1
|
Xu L, Nan J, Han S, Yu Z, Wu S, Fang Y, Dong S. High-Valence Mn MOF Inspired by Laccase Mediators Enables Versatile Nature-Mimicking Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405293. [PMID: 39363691 DOI: 10.1002/smll.202405293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/22/2024] [Indexed: 10/05/2024]
Abstract
In nature, active Mn3+ -ligand complexes produced by laccase catalyzed oxidation can act as the low-molecular mass, diffusible redox mediators to oxidize the phenolic substrates overcoming the limitations of natural enzymes. Learning from the metal-ligand coordination of natural functional units, high-valence Mn metal-organic framework (Mn MOF) is constructed to simulate the catalysis in natural mediator system. Benefiting from the characteristics of nanoscale size, rich metal coordination unsaturated sites, and mixed valence state dominated by Mn(III), Nano Mn(III)-TP exhibits superior laccase-mimicking activity, whose Vmax (maximal reaction rate) is much higher than that of natural laccase. Referring to natural systems, relevant free radical experiments prove that the material induces the production of active oxygen species with the assistance of carboxylic acid, and active oxygen species further oxidize phenolic substrates. Based on its robust performances, the primary oxidative degradation of an emerging pollutant triclosan (TCS) is creatively applied, an important antiasthmatic medicine terbutaline sulfate (TBT) detection, and the synthesis of non-toxic and black near-natural dyes for dyeing. By simulating the essential mediators of natural enzymatic catalysis, an Mn MOF-based material that demonstrates multiple novel applications is successfully developed, which introduces a new reliable strategy for achieving versatile nature-mimicking catalysis.
Collapse
Affiliation(s)
- Lili Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Jianli Nan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Songxue Han
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhixuan Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Shuangli Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
He Z, Gao J, Li Q, Wei Z, Zhang D, Pan X. Enhanced oxidation of Mn(II) and As(III) by aerobic granular sludge via ferrous citrate: Key roles of colloidal iron and extracellular superoxide radical. WATER RESEARCH 2024; 268:122705. [PMID: 39486344 DOI: 10.1016/j.watres.2024.122705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Microbial manganese (Mn) oxidation plays a crucial role in shaping the fate of various elements, including arsenic (As). However, this process faces challenges in wastewater environments due to its inherent inefficiency and instability. In our initial research, a serendipitous discovery occurred: the addition of citrate to Fe(II)-containing wastewater stimulated the oxidation of Mn(II) by aerobic granular sludge (AGS). Subsequent experiments in four sequencing batch reactors (SBRs) over a 67-day period confirmed this stimulatory effect. The presence of Fe(II)-citrate led to a remarkable twofold increase in the oxidation of Mn(II) and As(III). The removal efficiency improved from 21±4 % to 87±7 % for Mn(II) and from 77.1 ± 1.8 % to 93.6 ± 0.2 % for As(III). The verification experiments demonstrated that the simultaneous addition of manganese-oxidizing bacteria (MnOB) and Fe(II)-citrate is an effective strategy for enhancing the oxidation and removal of Mn(II) and As(III) by AGS. Through a combination of genomic analysis, cell-free filtrate incubation, and bacterial batch cultivations (including monitoring the time-course changes of 17 substances and 2 free radicals), we elucidated a novel Mn(II) oxidation pathway in Pseudomonas, along with its stimulation method and mechanism. First, bacteria rapidly degrade citrate possibly via the citrate-Mg2+:H+ symporter (CitMHS) and the tricarboxylic acid (TCA) cycle, resulting in the formation of colloidal Fe(II), colloidal Fe(III), and biogenic iron (hydr)oxides (FeOx). Then, colloidal Fe(II) and colloidal Fe(III) stimulated extracellular proteins to produce superoxide radicals (·O2-). These radicals were responsible for oxidizing Mn(II) into Mn(III), ultimately forming biogenic manganese oxides (MnOx). Finally, MnOx effectively oxidized As(III) to the less toxic As(V). This innovative approach for bacterial Mn(II) oxidation holds promise for treating Mn(II) and As(III) in water and wastewater. Furthermore, the mechanism by which colloidal iron stimulates extracellular proteins to produce ·O2-, thereby facilitating Mn(II) oxidation, may widely occur across various engineering and natural ecosystems.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jingxun Gao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Qunqun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhen Wei
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
3
|
Li Q, Shi M, Liao Q, Li K, Huang X, Sun Z, Yang W, Si M, Yang Z. Molecular response to the influences of Cu(II) and Fe(III) on forming biogenic manganese oxides by Pseudomonas putida MnB1. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135298. [PMID: 39053055 DOI: 10.1016/j.jhazmat.2024.135298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/29/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The biogeochemical cycle of biogenic manganese oxides (BioMnOx) is closely associated with the environmental behavior and fate of various pollutants. It is significantly interfered by many metals, such as Cu and Fe. However, the bacterial molecular responses are not clear. Here, the effects of Cu(II) and Fe(III) on oxidation of manganese by Pseudomonas putida MnB1 and the bacterial molecular response mechanisms have been studied. The bacterial oxidation of manganese were promoted by both Fe(III) and Cu(II) and the final manganese oxidation rate of the Cu(II) group exceeded 16 % that of the Fe(III) group. The results of transcriptome indicated that Cu(II) promoted manganese oxidation by up-regulating the expression levels of multicopper oxidase (MCO) and peroxidase(POD), and by stimulating electron transfer, while Fe(III) promoted this process by accelerating the electron transfer and nitrogen cycling, and activating POD. The protein-protein interaction (PPI) network indicated that the MCO genes (mnxG and mcoA) were directly linked to the copper homeostasis proteins (cusA, cusB, czcC and cusF). Cytochrome c was closely related to the genes related to nitrogen cycling (glnA, glnL, and putA) and electrons transfer (cycO, cycD, nuoA, nuoK, and nuoL), which also promoted manganese oxidation. This study provides a molecular level insight into the oxidation of Mn(II) by Pseudomonas putida MnB1 with Cu(II) and/or Fe(III) ions.
Collapse
Affiliation(s)
- Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| | - Miao Shi
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China.
| | - Kaizhong Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiaofeng Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhumei Sun
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| |
Collapse
|
4
|
Novikova IV, Soldatova AV, Moser TH, Thibert SM, Romano CA, Zhou M, Tebo BM, Evans JE, Spiro TG. Cryo-EM Structure of the Mnx Protein Complex Reveals a Tunnel Framework for the Mechanism of Manganese Biomineralization. J Am Chem Soc 2024; 146:22950-22958. [PMID: 39056168 DOI: 10.1021/jacs.3c06537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The global manganese cycle relies on microbes to oxidize soluble Mn(II) to insoluble Mn(IV) oxides. Some microbes require peroxide or superoxide as oxidants, but others can use O2 directly, via multicopper oxidase (MCO) enzymes. One of these, MnxG from Bacillus sp. strain PL-12, was isolated in tight association with small accessory proteins, MnxE and MnxF. The protein complex, called Mnx, has eluded crystallization efforts, but we now report the 3D structure of a point mutant using cryo-EM single particle analysis, cross-linking mass spectrometry, and AlphaFold Multimer prediction. The β-sheet-rich complex features MnxG enzyme, capped by a heterohexameric ring of alternating MnxE and MnxF subunits, and a tunnel that runs through MnxG and its MnxE3F3 cap. The tunnel dimensions and charges can accommodate the mechanistically inferred binuclear manganese intermediates. Comparison with the Fe(II)-oxidizing MCO, ceruloplasmin, identifies likely coordinating groups for the Mn(II) substrate, at the entrance to the tunnel. Thus, the 3D structure provides a rationale for the established manganese oxidase mechanism, and a platform for further experiments to elucidate mechanistic details of manganese biomineralization.
