1
|
Xie H, Wang S, Shu XZ. C-OH Bond Activation for Stereoselective Radical C-Glycosylation of Native Saccharides. J Am Chem Soc 2024; 146:32269-32275. [PMID: 39545714 DOI: 10.1021/jacs.4c11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Radical C-glycosylation presents a flexible and efficient method for synthesizing C-glycosides. Existing methods always require multistep processes for generating anomeric radicals. In this study, we introduce a streamlined approach to produce anomeric radicals through direct C-OH bond homolysis of unmodified saccharides, eliminating the need for protection, deprotection, or activation steps. These anomeric radicals selectively couple with activated alkenes, yielding C-glycosylation products with high stereoselectivity (>20:1). This method is applicable to a variety of native monosaccharides, such as l-arabinose, d-arabinose, d-xylose, l-xylose, d-galactose, β-d-glucose, α-d-glucose, and l-ribose, as well as oligosaccharides including α-lactose, d-(+)-melibiose, and acarbose. We also extend this approach to C-glycosylation of amino acid and peptide derivatives, and demonstrate a streamlined synthesis of an anti-inflammatory agent.
Collapse
Affiliation(s)
- Hao Xie
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Sheng Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
2
|
Mukherjee S, Aoki Y, Kawamura S, Sodeoka M. Ligand-Controlled Copper-Catalyzed Halo-Halodifluoromethylation of Alkenes and Alkynes Using Fluorinated Carboxylic Anhydrides. Angew Chem Int Ed Engl 2024; 63:e202407150. [PMID: 38979689 DOI: 10.1002/anie.202407150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Polyhalogenated molecules are often found as bioactive compounds in nature and are used as synthetic building blocks. Fluoroalkyl compounds hold promise for the development of novel pharmaceuticals and agrochemicals, as the introduction of fluoroalkyl groups is known to improve lipophilicity, membrane permeability, and metabolic stability. Three-component 1,2-halo-halodifluoromethylation reactions of alkenes are useful for their synthesis. However, general methods enabling the introduction of halodifluoromethyl (CF2X) and halogen (X') groups in the desired combination of X and X' are lacking. To address this gap, for the first time, we report a three-component halo-halodifluoromethylation of alkenes and alkynes using combinations of commercially available fluorinated carboxylic anhydrides ((CF2XCO)2O, X=Cl and Br) and alkali metal halides (X'=Cl and Br). In situ prepared fluorinated diacyl peroxides were identified as important intermediates, and the use of appropriate bipyridyl-based ligands and a copper catalyst was essential for achieving high product selectivity. The synthetic utility of the polyhalogenated products was demonstrated by exploiting differences in the reactivities of their C-X and C-X' bonds to achieve selective derivatization. Finally, the reaction mechanism and ligand effect were investigated using experimental and theoretical methods to provide important insights for the further development of catalytic reactions.
Collapse
Affiliation(s)
- Subrata Mukherjee
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yuma Aoki
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shintaro Kawamura
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
3
|
Hu L, Li R, Liu Y, Zhou J, Sun Z. Photocatalytic Synthesis of α-Ketonyl Glycosyl Compounds from Glycosyl Thiols and Silyl Enol Ethers. Org Lett 2024; 26:8188-8193. [PMID: 39297709 DOI: 10.1021/acs.orglett.4c03124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The synthesis of C1-ketonyl glycosyl compounds featuring α-selectivity has seldom been reported. We herein devise a glycosyl radical-based approach to facilely access stereoenriched ketonyl glycosyl compounds via an Ir photoredox-catalyzed desulfurative addition to silyl enol ethers, using in situ-generated tetrafluoropyridinyl thioglycosides from glycosyl 1-thiols as radical precursors. This protocol features readily prepared starting materials, mild conditions, excellent functional group tolerance, satisfactory scale-up, and notable amenability to late-stage modification of pharmaceutically relevant complex molecules.
Collapse
Affiliation(s)
- Lifu Hu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ruining Li
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yunqi Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Junliang Zhou
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhankui Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
4
|
Xu S, Ping Y, Xu M, Wu G, Ke Y, Miao R, Qi X, Kong W. Stereoselective and site-divergent synthesis of C-glycosides. Nat Chem 2024:10.1038/s41557-024-01629-3. [PMID: 39271916 DOI: 10.1038/s41557-024-01629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 08/13/2024] [Indexed: 09/15/2024]
Abstract
Carbohydrates play important roles in medicinal chemistry and biochemistry. However, their synthesis relies on specially designed glycosyl donors, which are often unstable and require multi-step synthesis. Furthermore, the catalytic and stereoselective installation of arylated quaternary stereocentres on sugar rings remains a formidable challenge. Here we report a facile and versatile method for the synthesis of diverse C-R (where R is an aryl, heteroaryl, alkenyl, alkynyl or alkyl) glycosides from readily available and bench-stable 1-deoxyglycosides. The reaction proceeds under mild conditions and exhibits high stereoselectivity across a broad range of glycosyl units. This protocol can be used to synthesize challenging 2-deoxyglycosides, unprotected glycosides, non-classical glycosides and deuterated glycosides. We further developed the catalyst-controlled site-divergent functionalization of carbohydrates for the synthesis of various unexplored carbohydrates containing arylated quaternary stereocentres that are inaccessible by existing methods. The synthetic utility of this strategy is further demonstrated in the synthesis of pharmaceutically relevant molecules and carbohydrates.
