressings for accelerating chronic wound contraction. Herein, we reported an innovative metal ferrocene-hyaluronic acid organic copolymer patch (FHoCP) and FHoCP-mediated in situ gelation strategy. Ferrocene (Fc) induced in situ gelation by promoting polymer chain rearrangement, acting as a physical barrier for hemostasis and anti-bacterial invasion, and absorbing massive exudates, resulting in reducing delayed inflammation. As the structural core, rigid Fc enhanced the stability of the hydrogel backbone, and hydrophobic Fc improved fibroblast migration. In addition, Fe2+ chemically inhibited bacteria and increased angiogenesis. These results indicated the potential of FHoCP-based hydrogel for application in clinical skin reconstruction.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sixue Wang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaofan Ma
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shan Jiang
- Chinese medicine (traditional Chinese medicine preparation direction), College of traditional Chinese Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Taoxi Chen
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuhao Du
- Chinese medicine (traditional Chinese medicine preparation direction), College of traditional Chinese Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Muhua Cheng
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jun Liu
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; Shenyang Junhong Pharmaceutical Co., Ltd., Shenyang, Liaoning, China
| | - Yue Yuan
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Tiantian Ye
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shujun Wang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
15
|
Kong FY, Han HZ, Huang SX, Teng QH, Li Y, Zhang XQ, Zhu L, Wang K, Liang FP. A Pair of Chiral Dysprosium Single-Ion Magnets with 2,6-Bis[(4S/4R)4-phenyl-2-oxazolinyl]pyridine and Hexafluoroacetylacetonate Ligands. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Miao CQ, Wang N, Ling YN, Ma XQ, Chen YX, Wang RF, Hou LH, Hua YP, Kang MY, Fang M. LnIII2 compounds constructing by polydentate Schiff base ligand and β-diketonate coligand: structures, magnetocaloric effect and SMMs behaviors. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Gao Y, Yang P, Hu Y, Zhang M, Zhu X, Liu Y. Mononuclear Lanthanide Complexes: Energy‐Barrier Enhancement by Ligand Substitution in Field‐Induced Dy
III
SIMs. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yu Gao
- College of Chemistry and Materials Science Huaibei Normal University 100 Dongshan Road Huaibei 235000 People's Republic of China
| | - Peipei Yang
- College of Chemistry and Materials Science Huaibei Normal University 100 Dongshan Road Huaibei 235000 People's Republic of China
| | - Yiye Hu
- College of Chemistry and Materials Science Huaibei Normal University 100 Dongshan Road Huaibei 235000 People's Republic of China
| | - Mengyuan Zhang
- College of Chemistry and Materials Science Huaibei Normal University 100 Dongshan Road Huaibei 235000 People's Republic of China
| | - Xinxin Zhu
- College of Chemistry and Materials Science Huaibei Normal University 100 Dongshan Road Huaibei 235000 People's Republic of China
| | - Yalin Liu
- College of Chemistry and Materials Science Huaibei Normal University 100 Dongshan Road Huaibei 235000 People's Republic of China
| |
Collapse
|
18
|
Wang HT, Niu XY, Zhang GX, Jiao YH, Wu JY, Zhang Y, Hou YL. Two butterfly-shaped LnIII2 compounds constructed by a multidentate Schiff base ligand: Structures, fluorescence properties and SMMs behaviors. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Singh V, Das D, Anga S, Sutter JP, Chandrasekhar V, Bar AK. Rigid N 3O 2-Pentadentate Ligand-Assisted Octacoordinate Mononuclear Ln(III) Complexes: Syntheses, Characterization, and Slow Magnetization Relaxation. ACS OMEGA 2022; 7:25881-25890. [PMID: 35910178 PMCID: PMC9330846 DOI: 10.1021/acsomega.2c03631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A series of air-stable mononuclear octacoordinate Ln(III) complexes, [(L)Ln(TPPO)3]OTf (Ln = Y (1·Y); Gd (1·Gd); Tb (1·Tb); Dy (1·Dy); Ho (1·Ho); and Er (1·Er)) and [(L)Ln(TPPO)(NO3)] (Ln = Y (2·Y) and Dy (2·Dy)), are synthesized employing a rigid N3O2-pentadentate chelating ligand as the basis ligand and meridional ancillary ligands (where H2L = 2,6-diacetylpyridine bis-benzoylhydrazone, TPPO = triphenylphosphine oxide, and OTf- = trifluoromethanesulfonate). All the complexes are synthesized under aerobic conditions and characterized comprehensively by spectroscopic and X-ray crystallographic techniques. Magnetic property investigation on the polycrystalline solid samples of 1·Ln (Ln = Gd, Tb, Dy, Ho, and Er) and 2·Dy are reported. A field-induced single-molecule magnet behavior was observed for the Dy derivatives. 1·Dy exhibits the highest effective energy barrier of magnetization reversal, U eff/k B = 47 K under H dc = 1 kOe among the complexes presented herein.
