1
|
Jeon BK, Cho SY, Lee DH. Stereoselective Approach to the Core Structure of (+)-Phainanoid A via Strategically Engineered Cascade Polyene Cyclization. Org Lett 2024; 26:8079-8083. [PMID: 39291842 DOI: 10.1021/acs.orglett.4c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Stereoselective synthesis of 3b and its cascade polyene cyclization to 18b have been described. Acyclic polyene 3b was prepared from allyl bromide 4 and 1,3-dithiane 5, and intermediates 4 and 5 were synthesized from the commercially available geraniol (6) and cyclopenten-2-one (8), respectively, using enantioselective reduction of ketone, Johnson-Claisen rearrangement, and the Suzuki reaction as key steps. Au(I)-mediated diastereoselective polyene cyclization of 3b efficiently afforded tetracyclic compound 18b.
Collapse
Affiliation(s)
- Bo Keun Jeon
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - So Yong Cho
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Duck Hyung Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| |
Collapse
|
2
|
Yang F, Oladokun A, Porco JA. Evolution of a Strategy for the Unified, Asymmetric Total Syntheses of DMOA-Derived Spiromeroterpenoids. J Org Chem 2024; 89:11891-11908. [PMID: 39133739 PMCID: PMC11382302 DOI: 10.1021/acs.joc.4c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
DMOA-derived spiromeroterpenoids are a group of natural products with complex structures and varied biological activities. Recently, we reported the first enantioselective total synthesis of five spiromeroterpenoids based on a fragment coupling strategy. This full account describes details of a strategy evolution that culminated in successful syntheses of the targeted natural products. Although our alkylative dearomatization methodology was unable to deliver the desired spirocyclic products in our first-generation approach, our second-generation approach based on oxidative [3 + 2] cycloaddition produced the asnovolin H core along with several complex dimers. Challenges with the dearomatization approach finally led us to develop a third generation, non-dearomatization approach based on a fragment coupling strategy to construct the conserved, sterically hindered bis-neopentyl linkage of the spiromeroterpenoids through 1,2-addition. To enable scalable access of the natural products, a refined, multigram-scale synthesis of the coupling partners was developed. A series of stereoselective transformations were developed through judicious choice of reagents and conditions. Finally, modular spirocycle construction logic was demonstrated through the synthesis of a small library of spiromeroterpenoid analogues.
Collapse
Affiliation(s)
- Feng Yang
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Amira Oladokun
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - John A Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
3
|
Zhang Z, Qian X, Gu Y, Gui J. Controllable skeletal reorganizations in natural product synthesis. Nat Prod Rep 2024; 41:251-272. [PMID: 38291905 DOI: 10.1039/d3np00066d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Covering: 2016 to 2023The synthetic chemistry community is always in pursuit of efficient routes to natural products. Among the many available general strategies, skeletal reorganization, which involves the formation, cleavage, and migration of C-C and C-heteroatom bonds, stands out as a particularly useful approach for the efficient assembly of molecular skeletons. In addition, it allows for late-stage modification of natural products for quick access to other family members or unnatural derivatives. This review summarizes efficient syntheses of steroid, terpenoid, and alkaloid natural products that have been achieved by means of this strategy in the past eight years. Our goal is to illustrate the strategy's potency and reveal the spectacular human ingenuity demonstrated in its use and development.
Collapse
Affiliation(s)
- Zeliang Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xiao Qian
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Jinghan Gui
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
4
|
Aynetdinova D, Jacques R, Christensen KE, Donohoe TJ. Alcohols as Efficient Intermolecular Initiators for a Highly Stereoselective Polyene Cyclisation Cascade. Chemistry 2023; 29:e202203732. [PMID: 36478469 PMCID: PMC10946764 DOI: 10.1002/chem.202203732] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
The use of benzylic and allylic alcohols in HFIP solvent together with Ti(Oi Pr)4 has been shown to trigger a highly stereoselective polyene cyclisation cascade. Three new carbon-carbon bonds are made during the process and complete stereocontrol of up to five new stereogenic centers is observed. The reaction is efficient, has high functional group tolerance and is atom-economic generating water as a stoichiometric by-product. A new polyene substrate-class is employed, and subsequent mechanistic studies indicate a stereoconvergent mechanism. The products of this reaction can be used to synthesize steroid-analogues in a single step.
Collapse
Affiliation(s)
- Daniya Aynetdinova
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordOX1 3TAUK
| | - Reece Jacques
- Early Chemical Development, Medicinal Chemistry R&DVertex PharmaceuticalsAbingtonOX14 4RWUK
| | | | - Timothy J. Donohoe
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordOX1 3TAUK
| |
Collapse
|
5
|
Lavigne C, Gomes G, Pollice R, Aspuru-Guzik A. Guided discovery of chemical reaction pathways with imposed activation. Chem Sci 2022; 13:13857-13871. [PMID: 36544742 PMCID: PMC9710306 DOI: 10.1039/d2sc05135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Computational power and quantum chemical methods have improved immensely since computers were first applied to the study of reactivity, but the de novo prediction of chemical reactions has remained challenging. We show that complex reaction pathways can be efficiently predicted in a guided manner using chemical activation imposed by geometrical constraints of specific reactive modes, which we term imposed activation (IACTA). Our approach is demonstrated on realistic and challenging chemistry, such as a triple cyclization cascade involved in the total synthesis of a natural product, a water-mediated Michael addition, and several oxidative addition reactions of complex drug-like molecules. Notably and in contrast with traditional hand-guided computational chemistry calculations, our method requires minimal human involvement and no prior knowledge of the products or the associated mechanisms. We believe that IACTA will be a transformational tool to screen for chemical reactivity and to study both by-product formation and decomposition pathways in a guided way.