Collapse
Affiliation(s)
- Sheng Xu
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Yuanyuan Ping
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Minghao Xu
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Guozhen Wu
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Yang Ke
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Rui Miao
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Xiaotian Qi
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China.
| | - Wangqing Kong
- The Institute for Advanced Studies, Wuhan University, Wuhan, China.
- Wuhan Institute of Photochemistry and Technology, Wuhan, China.
| |
Collapse
|
5
|
Ding W, Chen X, Sun Z, Luo J, Wang S, Lu Q, Ma J, Zhao C, Chen FE, Xu C. A Radical Activation Strategy for Versatile and Stereoselective N-Glycosylation. Angew Chem Int Ed Engl 2024; 63:e202409004. [PMID: 38837495 DOI: 10.1002/anie.202409004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Previous N-glycosylation approaches have predominately involved acidic conditions, facing challenges of low stereoselectivity and limited scope. Herein, we introduce a radical activation strategy that enables versatile and stereoselective N-glycosylation using readily accessible glycosyl sulfinate donors under basic conditions and exhibits exceptional tolerance towards various N-aglycones containing alkyl, aryl, heteroaryl and nucleobase functionalities. Preliminary mechanistic studies indicate a pivotal role of iodide, which orchestrates the formation of a glycosyl radical from the glycosyl sulfinate and subsequent generation of the key intermediate, a configurationally well-defined glycosyl iodide, which is subsequently attacked by an N-aglycone in a stereospecific SN2 manner to give the desired N-glycosides. An alternative route involving the coupling of a glycosyl radical and a nitrogen-centered radical is also proposed, affording the exclusive 1,2-trans product. This novel approach promises to broaden the synthetic landscape of N-glycosides, offering a powerful tool for the construction of complex glycosidic structures under mild conditions.
Collapse
Affiliation(s)
- Wenyan Ding
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| | - Xinyu Chen
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zuyao Sun
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jiaxin Luo
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shiping Wang
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Qingqing Lu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jialu Ma
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Chongxin Zhao
- Jiangsu Jiyi New Material CO., LTD, Xuzhou, 221700, China
| | - Fen-Er Chen
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Fudan University, Shanghai, 200433, China
| | - Chunfa Xu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
6
|
Wu J, Purushothaman R, Kallert F, Homölle SL, Ackermann L. Electrochemical Glycosylation via Halogen-Atom-Transfer for C-Glycoside Assembly. ACS Catal 2024; 14:11532-11544. [PMID: 39114086 PMCID: PMC11301629 DOI: 10.1021/acscatal.4c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Glycosyl donor activation emerged as an enabling technology for anomeric functionalization, but aimed primarily at O-glycosylation. In contrast, we herein disclose mechanistically distinct electrochemical glycosyl bromide donor activations via halogen-atom transfer and anomeric C-glycosylation. The anomeric radical addition to alkenes led to C-alkyl glycoside synthesis under precious metal-free reaction conditions from readily available glycosyl bromides. The robustness of our e-XAT strategy was further mirrored by C-aryl and C-acyl glycosides assembly through nickela-electrocatalysis. Our approach provides an orthogonal strategy for glycosyl donor activation with expedient scope, hence representing a general method for direct C-glycosides assembly.
Collapse
Affiliation(s)
| | | | - Felix Kallert
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| | - Simon L. Homölle
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| | - Lutz Ackermann
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| |
Collapse
|
7
|
Zhang C, He D, Ma Z, Wang M, Zhu Y, Liu Y, Chen J, Guo L, Lv G, Wu Y. Synthesis of Nonclassical Heteroaryl C-Glycosides via Decarboxylative C-H Glycosylation. J Org Chem 2024; 89:10112-10126. [PMID: 38959135 DOI: 10.1021/acs.joc.4c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
A photoredox-promoted decarboxylative C-H glycosylation for the synthesis of nonclassical heteroaryl C-glycosides is reported. This methodology is characterized by an exceedingly simple reaction system, high diastereoselectivity, and good functional group tolerance. Moreover, the operational procedure is simple, and the gram-scale reaction highlights the practical applicability of this protocol.