Collapse
Affiliation(s)
- Vaibhav Singh
- Indian
Institute of Science Education and Research Tirupati, Tirupati 517507 AP, India
| | - Dhiraj Das
- Indian
Institute of Science Education and Research Tirupati, Tirupati 517507 AP, India
| | - Srinivas Anga
- Tata
Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500107, India
| | - Jean-Pascal Sutter
- Laboratoire
de Chimie de Coordination Du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse 31062, France
| | | | - Arun Kumar Bar
- Indian
Institute of Science Education and Research Tirupati, Tirupati 517507 AP, India
| |
Collapse
|
20
|
Synthesis, characterization, photoluminescence properties and cytotoxic activities of Sm(III) complexes of β-diketones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Ma Y, Zhai YQ, Luo QC, Ding YS, Zheng YZ. Ligand Fluorination to Mitigate the Raman Relaxation of Dy III Single-Molecule Magnets: A Combined Terahertz, Far-IR and Vibronic Barrier Model Study. Angew Chem Int Ed Engl 2022; 61:e202206022. [PMID: 35543224 DOI: 10.1002/anie.202206022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 11/09/2022]
Abstract
The fast Raman relaxation process via a virtual energy level has become a puzzle for how to chemically engineer single-molecule magnets (SMMs) with better performance. Here, we use the trifluoromethyl group to systematically substitute the methyl groups in the axial position of the parent bis-butoxide pentapyridyl dysprosium(III) SMM. The resulting complexes-[Dy(OLA )2 py5 ][BPh4 ] (LA =CH(CF3 )2 - 1, CH2 CF3 - 2, CMe2 CF3 - 3)-show progressively enhanced TB hys (@100 Oe s-1 ) from 17 K (for 3), 20 K (for 2) to 23 K (for 1). By experimentally identifying the varied under barrier relaxation energy in the 5-500 cm-1 regime, we are able to identify that the C-F bond related vibration energy of the axial ligand ranging from 200 to 350 cm-1 is the key variant for this improvement. Thus, this finding not only reveals a correlation between the structure and the Raman process but also provides a paradigm for how to apply the vibronic barrier model to analyze multi-phonon relaxation processes in lanthanide SMMs.
Collapse
Affiliation(s)
- Yan Ma
- Frontier Institute of Science and Technology (FIST), State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi 710054, P. R. China
| | - Yuan-Qi Zhai
- Frontier Institute of Science and Technology (FIST), State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi 710054, P. R. China
| | - Qian-Cheng Luo
- Frontier Institute of Science and Technology (FIST), State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi 710054, P. R. China
| | - You-Song Ding
- Frontier Institute of Science and Technology (FIST), State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi 710054, P. R. China
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology (FIST), State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi 710054, P. R. China
| |
Collapse
|
22
|
Ma Y, Zhai Y, Luo Q, Ding Y, Zheng Y. Ligand Fluorination to Mitigate the Raman Relaxation of Dy
III
Single‐Molecule Magnets: A Combined Terahertz, Far‐IR and Vibronic Barrier Model Study. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yan Ma
- Frontier Institute of Science and Technology (FIST) State Key Laboratory for Mechanical Behavior of Materials MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry School of Chemistry and School of Physics Xi'an Jiaotong University 99 Yanxiang Road Xi'an Shaanxi 710054 P. R. China
| | - Yuan‐Qi Zhai
- Frontier Institute of Science and Technology (FIST) State Key Laboratory for Mechanical Behavior of Materials MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry School of Chemistry and School of Physics Xi'an Jiaotong University 99 Yanxiang Road Xi'an Shaanxi 710054 P. R. China
| | - Qian‐Cheng Luo
- Frontier Institute of Science and Technology (FIST) State Key Laboratory for Mechanical Behavior of Materials MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry School of Chemistry and School of Physics Xi'an Jiaotong University 99 Yanxiang Road Xi'an Shaanxi 710054 P. R. China
| | - You‐Song Ding
- Frontier Institute of Science and Technology (FIST) State Key Laboratory for Mechanical Behavior of Materials MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry School of Chemistry and School of Physics Xi'an Jiaotong University 99 Yanxiang Road Xi'an Shaanxi 710054 P. R. China
| | - Yan‐Zhen Zheng
- Frontier Institute of Science and Technology (FIST) State Key Laboratory for Mechanical Behavior of Materials MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry School of Chemistry and School of Physics Xi'an Jiaotong University 99 Yanxiang Road Xi'an Shaanxi 710054 P. R. China
| |
Collapse
|
23
|