Collapse
Affiliation(s)
- Cyrille Lavigne
- Department of Computer Science, University of Toronto214 College St.TorontoOntarioM5T 3A1Canada
| | - Gabe Gomes
- Department of Computer Science, University of Toronto214 College St.TorontoOntarioM5T 3A1Canada,Chemical Physics Theory Group, Department of Chemistry, University of Toronto80 St George StTorontoOntarioM5S 3H6Canada
| | - Robert Pollice
- Department of Computer Science, University of Toronto214 College St.TorontoOntarioM5T 3A1Canada,Chemical Physics Theory Group, Department of Chemistry, University of Toronto80 St George StTorontoOntarioM5S 3H6Canada
| | - Alán Aspuru-Guzik
- Department of Computer Science, University of Toronto214 College St.TorontoOntarioM5T 3A1Canada,Chemical Physics Theory Group, Department of Chemistry, University of Toronto80 St George StTorontoOntarioM5S 3H6Canada,Department of Chemical Engineering & Applied Chemistry, University of Toronto200 College St.OntarioM5S 3E5Canada,Department of Materials Science & Engineering, University of Toronto184 College St.OntarioM5S 3E4Canada,Vector Institute for Artificial Intelligence661 University Ave Suite 710TorontoOntarioM5G 1M1Canada,Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR)661 University AveTorontoOntarioM5GCanada
| |
Collapse
|
6
|
Schuppe AW, Liu Y, Gonzalez-Hurtado E, Zhao Y, Jiang X, Ibarraran S, Huang D, Wang E, Lee J, Loria JP, Dixit VD, Li X, Newhouse TR. Unified Total Synthesis of the Limonoid Alkaloids: Strategies for the De Novo Synthesis of Highly Substituted Pyridine Scaffolds. Chem 2022; 8:2856-2887. [PMID: 37396824 PMCID: PMC10311986 DOI: 10.1016/j.chempr.2022.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Highly substituted pyridine scaffolds are found in many biologically active natural products and therapeutics. Accordingly, numerous complementary de novo approaches to obtain differentially substituted pyridines have been disclosed. This article delineates the evolution of the synthetic strategies designed to assemble the demanding tetrasubstituted pyridine core present in the limonoid alkaloids isolated from Xylocarpus granatum, including xylogranatopyridine B, granatumine A and related congeners. In addition, NMR calculations suggested structural misassignment of several limonoid alkaloids, and predicted their C3-epimers as the correct structures, which was further validated unequivocally through chemical synthesis. The materials produced in this study were evaluated for cytotoxicity, anti-oxidant effects, anti-inflammatory action, PTP1B and Nlrp3 inflammasome inhibition, which led to compelling anti-inflammatory activity and anti-oxidant effects being discovered.
Collapse
Affiliation(s)
- Alexander W. Schuppe
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Yannan Liu
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Elsie Gonzalez-Hurtado
- Department of Pathology, Immunobiology, Comparative Medicine, Yale School of Medicine, 310 Cedar Street, New Haven, Connecticut 06520, United States
| | - Yizhou Zhao
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Xuefeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310018, P. R. China
| | - Sebastian Ibarraran
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - David Huang
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Emma Wang
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Jaehoo Lee
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - J. Patrick Loria
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Vishwa Deep Dixit
- Department of Pathology, Immunobiology, Comparative Medicine, Yale School of Medicine, 310 Cedar Street, New Haven, Connecticut 06520, United States
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310018, P. R. China
| | - Timothy R. Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
- Lead contact
| |
Collapse
|
7
|
Fuloria NK, Raheja RK, Shah KH, Oza MJ, Kulkarni YA, Subramaniyan V, Sekar M, Fuloria S. Biological activities of meroterpenoids isolated from different sources. Front Pharmacol 2022; 13:830103. [PMID: 36199687 PMCID: PMC9527340 DOI: 10.3389/fphar.2022.830103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Meroterpenoids are natural products synthesized by unicellular organisms such as bacteria and multicellular organisms such as fungi, plants, and animals, including those of marine origin. Structurally, these compounds exhibit a wide diversity depending upon the origin and the biosynthetic pathway they emerge from. This diversity in structural features imparts a wide spectrum of biological activity to meroterpenoids. Based on the biosynthetic pathway of origin, these compounds are either polyketide-terpenoids or non-polyketide terpenoids. The recent surge of interest in meroterpenoids has led to a systematic screening of these compounds for many biological actions. Different meroterpenoids have been recorded for a broad range of operations, such as anti-cholinesterase, COX-2 inhibitory, anti-leishmanial, anti-diabetic, anti-oxidative, anti-inflammatory, anti-neoplastic, anti-bacterial, antimalarial, anti-viral, anti-obesity, and insecticidal activity. Meroterpenoids also possess inhibitory activity against the expression of nitric oxide, TNF- α, and other inflammatory mediators. These compounds also show renal protective, cardioprotective, and neuroprotective activities. The present review includes literature from 1999 to date and discusses 590 biologically active meroterpenoids, of which 231 are from fungal sources, 212 are from various species of plants, and 147 are from marine sources such as algae and sponges.