Collapse
Affiliation(s)
- Cuimei Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, Third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Dongqin He
- Department of Pediatrics, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Zhaohui Ma
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Mi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, Third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Yafei Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, Third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Yan Liu
- Department of Pediatrics, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Jian Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, Third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Li Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, Third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Guanghui Lv
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, Third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, Third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| |
Collapse
|
8
|
Jiang Y, Wei Y, Zhou QY, Sun GQ, Fu XP, Levin N, Zhang Y, Liu WQ, Song N, Mohammed S, Davis BG, Koh MJ. Direct radical functionalization of native sugars. Nature 2024; 631:319-327. [PMID: 38898275 PMCID: PMC11236704 DOI: 10.1038/s41586-024-07548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/09/2024] [Indexed: 06/21/2024]
Abstract
Naturally occurring (native) sugars and carbohydrates contain numerous hydroxyl groups of similar reactivity1,2. Chemists, therefore, rely typically on laborious, multi-step protecting-group strategies3 to convert these renewable feedstocks into reagents (glycosyl donors) to make glycans. The direct transformation of native sugars to complex saccharides remains a notable challenge. Here we describe a photoinduced approach to achieve site- and stereoselective chemical glycosylation from widely available native sugar building blocks, which through homolytic (one-electron) chemistry bypasses unnecessary hydroxyl group masking and manipulation. This process is reminiscent of nature in its regiocontrolled generation of a transient glycosyl donor, followed by radical-based cross-coupling with electrophiles on activation with light. Through selective anomeric functionalization of mono- and oligosaccharides, this protecting-group-free 'cap and glycosylate' approach offers straightforward access to a wide array of metabolically robust glycosyl compounds. Owing to its biocompatibility, the method was extended to the direct post-translational glycosylation of proteins.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Yi Wei
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Qian-Yi Zhou
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Guo-Quan Sun
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Xia-Ping Fu
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Nikita Levin
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Yijun Zhang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Wen-Qiang Liu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - NingXi Song
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Shabaz Mohammed
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
- Department of Chemistry, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Benjamin G Davis
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK.
- Department of Pharmacology, University of Oxford, Oxford, UK.
- Department of Chemistry, University of Oxford, Oxford, UK.
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Zhang C, He D, Ma Z, Wang M, Zhu Y, Liu Y, Chen J, Lv G, Wu Y. Visible-light-induced synthesis of heteroaryl C-glycosides via decarboxylative C-H glycosylation. Chem Commun (Camb) 2024; 60:5860-5863. [PMID: 38753015 DOI: 10.1039/d4cc01328j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A photoredox promoted decarboxylative C-H glycosylation has been developed for the synthesis of heteroaryl C-glycosides. This methodology is characterized by its exceedingly simple reaction system, high diastereoselectivity and good functional group tolerance. Moreover, this innovative approach circumvents the need for high temperatures, transition metals, and photocatalysts, providing an environmentally friendly, straightforward, and efficient protocol.
Collapse
Affiliation(s)
- Cuimei Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Dongqin He
- Department of Pediatrics, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Zhaohui Ma
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Mi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Yafei Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Yan Liu
- Department of Pediatrics, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Jian Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Guanghui Lv
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
10
|
Liu D, Zhang Y, Niu D. Preparing glycosyl benzothiazoles from 2-isocyanoaryl thioethers and glycosyl radicals under thermal conditions. Chem Commun (Camb) 2024; 60:5498-5501. [PMID: 38696183 DOI: 10.1039/d4cc00648h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Herein, we report a method for preparing glycosyl benzothiazoles via radical cascade cyclization, in which glycosyl radicals are generated from readily available and bench-stable allyl glycosyl sulfones. This cascade reaction proceeds under simple conditions and tolerates a broad substrate scope in high yield with excellent stereoselectivity. Mechanistic studies support that the reactions proceed via the intermediacy of imidoyl radicals, which attack the appended sulfide unit by a SH2 process to forge the thiazole ring.
Collapse
Affiliation(s)
- Daqi Liu
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu 610041, China.
| | - Yang Zhang
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu 610041, China.
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
11
|
Pradhan P, Moktan S, Biswas A, Das A, Lenka R, Kancharla PK. Triple Role of Proton Sponge (DMAN) in the Palladium-Catalyzed Direct Stereoselective Synthesis of C-Aryl Glycosides from Glycals. Org Lett 2024; 26:3563-3568. [PMID: 38652887 DOI: 10.1021/acs.orglett.4c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The triple role of 1,8-bis(dimethylamino)naphthalene (proton sponge) as a reductant, ligand precursor, and organic base in the palladium-catalyzed Heck-type coupling reaction of glycals with aryl iodides affords the rapid and stereoselective synthesis of 2',3'-unsaturated α-C-aryl glycosides in excellent yields. The role of the proton sponge in reducing palladium(II) to (0) has been studied using cyclic voltammetry, UV-vis, HRMS, and other spectroscopic techniques. This is the first example of a palladium proton sponge complex utilized in coupling reactions. The method is observed to be tolerant of various functional groups, as demonstrated by the huge substrate scope. Moreover, the 2',3'-unsaturated α-C-aryl glycosides were also converted to 3-keto-β-C-glycosides under sterically hindered pyridinium salt catalysis via a ring-opening and -closing mechanism.