Liu H, Li JF, Yin B. The coexistence of long τQTM and high Ueff as a concise criterion for a good single-molecule magnet: a theoretical case study of square antiprism dysprosium single-ion magnets. Phys Chem Chem Phys 2022; 24:11729-11742. [PMID: 35506508 DOI: 10.1039/d2cp00776b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A systematic theoretical study is performed on a group of 16 square antiprism dysprosium single-ion magnets. Based on ab initio calculations, the quantum tunneling of magnetization (QTM) time, i.e., τQTM, and effective barrier of magnetic reversal, Ueff, are theoretically predicted. The theoretical τQTM is able to identify the ones with the longest QTM time with small numerical deviations. Similar results occur with respect to Ueff too. The systems possessing the best single-molecule magnet (SMM) properties here are just the ones having both the longest τQTM and the highest Ueff, from either experiment or theory. Thus, our results suggest the coexistence of long τQTM and high Ueff to be a criterion for high-performance SMMs. Although having its own limits, this criterion is easy to be applied in a large number of systems since both τQTM and Ueff could be predicted by theory with satisfactory efficiency and reliability. Therefore, this concise criterion could provide screened candidates for high-performance SMMs quickly and, hence, ease the burden of further exploration aiming for a higher degree of precision. This screening is important since the further exploration could easily demand tens or even hundreds of ab initio calculations for a single SMM. A semi-quantitative crystal field (CF) analysis is performed and shown here to be capable of indicating the general trends in a more chemically intuitive way. This analysis could help to identify the most important coordinating atoms for both diagonal and non-diagonal CF components. Thus, it could give some direct clues for improving the SMM properties: reducing the distance of the axial atom to the central ion, rotating the axial atom closer to the easy axis or increasing the amount of its negative charge. Correspondingly, opposite operations on the equatorial atom could give the same result.
Collapse
Affiliation(s)
- Hong Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Jin-Feng Li
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, P. R. China
| | - Bing Yin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| |
Collapse
|
24
|
Sutter JP, Béreau V, Jubault V, Bretosh K, Pichon C, Duhayon C. Magnetic anisotropy of transition metal and lanthanide ions in pentagonal bipyramidal geometry. Chem Soc Rev 2022; 51:3280-3313. [PMID: 35353106 DOI: 10.1039/d2cs00028h] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The magnetic anisotropy associated with a pentagonal bipyramidal (PBP) coordination sphere is examined on the basis of experimental and theoretical investigations. The origin and the characteristics of this anisotropy are discussed in relation to the electronic configuration of the metal ions. The effects of crystal field, structural distortion, and a second-coordination sphere on the observed anisotropies for transition meal and lanthanide ions are outlined. For the Ln derivatives, we focus on compounds showing SMM-like behavior (i.e. slow relaxation of their magnetization) in order to highlight the essential chemical and structural parameters for achieving strong axial anisotropy. The use of PBP complexes to impart controlled magnetic anisotropy in polynuclear species such as SMMs or SCMs is also addressed. This review of the magnetic anisotropies associated with a pentagonal bipyramidal coordination sphere for transition metal and lanthanide ions is intended to highlight some general trends that can guide chemists towards designing a compound with specific properties.
Collapse
Affiliation(s)
- Jean-Pascal Sutter
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| | - Virginie Béreau
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France. .,Université de Toulouse, Institut Universitaire de Technologie Paul Sabatier-Département de Chimie, Av. Georges Pompidou, F-81104 Castres, France
| | - Valentin Jubault
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| | - Kateryna Bretosh
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| | - Céline Pichon
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| | - Carine Duhayon
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
25
|
Structures and Magnetic Properties of Binuclear Co(II) and Dy(III) Complexes with Cis-1,3-Dibenzyl-2-Imidazolidone-4,5-Dicarboxylic Acid of Variable Conformations. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02254-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Cai X, Cheng Z, Wu Y, Jing R, Tian SQ, Chen L, Li ZY, Zhang YQ, Cui HH, Yuan A. Tuning the Equatorial Negative Charge in Hexagonal Bipyramidal Dysprosium(III) Single-Ion Magnets to Improve the Magnetic Behavior. Inorg Chem 2022; 61:3664-3673. [PMID: 35171611 DOI: 10.1021/acs.inorgchem.1c03775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Taking advantage of the pentaethylene glycol (EO5) and deprotonation of EO5, a family of new structurally hexagonal bipyramidal Dy(III) complexes, [Dy(EO5)(2,6-dichloro-4-nitro-PhO)2](2,6-dichloro-4-nitro-PhO) (1), [Dy(EO5-BPh2)(2,6-dichloro-4-nitro-PhO)2] (2), and [Dy(EO5-BPh2)(2,6-dichloro-4-nitro-PhO)Cl] (3), were controbllably synthesized and structurally characterized. Magnetic measurements show that complex 1 is a zero-field SIM and has an observable hysteresis opening up to 4 K. Conversely, only under extra magnetic field is slow magnetic relaxation observed in 2 and 3. This considerable difference in the magnetic behavior is mainly caused by the change of the equatorial negative charge. Detailed ab initio calculations further elucidate that the quantum tunneling is induced by the presence of equatorial negative charge, and the magnetic anisotropy depends on the axial ligands. This work demonstrates that the absence of the equatorial negative charge should also be considered in the rational design of promising single molecular magnets based on the oblate ions.