Collapse
Affiliation(s)
| | | | - Kaushal H. Shah
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manisha J. Oza
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Yogesh A. Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, Mumbai, India
| | | | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong, Malaysia
- *Correspondence: Shivkanya Fuloria,
| |
Collapse
|
8
|
Yang F, Porco JA. Unified, Asymmetric Total Synthesis of the Asnovolins and Related Spiromeroterpenoids: A Fragment Coupling Approach. J Am Chem Soc 2022; 144:12970-12978. [DOI: 10.1021/jacs.2c05366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Feng Yang
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - John A. Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
9
|
Aher RD, Ishikawa A, Yamanaka M, Tanaka F. Catalytic Enantioselective Construction of Decalin Derivatives by Dynamic Kinetic Desymmetrization of C2-Symmetric Derivatives through Aldol-Aldol Annulation. J Org Chem 2022; 87:8151-8157. [PMID: 35666096 DOI: 10.1021/acs.joc.2c00889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed and investigated a catalytic desymmetrization reaction strategy that affords functionalized decalin derivatives with high enantioselectivities from C2-symmetric derivatives through aldol-aldol annulation. We identified the structural moieties of the catalyst necessary for the formation of the decalin derivative with high enantioselectivity. We elucidated the mechanisms of the catalyzed reactions: the first aldol reaction step was reversible, and the second aldol step was rate-limiting and stereochemistry-determining and was enantioselective. Using theoretical calculations guided by the experimental results, we identified the interactions between the catalyst and the transition state that led to the major enantiomer. The information obtained in this study will be useful for the development of catalysts and chemical transformations.
Collapse
Affiliation(s)
- Ravindra D Aher
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Atsuhiro Ishikawa
- Department of Chemistry, Rikkyo University, 3-34-1 Nish-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Masahiro Yamanaka
- Department of Chemistry, Rikkyo University, 3-34-1 Nish-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
10
|
Pan A, Chojnacka M, Crowley R, Göttemann L, Haines BE, Kou KGM. Synergistic Brønsted/Lewis acid catalyzed aromatic alkylation with unactivated tertiary alcohols or di- tert-butylperoxide to synthesize quaternary carbon centers. Chem Sci 2022; 13:3539-3548. [PMID: 35432882 PMCID: PMC8943850 DOI: 10.1039/d1sc06422c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Dual Brønsted/Lewis acid catalysis involving environmentally benign, readily accessible protic acid and iron promotes site-selective tert-butylation of electron-rich arenes using di-tert-butylperoxide. This transformation inspired the development of a synergistic Brønsted/Lewis acid catalyzed aromatic alkylation that fills a gap in the Friedel-Crafts reaction literature by employing unactivated tertiary alcohols as alkylating agents, leading to new quaternary carbon centers. Corroborated by DFT calculations, the Lewis acid serves a role in enhancing the acidity of the Brønsted acid. The use of non-allylic, non-benzylic, and non-propargylic tertiary alcohols represents an underexplored area in Friedel-Crafts reactivity.
Collapse
Affiliation(s)
- Aaron Pan
- Department of Chemistry, University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Maja Chojnacka
- Department of Chemistry, University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Robert Crowley
- Department of Chemistry, University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Lucas Göttemann
- Department of Chemistry, University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Brandon E Haines
- Department of Chemistry, Westmont College 955 La Paz Road Santa Barbara CA 93108 USA
| | - Kevin G M Kou
- Department of Chemistry, University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| |
Collapse
|
11
|
Rasmussen MH, Jensen JH. Fast and automated identification of reactions with low barriers using meta-MD simulations. PEERJ PHYSICAL CHEMISTRY 2022. [DOI: 10.7717/peerj-pchem.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We test our meta-molecular dynamics (MD) based approach for finding low-barrier (<30 kcal/mol) reactions on uni- and bimolecular reactions extracted from the barrier dataset developed by Grambow, Pattanaik & Green (2020). For unimolecular reactions the meta-MD simulations identify 25 of the 26 products found by Grambow, Pattanaik & Green (2020), while the subsequent semiempirical screening eliminates an additional four reactions due to an overestimation of the reaction energies or estimated barrier heights relative to DFT. In addition, our approach identifies 36 reactions not found by Grambow, Pattanaik & Green (2020), 10 of which are <30 kcal/mol. For bimolecular reactions the meta-MD simulations identify 19 of the 20 reactions found by Grambow, Pattanaik & Green (2020), while the subsequent semiempirical screening eliminates an additional reaction. In addition, we find 34 new low-barrier reactions. For bimolecular reactions we found that it is necessary to “encourage” the reactants to go to previously undiscovered products, by including products found by other MD simulations when computing the biasing potential as well as decreasing the size of the molecular cavity in which the MD occurs, until a reaction is observed. We also show that our methodology can find the correct products for two reactions that are more representative of those encountered in synthetic organic chemistry. The meta-MD hyperparameters used in this study thus appear to be generally applicable to finding low-barrier reactions.