Collapse
Affiliation(s)
- Irina V Novikova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, Washington 99354, United States
| | - Alexandra V Soldatova
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Trevor H Moser
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, Washington 99354, United States
| | - Stephanie M Thibert
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, Washington 99354, United States
| | - Christine A Romano
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, Washington 99354, United States
| | - Bradley M Tebo
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - James E Evans
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, Washington 99354, United States
| | - Thomas G Spiro
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| |
Collapse
|
5
|
Chen T, Bui Thi TM, Luo T, Cheng W, Hanna K, Boily JF. Redox-Driven Formation of Mn(III) in Ice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39153204 PMCID: PMC11360366 DOI: 10.1021/acs.est.4c03850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Redox-driven reactions involving Mn(II) species adsorbed at Mn(IV) oxide surfaces can release Mn(III) in the form of dissolved Mn(III)-ligand species in natural waters. Using pyrophosphate (PP) as a model ligand, we show that freezing accelerates and enhances Mn(III) formation in the form of Mn(III)-PP complexes. This freeze-promoted reaction is explained by the concentration of Mn(IV) oxides and solutes (Mn(II), Na+, and Cl-) into the minute fractions of liquid water locked between ice (micro)crystals - the Liquid Intergrain Boundary (LIB). Time-resolved freezing experiments at -20 °C showed that Mn(III) yields were greatest at low salt (NaCl) content. In contrast, high salt content promoted Mn(III) formation through chloride complexation, although yields became lower as the cryosalt mineral hydrohalite (NaCl·2H2O) dehydrated the LIB by drawing water into its structure. Consecutive freeze-thaw cycles also showed that dissolved Mn(III) concentrations increased within the very first few minutes of each freezing event. Because each thaw event released unreacted PP previously locked in ice, each sequential freeze-thaw cycle increased Mn(III) yields, until ∼80% of the Mn was converted to Mn(III). This was achieved after only seven cycles. Finally, temperature-resolved freezing experiments down to -50 °C showed that the LIB produced the greatest quantities of Mn(III) at -10 °C, where the volumes were greater. Reactivity was however sustained in ice formed below the eutectic (-21.3 °C), down to -50 °C. We suspect that this sustained reactivity was driven by persistent forms of supercooled water, such as Mn(IV) oxide-bound thin water films. By demonstrating the freeze-driven production of Mn(III) by comproportionation of dissolved Mn(II) and Mn(IV) oxide, this study highlights the potentially important roles these reactions could play in the production of pools of Mn(III) in natural water and sediments of mid- and high-latitudes environments exposed to freeze-thaw episodes.
Collapse
Affiliation(s)
- Tao Chen
- École
Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Université de Rennes, F-35000 Rennes, France
| | - Tra My Bui Thi
- École
Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Université de Rennes, F-35000 Rennes, France
| | - Tao Luo
- École
Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Université de Rennes, F-35000 Rennes, France
| | - Wei Cheng
- College
of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Khalil Hanna
- École
Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Université de Rennes, F-35000 Rennes, France
| | | |
Collapse
|
6
|
Wu G, Qiu H, Du C, Zheng Z, Liu Q, Wang Z, Luo P, Shen Y. Intelligent onsite dual-modal assay based on oxidase-like fluorescence carbon dots-driven competitive effect for ethyl carbamate detection. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134707. [PMID: 38810578 DOI: 10.1016/j.jhazmat.2024.134707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Intelligent onsite accurate monitoring ethyl carbamate (EC, a group 2 A carcinogen) in environment is of great significance to safeguard environmental health and public safety. Herein, we reported an intelligent dual-modal point-of-care (POC) assay based on the bimetallic Mn and Ce co-doped oxidase-like fluorescence carbon dots (Ce&MnCDs) nanozyme-driven competitive effect. In brief, the oxidase-like activity of Ce&MnCDs was inhibited by thiocholine (TCh, originating from the hydrolysis of acetylcholinesterase (AChE) to acetylthiocholine (ATCh)), preventing the oxidation of o-phenylenediamine (OPD) to 2,3-diaminophenothiazine (DAP). However, with the aid of Br2 + NaOH, EC inactivated AChE to prevent TCh generation for re-launching the oxidase-like activity of Ce&MnCDs to trigger the oxidation of OPD into DAP, thereby outputting an EC concentration-dependent ratiometric fluorescence and colorimetric readouts by employing Ce&MnCDs and OPD as the optical signal reporters. Interestingly, these dual-modal optical signals could be transduced into the gray values that was linearly proportional to the residual levels of EC on a smartphone-based portable platform, with a detection limit down to 1.66 μg/mL, qualifying the requirements of analysis of EC residues in real samples. This opened up a new avenue for onsite assessment of the risk of residues of EC, safeguarding environmental health and public safety.
Collapse
Affiliation(s)
- Guojian Wu
- School of Food & Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China
| | - Huimin Qiu
- School of Food & Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China
| | - Chenxing Du
- School of Food & Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China
| | - Zhi Zheng
- School of Food & Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China
| | - Qing Liu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Zifei Wang
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Pengjie Luo
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China.
| | - Yizhong Shen
- School of Food & Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
7
|
Cui L, Gong Y, Zhao S, Wu Y, Wang A, Chen Z. Homogenous Oxidizing Oligomerization Coupled with Coagulation for Water Purification. WATER RESEARCH 2024; 257:121684. [PMID: 38723348 DOI: 10.1016/j.watres.2024.121684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/29/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024]
Abstract
Natural manganese oxides could induce the intermolecular coupling reactions among small-molecule organics in aqueous environments, which is one of the fundamental processes contributing to natural humification. These processes could be simulated to design novel advanced oxidation technology for water purification. In this study, periodate (PI) was selected as the supplementary electron-acceptor for colloidal manganese oxides (Mn(IV)aq) to remove phenolic contaminants from water. By introducing polyferric sulfate (PFS) into the Mn(IV)aq/PI system and exploiting the flocculation potential of Mn(IV)aq, a post-coagulation process was triggered to eliminate soluble manganese after oxidation. Under acidic conditions, periodate exists in the H4IO6- form as an octahedral oxyacid capable of coordinating with Mn(IV)aq to form bidentate complexes or oligomers (Mn(IV)-PI*) as reactive oxidants. The Mn(IV)-PI* complex could induce cross-coupling process between phenolic contaminants, resulting in the formation of oligomerized products ranging from dimers to hexamers. These oligomerized products participate in the coagulation process and become stored within the nascent floc due to their catenulate nature and strong hydrophobicity. Through coordination between Mn(IV)aq and H4IO6-, residual periodate is firmly connected with manganese oxides in the floc after coagulation and could be simultaneously separated from the aqueous phase. This study achieves oxidizing oligomerization through a homogeneous process under mild conditions without additional energy input or heterogeneous catalyst preparation. Compared to traditional mineralization-driven oxidation techniques, the proposed novel cascade processes realize transformation, convergence, and separation of phenolic contaminants with high oxidant utilization efficiency for low-carbon purification.
Collapse
Affiliation(s)
- Lei Cui
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yingxu Gong
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Shengxin Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yining Wu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
8
|
Shi M, Li Q, Wang Q, Yan X, Li B, Feng L, Wu C, Qiu R, Zhang H, Yang Z, Yang W, Liao Q, Chai L. A review on the transformation of birnessite in the environment: Implication for the stabilization of heavy metals. J Environ Sci (China) 2024; 139:496-515. [PMID: 38105072 DOI: 10.1016/j.jes.2023.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 12/19/2023]
Abstract
Birnessite is ubiquitous in the natural environment where heavy metals are retained and easily transformed. The surface properties and structure of birnessite change with the changes in external environmental conditions, which also affects the fate of heavy metals. Clarifying the effect and mechanism of the birnessite phase transition process on heavy metals is the key to taking effective measures to prevent and control heavy metal pollution. Therefore, the four transformation pathways of birnessite are summarized first in this review. Second, the relationship between transformation pathways and environmental conditions is proposed. These relevant environmental conditions include abiotic (e.g., co-existing ions, pH, oxygen pressure, temperature, electric field, light, aging, pressure) and biotic factors (e.g., microorganisms, biomolecules). The phase transformation is achieved by the key intermediate of Mn(III) through interlayer-condensation, folding, neutralization-disproportionation, and dissolution-recrystallization mechanisms. The AOS (average oxidation state) of Mn and interlayer spacing are closely correlated with the phase transformation of birnessite. Last but not least, the mechanisms of heavy metals immobilization in the transformation process of birnessite are summed up. They involve isomorphous substitution, redox, complexation, hydration/dehydration, etc. The transformation of birnessite and its implication on heavy metals will be helpful for understanding and predicting the behavior of heavy metals and the crucial phase of manganese oxides/hydroxides in natural and engineered environments.