Collapse
Affiliation(s)
- Xingwei Cai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Zhijie Cheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Yingying Wu
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, P. R. China
| | - Rong Jing
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Shuang-Qin Tian
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Zhao-Yang Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Hui-Hui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu 226019, P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| |
Collapse
|
27
|
Mondal A, Konar S. Effect of an axial coordination environment on quantum tunnelling of magnetization for dysprosium single-ion magnets with theoretical insight. Dalton Trans 2022; 51:1464-1473. [PMID: 34988577 DOI: 10.1039/d1dt03678e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we report two mononuclear dysprosium complexes [Dy(H4L){B(OMe)2(Ph)2}2](Cl)·MeOH (1) and [Dy(H4L){MeOH)2(NCS)2}](Cl) (2) [where H4L = 2,2'-(pyridine-2,6-diylbis(ethan-1-yl-1-ylidene))bis(N-phenylhydrazinecarboxamide)] with different axial coordination environments. The structural analysis revealed that the pentadentate H4L ligand binds through the equatorial position in both complexes. In complex 1, the axial positions are occupied by bidentate dimethoxydiphenyleborate [B(OMe)2(Ph)2]-. On the other hand, in complex 2, one axial position is occupied by two NCS- and one MeOH molecule while another MeOH molecule is coordinated to the other axial position. Magnetic measurements disclose the presence of field-induced slow relaxation of magnetization with an energy barrier of Ueff = 30 K for 1 whereas no such effective barrier was observed in complex 2. Detailed analysis of field and temperature dependence of the relaxation time confirms the major role of Raman, QTM, and direct processes rather than the Orbach process in complex 1. It was observed that [B(OMe)2(Ph)2]- provides higher axial anisotropy which slows down the QTM process (relaxation time for the QTM process is 2.70 × 10-5 s) in 1 as compared to NCS anions and MeOH molecules in 2 (1.03 × 10-8 s), and is responsible for the absence of an effective energy barrier in the latter complex as confirmed by ab initio calculations. The calculations also show that the presence of a large bidentate dimethoxydiphenyleborate ligand in axial positions may result in high-performance Dy-based single-ion magnets.
Collapse
Affiliation(s)
- Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass road, Bhauri, Bhopal-462066, MP, India.
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass road, Bhauri, Bhopal-462066, MP, India.
| |
Collapse
|
28
|
Tan P, Yang Y, Lv W, Jing R, Cui H, Zheng SJ, Chen L, Yuan A, Chen XT, Zhao Y. A cyanometallate- and carbonate-bridged dysprosium chain complex with a pentadentate macrocyclic ligand: synthesis, structure, and magnetism. NEW J CHEM 2022. [DOI: 10.1039/d2nj00784c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel one-dimensional polymeric cyanometallate- and carbonate-bridged dysprosium(iii) chain with a pentadentate macrocyclic ligand exhibits field-induced multiple-relaxation processes.
Collapse
Affiliation(s)
- Pengfei Tan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Yimou Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Wei Lv
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Rong Jing
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Huihui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Shao-Jun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yuyuan Zhao
- School of Medical Technology, Zhenjiang College, Zhenjiang 212003, P. R. China
| |
Collapse
|
29
|
Wu X, Li J, Yin B. The interpretation and prediction of lanthanide single-ion magnet from ab initio electronic structure calculation: The capability and limit. Dalton Trans 2022; 51:14793-14816. [DOI: 10.1039/d2dt01507b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-molecule magnet (SMM) is a fascinating system holding the potential of being revolutionary micro-electronic device in information technology. However current SMMs are still far away from real-life application due to...