Collapse
|
12
|
Zhang K, Zhang G, Hou X, Ma C, Liu J, Che Q, Zhu T, Li D. A Fungal Promiscuous UbiA Prenyltransferase Expands the Structural Diversity of Chrodrimanin-Type Meroterpenoids. Org Lett 2022; 24:2025-2029. [PMID: 35261248 DOI: 10.1021/acs.orglett.2c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prenyltransferases play important roles in the diversification of natural products and the improvement of biological activities. A UbiA-type prenyltransferase CdnC with substrate promiscuity was identified as the pivotal builder of the noncanonical chrodrimanin skeletons, which carry a benzo-cyclohexanone structure as the nonterpene part. In vitro and heterologous expression studies with CdnC led to the production of a series of novel chrodrimanin-like structures. The discovery of CdnC offers a referable strategy for the biosynthesis and structural diversification of farnesyl-derived meroterpenoids.
Collapse
Affiliation(s)
- Kaijin Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guojian Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China.,Marine Biomedical Research Institute of Qingdao, Qingdao 266101, China
| | - Xuewen Hou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chuanteng Ma
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Junyu Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qian Che
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianjiao Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Dehai Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
13
|
Márquez-Cadena MA, Zhang W, Tong R. Synthetic Studies toward the Berkeleyacetal Core Architecture. Org Lett 2021; 23:9227-9231. [PMID: 34780201 DOI: 10.1021/acs.orglett.1c03559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Berkeleyacetals are structurally complex natural products that have shown potent anti-inflammatory activity. The presence of a highly dense oxygen functionality and a polycyclic ring system presents significant synthetic challenges. Herein, we report an efficient strategy for the construction of the tetracyclic core system of berkeleyacetal. Our synthetic strategy features two cycloadditions ([4+2] and [5+2]) to forge the tetracyclic core and Achmatowicz rearrangement for the preparation of the cyclization substrates containing B and E rings.
Collapse
Affiliation(s)
- Miguel Adrián Márquez-Cadena
- Department of Chemistry and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong 999077, China
| | - Wei Zhang
- Department of Chemistry and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong 999077, China
| | - Rongbiao Tong
- Department of Chemistry and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
14
|
Zhang Y, Ji Y, Franzoni I, Guo C, Jia H, Hong B, Li H. Enantioselective Total Synthesis of Berkeleyone A and Preaustinoids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Yunpeng Ji
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Ivan Franzoni
- NuChem Sciences 2350 rue Cohen Suite 201, Saint-Laurent Quebec H4R 2N6 Canada
| | - Chuning Guo
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Hongli Jia
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Benke Hong
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Houhua Li
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| |
Collapse
|
15
|
Zhang Y, Ji Y, Franzoni I, Guo C, Jia H, Hong B, Li H. Enantioselective Total Synthesis of Berkeleyone A and Preaustinoids. Angew Chem Int Ed Engl 2021; 60:14869-14874. [PMID: 33856105 DOI: 10.1002/anie.202104014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 01/09/2023]
Abstract
Herein we report the first enantioselective total synthesis of 3,5-dimethylorsellinic acid-derived meroterpenoids (-)-berkeleyone A and its five congeners ((-)-preaustinoids A, A1, B, B1, and B2) in 12-15 steps, starting from commercially available 2,4,6-trihydroxybenzoic acid hydrate. Based upon the recognition of latent symmetry within D-ring, our convergent synthesis features two critical reactions: 1) a symmetry-breaking, diastereoselective dearomative alkylation to assemble the entire carbon core, and 2) a Sc(OTf)3 -mediated sequential Krapcho dealkoxycarbonylation/carbonyl α-tert-alkylation to forge the intricate bicyclo[3.3.1]nonane framework. We also conducted our preliminary biomimetic investigations and uncovered a series of rearrangements (α-ketol, α-hydroxyl-β-diketone, etc.) responsible for the biomimetic diversification of (-)-berkeleyone A into its five preaustinoid congeners.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Yunpeng Ji
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Ivan Franzoni
- NuChem Sciences, 2350 rue Cohen Suite 201, Saint-Laurent, Quebec, H4R 2N6, Canada
| | - Chuning Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Hongli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Benke Hong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Houhua Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
16
|
Lenormand A, Reyes Méndez L, Coulomb J. Relay-Heck Cross-Coupling Between Alkenyl Halides and Unsaturated Alcohols in the Synthesis of Open-Chain Analogues of Musk Odorant Vulcanolide. Chemistry 2021; 27:9276-9280. [PMID: 33882173 DOI: 10.1002/chem.202101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 11/07/2022]
Abstract
Unactivated alkenyl iodides and bromides underwent an unprecedented palladium-catalyzed relay-Heck cross-coupling with a whole range of alkenols of different chain lengths linking the alkene and the alcohol, affording unsaturated aldehydes and ketones in moderate to good yields. In contrast, alkenyl triflates were not suitable partners for this reaction. This method allowed the preparation of open-chain analogues of the musk odorant Vulcanolide, several of which retained key olfactory properties of the parent molecule.