Collapse
Affiliation(s)
- Priyanka Pradhan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sangay Moktan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ashish Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Rajesh Lenka
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pavan K Kancharla
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
12
|
Li LJ, Zhang JC, Li WP, Zhang D, Duanmu K, Yu H, Ping Q, Yang ZP. Enantioselective Construction of Quaternary Stereocenters via Cooperative Photoredox/Fe/Chiral Primary Amine Triple Catalysis. J Am Chem Soc 2024; 146:9404-9412. [PMID: 38504578 DOI: 10.1021/jacs.4c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The catalytic and enantioselective construction of quaternary (all-carbon substituents) stereocenters poses a formidable challenge in organic synthesis due to the hindrance caused by steric factors. One conceptually viable and potentially versatile approach is the coupling of a C-C bond through an outer-sphere mechanism, accompanied by the realization of enantiocontrol through cooperative catalysis; however, examples of such processes are yet to be identified. Herein, we present such a method for creating different compounds with quaternary stereocenters by photoredox/Fe/chiral primary amine triple catalysis. This approach facilitates the connection of an unactivated alkyl source with a tertiary alkyl moiety, which is also rare. The scalable process exhibits mild conditions, does not necessitate the use of a base, and possesses a good functional-group tolerance. Preliminary investigations into the underlying mechanisms have provided valuable insights into the reaction pathway.
Collapse
Affiliation(s)
- Lian-Jie Li
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Jun-Chun Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Wei-Peng Li
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Dan Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Kaining Duanmu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Hui Yu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Ze-Peng Yang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|
13
|
Gulzar T, Liu YH, Xia YN, Liu W, Liu P, Zhu D, Xu P, Yu B. Synthesis of C-Oligosaccharides via Ni-Catalyzed Reductive Hydroglycosylation. Org Lett 2024; 26:1718-1722. [PMID: 38380896 DOI: 10.1021/acs.orglett.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
C-Oligosaccharides are metabolically stable surrogates of native glycans containing O/N/S-glycosidic linkages and thus have therapeutic potential. Here we report a straightforward approach to the synthesis of vinyl C-linked oligosaccharides via the Ni-catalyzed reductive hydroglycosylation of alkynyl glycosides with glycosyl bromides.
Collapse
Affiliation(s)
- Tayyab Gulzar
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yan-Hua Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yu-Nong Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wei Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pengchao Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Dapeng Zhu
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
14
|
Zhang L, Zeng W, Xie D, Li J, Ma X. Nickel and Chiral Phosphoric Acid Cocatalysis Enables Synthesis of C-Acyl Glycosides. Org Lett 2024; 26:1332-1337. [PMID: 38330288 DOI: 10.1021/acs.orglett.3c04159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
We disclosed a Ni/CPA cocatalyzed protocol to access diverse C-acyl glycosides under mild conditions with broad functional group compatibility through the coupling of readily available glycosyl bromides and carboxylic esters. The potential application of the methodology was demonstrated by the C-acyl glycosylation of bioactive molecules and the transformation of products to a variety of value-added molecules. Mechanistic studies revealed that CPA might serve as a bifunctional H-bond catalyst to activate carboxylic esters and nickel catalyst.
Collapse
Affiliation(s)
- Li Zhang
- Natural Products Research Centre, Chengdu Institute of Biology, No. 9, South Renmin Road, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Zeng
- Natural Products Research Centre, Chengdu Institute of Biology, No. 9, South Renmin Road, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Demeng Xie
- Natural Products Research Centre, Chengdu Institute of Biology, No. 9, South Renmin Road, Chengdu, 610041, People's Republic of China
| | - Jiangtao Li
- Natural Products Research Centre, Chengdu Institute of Biology, No. 9, South Renmin Road, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaofeng Ma
- Natural Products Research Centre, Chengdu Institute of Biology, No. 9, South Renmin Road, Chengdu, 610041, People's Republic of China
| |
Collapse
|
15
|
Khanam A, Dubey S, Mandal PK. Mild method for the synthesis of α-glycosyl chlorides: A convenient protocol for quick one-pot glycosylation. Carbohydr Res 2023; 534:108976. [PMID: 37871478 DOI: 10.1016/j.carres.2023.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
A simple and efficient protocol for the preparation of α-glycosyl chlorides within 15-30 min is described which employs a stable, cheap, and commercially available Trichloroisocyanuric acid (TCCA) as non-toxic chlorinating agent along with PPh3. This process involved a wide range of substrate scope and is well-suited with labile hydroxyl protecting groups such as benzyl, acetyl, benzoyl, isopropylidene, benzylidene, and TBDPS (tert-butyldiphenylsilyl) groups. This process is operationally simple, mild conditions and obtained good yields with excellent α selectivity. Moreover, a multi-catalyst one-pot glycosylation can be carried out to transform the glycosyl hemiacetals directly to a various O-glycosides in high overall yields without the need for separation or purification of the α-glycosyl chloride donors.