Collapse
|
30
|
Wang Q, Gao HM, Xue WJ, Chen KY, Zhang Q, Huang M, Wang RF, Fan WL, Hua YP, Fang M. Four Ln2 compounds constructed by a polydentate Schiff base ligand: Gd2 compound displaying large magnetocaloric effect and Dy2 compound showing single-molecule magnet behavior. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Che Z, Chen J, Wang T, Yan H, Zhou TD, Guo R, Sun W. Wheel-like Gd42 Polynuclear Complex with Significant Magnetocaloric Effect. CrystEngComm 2022. [DOI: 10.1039/d2ce00315e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel wheel-like lanthanide nanoclusters with 42 nuclearity [Ln42L14(OH)28(OAc)84] (abbreviated as Ln42, 1-Gd; 2-Dy, HL=3-methoxysalicylaldehyde O-vanillin) were structurally and magnetically characterized. The Ln42 species were constructed by O-vanillin and lanthanide...
Collapse
|
32
|
Wang L, Yao X, Zou X, Li J, Sun W, Li G. Salen-type mononuclear dysprosium complex displays significant performance of single-molecule magnet. CrystEngComm 2022. [DOI: 10.1039/d1ce01684a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three salen-type mononuclear lanthanide complexes with general formula [Ln(5-NO2salcy)(NO3)(CH3OH)2] (Ln = Dy (1), Ho (2) and Er (3)) have been designed and synthesized by reactions of N,N'-bis(5-nitrosalicylaldehyde)ethane-1,2-cyclohexanediamine (5-NO2salcyH2) with various...
Collapse
|
33
|
Yu S, Hu HC, Liu D, Liang Y, Liang F, Yin B, Chen Z. Structural and magnetic studies of six-coordinated Schiff base Dy(III) complexes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00356b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the aim to tune magnetic anisotropies of six-coordinated Dy(III) complexes, four bis-Schiff bases bearing different spacers and one mono-Schiff base were designed, which are bis(2-hydroxylnaphthalenylmethylene)hydrazine (H2L1), bis(2-hydroxylnaphthylmethylene)ethylenediamine (H2L2), bis(2-hydroxylnaphthylmethylene)-propylenediamine...
Collapse
|
34
|
Ding YS, Blackmore WJA, Zhai YQ, Giansiracusa MJ, Reta D, Vitorica-Yrezabal I, Winpenny REP, Chilton NF, Zheng YZ. Studies of the Temperature Dependence of the Structure and Magnetism of a Hexagonal-Bipyramidal Dysprosium(III) Single-Molecule Magnet. Inorg Chem 2021; 61:227-235. [PMID: 34939782 DOI: 10.1021/acs.inorgchem.1c02779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hexagonal-bipyramidal lanthanide(III) complex [Dy(OtBu)Cl(18-C-6)][BPh4] (1; 18-C-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane ether) displays an energy barrier for magnetization reversal (Ueff) of ca. 1000 K in a zero direct-current field. Temperature-dependent X-ray diffraction studies of 1 down to 30 K reveal bending of the Cl-Ln-OtBu angle at low temperature. Using ab initio calculations, we show that significant bending of the O-Dy-Cl angle upon cooling from 273 to 100 K leads to a ca. 10% decrease in the energy of the excited electronic states. A thorough exploration of the temperature and field dependencies of the magnetic relaxation rate reveals that magnetic relaxation is dictated by five mechanisms in different regimes: Orbach, Raman-I, quantum tunnelling of magnetization, and Raman-II, in addition to the observation of a phonon bottleneck effect.
Collapse
Affiliation(s)
- You-Song Ding
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry, and School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - William J A Blackmore
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Yuan-Qi Zhai
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry, and School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Marcus J Giansiracusa
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Daniel Reta
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Inigo Vitorica-Yrezabal
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Richard E P Winpenny
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Nicholas F Chilton
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry, and School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
35
|
Larger magnetocaloric effect and single molecule magnet behavior in dinuclear Ln(III)-based compounds constructed from Schiff base ligand. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Mavragani N, Errulat D, Gálico DA, Kitos AA, Mansikkamäki A, Murugesu M. Radical‐Bridged Ln
4
Metallocene Complexes with Strong Magnetic Coupling and a Large Coercive Field. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Niki Mavragani
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
| | - Dylan Errulat
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
| | - Diogo A. Gálico
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
| | - Alexandros A. Kitos
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
| | | | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
37
|
Mavragani N, Errulat D, Gálico DA, Kitos AA, Mansikkamäki A, Murugesu M. Radical-Bridged Ln 4 Metallocene Complexes with Strong Magnetic Coupling and a Large Coercive Field. Angew Chem Int Ed Engl 2021; 60:24206-24213. [PMID: 34427984 DOI: 10.1002/anie.202110813] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 11/05/2022]
Abstract
Inducing magnetic coupling between 4f elements is an ongoing challenge. To overcome this formidable difficulty, we incorporate highly delocalized tetrazinyl radicals, which strongly couple with f-block metallocenes to form discrete tetranuclear complexes. Synthesis, structure, and magnetic properties of two tetranuclear [(Cp*2 Ln)4 (tz. )4 ]⋅3(C6 H6 ) (Cp*=pentamethylcyclopentadienyl; tz=1,2,4,5-tetrazine; Ln=Dy, Gd) complexes are reported. An in-depth examination of their magnetic properties through magnetic susceptibility measurements as well as computational studies support a highly sought-after radical-induced "giant-spin" model. Strong exchange interactions between the LnIII ions and tz. radicals lead to a strong magnet-like behaviour in this molecular magnet with a large coercive field of 30 kOe.