Collapse
Affiliation(s)
- Anthony Lenormand
- Firmenich SA, Corporate R&D Division, Rue de la Bergère 7, 1242, Satigny, Switzerland
| | - Lucía Reyes Méndez
- Firmenich SA, Corporate R&D Division, Rue de la Bergère 7, 1242, Satigny, Switzerland
| | - Julien Coulomb
- Firmenich SA, Corporate R&D Division, Rue de la Bergère 7, 1242, Satigny, Switzerland
| |
Collapse
|
17
|
Wong HNC, Peng XS, Zhong Z, Lyu MY, Ma HR. Pivotal Reactions in the Creation of the Polycyclic Skeleton of Cryptotrione. Synlett 2021. [DOI: 10.1055/a-1472-4594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AbstractThree pivotal reactions, namely, enyne cycloisomerization, polyene cyclization, and quinone methide formation, are applied to synthesize the complex polycyclic skeleton of cryptotrione. This review summarizes the most prominent applications of these three reactions to the total syntheses of natural products, covering results published in the literature between 2011 and 2020.1 Introduction2 Three Pivotal Reactions Applied to Create the Polycyclic Framework of Cryptotrione2.1 Enyne Cycloisomerization2.2 Polyene Cyclization2.3 Quinone Methide Formation3 Conclusion
Collapse
Affiliation(s)
- Henry N. C. Wong
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen)
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong
| | - Xiao-Shui Peng
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen)
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong
| | - Zhuliang Zhong
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong
| | - Mao-Yun Lyu
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong
| | - Hao-Ran Ma
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen)
| |
Collapse
|
18
|
Schuppe AW, Liu Y, Newhouse TR. An invocation for computational evaluation of isomerization transforms: cationic skeletal reorganizations as a case study. Nat Prod Rep 2021; 38:510-527. [PMID: 32931541 PMCID: PMC7956923 DOI: 10.1039/d0np00005a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 2010 to 2020This review article describes how cationic rearrangement reactions have been used in natural product total synthesis over the last decade as a case study for the many productive ways by which isomerization reactions are enabling for synthesis. This review argues that isomerization reactions in particular are well suited for computational evaluation, as relatively simple calculations can provide significant insight.
Collapse
Affiliation(s)
- Alexander W Schuppe
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511-8107, USA.
| | | | | |
Collapse
|
19
|
Shen X, Thach DQ, Ting CP, Maimone TJ. Annulative Methods in the Synthesis of Complex Meroterpene Natural Products. Acc Chem Res 2021; 54:583-594. [PMID: 33448794 DOI: 10.1021/acs.accounts.0c00781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
From the venerable Robinson annulation to the irreplaceable Diels-Alder cycloaddition, annulation reactions have fueled the progression of the field of natural product synthesis throughout the past century. In broader terms, the ability to form a cyclic molecule directly from two or more simpler fragments has transformed virtually every aspect of the chemical sciences from the synthesis of organic materials to bioconjugation chemistry and drug discovery. In this Account, we describe the evolution of our meroterpene synthetic program over the past five years, enabled largely by the development of a tailored anionic annulation process for the synthesis of hydroxylated 1,3-cyclohexanediones from lithium enolates and the reactive β-lactone-containing feedstock chemical diketene.First, we provide details on short total syntheses of the prototypical polycyclic polyprenylated acylphloroglucinol (PPAP) natural products hyperforin and garsubellin A, which possess complex bicyclo[3.3.1]nonane architectures. Notably, these molecules have served as compelling synthetic targets for several decades and induce a number of biological effects of relevance to neuroscience and medicine. By merging our diketene annulation process with a hypervalent iodine-mediated oxidative ring expansion, bicyclo[3.3.1]nonane architectures can be easily prepared from simple 5,6-fused bicyclic diketones in only two chemical operations. Leveraging these two key chemical reactions in combination with various other stereoselective transformations allowed for these biologically active targets to be prepared in racemic form in only 10 steps.Next, we extend this strategy to the synthesis of complex fungal-derived meroterpenes generated biosynthetically from the coupling of 3,5-dimethylorsellinic acid (DMOA) and farnesyl pyrophosphate. A Ti(III)-mediated radical cyclization of a terminal epoxide was used to rapidly prepare a 6,6,5-fused tricyclic ketone which served as an input for our annulation/rearrangement process, ultimately enabling a total synthesis of protoaustinoid A, an important biosynthetic intermediate in DMOA-derived meroterpene synthesis, and its oxidation product berkeleyone A. Through a radical-based, abiotic rearrangement process, the bicyclo[3.3.1]nonane cores of these natural products could again be isomerized, resulting in the 6,5-fused ring systems of the andrastin family and ultimately delivering a total synthesis of andrastin D and preterrenoid. Notably, these isomerization transformations proved challenging when employing classic, acid-induced conditions for carbocation generation, thus highlighting the power of radical biomimicry in total synthesis. Finally, further oxidation and rearrangement allowed for access to terrenoid and the lactone-containing metabolite terretonin L.Overall, the merger of annulative diketene methodology with an oxidative rearrangement transformation has proven to be a broadly applicable strategy to synthesize bicyclo[3.3.1]nonane-containing natural products, a class of small molecules with over 1000 known members.