Collapse
Affiliation(s)
- Miao Shi
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China.
| | - Qingwei Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China.
| | - Xuelei Yan
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Bensheng Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Linhai Feng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chao Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Rongrong Qiu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Hongkai Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| |
Collapse
|
9
|
Huang Y, Huangfu X, Ma C, Liu Z. Sequestration and oxidation of heavy metals mediated by Mn(II) oxidizing microorganisms in the aquatic environment. CHEMOSPHERE 2023; 329:138594. [PMID: 37030347 DOI: 10.1016/j.chemosphere.2023.138594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Microorganisms can oxidize Mn(II) to biogenic Mn oxides (BioMnOx), through enzyme-mediated processes and non-enzyme-mediated processes, which are generally considered as the source and sink of heavy metals due to highly reactive to sequestrate and oxidize heavy metals. Hence, the summary of interactions between Mn(II) oxidizing microorganisms (MnOM) and heavy metals is benefit for further work on microbial-mediated self-purification of water bodies. This review comprehensively summarizes the interactions between MnOM and heavy metals. The processes of BioMnOx production by MnOM has been firstly discussed. Moreover, the interactions between BioMnOx and various heavy metals are critically discussed. On the one hand, modes for heavy metals adsorbed on BioMnOx are summarized, such as electrostatic attraction, oxidative precipitation, ion exchange, surface complexation, and autocatalytic oxidation. On the other hand, adsorption and oxidation of representative heavy metals based on BioMnOx/Mn(II) are also discussed. Thirdly, the interactions between MnOM and heavy metals are also focused on. Finally, several perspectives which will contribute to future research are proposed. This review provides insight into the sequestration and oxidation of heavy metals mediated by Mn(II) oxidizing microorganisms. It might be helpful to understand the geochemical fate of heavy metals in the aquatic environment and the process of microbial-mediated water self-purification.
Collapse
Affiliation(s)
- Yuheng Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Chengxue Ma
- State Key Laboratory of Urban Water Resource, and Environment, School of Municipal, and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Ziqiang Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
10
|
Singha A, Sekretareva A, Tao L, Lim H, Ha Y, Braun A, Jones SM, Hedman B, Hodgson KO, Britt RD, Kosman DJ, Solomon EI. Tuning the Type 1 Reduction Potential of Multicopper Oxidases: Uncoupling the Effects of Electrostatics and H-Bonding to Histidine Ligands. J Am Chem Soc 2023. [PMID: 37294874 PMCID: PMC10392966 DOI: 10.1021/jacs.3c03241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In multicopper oxidases (MCOs), the type 1 (T1) Cu accepts electrons from the substrate and transfers these to the trinuclear Cu cluster (TNC) where O2 is reduced to H2O. The T1 potential in MCOs varies from 340 to 780 mV, a range not explained by the existing literature. This study focused on the ∼350 mV difference in potential of the T1 center in Fet3p and Trametes versicolor laccase (TvL) that have the same 2His1Cys ligand set. A range of spectroscopies performed on the oxidized and reduced T1 sites in these MCOs shows that they have equivalent geometric and electronic structures. However, the two His ligands of the T1 Cu in Fet3p are H-bonded to carboxylate residues, while in TvL they are H-bonded to noncharged groups. Electron spin echo envelope modulation spectroscopy shows that there are significant differences in the second-sphere H-bonding interactions in the two T1 centers. Redox titrations on type 2-depleted derivatives of Fet3p and its D409A and E185A variants reveal that the two carboxylates (D409 and E185) lower the T1 potential by 110 and 255-285 mV, respectively. Density functional theory calculations uncouple the effects of the charge of the carboxylates and their difference in H-bonding interactions with the His ligands on the T1 potential, indicating 90-150 mV for anionic charge and ∼100 mV for a strong H-bond. Finally, this study provides an explanation for the generally low potentials of metallooxidases relative to the wide range of potentials of the organic oxidases in terms of different oxidized states of their TNCs involved in catalytic turnover.
Collapse
Affiliation(s)
- Asmita Singha
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Alina Sekretareva
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Lizhi Tao
- Department of Chemistry, University of California at Davis, Davis, California 95616, United States
| | - Hyeongtaek Lim
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yang Ha
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Augustin Braun
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Stephen M Jones
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Keith O Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - R David Britt
- Department of Chemistry, University of California at Davis, Davis, California 95616, United States
| | - Daniel J Kosman
- Department of Biochemistry, The University at Buffalo, Buffalo, New York 14214, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
11
|
Long X, Zhang H, Cao X, Wang H, Shimokawa K, Chi H, Zhang C, Okamoto A, Li X. Biogenic Mn2O3 via the redox of Shewanella oneidensis MR-1 for peroxymonosulfate advanced oxidation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Huo Y, Mo J, He Y, Twagirayezu G, Xue L. Transcriptome analysis reveals manganese tolerance mechanisms in a novel native bacterium of Bacillus altitudinis strain HM-12. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157394. [PMID: 35850333 DOI: 10.1016/j.scitotenv.2022.157394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Bacillus altitudinis HM-12, isolated from ferromanganese ore tailings, can resist up to 1200 mM Mn(II) when exposed to concentrations from 50 mM to 1400 mM. HM-12 exhibited high Mn(II) removal efficiency (90.6 %). We report the transcriptional profile of HM-12 using RNA-Seq and found 423 upregulated and 536 downregulated differentially expressed genes (DEGs) compared to the control. Gene Ontology analysis showed that DEGs were mainly linked with transporter activity, binding, catalytic activity in molecular function, cellular anatomical entity in cellular component, cellular process, and metabolic process. Kyoto Encyclopedia of Genes and Genomes analysis showed that DEGs were mostly mapped to membrane transport, signal transduction, carbohydrate and amino acid metabolism, energy metabolism, and cellular community pathways. Transport analysis showed that two manganese importer systems, mntH and mntABC, were significantly downregulated. The manganese efflux genes (mneS, yceF and ykoY) exhibited significant upregulation. Manganese homeostasis seems to be subtly regulated by manganese uptake and efflux genes. Moreover, it was found that copA as a Mn(II) oxidase gene and a copper chaperone gene copZ were considerably upregulated by signal transduction analysis. csoR encoding a transcriptional repressor which can regulate the copZA operon was upregulated. The strong Mn(II) oxidizing activity of HM-12 was also confirmed by physicochemical characterization. In metabolism and environmental information processing, yjqC encoding manganese catalase was significantly upregulated, while katE and katX encoding heme catalases were significantly downregulated. The antioxidant gene pcaC was significantly upregulated, but ykuU encoding alkyl hydroperoxide reductase, yojM encoding superoxide dismutase, and perR encoding redox-sensing transcriptional repressor were downregulated. These results highlight the oxidative activity of HM-12 by regulating the transcription of oxidase, catalase, peroxidase, and superoxide dismutase to sense the cellular redox status and prevent Mn(II) intoxication. This study provides relevant information on the biological tolerance and oxidation mechanisms in response to Mn(II) stress.