Collapse
Affiliation(s)
- Niki Mavragani
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Dylan Errulat
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Diogo A Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Alexandros A Kitos
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | | | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
38
|
Mondal A, Konar S. A remarkable energy barrier for spin reversal in a field induced dinuclear ytterbium single molecule magnet. Dalton Trans 2021; 50:13666-13670. [PMID: 34586116 DOI: 10.1039/d1dt02130c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dinuclear ytterbium complex has been designed with a strong ligand field in equatorial positions. Magnetic studies reveal the presence of easy-axis anisotropy and field induced slow relaxation of magnetization with a remarkable energy barrier, Ueff = 53.58 cm-1, the highest value reported for any Yb-based SMMs to date. Furthermore, the ab initio calculations disclose the importance of a weak axial ligand field to design high-performance Yb-based SMMs.
Collapse
Affiliation(s)
- Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISERB), Bhopal By-pass Road, Bhauri, Bhopal-462066, India.
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISERB), Bhopal By-pass Road, Bhauri, Bhopal-462066, India.
| |
Collapse
|
39
|
Ullah A, Baldoví JJ, Gaita-Ariño A, Coronado E. Insights on the coupling between vibronically active molecular vibrations and lattice phonons in molecular nanomagnets. Dalton Trans 2021; 50:11071-11076. [PMID: 34323911 DOI: 10.1039/d1dt01832a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spin-lattice relaxation is a key open problem to understand the spin dynamics of single-molecule magnets and molecular spin qubits. While modelling the coupling between spin states and local vibrations allows to determine the more relevant molecular vibrations for spin relaxation, this is not sufficient to explain how energy is dissipated towards the thermal bath. Herein, we employ a simple and efficient model to examine the coupling of local vibrational modes with long-wavelength longitudinal and transverse phonons in the clock-like spin qubit [Ho(W5O18)2]9-. We find that in crystals of this polyoxometalate the vibrational mode previously found to be vibronically active at low temperature does not couple significantly to lattice phonons. This means that further intramolecular energy transfer via anharmonic vibrations is necessary for spin relaxation in this system. Finally, we discuss implications for the spin-phonon coupling of [Ho(W5O18)2]9- deposited on a MgO (001) substrate, offering a simple methodology that can be extrapolated to estimate the effects on spin relaxation of different surfaces, including 2D materials.
Collapse
Affiliation(s)
- Aman Ullah
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán Martínez, 2, Paterna 46980, Spain.
| | | | | | | |
Collapse
|
40
|
KALITA PANKAJ, GOURA JOYDEB, NAYAK PRAKASH, COLACIO ENRIQUE, CHANDRASEKHAR VADAPALLI. Octanuclear {Ln8} complexes: magneto-caloric effect in the {Gd8} analogue. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01920-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Weng GG, Huang XD, Hu R, Bao SS, Zou Q, Wen GH, Zhang YQ, Zheng LM. Homochiral Dysprosium Phosphonate Nanowires: Morphology Control and Magnetic Dynamics. Chem Asian J 2021; 16:2648-2658. [PMID: 34288530 DOI: 10.1002/asia.202100670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/19/2021] [Indexed: 02/03/2023]
Abstract
Controllable synthesis of uniformly distributed nanowires of coordination polymers with inherent physical functions is highly desirable but challenging. In particular, the combination of chirality and magnetism into nanowires has potential applications in multifunctional materials and spintronic devices. Herein, we report four pairs of enantiopure coordination polymers with formulae S-, R-Dy(cyampH)3 ⋅ CH3 COOH ⋅ 2H2 O (S-1, R-1), S-, R-Dy(cyampH)3 ⋅ 3H2 O (S-2, R-2), S-, R-Dy(cyampH)2 (C2 H5 COO) ⋅ 3H2 O (S-3, R-3) and S-, R-Dy(cyampH)3 ⋅ 0.5C2 H5 COOH ⋅ 2H2 O (S-4, R-4) [cyampH2 =S-, R-(1-cyclohexylethyl)aminomethylphosphonic acids], which were obtained depending on the pH of the reaction mixtures and the specific carboxylic acid used as pH regulator. Interestingly, compounds 3 were obtained as superlong nanowires, showing 1D neutral chain structure which contains both phosphonate and propionate anion ligands. While compounds 1, 2 and 4 appeared as block-like crystals, superhelices and nanorods, respectively, and exhibited similar neutral chain structures containing only phosphonate ligand. Slow magnetization relaxation characteristic of single-molecule magnet (SMM) behavior was observed for compounds S-1 and S-3. Theoretical calculations were performed to rationalize the magneto-structural relationships.