Collapse
Affiliation(s)
- Ariza Khanam
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Shashiprabha Dubey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Wei Y, Lin LQH, Lee BC, Koh MJ. Recent Advances in First-Row Transition Metal-Catalyzed Reductive Coupling Reactions for π-Bond Functionalization and C-Glycosylation. Acc Chem Res 2023; 56:3292-3312. [PMID: 37917928 DOI: 10.1021/acs.accounts.3c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
ConspectusEfficient construction of ubiquitous carbon-carbon bonds between two electrophiles has garnered interest in recent decades, particularly if it is mediated by nonprecious, first-row transition metals. Reductive coupling has advantages over traditional cross-coupling by obviating the need for stoichiometric air- and moisture-sensitive organometallic reagents. By harnessing transition metal-catalyzed reductive coupling as a powerful tool, intricate molecular architectures can be readily assembled through the installation of two C-C bonds across π systems (alkenes/alkynes) via reaction with two appropriate electrophiles. Despite advances in reductive alkene difunctionalization, there remains significant potential for the discovery of novel reaction pathways. In this regard, development of reductive protocols that enable the union of challenging alkyl/alkynyl electrophiles in high regio- and chemoselectivity remains a highly sought-after goal.Apart from π-bond functionalization, reductive coupling has found application in carbohydrate chemistry, particularly in the synthesis of valuable C-glycosyl compounds. In this vein, suitable glycosyl donors can be used to generate reactive glycosyl radical intermediates under reductive conditions. Through elaborately designed reactions, these intermediates can be trapped to furnish pharmaceutically relevant glycoconjugates. Consequently, diversification in C-glycosyl compound synthesis using first-row transition metal catalysis holds strong appeal.In this Account, we summarize our efforts in the development of first-row transition metal-catalyzed reductive coupling reactions for applications in alkene/alkyne functionalization and C-glycosylation. We will first discuss the nickel (Ni)-catalyzed reductive difunctionalization of alkenes, aided by an 8-aminoquinoline (AQ) directing auxiliary. Next, we highlight the Ni-catalyzed hydroalkylation of alkenyl amides tethered with a similar AQ-derived directing auxiliary. Lastly, we discuss an efficient synthesis of 1,3-enynes involving site- and stereoselective reductive coupling of terminal alkynes with alkynyl halides and NHPI esters.Beyond alkene dicarbofunctionalization, we extended the paradigm of transition metal-catalyzed reductive coupling toward the construction of C-glycosidic linkages in carbohydrates. By employing an earth-abundant iron (Fe)-based catalyst, we show that useful glycosyl radicals can be generated from glycosyl chlorides under reductive conditions. These intermediates can be captured in C-C bond formation to furnish valuable C-aryl, C-alkenyl, and C-alkynyl glycosyl compounds with high diastereoselectivity. Our Ni-catalyzed multicomponent union of glycosyl chlorides, aryl/alkyl iodides, and isobutyl chloroformate under reductive conditions led to the stereoselective synthesis of C-acyl glycosides. In addition to Fe and Ni, we discovered a Ti-catalyzed/Mn-promoted synthetic route to access C-alkyl and C-alkenyl glycosyl compounds, through the reaction of glycosyl chlorides with electron-deficient alkenes/alkynes. We further developed an electron donor-acceptor (EDA) photoactivation system leveraging decarboxylative and deaminative strategies for C-glycosylation under Ni catalysis. This approach has been demonstrated to selectively activate carboxyl and amino motifs to furnish glycopeptide conjugates. Finally, through two distinct catalytic transformations of bench-stable heteroaryl glycosyl sulfones, we achieved stereodivergent access to both α- and β-anomers of C-aryl glycosides, one of which involves a Ni-catalyzed reductive coupling with aryl iodides.The findings presented in this Account are anticipated to have far-reaching implications beyond our research. We foresee that these results will pave the way for new transformations founded on the concept of reductive coupling, leading to the discovery of novel applications in the future.
Collapse
Affiliation(s)
- Yi Wei
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
| | - Leroy Qi Hao Lin
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
| | - Boon Chong Lee
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
| |
Collapse
|
17
|
Dörrenhaus R, Wagner PK, Kath-Schorr S. Two are not enough: synthetic strategies and applications of unnatural base pairs. Biol Chem 2023; 404:883-896. [PMID: 37354104 DOI: 10.1515/hsz-2023-0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023]
Abstract
Nucleic acid chemistry is a rapidly evolving field, and the need for novel nucleotide modifications and artificial nucleotide building blocks for diagnostic and therapeutic use, material science or for studying cellular processes continues unabated. This review focusses on the development and application of unnatural base pairs as part of an expanded genetic alphabet. Not only recent developments in "nature-like" artificial base pairs are presented, but also current synthetic methods to get access to C-glycosidic nucleotides. Wide-ranging viability in synthesis is a prerequisite for the successful use of unnatural base pairs in a broader spectrum and will be discussed.