Collapse
Affiliation(s)
- Yanli Huo
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China
| | - Jiarun Mo
- School of Life Sciences, Lanzhou University, Lanzhou 730070, China
| | - Yuanyuan He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China
| | - Gratien Twagirayezu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Lingui Xue
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China.
| |
Collapse
|
13
|
Li H, Wu Y, Tang Y, Fang B, Luo P, Yang L, Jiang Q. A manganese-oxidizing bacterium-Enterobacter hormaechei strain DS02Eh01: Capabilities of Mn(II) immobilization, plant growth promotion and biofilm formation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119775. [PMID: 35843452 DOI: 10.1016/j.envpol.2022.119775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
While biogenic Mn oxides (BioMnOx) generated by Mn(II)-oxidizing bacteria (MOB) have attracted increasing attention, a MOB strain isolated from Mn-polluted sediments was identified and assigned as Enterobacter hormaechei DS02Eh01. Its Mn(II) immobilization activity, plant growth-promoting traits, and biofilm formation capability were investigated. The results showed that strain DS02Eh01 was found to be able to tolerate Mn(II) up to 122 mM. The strain immobilized Mn(II) in aquatic media mainly through extracellular adsorption, bio-oxidation and pH-induced precipitation as well as manganese oxidation. DS02Eh01-derived BioMnOx are negatively charged and have a larger specific surface area (86.70 m2/g) compared to the previously reported BioMnOx. The strain can immobilize Mn(II) at extreme levels, for instance, when it was exposed to 20 mM Mn(II), about 59% of Mn(II) were found immobilized and 17% of Mn(II) were converted to MnOx. The SEM and TEM observation revealed that the DS02Eh01-derived BioMnOx were aggregates doped with granules and microbial pellets. The precipitated Mn(II) and the Mn(III)/Mn(IV) oxides co-existed in BioMnOx, in which Mn(II) and Mn(IV) were found dominant with Mn(II) accounting for 49.6% and Mn(IV) accounting for 41.3%. DS02Eh01 possesses plant growth-promoting traits and biofilm formation capacity even under Mn(II) exposure. Mn(II) exposure at 5 mM was found to stimulate strain DS02Eh01 to form biofilms, from which, the extracted EPS was mainly composed of aromatic proteins. This study reveals that E. hormaechei strain DS02Eh01 possesses the potential in environmental ecoremediation via coupling processes of macrophytes extraction, biochemical immobilization and biosorption.
Collapse
Affiliation(s)
- Huilan Li
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Yu Wu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Yankui Tang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China.
| | - Bo Fang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Penghong Luo
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Luling Yang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Qiming Jiang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| |
Collapse
|
14
|
Liu X, Kifle MT, Xie H, Xu L, Luo M, Li Y, Huang Z, Gong Y, Wu Y, Xie C. Biomineralized Manganese Oxide Nanoparticles Synergistically Relieve Tumor Hypoxia and Activate Immune Response with Radiotherapy in Non-Small Cell Lung Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183138. [PMID: 36144927 PMCID: PMC9501587 DOI: 10.3390/nano12183138] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 05/04/2023]
Abstract
Radiotherapy (RT) is currently considered as an essential treatment for non-small cell lung cancer (NSCLC); it can induce cell death directly and indirectly via promoting systemic immune responses. However, there still exist obstacles that affect the efficacy of RT such as tumor hypoxia and immunosuppressive tumor microenvironment (TME). Herein, we report that the biomineralized manganese oxide nanoparticles (Bio-MnO2 NPs) prepared by mild enzymatic reaction could be a promising candidate to synergistically enhance RT and RT-induced immune responses by relieving tumor hypoxia and activating cGAS-STING pathway. Bio-MnO2 NPs could convert endogenic H2O2 to O2 and catalyze the generation of reactive oxygen species so as to sensitize the radiosensitivity of NSCLC cells. Meanwhile, the release of Mn2+ into the TME significantly enhanced the cGAS-STING activity to activate radio-immune responses, boosting immunogenic cell death and increasing cytotoxic T cell infiltration. Collectively, this work presents the great promise of TME reversal with Bio-MnO2 NPs to collaborate RT-induced antitumor immune responses in NSCLC.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Meron Tsegay Kifle
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongxin Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liexi Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Maoling Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yangyi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhengrong Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Correspondence: (Y.G.); (Y.W.); (C.X.)
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (Y.G.); (Y.W.); (C.X.)
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
- Correspondence: (Y.G.); (Y.W.); (C.X.)
| |
Collapse
|
15
|
Li G, Su Y, Wu B, Han G, Yu J, Yang M, Shi B. Initial Formation and Accumulation of Manganese Deposits in Drinking Water Pipes: Investigating the Role of Microbial-Mediated Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5497-5507. [PMID: 35420026 DOI: 10.1021/acs.est.1c08293] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microbial Mn(II) oxidation occurs in areas with insufficient disinfectants in drinking water distribution systems. However, the overall processes of microbial-mediated Mn deposit formation are unclear. This research investigated the initial Mn(II) oxidation, deposit accumulation, and biofilm development in pipe loops fed with nondisinfected finished water for 300 days. The results show that it took 20 days for microbial Mn(II) oxidation and deposition to be initiated visibly in new pipes continuously receiving 100 μg/L Mn(II). Once started, the deposit accumulation accelerated. A pseudo-first-order kinetic model could simulate the disappearance of Mn(II) in well-mixed pipe loop water. The observed rate constant reached 2.81 h-1 [corresponding to a Mn(II) half-life of 0.25 h] after 136 days of operation. Without oxygen, Mn(II) in the water also decreased rapidly to 1.0 μg/L through adsorption to deposits, indicating that after the initial microbial formation of MnOx, subsequent MnOx accumulation was attributable to a combination of microbial and physicochemical processes. Compared to the no-Mn condition, Mn(II) input resulted in 1 order of magnitude increase in biofilm formation. This study sheds light on the increasingly rapid processes of Mn accumulation on the inner surfaces of water pipes resulting from the biological activity of Mn(II)-oxidizing biofilms and the build-up of MnOx with strong adsorption capacity.
Collapse
Affiliation(s)
- Guiwei Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuliang Su
- Zhuhai Water Environment Holdings Group Ltd., Zhuhai, Guangdong 519000, China
| | - Bin Wu
- Zhuhai Water Environment Holdings Group Ltd., Zhuhai, Guangdong 519000, China
| | - Guohang Han
- Zhuhai Water Environment Holdings Group Ltd., Zhuhai, Guangdong 519000, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
A soil-borne Mn(II)-oxidizing bacterium of Providencia sp. exploits a strategy of superoxide production coupled to hydrogen peroxide consumption to generate Mn oxides. Arch Microbiol 2022; 204:168. [DOI: 10.1007/s00203-022-02771-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/08/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022]
|
17
|
Manganese-Oxidizing Antarctic Bacteria (Mn-Oxb) Release Reactive Oxygen Species (ROS) as Secondary Mn(II) Oxidation Mechanisms to Avoid Toxicity. BIOLOGY 2021; 10:biology10101004. [PMID: 34681103 PMCID: PMC8533519 DOI: 10.3390/biology10101004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022]
Abstract
Manganese (Mn) oxidation is performed through oxidative Mn-oxidizing bacteria (MnOxb) as the main bio-weathering mechanism for Mn(III/IV) deposits during soil formation. However, with an increase in temperature, the respiration rate also increases, producing Reactive Oxygen Species (ROS) as by-products, which are harmful to microbial cells. We hypothesize that bacterial ROS oxidize Mn(II) to Mn(III/IV) as a secondary non-enzymatic temperature-dependent mechanism for cell protection. Fourteen MnOxb were isolated from Antarctic soils under the global warming effect, and peroxidase (PO) activity, ROS, and Mn(III/IV) production were evaluated for 120 h of incubation at 4 °C, 15 °C, and 30 °C. ROS contributions to Mn oxidation were evaluated in Arthrobacter oxydans under antioxidant (Trolox) and ROS-stimulated (menadione) conditions. The Mn(III/IV) concentration increased with temperature and positively correlated with ROS production. ROS scavenging with Trolox depleted the Mn oxidation, and ROS-stimulant increased the Mn precipitation in A. oxydans. Increasing the Mn(II) concentration caused a reduction in the membrane potential and bacterial viability, which resulted in Mn precipitation on the bacteria surface. In conclusion, bacterial ROS production serves as a complementary non-enzymatic temperature-dependent mechanism for Mn(II) oxidation as a response in warming environments.