Collapse
Affiliation(s)
- Guo-Guo Weng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Rui Hu
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Qian Zou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Ge-Hua Wen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
42
|
Near-Infrared Emissive Cyanido-Bridged {YbFe2} Molecular Nanomagnets Sensitive to the Nitrile Solvents of Crystallization. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7060079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One of the pathways toward luminescent single-molecule magnets (SMMs) is realized by the self-assembly of lanthanide(3+) ions with cyanido transition metal complexes. We report a novel family of emissive SMMs, {YbIII(4-pyridone)4[FeII(phen)2(CN)2]2}(CF3SO3)3·solv (solv = 2MeCN, 1·MeCN; 2AcrCN, 1·AcrCN; 2PrCN, 1·PrCN; 2MalCN·1MeOH; 1·MalCN; MeCN = acetonitrile, AcrCN = acrylonitrile, PrCN = propionitrile, MalCN = malononitrile). They are based on paramagnetic YbIII centers coordinating diamagnetic [FeII(phen)2(CN)2] metalloligands but differ in the nitrile solvents of crystallization. They exhibit a field-induced slow magnetic relaxation dominated by a Raman process, without an Orbach relaxation as indicated by AC magnetic data and the ab initio calculations. The Raman relaxation is solvent-dependent as represented by the power “n” of the BRamanTn contribution varying from 3.07(1), to 2.61(1), 2.37(1), and 1.68(4) for 1·MeCN, 1·PrCN, 1·AcrCN, and 1·MalCN, respectively, while the BRaman parameter adopts the opposite trend. This was correlated with the variation of phonon modes schemes, including the number of available vibrational modes and their energies, dependent on the increasing complexity of the applied nitrile. 1·MeCN and 1·MalCN show the additional T-independent relaxation assignable to dipole-dipole interactions as confirmed by its suppression in 1·AcrCN and 1·PrCN revealing longer Yb–Yb distances and the disappearance in the LuIII-diluted 1·MeCN@Lu. All compounds exhibit YbIII–centered near-infrared photoluminescence sensitized by organic ligands.
Collapse
|
43
|
Jin P, Yu K, Zhai Y, Luo Q, Wang Y, Zhang X, Lv Y, Zheng Y. Chelating Guanidinates for Dysprosium(
III
)
Single‐Molecule
Magnets
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Peng‐Bo Jin
- Xi'an Jiaotong University Shenzhen Research School, Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior for Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Physics and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 China
| | - Ke‐Xin Yu
- Xi'an Jiaotong University Shenzhen Research School, Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior for Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Physics and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 China
| | - Yuan‐Qi Zhai
- Xi'an Jiaotong University Shenzhen Research School, Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior for Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Physics and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 China
| | - Qian‐Cheng Luo
- Xi'an Jiaotong University Shenzhen Research School, Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior for Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Physics and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 China
| | - Yi‐Dian Wang
- Xi'an Jiaotong University Shenzhen Research School, Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior for Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Physics and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 China
| | - Xu‐Feng Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University 277 West Yanta Road, Xi'an Shaanxi 710061 China
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University 277 West Yanta Road, Xi'an Shaanxi 710061 China
| | - Yan‐Zhen Zheng
- Xi'an Jiaotong University Shenzhen Research School, Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior for Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Physics and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 China
| |
Collapse
|
44
|
Reta D, Kragskow JGC, Chilton NF. Ab Initio Prediction of High-Temperature Magnetic Relaxation Rates in Single-Molecule Magnets. J Am Chem Soc 2021; 143:5943-5950. [DOI: 10.1021/jacs.1c01410] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Daniel Reta
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Jon G. C. Kragskow
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Nicholas F. Chilton