Collapse
Affiliation(s)
- Xingyu Shen
- Department of Chemistry, University of California−Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| | - Danny Q. Thach
- Department of Chemistry, University of California−Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| | - Chi P. Ting
- Department of Chemistry, University of California−Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
- Department of Chemistry, Edison-Lecks Laboratory, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Thomas J. Maimone
- Department of Chemistry, University of California−Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Meroterpenoids produced by fungi: Occurrence, structural diversity, biological activities, and their molecular targets. Eur J Med Chem 2020; 209:112860. [PMID: 33032085 DOI: 10.1016/j.ejmech.2020.112860] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
Meroterpenoids are partially derived from the terpenoids, distributing widely in the plants, animals and fungi. The complex structures and diverse bioactivities of meroterpenoids have attracted more attention for chemists and pharmacologists. Since the first review summarized by Geris in 2009, there are absent of systematic reviews reported about meroterpenoids from the higher and lower fungi up to now. In the past decades, myriads of meroterpenoids were discovered, and it is necessary to summarize these meroterpenoids about their unique structures and promising bioactivities. In this review, we use a new classification method based on the non-terpene precursors, and also highlight the structural features, bioactivity of natural meroterpenoids from the higher and lower fungi covering the period of September 2008 to February 2020. A total of 709 compounds were discussed and cited the 182 references. Meanwhile, we also primarily summarize their occurrence, structural diversity, biological activities, and molecular targets.
Collapse
|
21
|
Yan Z, Zhao C, Gong J, Yang Z. Asymmetric Total Synthesis of (−)-Guignardones A and B. Org Lett 2020; 22:1644-1647. [DOI: 10.1021/acs.orglett.0c00241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhiming Yan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Chunbo Zhao
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jianxian Gong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
Abstract
The bicyclo[3.3.1]nonane architecture is a privileged structural motif found in over 1000 natural products with relevance to neurodegenerative disease, bacterial and parasitic infection, and cancer among others. Despite disparate biosynthetic machinery, alkaloid, terpene, and polyketide-producing organisms have all evolved pathways to incorporate this carbocyclic ring system. Natural products of mixed polyketide/terpenoid origins (meroterpenes) are a particularly rich and important source of biologically active bicyclo[3.3.1]nonane-containing molecules. Herein we detail a fully synthetic strategy toward this broad family of targets based on an abiotic annulation/rearrangement strategy resulting in a 10-step total synthesis of garsubellin A, an enhancer of choline acetyltransferase and member of the large family of polycyclic polyprenylated acylphloroglucinols. This work solidifies a strategy for making multiple, diverse meroterpene chemotypes in a programmable assembly process involving a minimal number of chemical transformations.
Collapse
Affiliation(s)
- Xingyu Shen
- Department of Chemistry, University of California, Berkeley, 826 Latimer Hall, Berkeley, CA, 94702, USA
| | - Chi P Ting
- Department of Chemistry, University of California, Berkeley, 826 Latimer Hall, Berkeley, CA, 94702, USA
| | - Gong Xu
- Department of Chemistry, University of California, Berkeley, 826 Latimer Hall, Berkeley, CA, 94702, USA
| | - Thomas J Maimone
- Department of Chemistry, University of California, Berkeley, 826 Latimer Hall, Berkeley, CA, 94702, USA.
| |
Collapse
|
23
|
Powers Z, Scharf A, Cheng A, Yang F, Himmelbauer M, Mitsuhashi T, Barra L, Taniguchi Y, Kikuchi T, Fujita M, Abe I, Porco JA. Biomimetic Synthesis of Meroterpenoids by Dearomatization-Driven Polycyclization. Angew Chem Int Ed Engl 2019; 58:16141-16146. [PMID: 31515901 PMCID: PMC6814491 DOI: 10.1002/anie.201910710] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Indexed: 12/16/2022]
Abstract
A biomimetic route to farnesyl pyrophosphate and dimethyl orsellinic acid (DMOA)-derived meroterpenoid scaffolds has yet to be reported despite great interest from the chemistry and biomedical research communities. A concise synthetic route with the potential to access DMOA-derived meroterpenoids is highly desirable to create a library of related compounds. Herein, we report novel dearomatization methodology followed by polyene cyclization to access DMOA-derived meroterpenoid frameworks in six steps from commercially available starting materials. Furthermore, several farnesyl alkene substrates were used to generate structurally novel, DMOA-derived meroterpenoid derivatives. DFT calculations combined with experimentation provided a rationale for the observed thermodynamic distribution of polycyclization products.