Collapse
|
18
|
Soldatova AV, Fu W, Romano CA, Tao L, Casey WH, Britt RD, Tebo BM, Spiro TG. Metallo-inhibition of Mnx, a bacterial manganese multicopper oxidase complex. J Inorg Biochem 2021; 224:111547. [PMID: 34403930 DOI: 10.1016/j.jinorgbio.2021.111547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022]
Abstract
The manganese oxidase complex, Mnx, from Bacillus sp. PL-12 contains a multicopper oxidase (MCO) and oxidizes dissolved Mn(II) to form insoluble manganese oxide (MnO2) mineral. Previous kinetic and spectroscopic analyses have shown that the enzyme's mechanism proceeds through an activation step that facilitates formation of a series of binuclear Mn complexes in the oxidation states II, III, and IV on the path to MnO2 formation. We now demonstrate that the enzyme is inhibited by first-row transition metals in the order of the Irving-Williams series. Zn(II) strongly (Ki ~ 1.5 μM) inhibits both activation and turnover steps, as well as the rate of Mn(II) binding. The combined Zn(II) and Mn(II) concentration dependence establishes that the inhibition is non-competitive. This result is supported by electron paramagnetic resonance (EPR) spectroscopy, which reveals unaltered Mnx-bound Mn(II) EPR signals, both mono- and binuclear, in the presence of Zn(II). We infer that inhibitory metals bind at a site separate from the substrate sites and block the conformation change required to activate the enzyme, a case of allosteric inhibition. The likely biological role of this inhibitory site is discussed in the context of Bacillus spore physiology. While Cu(II) inhibits Mnx strongly, in accord with the Irving-Williams series, it increases Mnx activation at low concentrations, suggesting that weakly bound Cu, in addition to the four canonical MCO-Cu, may support enzyme activity, perhaps as an electron transfer agent.
Collapse
Affiliation(s)
- Alexandra V Soldatova
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Wen Fu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Christine A Romano
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Lizhi Tao
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - William H Casey
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States; Earth and Planetary Sciences Department, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Thomas G Spiro
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States.
| |
Collapse
|
19
|
Sun S, Zhang X, Yu X, Cui J, Yang M, Yang Q, Xiao P, Liang S. Unprecedented Ag-Cu 2O composited mesocrystals with efficient charge separation and transfer as well as visible light harvesting for enhanced photocatalytic activity. NANOSCALE 2021; 13:11867-11877. [PMID: 34190279 DOI: 10.1039/d1nr02306c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mesocrystals with highly ordered subunits can provide good charge transfer tunnels and more active sites for catalytic reactions. So far, single-component mesocrystals have been well-developed in metals or metal oxides in the past decades, but the construction of mesocrystals in nanocomposites has been a great challenge. Herein we demonstrated a simple, one-pot wet chemical strategy for the preparation of plate-like Ag-Cu2O composited mesocrystals (CMCs) without any organic capping agent, which broke through the traditional dependence on organic capping agents for the synthesis of mesocrystals. As expected, these unprecedented Ag-Cu2O CMCs displayed superior visible-light-driven photodegradation performance toward tetracycline solution compared to the core-shell Ag@Cu2O and pure Cu2O photocatalysts. The improved photocatalytic activity of Ag-Cu2O CMCs could be ascribed to the synergistic effect of an ordered crystallographic orientation, the Schottky barrier and localized surface plasmon resonance (LSPR) for simultaneously enhancing charge separation and transfer as well as visible light harvesting. This research might stimulate in-depth investigations on the exploration of new synthetic methods for the design and construction of novel composited mesocrystals.
Collapse
Affiliation(s)
- Shaodong Sun
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang T, Liu L, Tan W, Suib SL, Qiu G. Formation and transformation of manganese(III) intermediates in the photochemical generation of manganese(IV) oxide minerals. CHEMOSPHERE 2021; 262:128082. [PMID: 33182100 DOI: 10.1016/j.chemosphere.2020.128082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
As important natural oxidants and adsorbents, manganese (Mn) oxide minerals affect the speciation, bioavailability and fate of pollutants and nutrient elements. It was found that birnessite-type Mn(IV) oxide minerals can be formed in the presence of NO3- and solar irradiation. However, the photochemical formation and transformation processes from Mn2+ to Mn(IV) oxide minerals remain unclear. In this work, the Mn(IV) oxide minerals were confirmed to be photochemically formed mainly due to the disproportionation of Mn(III) intermediates generated from the oxidation of Mn2+ in the presence of NO3- under UV light irradiation. The oxidation rate of Mn2+ to Mn(IV) oxide minerals decreased with increasing initial Mn2+ concentration due to the lower disproportionation rate. The increase in NO3- concentration, pH and temperature promoted Mn2+ photochemical oxidation. The photochemical formation rate of Mn(IV) oxide minerals increased with increasing ligand concentrations at low ligand concentrations. Ligands affected the formation of Mn(IV) oxide minerals by promoting the formation and reducing the reactivity of Mn(III) intermediates. Overall, this work reveals the important role of Mn(III) intermediates in the formation of natural Mn oxide minerals.
Collapse
Affiliation(s)
- Tengfei Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Steven L Suib
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut, 06269-3060, USA
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
21
|
Das R, Liang Z, Li G, An T. A non-blue laccase of Bacillus sp. GZB displays manganese-oxidase activity: A study of laccase characterization, Mn(II) oxidation and prediction of Mn(II) oxidation mechanism. CHEMOSPHERE 2020; 252:126619. [PMID: 32443277 DOI: 10.1016/j.chemosphere.2020.126619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/26/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Laccase, a unique class of multicopper oxidase, presents promising potential as a biocatalyst in many industrial and biotechnological applications. Recently, it has been significantly applied in many metal-polluted sites due to its Manganese (Mn)-oxidation ability. Here, we demonstrate the Mn(II)-oxidase activity of laccase obtained from Bacillus sp. GZB. The CotA gene of GZB was transformed in E. coli BL21 and overexpressed. The purified laccase (LACREC3-laccase) displayed the absence of a peak at 610 nm that is usually found in blue-laccase. Further, the LACREC3-laccase exhibited high activity and stability at different pH and temperatures with substrates 2, 2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonate) and syringaldazine, respectively. It also functioned in the presence of various metals and enzyme inhibitors. Most notably, LACREC3-laccase formed insoluble brown Mn(III)/Mn(IV)-oxide particles from Mn(II) mineral, exhibiting its Mn(II)-oxidase activity. In addition to native polyacrylamide gel electrophoresis and buffer test, we developed an 'agarose gel plate' assay to evaluate Mn(II) oxidation activity of laccase. Furthermore, using the leucoberbelin blue assay, a total of 44.45 ± 0.45% Mn(IV)-oxides were quantified, in which 5.87 ± 0.61% autoxidized after 24 h. The Mn(II) oxidation mechanisms were further predicted by trapping Mn(III) using pyrophosphate during Mn(II) to Mn(IV) conversion by LACREC3-laccase. Overall, the laccase of GZB has excellent activity and stability plus an ability to oxidize Mn(II). This study is the first report on a non-blue laccase, exhibiting Mn(II)-oxidase activity. Thus, it offers a novel finding of the Mn(II) oxidation processes that can be a valuable way of Mn(II)-mineralization in various metal-polluted environments.
Collapse
Affiliation(s)
- Ranjit Das
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhishu Liang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
22
|
Jones SM, Heppner DE, Vu K, Kosman DJ, Solomon EI. Rapid Decay of the Native Intermediate in the Metallooxidase Fet3p Enables Controlled Fe II Oxidation for Efficient Metabolism. J Am Chem Soc 2020; 142:10087-10101. [PMID: 32379440 DOI: 10.1021/jacs.0c02384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The multicopper oxidases (MCOs) couple four 1e- oxidations of substrate to the 4e- reduction of O2 to H2O. These divide into two groups: those that oxidize organic substrates with high turnover frequencies (TOFs) up to 560 s-1 and those that oxidize metal ions with low TOFs, ∼1 s-1 or less. The catalytic mechanism of the organic oxidases has been elucidated, and the high TOF is achieved through rapid intramolecular electron transfer (IET) to the native intermediate (NI), which only slowly decays to the resting form. Here, we uncover the factors that govern the low TOF in Fet3p, a prototypical metallooxidase, in the context of the MCO mechanism. We determine that the NI decays rapidly under optimal turnover conditions, and the mechanism thereby becomes rate-limited by slow IET to the resting enzyme. Development of a catalytic model leads to the important conclusions that proton delivery to the NI controls the mechanism and enables the slow turnover in Fet3p that is functionally significant in Fe metabolism enabling efficient ferroxidase activity while avoiding ROS generation.