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| |
Collapse
|
45
|
Freitag K, Stennett CR, Mansikkamäki A, Fischer RA, Power PP. Two-Coordinate, Nonlinear Vanadium(II) and Chromium(II) Complexes of the Silylamide Ligand–N(SiMePh2)2: Characterization and Confirmation of Orbitally Quenched Magnetic Moments in Complexes with Sub-d5 Electron Configurations. Inorg Chem 2021; 60:4108-4115. [DOI: 10.1021/acs.inorgchem.1c00168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kerstin Freitag
- Inorganic and Metalorganic Chemistry, Technical University Munich, D-85748, Garching, Germany
| | - Cary R. Stennett
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Akseli Mansikkamäki
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, Oulu, FIN-90014, Finland
| | - Roland A. Fischer
- Inorganic and Metalorganic Chemistry, Technical University Munich, D-85748, Garching, Germany
| | - Philip P. Power
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
46
|
Mondal A, Konar S. Strong Equatorial Crystal Field Enhances the Axial Anisotropy and Energy Barrier for Spin Reversal Process in Yb 2 Single Molecule Magnets. Chemistry 2021; 27:3449-3456. [PMID: 33084133 DOI: 10.1002/chem.202004379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Indexed: 02/03/2023]
Abstract
The importance of equatorial crystal fields on magnetic anisotropy of ytterbium single molecule magnets (SMMs) is observed for the first time. Herein, we report three similar dinuclear ytterbium complexes with the formula [Yb2 (3-OMe-L)2 (DMF)2 (NO3 )2 ]⋅DMF (1), [Yb2 (3-H-L)2 (DMF)2 (NO3 )2 ]⋅DMF⋅H2 O (2), and [Yb2 (3-NO3 -L)2 (DMF)2 (NO3 )2 ] (3), [where 3-X-H2 L=N'-(2-hydroxy-3-X-benzylidene)picolinohydrazide, X=OMe (1), H (2) NO2 (3)]. Detailed magnetic measurements reveal the presence of weak antiferromagnetic interactions between the Yb centers and a field-induced slow relaxation of magnetization in all complexes. A higher energy barrier for spin reversal was observed for complex 1 (Ueff =50 K) and it decreases in the order of 2 (47 K) to 3 (40 K). Notably, complex 1 shows a remarkable energy barrier within the frequency range of 1-850 Hz reported for Yb-based SMMs. Further, ab initio calculations show a higher axial anisotropy and lower quantum tunneling of magnetization (QTM) in the ground state for 1 compared to 2 and 3. It was also observed that the presence of a strong crystal field in the equatorial plane (when the ∡ O1-Yb-O3 bond angle is close to 90°) enhances the axial anisotropy and improves the SMM behavior in the studied complexes. Both the experimental and theoretical analysis of relaxation dynamics discloses that Raman and QTM play major role on slow relaxation process for all complexes. To provide more insight into the exchange interactions, broken-symmetry DFT calculations were performed.
Collapse
Affiliation(s)
- Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
47
|
Shi XH, Wang WM, Yan LL, Fan CJ, Pang JL, Wu ZL. Crystal structure and single-molecule magnet behavior of a novel tetranuclear Dy(III)-based cluster. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Wu H, Li M, Xia Z, Montigaud V, Cador O, Le Guennic B, Ke H, Wang W, Xie G, Chen S, Gao S. High temperature quantum tunnelling of magnetization and thousand kelvin anisotropy barrier in a Dy 2 single-molecule magnet. Chem Commun (Camb) 2021; 57:371-374. [PMID: 33325464 DOI: 10.1039/d0cc06993k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We report here a dinuclear DyIII iodine-bridged single-molecule magnet self-assembled by cis/trans coordination chemistry that displays a large anisotropy barrier of ca. 1300 K and a hysteresis opening temperature of 16 K. High temperature quantum tunnelling of magnetization is observed up to 56 K in zero-field and explained by the combination of the large anisotropy barrier and the local transverse field at the trans site. The results provide a model for thorough understanding of the effect of electronic structure on the magnetic behavior of lanthanide complexes.
Collapse
Affiliation(s)
- Haipeng Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
A Local
D
4h
Symmetric Dysprosium(III) Single‐Molecule Magnet with an Energy Barrier Exceeding 2000 K**. Chemistry 2021; 27:2623-2627. [DOI: 10.1002/chem.202003931] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/23/2020] [Indexed: 11/07/2022]
|
50
|
A rhombic shaped {GdIII2CoII2} heterometallic cluster exhibiting larger cryogenic magnetocaloric effect. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|