Collapse
Affiliation(s)
- Zachary Powers
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215, USA
| | - Adam Scharf
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215, USA
| | - Andrea Cheng
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215, USA
| | - Feng Yang
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215, USA
| | - Martin Himmelbauer
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215, USA
| | - Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo, 113-0033, Japan
| | | | - Yoshimasa Taniguchi
- Central Laboratories for Key Technologies, Kirin Holdings Co. Ltd., 1-13-5, Fukuura Kanazawaku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Takashi Kikuchi
- Rigaku Corporation, 3-9-12 Matsubaracho, Akishima-shi, Tokyo, 196-8666, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo, 113-8656, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo, 113-0033, Japan
| | - John A Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215, USA
| |
Collapse
|
24
|
Powers Z, Scharf A, Cheng A, Yang F, Himmelbauer M, Mitsuhashi T, Barra L, Taniguchi Y, Kikuchi T, Fujita M, Abe I, Porco JA. Biomimetic Synthesis of Meroterpenoids by Dearomatization‐Driven Polycyclization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zachary Powers
- Department of ChemistryCenter for Molecular Discovery (BU-CMD)Boston University 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| | - Adam Scharf
- Department of ChemistryCenter for Molecular Discovery (BU-CMD)Boston University 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| | - Andrea Cheng
- Department of ChemistryCenter for Molecular Discovery (BU-CMD)Boston University 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| | - Feng Yang
- Department of ChemistryCenter for Molecular Discovery (BU-CMD)Boston University 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| | - Martin Himmelbauer
- Department of ChemistryCenter for Molecular Discovery (BU-CMD)Boston University 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| | - Takaaki Mitsuhashi
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyoku Tokyo 113-0033 Japan
| | | | - Yoshimasa Taniguchi
- Central Laboratories for Key TechnologiesKirin Holdings Co. Ltd. 1-13-5, Fukuura Kanazawaku Yokohama-shi Kanagawa 236-0004 Japan
| | - Takashi Kikuchi
- Rigaku Corporation 3-9-12 Matsubaracho, Akishima-shi Tokyo 196-8666 Japan
| | - Makoto Fujita
- Department of Applied ChemistryGraduate School of EngineeringThe University of Tokyo 7-3-1 Hongo, Bunkyoku Tokyo 113-8656 Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyoku Tokyo 113-0033 Japan
| | - John A. Porco
- Department of ChemistryCenter for Molecular Discovery (BU-CMD)Boston University 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| |
Collapse
|
25
|
Tucker JK, Shair MD. Catalytic Allylic Oxidation to Generate Vinylogous Acyl Sulfonates from Vinyl Sulfonates. Org Lett 2019; 21:2473-2476. [DOI: 10.1021/acs.orglett.9b00845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James K. Tucker
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Matthew D. Shair
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
26
|
Wang Y, Ju W, Tian H, Sun S, Li X, Tian W, Gui J. Facile Access to Bridged Ring Systems via Point-to-Planar Chirality Transfer: Unified Synthesis of Ten Cyclocitrinols. J Am Chem Soc 2019; 141:5021-5033. [PMID: 30827095 DOI: 10.1021/jacs.9b00925] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bridged ring systems are found in a wide variety of biologically active molecules including pharmaceuticals and natural products. However, the development of practical methods to access such systems with precise control of the planar chirality presents considerable challenges to synthetic chemists. In the context of our work on the synthesis of cyclocitrinols, a family of steroidal natural products, we herein report the development of a point-to-planar chirality transfer strategy for preparing bridged ring systems from readily accessible fused ring systems. Inspired by the proposed pathway for biosynthesis of cyclocitrinols from ergosterol, our strategy involves a bioinspired cascade rearrangement, which enabled the gram-scale synthesis of a common intermediate in nine steps and subsequent unified synthesis of 10 cyclocitrinols in an additional one to three steps. Our work provides experimental support for the proposed biosynthetic pathway and for the possible interrelationships between members of the cyclocitrinol family. In addition to being a convenient route to 5(10→19) abeo-steroids, our strategy also offers a generalized approach to bridged ring systems via point-to-planar chirality transfer. Mechanistic investigations suggest that the key cascade rearrangement involves a regioselective ring scission of a cyclopropylcarbinyl cation rather than a direct Wagner-Meerwein rearrangement.
Collapse
Affiliation(s)
- Yu Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Wei Ju
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Hailong Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Suyun Sun
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Xinghui Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Weisheng Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Jinghan Gui
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| |
Collapse
|
27
|
Kim DE, Zhu Y, Newhouse TR. Vinylogous acyl triflates as an entry point to α,β-disubstituted cyclic enones via Suzuki-Miyaura cross-coupling. Org Biomol Chem 2019; 17:1796-1799. [PMID: 30500029 DOI: 10.1039/c8ob02573h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An alternative protocol for the B-alkyl Suzuki-Miyaura reaction to produce cyclic α,β-disubstituted enones is reported. The use of β-triflyl enones as coupling partners in lieu of their halogenated analogs provides enhanced substrate stability to light and chromatography without adversely affecting reactivity. This protocol allows efficient access to the synthetically challenging α,β-disubstituted enone motif under mild conditions.
Collapse
Affiliation(s)
- Daria E Kim
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT 06520-8107, USA.
| | | | | |
Collapse
|
28
|
Chouthaiwale PV, Aher RD, Tanaka F. Catalytic Enantioselective Formal (4+2) Cycloaddition by Aldol-Aldol Annulation of Pyruvate Derivatives with Cyclohexane-1,3-Diones to Afford Functionalized Decalins. Angew Chem Int Ed Engl 2018; 57:13298-13301. [PMID: 30125444 DOI: 10.1002/anie.201808219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 01/12/2023]
Abstract
The decalin structure is found in bioactive molecules. We have developed catalytic enantioselective formal (4+2) cycloaddition reactions via aldol-aldol cascade reactions between pyruvate-derived diketoester derivatives and cyclohexane-1,3-dione derivatives that afford highly functionalized decalin derivatives. The reactions were performed using a quinidine-derived catalyst under mild conditions. Decalin derivatives bearing up to six chiral carbon centers including tetrasubstituted carbon centers were synthesized with high diastereo- and enantioselectivities. Five to six stereogenic centers were generated from achiral molecules with the formation of two C-C bonds in a single transformation resulting in the formation of the decalin system.