Collapse
Affiliation(s)
- Stephen M Jones
- Department of Chemistry, Stanford University, 333 Campus Drive Stanford, California 94305, United States
| | - David E Heppner
- Department of Chemistry, Stanford University, 333 Campus Drive Stanford, California 94305, United States
| | - Kenny Vu
- Department of Biochemistry, The University at Buffalo, 140 Farber Hall, 3435 Main Street, Buffalo, New York 14214, United States
| | - Daniel J Kosman
- Department of Biochemistry, The University at Buffalo, 140 Farber Hall, 3435 Main Street, Buffalo, New York 14214, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University, 333 Campus Drive Stanford, California 94305, United States
| |
Collapse
|
23
|
Li D, Li R, Ding Z, Ruan X, Luo J, Chen J, Zheng J, Tang J. Discovery of a novel native bacterium of Providencia sp. with high biosorption and oxidation ability of manganese for bioleaching of heavy metal contaminated soils. CHEMOSPHERE 2020; 241:125039. [PMID: 31606568 DOI: 10.1016/j.chemosphere.2019.125039] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal removal from contaminated soils is a long-term challenging problem important for global economics, environment, and human health. Marine and freshwater-originated Mn(II)-oxidizing bacteria are considered as the promising bioremediation agents for environmental applications. However, practical application of soil-originated Mn(II)-oxidizing bacteria remains to be developed for contaminated soil remediation. In this work, the Mn(II) biosorption/oxidation mechanism of a new soil-originated bacterium and its bioleaching efficiency of heavy metals from soils was studied in detail. First, we found, isolated and identified a new highly Mn(II)-tolerant bacterial strain Providencia sp. LLDRA6 from heavy metal-contaminated soils. Next, strain LLDRA6 demonstrated its high Mn(II) biosorption capacity in aqueous solution. Then, Mn(II) adsorption by LLDRA6 was largely proven to be a synergistic effect of (i) Mn(II) precipitation on the cell surface, (ii) oxidation of Mn(II) into BioMnOx on the cell surface, and (iii) intracellular accumulation of insoluble MnCO3. Finally, combination bioleaching by the bacterium of Providencia sp. LLDRA6 and its formed BioMnOx was proposed to develop a potential environment-friendly and cost-effective technique to remediate severely heavy metal-contaminated soils. The bioleaching tests demonstrated that the combination of Providencia sp. LLDRA6 and BioMnOx exhibited an excellent removal efficiency for heavy metals of Pb (81.72%), Cr (88.29%), Cd (90.34%), Cu (91.25%), Mn (56.13%), and Zn (59.83%) from contaminated soils, resulting in an increase of removal efficiency in the range of 1.68-26.4% compared to Providencia sp. LLDRA6 alone. Moreover, the bacterial leachate facilitated the residual fraction of metals to transform into the easily migratory fractions in soils. These findings have demonstrated that strain LLDRA6 has high adsorption ability to remove heavy metals from contaminated soils, thus providing a promising bio-adsorbent for environmental bioremediation.
Collapse
Affiliation(s)
- Ding Li
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China; State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
| | - Ruyi Li
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zhexu Ding
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xiaofang Ruan
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jun Luo
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jinyuan Chen
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Jianxin Tang
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China.
| |
Collapse
|
24
|
Bacterial enzymes for lignin depolymerisation: new biocatalysts for generation of renewable chemicals from biomass. Curr Opin Chem Biol 2020; 55:26-33. [PMID: 31918394 DOI: 10.1016/j.cbpa.2019.11.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/17/2019] [Accepted: 11/19/2019] [Indexed: 11/20/2022]
Abstract
The conversion of polymeric lignin from plant biomass into renewable chemicals is an important unsolved problem in the biorefinery concept. This article summarises recent developments in the discovery of bacterial enzymes for lignin degradation, our current understanding of their molecular mechanism of action, and their use to convert lignin or lignocellulose into aromatic chemicals. The review also discusses the recent developments in screening of metagenomic libraries for new biocatalysts, and the use of protein engineering to enhance lignin degradation activity.
Collapse
|
25
|
Qian A, Zhang W, Shi C, Pan C, Giammar DE, Yuan S, Zhang H, Wang Z. Geochemical Stability of Dissolved Mn(III) in the Presence of Pyrophosphate as a Model Ligand: Complexation and Disproportionation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5768-5777. [PMID: 30973718 DOI: 10.1021/acs.est.9b00498] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dissolved Mn(III) species have recently been recognized as a significant form of Mn in redox transition zones, but their speciation, stability, and reactivity are poorly understood. Besides acting as the intermediate for Mn redox chemistry, Mn(III) can undergo disproportionation producing insoluble Mn oxides and aqueous Mn(II). Using pyrophosphate(PP) as a model ligand, we evaluated the thermodynamic and kinetic stability of Mn(III) complexes. They were stable at circumneutral pH and were prone to (partial) disproportionation at acidic or basic pH. With an initial lag phase, the kinetics of Mn(III)-PP disproportionation was autocatalytic with the produced Mn oxides promoting the disproportionation. X-ray diffraction and the average Mn oxidation state indicated that the solid products were not pure Mn(IV) oxides but a mixture of triclinic birnessite and δ-MnO2. Addition of synthetic analogs of the precipitates eliminated the lag phase, confirming their catalytic roles. Thermodynamic calculations adequately predicted the stability regime of Mn(III)-PP. The present results refined the constant for Mn(PP)25- formation, which allows a consistent and quantitative prediction of equilibrium speciation of Mn(III)-Mn(II)-birnessite with PP. A simple and robust model, which incorporated the thermodynamic constraints, autocatalytic rate law, and verified reaction stoichiometry, successfully simulated all kinetic data.
Collapse
Affiliation(s)
- Ao Qian
- State Key Laboratory of Biogeology and Environmental Geology , China University of Geosciences , Wuhan , Hubei China
| | - Wen Zhang
- Department of Environmental Science and Engineering , Fudan University , Shanghai , China
| | - Cheng Shi
- Department of Civil and Environmental Engineering , Louisiana State University , Baton Rouge , Louisiana United States
| | - Chao Pan
- Department of Energy, Environmental and Chemical Engineering , Washington University in St. Louis , St. Louis , Missouri United States
| | - Daniel E Giammar
- Department of Energy, Environmental and Chemical Engineering , Washington University in St. Louis , St. Louis , Missouri United States
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology , China University of Geosciences , Wuhan , Hubei China
| | - Hongliang Zhang
- Department of Civil and Environmental Engineering , Louisiana State University , Baton Rouge , Louisiana United States
| | - Zimeng Wang
- Department of Environmental Science and Engineering , Fudan University , Shanghai , China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai , China
| |
Collapse
|
26
|
Soldatova AV, Balakrishnan G, Oyerinde OF, Romano CA, Tebo BM, Spiro TG. Biogenic and Synthetic MnO 2 Nanoparticles: Size and Growth Probed with Absorption and Raman Spectroscopies and Dynamic Light Scattering. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4185-4197. [PMID: 30905145 DOI: 10.1021/acs.est.8b05806] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
MnO2 nanoparticles, similar to those found in soils and sediments, have been characterized via their UV-visible and Raman spectra, combined with dynamic light scattering and reactivity measurements. Synthetic colloids were prepared by thiosulfate reduction of permanganate, their sizes controlled with adsorbates acting as capping agents: bicarbonate, phosphate, and pyrophosphate. Biogenic colloids, products of the manganese oxidase, Mnx, were similarly characterized. The band-gap energies of the colloids were found to increase with decreasing hydrodynamic diameter, Dh, and were proportional to 1/ Dh2, as predicted from quantum confinement theory. The intensity ratio of the two prominent Mn-O stretching Raman bands also varied with particle size, consistent with the ratio of edge to bulk Mn atoms. Reactivity of the synthetic colloids toward reduction by Mn2+, in the presence of pyrophosphate to trap the Mn3+ product, was proportional to the surface to volume ratio, but showed surprising complexity. There was also a remnant unreactive fraction, likely attributable to Mn(III)-induced surface passivation. The band gap was similar for biogenic and synthetic colloids of similar size, but decreased when the enzyme solution contained pyrophosphate, which traps the intermediate Mn(III) and slows MnO2 growth. The band gap/size correlation was used to analyze the growth of the enzymatically produced MnO2 oxides.