Collapse
|
18
|
Jiang Y, Zhang Y, Lee BC, Koh MJ. Diversification of Glycosyl Compounds via Glycosyl Radicals. Angew Chem Int Ed Engl 2023; 62:e202305138. [PMID: 37278303 DOI: 10.1002/anie.202305138] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023]
Abstract
Glycosyl radical functionalization is one of the central topics in synthetic carbohydrate chemistry. Recent advances in metal-catalyzed cross-coupling chemistry and metallaphotoredox catalysis provided powerful platforms for glycosyl radical diversification. In particular, the discovery of new glycosyl radical precursors in conjunction with these advanced reaction technologies have significantly expanded the space for glycosyl compound synthesis. In this Review, we highlight the most recent progress in this area starting from 2021, and the reports included will be categorized based on different reaction types for better clarity.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Yijun Zhang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Boon Chong Lee
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| |
Collapse
|
19
|
Jiao RQ, Ding YN, Li M, Shi WY, Chen X, Zhang Z, Wei WX, Li XS, Gong XP, Luan YY, Liu XY, Liang YM. Visible-Light-Mediated Synthesis of C-Alkyl Glycosides via Glycosyl Radical Addition and Aryl Migration. Org Lett 2023; 25:6099-6104. [PMID: 37578285 DOI: 10.1021/acs.orglett.3c01988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A visible-light-induced glycoarylation of activated olefins has been accomplished. Glycosyl radicals are generated via radical transfer strategies between (TMS)3SiOH and glycosyl bromides. Subsequent radical translocation and rapid 1,4-aryl migration form β-sugar amide derivatives, and eight types of sugars are compatible with this reaction. Further, the cascade reaction produced a quaternary carbon center with good functional group adaptability and high regioselectivity in mild conditions.
Collapse
Affiliation(s)
- Rui-Qiang Jiao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wan-Xu Wei
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ping Gong
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yu-Yong Luan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
20
|
Parida SP, Das T, Ahemad MA, Pati T, Mohapatra S, Nayak S. Recent advances on synthesis of C-glycosides. Carbohydr Res 2023; 530:108856. [PMID: 37315353 DOI: 10.1016/j.carres.2023.108856] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/16/2023]
Abstract
In recent years, C-glycosides have emerged as significant building blocks for many naturally occurring alkaloids and pharmaceutically active drug molecules. Therefore, significant efforts have been devoted to the construction of structurally important C-glycosidic linkages in carbohydrate compounds. Herein, we have summarized the recent developments of diverse synthesis of C-glycoside core between the time period from 2019 to 2022 focusing on different catalytic strategies, such as (i) transition-metal, and (ii) metal-free catalytic approaches. Further, the transition metal catalyzed C-glycosylations have been categorized into four sub classes: (a) metal based C-H activation, (b) cross-coupling reaction, (c) glycosyl radical intermediate-based process, and (d) Others.
Collapse
Affiliation(s)
| | - Tapaswini Das
- Department of Chemistry, Ravenshaw University, Cuttack, 753003, India
| | | | - Tapaswini Pati
- Department of Chemistry, Ravenshaw University, Cuttack, 753003, India
| | | | - Sabita Nayak
- Department of Chemistry, Ravenshaw University, Cuttack, 753003, India.
| |
Collapse
|
21
|
Wang M, Wang C, Xie X, Pan D, Liu L, Chen Q, Li Z, Zhang Q, Xu Z. Non-classical C-saccharide linkage of dehydroalanine: synthesis of C-glycoamino acids and C-glycopeptides. Chem Commun (Camb) 2023; 59:3305-3308. [PMID: 36847114 DOI: 10.1039/d2cc06653j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Herein, a non-classical C-saccharide linkage is reported via a C5 radical of pentose or C6 radical of hexose addition to Michael acceptors. C(sp3)-S cleaved glycosyl thianthrenium salts are developed as the glycosyl radical agents. The reaction provides an efficient toolkit to synthesize β-glycosyl substituted unnatural amino acids as well as for the late-stage C-saccharide modification of peptides.
Collapse
Affiliation(s)
- Mengran Wang
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China. .,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chao Wang
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China. .,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiuling Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Da Pan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Liangyu Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiao Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhixuan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhaoqing Xu
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China. .,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
22
|
Xu S, Zhang W, Li C, Li Y, Zeng H, Wang Y, Zhang Y, Niu D. Generation and Use of Glycosyl Radicals under Acidic Conditions: Glycosyl Sulfinates as Precursors. Angew Chem Int Ed Engl 2023; 62:e202218303. [PMID: 36760072 DOI: 10.1002/anie.202218303] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
We herein report a method that enables the generation of glycosyl radicals under highly acidic conditions. Key to the success is the design and use of glycosyl sulfinates as radical precursors, which are bench-stable solids and can be readily prepared from commercial starting materials. This development allows the installation of glycosyl units onto pyridine rings directly by the Minisci reaction. We further demonstrate the utility of this method in the late-stage modification of complex drug molecules, including the anticancer agent camptothecin. Experimental studies provide insight into the reaction mechanism.