Collapse
Affiliation(s)
- Pandurang V Chouthaiwale
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Ravindra D Aher
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
29
|
Chouthaiwale PV, Aher RD, Tanaka F. Catalytic Enantioselective Formal (4+2) Cycloaddition by Aldol–Aldol Annulation of Pyruvate Derivatives with Cyclohexane‐1,3‐Diones to Afford Functionalized Decalins. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pandurang V. Chouthaiwale
- Chemistry and Chemical Bioengineering UnitOkinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| | - Ravindra D. Aher
- Chemistry and Chemical Bioengineering UnitOkinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering UnitOkinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna Okinawa 904-0495 Japan
| |
Collapse
|
30
|
Zhang X, Wang TT, Xu QL, Xiong Y, Zhang L, Han H, Xu K, Guo WJ, Xu Q, Tan RX, Ge HM. Genome Mining and Comparative Biosynthesis of Meroterpenoids from Two Phylogenetically Distinct Fungi. Angew Chem Int Ed Engl 2018; 57:8184-8188. [DOI: 10.1002/anie.201804317] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/20/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
| | - Ting Ting Wang
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
| | - Qin Lan Xu
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
| | - Ying Xiong
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
| | - Li Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
| | - Hao Han
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
| | - Kuang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
| | - Wen Jie Guo
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese Medicine Nanjing 210023 China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
| |
Collapse
|
31
|
Zhang X, Wang TT, Xu QL, Xiong Y, Zhang L, Han H, Xu K, Guo WJ, Xu Q, Tan RX, Ge HM. Genome Mining and Comparative Biosynthesis of Meroterpenoids from Two Phylogenetically Distinct Fungi. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
| | - Ting Ting Wang
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
| | - Qin Lan Xu
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
| | - Ying Xiong
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
| | - Li Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
| | - Hao Han
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
| | - Kuang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
| | - Wen Jie Guo
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese Medicine Nanjing 210023 China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical BiotechnologyInstitute of Functional BiomoleculesSchool of Life SciencesNanjing University Nanjing 210023 China
| |
Collapse
|
32
|
Shah PA, Wiemer DF. Synthesis of bavachromanol from resorcinol via a tandem cationic cascade/EAS sequence. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
33
|
Hung K, Hu X, Maimone TJ. Total synthesis of complex terpenoids employing radical cascade processes. Nat Prod Rep 2018; 35:174-202. [PMID: 29417970 PMCID: PMC5858714 DOI: 10.1039/c7np00065k] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covering: 2011-2017Radical cyclizations have a rich history in organic chemistry and have been particularly generous to the field of natural product synthesis. Owing to their ability to operate in highly congested molecular quarters, and with significant functional group compatibility, these transformations have enabled the synthesis of numerous polycyclic terpenoid natural products over the past several decades. Moreover, when programmed accordingly into a synthetic plan, radical cascade processes can be used to rapidly assemble molecular complexity, much in the same way nature rapidly constructs terpene frameworks through cationic cyclization pathways. This review highlights recent total syntheses of complex terpenoids (from 2011-2017) employing C-C bond-forming radical cascade sequences.
Collapse
Affiliation(s)
- Kevin Hung
- Department of Chemistry, University of California - Berkeley, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
34
|
Xu G, Elkin M, Tantillo DJ, Newhouse TR, Maimone TJ. Traversing Biosynthetic Carbocation Landscapes in the Total Synthesis of Andrastin and Terretonin Meroterpenes. Angew Chem Int Ed Engl 2017; 56:12498-12502. [PMID: 28799296 PMCID: PMC5697905 DOI: 10.1002/anie.201705654] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/11/2017] [Indexed: 01/08/2023]
Abstract
Meroterpenes derived from dimethylorsellinic acid (DMOA) and farnesyl pyrophosphate have attracted much biosynthetic attention, yet only recently have synthetic solutions to any family members appeared. A key point of divergence in DMOA-derived meroterpene biosynthesis is the protoaustinoid A carbocation, which can be diverted to either the berkeleyone, andrastin, or terretonin structural classes by cyclase-controlled rearrangement pathways. Shown herein is that the protoaustinoid bicyclo[3.3.1]nonane nucleus can be reverted to either andrastin or terretonin ring systems under abiotic reaction conditions. The first total syntheses of members of these natural product families are reported as their racemates.
Collapse
Affiliation(s)
- Gong Xu
- Department of Chemistry, University of California, Berkeley, 826 Latimer Hall, Berkeley, CA, 94720, USA
| | - Masha Elkin
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, CT, 06520, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Timothy R Newhouse
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, CT, 06520, USA
| | - Thomas J Maimone
- Department of Chemistry, University of California, Berkeley, 826 Latimer Hall, Berkeley, CA, 94720, USA
| |
Collapse
|
35
|
Xu G, Elkin M, Tantillo DJ, Newhouse TR, Maimone TJ. Traversing Biosynthetic Carbocation Landscapes in the Total Synthesis of Andrastin and Terretonin Meroterpenes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705654] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gong Xu
- Department of Chemistry University of California, Berkeley 826 Latimer Hall Berkeley CA 94720 USA
| | - Masha Elkin
- Department of Chemistry Yale University 275 Prospect Street New Haven CT 06520 USA
| | - Dean J. Tantillo
- Department of Chemistry University of California, Davis 1 Shields Avenue Davis CA 95616 USA
| | - Timothy R. Newhouse
- Department of Chemistry Yale University 275 Prospect Street New Haven CT 06520 USA
| | - Thomas J. Maimone
- Department of Chemistry University of California, Berkeley 826 Latimer Hall Berkeley CA 94720 USA
| |
Collapse
|