Collapse
Affiliation(s)
- Alexandra V Soldatova
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Gurusamy Balakrishnan
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Oyeyemi F Oyerinde
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Christine A Romano
- Division of Environmental and Biomolecular Systems , Oregon Health & Science University , Portland , Oregon 97239 , United States
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems , Oregon Health & Science University , Portland , Oregon 97239 , United States
| | - Thomas G Spiro
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| |
Collapse
|
27
|
Medina M, Rizo A, Dinh D, Chau B, Omidvar M, Juarez A, Ngo J, Johnson HA. MopA, the Mn Oxidizing Protein From Erythrobacter sp. SD-21, Requires Heme and NAD + for Mn(II) Oxidation. Front Microbiol 2018; 9:2671. [PMID: 30487779 PMCID: PMC6247904 DOI: 10.3389/fmicb.2018.02671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/19/2018] [Indexed: 11/15/2022] Open
Abstract
Bacterial manganese (Mn) oxidation is catalyzed by a diverse group of microbes and can affect the fate of other elements in the environment. Yet, we understand little about the enzymes that catalyze this reaction. The Mn oxidizing protein MopA, from Erythrobacter sp. strain SD-21, is a heme peroxidase capable of Mn(II) oxidation. Unlike Mn oxidizing multicopper oxidase enzymes, an understanding of MopA is very limited. Sequence analysis indicates that MopA contains an N-terminal heme peroxidase domain and a C-terminal calcium binding domain. Heterologous expression and nickel affinity chromatography purification of the N-terminal peroxidase domain (MopA-hp) from Erythrobacter sp. strain SD-21 led to partial purification. MopA-hp is a heme binding protein that requires heme, NAD+, and calcium (Ca2+) for activity. Mn oxidation is also stimulated by the presence of pyrroloquinoline quinone. MopA-hp has a KM for Mn(II) of 154 ± 46 μM and kcat = 1.6 min−1. Although oxygen requiring MopA-hp is homologous to peroxidases based on sequence, addition of hydrogen peroxide and hydrogen peroxide scavengers had little effect on Mn oxidation, suggesting this is not the oxidizing agent. These studies provide insight into the mechanism by which MopA oxidizes Mn.
Collapse
Affiliation(s)
- Michael Medina
- Department of Biological Science, Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA, United States
| | - Antonia Rizo
- Department of Biological Science, Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA, United States
| | - David Dinh
- Department of Biological Science, Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA, United States
| | - Briana Chau
- Department of Biological Science, Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA, United States
| | - Moussa Omidvar
- Department of Biological Science, Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA, United States
| | - Andrew Juarez
- Department of Biological Science, Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA, United States
| | - Julia Ngo
- Department of Biological Science, Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA, United States
| | - Hope A Johnson
- Department of Biological Science, Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA, United States
| |
Collapse
|
28
|
Zheng Y, Li Y, Long H, Zhao X, Jia K, Li J, Wang L, Wang R, Lu X, Zhang D. bifA Regulates Biofilm Development of Pseudomonas putida MnB1 as a Primary Response to H 2O 2 and Mn 2. Front Microbiol 2018; 9:1490. [PMID: 30042743 PMCID: PMC6048274 DOI: 10.3389/fmicb.2018.01490] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas putida (P. putida) MnB1 is a widely used model strain in environment science and technology for determining microbial manganese oxidation. Numerous studies have demonstrated that the growth and metabolism of P. putida MnB1 are influenced by various environmental factors. In this study, we investigated the effects of hydrogen peroxide (H2O2) and manganese (Mn2+) on proliferation, Mn2+ acquisition, anti-oxidative system, and biofilm formation of P. putida MnB1. The related orthologs of 4 genes, mco, mntABC, sod, and bifA, were amplified from P. putida GB1 and their involvement were assayed, respectively. We found that P. putida MnB1 degraded H2O2, and quickly recovered for proliferation, but its intracellular oxidative stress state was maintained, with rapid biofilm formation after H2O2 depletion. The data from mco, mntABC, sod and bifA expression levels by qRT-PCR, elucidated a sensitivity toward bifA-mediated biofilm formation, in contrary to intracellular anti-oxidative system under H2O2 exposure. Meanwhile, Mn2+ ion supply inhibited biofilm formation of P. putida MnB1. The expression pattern of these genes showed that Mn2+ ion supply likely functioned to modulate biofilm formation rather than only acting as nutrient substrate for P. putida MnB1. Furthermore, blockade of BifA activity by GTP increased the formation and development of biofilms during H2O2 exposure, while converse response to Mn2+ ion supply was evident. These distinct cellular responses to H2O2 and Mn2+ provide insights on the common mechanism by which environmental microorganisms may be protected from exogenous factors. We postulate that BifA-mediated biofilm formation but not intracellular anti-oxidative system may be a primary protective strategy adopted by P. putida MnB1. These findings will highlight the understanding of microbial adaptation mechanisms to distinct environmental stresses.
Collapse
Affiliation(s)
- Yanjing Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yumei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hongyan Long
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaojuan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Keke Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Juan Li
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing, China
| | - Ruiyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiancai Lu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Dongmei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
29
|
Tao L, Stich TA, Soldatova AV, Tebo BM, Spiro TG, Casey WH, Britt RD. Mn(III) species formed by the multi-copper oxidase MnxG investigated by electron paramagnetic resonance spectroscopy. J Biol Inorg Chem 2018; 23:1093-1104. [PMID: 29968177 DOI: 10.1007/s00775-018-1587-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/22/2018] [Indexed: 01/24/2023]
Abstract
The multi-copper oxidase (MCO) MnxG from marine Bacillus bacteria plays an essential role in geochemical cycling of manganese by oxidizing Mn2+(aq) to form manganese oxide minerals at rates that are three to five orders of magnitude faster than abiotic rates. The MCO MnxG protein is isolated as part of a multi-protein complex, denoted as Mnx, which includes one MnxG unit and a hexamer of MnxE3F3 subunit. During the oxidation of Mn2+(aq) catalyzed by the Mnx protein complex, an enzyme-bound Mn(III) species was trapped recently in the presence of pyrophosphate (PP) and analyzed using parallel-mode electron paramagnetic resonance (EPR) spectroscopy. Herein, we provide a full analysis of this enzyme-bound Mn(III) intermediate via temperature dependence studies and spectral simulations. This Mnx-bound Mn(III) species is characterized by a hyperfine-coupling value of A(55Mn) = 4.2 mT (corresponding to 120 MHz) and a negative zero-field splitting (ZFS) value of D = - 2.0 cm-1. These magnetic properties suggest that the Mnx-bound Mn(III) species could be either six-coordinate with a 5B1g ground state or square-pyramidal five-coordinate with a 5B1 ground state. In addition, as a control, Mn(III)PP is also analyzed by parallel-mode EPR spectroscopy. It exhibits distinctly different magnetic properties with a hyperfine-coupling value of A(55Mn) = 4.8 mT (corresponding to 140 MHz) and a negative ZFS value of D = - 2.5 cm-1. The different ZFS values suggest differences in ligand environment of Mnx-bound Mn(III) and aqueous Mn(III)PP species. These studies provide further insights into the mechanism of biological Mn2+(aq) oxidation.