Collapse
Affiliation(s)
- Shiyang Xu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Wei Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Caiyi Li
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Yanjing Li
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Hongxin Zeng
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Yingwei Wang
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yang Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| |
Collapse
|
23
|
Kurahayashi K, Hanaya K, Sugai T, Hirai G, Higashibayashi S. Copper-Catalyzed Stereoselective Borylation and Palladium-Catalyzed Stereospecific Cross-Coupling to Give Aryl C-Glycosides. Chemistry 2023; 29:e202203376. [PMID: 36344464 DOI: 10.1002/chem.202203376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
Metabolically stable C-glycosides are an essential family of compounds in bioactive natural products, therapeutic agents, and biological probes. For their application, development of synthetic methods by connecting glycosides and aglycons with strict stereocontrol at the anomeric carbon, as well as with high functional-group compatibility and environmental compatibility is a pivotal issue. Although Suzuki-Miyaura-type C(sp3 )-C(sp2 ) cross-coupling using glycosyl boronates is a potential candidate for the construction of C-glycosides, neither the cross-coupling itself nor the facile synthesis of the coupling precursor, glycosyl boronates, have been achieved to date. Herein, it was succeeded to develop a copper-catalyzed stereoselective one-step borylation of glycosyl bromides to glycosyl boronates and palladium-catalyzed stereospecific cross-coupling of β-glycosyl borates with aryl bromides to give aryl β-C-glycosides, in which the β-configuration of the anomeric carbon of the glycosyl trifluoroborates is stereoretentively transferred to that of the resulting aryl C-glycosides.
Collapse
Affiliation(s)
- Kazuki Kurahayashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kengo Hanaya
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Takeshi Sugai
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shuhei Higashibayashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| |
Collapse
|
24
|
Wang C, Qi R, Xu Z. Glycosyl Radical-Based Synthesis of C-Glycoamino Acids and C-Glycopeptides. Chemistry 2022; 29:e202203689. [PMID: 36586132 DOI: 10.1002/chem.202203689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
Radical-based reactions usually exhibit excellent functional-group compatibilities due to their mild initiation conditions. Glycosyl radical involved C-glycosylation modifications are important strategies to achieve highly regio- and chemoselective constructions of C-glycosidic bonds or C-glycoside linkages of peptides and proteins. In this Concept, we cover recent developments in glycosyl radical-based synthesis of unnatural amino acids and late-stage modification of peptides and proteins, and provide a preliminary outlook on the possible development of this direction in the future.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P.R. China.,Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou, 730000, P.R. China
| | - Rupeng Qi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P.R. China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P.R. China.,Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou, 730000, P.R. China
| |
Collapse
|
25
|
Boehlich GJ, Sterzel H, Rehbein J, Schützenmeister N. Efficient Copper-Catalyzed Highly Stereoselective Synthesis of Unprotected C-Acyl Manno-, Rhamno- and Lyxopyranosides. Chemistry 2022; 28:e202202619. [PMID: 36098245 PMCID: PMC10091970 DOI: 10.1002/chem.202202619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/09/2022]
Abstract
Due to their high stability towards enzymatic hydrolysis C-acyl glycosidic compounds are useful synthetic intermediates for potential candidates in drug discovery. Syntheses for C-acyl mannosides have remained scarce and usually employ donors obtained from lengthy syntheses. Furthermore, syntheses of unprotected C-acyl mannosides have not been reported so far, due to the incapability of the C-acyl mannoside motif with deprotection conditions for protective groups commonly used in carbohydrate chemistry. Herein, we report an efficient and highly α-selective four-step one-pot method for the synthesis of C-acyl α-d-manno-, l-rhamno- and d-lyxopyranosides from easily accessible persilylated monosaccharides and dithianes requiring only trace amounts of a copper source as catalyst and explain the crucial role of the catalyst by mechanistic studies. Furthermore, the C-acyl α-glycosides were easily isomerized to give rapid access to their β-anomers.