Collapse
Affiliation(s)
- Lizhi Tao
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Troy A Stich
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Alexandra V Soldatova
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, USA
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Thomas G Spiro
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, USA
| | - William H Casey
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Department of Geology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - R David Britt
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
30
|
Adinci KJ, Akpo Y, Adoligbe C, Adehan SB, Yessinou RE, Sodé AI, Mensah GA, Youssao AKI, Sinsin B, Farougou S. Preliminary study on the tick population of Benin wildlife at the moment of its invasion by the Rhipicephalus microplus tick (Canestrini, 1888). Vet World 2018; 11:845-851. [PMID: 30034180 PMCID: PMC6048076 DOI: 10.14202/vetworld.2018.845-851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/17/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Rhipicephalus microplus (Rm) is one of the most problematic livestock tick species in the world. Its rapid propagation and resistance to acaricides make it control difficult in the sub-region and Benin particularly. The aim of this work was to check its presence in wildlife and to confirm the possible role of reservoir wildlife may play in the propagation of the parasite. This will help to design more efficient control strategy. MATERIALS AND METHODS This study was conducted from February to March 2017 in the National Parks of Benin (Pendjari and W Park) and wildfowl's assembly and selling point in Benin. Ticks were manually picked with forceps from each animal after slaughtering by hunters then stored in 70° ethanol. Collected ticks were counted and identified in the laboratory using the identification key as described by Walker. RESULTS Overall, seven species of ticks (Amblyomma variegatum, Boophilus decoloratus, Rm, Boophilus spp., Hyalomma spp., Rhipicephalus sanguineus, Rhipicephalus spp.) were identified on nine wild animal species sampled (Cane rat, wildcat, Hare, Doe, Cricetoma, Buffalo, Buffon Cobe, and Bushbuck and Warthog). The average number of ticks varies from 3 to 6 between animal species, 3 to 7 between localities visited, and 2 to 5 between tick species. However, these differences are statistically significant only for localities. Considering tick species and animal species, the parasite load of Rm and Rhipicephalus spp. is higher; the buffalo being more infested. The analysis of deviance reveals that the abundance of ticks observed depends only on the observed localities (p>0.05). However, the interactions between animal species and localities on the one hand and between animal and tick species on the other hand, although not significant, have influenced the abundance of ticks as they reduce the residual deviance after their inclusion in the model. CONCLUSIONS This study reported the presence of Rm in wildlife of Benin and confirmed its role in the maintenance and spread of the parasites. It is, therefore, an important risk factor that we must not neglect in the epidemiological surveillance and ticks control strategies in the West African sub-region and particularly in Benin.
Collapse
Affiliation(s)
- Kossi Justin Adinci
- Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 P.O. Box 2009, Cotonou, Benin
| | - Yao Akpo
- Laboratory of Ecology, Health and Animal Production, Faculty of Agronomy, University of Parakou, P.O. Box 123 Parakou, Benin
| | - Camus Adoligbe
- Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 P.O. Box 2009, Cotonou, Benin
| | - Safiou Bienvenu Adehan
- National Institute for Scientific Research, Research Center of Agonkanmey (CRA/INRAB), Benin
| | - Roland Eric Yessinou
- Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 P.O. Box 2009, Cotonou, Benin
| | - Akoeugnigan Idelphonse Sodé
- Laboratory of Biomathematics and Forest Estimations Faculty of Agronomic Sciences (FSA) University of Abomey-Calavi, 04 BP 1525, Cotonou (Bénin)
| | - Guy Appolinaire Mensah
- National Institute for Scientific Research, Research Center of Agonkanmey (CRA/INRAB), Benin
| | - Abdou Karim Issaka Youssao
- Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 P.O. Box 2009, Cotonou, Benin
| | - Brice Sinsin
- Department of Animal Production, Faculty of Agronomic Sciences (FSA), University of Abomey-Calavi (Benin), 01 BP 526 Cotonou, Benin
| | - Souaïbou Farougou
- Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, 01 P.O. Box 2009, Cotonou, Benin
| |
Collapse
|
31
|
Wright MH, Geszvain K, Oldham VE, Luther GW, Tebo BM. Oxidative Formation and Removal of Complexed Mn(III) by Pseudomonas Species. Front Microbiol 2018; 9:560. [PMID: 29706936 PMCID: PMC5906577 DOI: 10.3389/fmicb.2018.00560] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/12/2018] [Indexed: 11/20/2022] Open
Abstract
The observation of significant concentrations of soluble Mn(III) complexes in oxic, suboxic, and some anoxic waters has triggered a re-evaluation of the previous Mn paradigm which focused on the cycling between soluble Mn(II) and insoluble Mn(III,IV) species as operationally defined by filtration. Though Mn(II) oxidation in aquatic environments is primarily bacterially-mediated, little is known about the effect of Mn(III)-binding ligands on Mn(II) oxidation nor on the formation and removal of Mn(III). Pseudomonas putida GB-1 is one of the most extensively investigated of all Mn(II) oxidizing bacteria, encoding genes for three Mn oxidases (McoA, MnxG, and MopA). P. putida GB-1 and associated Mn oxidase mutants were tested alongside environmental isolates Pseudomonas hunanensis GSL-007 and Pseudomonas sp. GSL-010 for their ability to both directly oxidize weakly and strongly bound Mn(III), and to form these complexes through the oxidation of Mn(II). Using Mn(III)-citrate (weak complex) and Mn(III)-DFOB (strong complex), it was observed that P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 and mutants expressing only MnxG and McoA were able to directly oxidize both species at varying levels; however, no oxidation was detected in cultures of a P. putida mutant expressing only MopA. During cultivation in the presence of Mn(II) and citrate or DFOB, P. putida GB-1, P. hunanensis GSL-007 and Pseudomonas sp. GSL-010 formed Mn(III) complexes transiently as an intermediate before forming Mn(III/IV) oxides with the overall rates and extents of Mn(III,IV) oxide formation being greater for Mn(III)-citrate than for Mn(III)-DFOB. These data highlight the role of bacteria in the oxidative portion of the Mn cycle and suggest that the oxidation of strong Mn(III) complexes can occur through enzymatic mechanisms involving multicopper oxidases. The results support the observations from field studies and further emphasize the complexity of the geochemical cycling of manganese.
Collapse
Affiliation(s)
- Mitchell H. Wright
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, Portland, OR, United States
| | - Kati Geszvain
- Department of Biology, Lynchburg College, Lynchburg, VA, United States
| | - Véronique E. Oldham
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - George W. Luther
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States
| | - Bradley M. Tebo
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
32
|
Soldatova AV, Romano CA, Tao L, Stich TA, Casey WH, Britt RD, Tebo BM, Spiro TG. Mn(II) Oxidation by the Multicopper Oxidase Complex Mnx: A Coordinated Two-Stage Mn(II)/(III) and Mn(III)/(IV) Mechanism. J Am Chem Soc 2017; 139:11381-11391. [PMID: 28712303 DOI: 10.1021/jacs.7b02772] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The bacterial manganese oxidase MnxG of the Mnx protein complex is unique among multicopper oxidases (MCOs) in carrying out a two-electron metal oxidation, converting Mn(II) to MnO2 nanoparticles. The reaction occurs in two stages: Mn(II) → Mn(III) and Mn(III) → MnO2. In a companion study , we show that the electron transfer from Mn(II) to the low-potential type 1 Cu of MnxG requires an activation step, likely forming a hydroxide bridge at a dinuclear Mn(II) site. Here we study the second oxidation step, using pyrophosphate (PP) as a Mn(III) trap. PP chelates Mn(III) produced by the enzyme and subsequently allows it to become a substrate for the second stage of the reaction. EPR spectroscopy confirms the presence of Mn(III) bound to the enzyme. The Mn(III) oxidation step does not involve direct electron transfer to the enzyme from Mn(III), which is shown by kinetic measurements to be excluded from the Mn(II) binding site. Instead, Mn(III) is proposed to disproportionate at an adjacent polynuclear site, thereby allowing indirect oxidation to Mn(IV) and recycling of Mn(II). PP plays a multifaceted role, slowing the reaction by complexing both Mn(II) and Mn(III) in solution, and also inhibiting catalysis, likely through binding at or near the active site. An overall mechanism for Mnx-catalyzed MnO2 production from Mn(II) is presented.
Collapse
Affiliation(s)
- Alexandra V Soldatova
- Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195, United States
| | - Christine A Romano
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University , Portland, Oregon 97239, United States
| | | | | | | | | | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University , Portland, Oregon 97239, United States
| | - Thomas G Spiro
- Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195, United States
| |
Collapse
|