Collapse
Affiliation(s)
- Gordon Jacob Boehlich
- Fakultät für Chemie und PharmazieUniversität HamburgBundesstraße 4520146HamburgGermany
| | - Hannes Sterzel
- Fachbereich Chemie, Institut für PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Julia Rehbein
- Fachbereich Chemie, Institut für PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Nina Schützenmeister
- Department of Pharmaceutical SciencesUniversity of ViennaJosef-Holaubek-Platz 21090ViennaAustria
| |
Collapse
|
26
|
Afzal U, Bilal M, Zubair M, Rasool N, Adnan Ali Shah S, Amiruddin Zakaria Z. Stereospecific/stereoselective Nickel catalyzed reductive cross-coupling: An efficient tool for the synthesis of biological active targeted molecules. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Ghosh T, Nokami T. Recent development of stereoselective C-glycosylation via generation of glycosyl radical. Carbohydr Res 2022; 522:108677. [DOI: 10.1016/j.carres.2022.108677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022]
|
28
|
Liu CF. Recent Advances on Natural Aryl- C-glycoside Scaffolds: Structure, Bioactivities, and Synthesis-A Comprehensive Review. Molecules 2022; 27:7439. [PMID: 36364266 PMCID: PMC9654268 DOI: 10.3390/molecules27217439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 09/23/2023] Open
Abstract
Aryl-C-glycosides, of both synthetic and natural origin, are of great significance in medicinal chemistry owing to their unique structures and stability towards enzymatic and chemical hydrolysis as compared to O-glycosides. They are well-known antibiotics and potent enzyme inhibitors and possess a wide range of biological activities such as anticancer, antioxidant, antiviral, hypoglycemic effects, and so on. Currently, a number of aryl-C-glycoside drugs are on sale for the treatment of diabetes and related complications. This review summarizes the findings on aryl-C-glycoside scaffolds over the past 20 years, concerning new structures (over 200 molecules), their bioactivities-including anticancer, anti-inflammatory, antioxidant, antivirus, glycation inhibitory activities and other pharmacological effects-as well as their synthesis.
Collapse
Affiliation(s)
- Chen-Fu Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
29
|
Wu J, Kaplaneris N, Pöhlmann J, Michiyuki T, Yuan B, Ackermann L. Remote C-H Glycosylation by Ruthenium(II) Catalysis: Modular Assembly of meta-C-Aryl Glycosides. Angew Chem Int Ed Engl 2022; 61:e202208620. [PMID: 35877556 PMCID: PMC9825995 DOI: 10.1002/anie.202208620] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/11/2023]
Abstract
The prevalence of C-aryl glycosides in biologically active natural products and approved drugs has long motivated the development of efficient strategies for their selective synthesis. Cross-couplings have been frequently used, but largely relied on palladium catalyst with prefunctionalized substrates, while ruthenium-catalyzed C-aryl glycoside preparation has thus far proven elusive. Herein, we disclose a versatile ruthenium(II)-catalyzed meta-C-H glycosylation to access meta-C-aryl glycosides from readily available glycosyl halide donors. The robustness of the ruthenium catalysis was reflected by mild reaction conditions, outstanding levels of anomeric selectivity and exclusive meta-site-selectivity.
Collapse
Affiliation(s)
- Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Julia Pöhlmann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Takuya Michiyuki
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable ChemistryTammanstraße 237077GöttingenGermany
| | - Binbin Yuan
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable ChemistryTammanstraße 237077GöttingenGermany
| |
Collapse
|
30
|
Wu J, Kaplaneris N, Pöhlmann J, Michiyuki T, Yuan B, Ackermann L. Remote C–H Glycosylation by Ruthenium(II) Catalysis: Modular Assembly of meta‐C‐Aryl Glycosides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jun Wu
- University of Göttingen: Georg-August-Universitat Gottingen WISCh GERMANY
| | | | - Julia Pöhlmann
- University of Göttingen: Georg-August-Universitat Gottingen WISCh GERMANY
| | - Takuya Michiyuki
- University of Göttingen: Georg-August-Universitat Gottingen WISCh GERMANY
| | - Binbin Yuan
- University of Göttingen: Georg-August-Universitat Gottingen WISCh GERMANY
| | - Lutz Ackermann
- Georg-August-Universitaet Goettingen Institut fuer Organische und Biomolekulare Chemie Tammannstr. 2 37077 Goettingen GERMANY
| |
Collapse
|
31
|
Shi WY, Li HY, Gou XY, Luan YY, Zheng N, Zhang Z, Niu ZJ, Liu XY, Liang YM. Synthesis of C‐Aryl Glycosides via Ru‐catalyzed remote C‐H Glycosylation of 8‐Aminoquinoline Amides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Cai S, Sun Q, Wang Q, He G, Chen G. Ruthenium-Catalyzed Pyridine-Directed Aryl C-H Glycosylation with Glycosyl Chlorides. J Org Chem 2022; 87:8811-8818. [PMID: 35696353 DOI: 10.1021/acs.joc.2c00815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metal-catalyzed C-H glycosylation reactions with glycosyl chloride donors have emerged as a useful strategy for the synthesis of C-glycosides. Previously, palladium and nickel complexes were reported to catalyze C-H glycosylation reactions using amide-linked bidentate auxiliaries. Herein, a ruthenium-catalyzed ortho C-H glycosylation reaction of arenes with various glycosyl chloride donors using a monodentate pyridine directing group is developed. Preliminary mechanistic studies indicated that two-electron oxidative addition and reductive elimination of ruthenocycle intermediate led to the glycosylation products.
Collapse
Affiliation(s)
- Shaokun Cai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qikai Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Quanquan Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
33
|
Pan Q, Zhou QM, Rui PX, Hu XG. Preparation of glycosyl carboxylic acids via stereoselective synthesis and oxidative cleavage of C-vinyl glycosides. Org Biomol Chem 2022; 20:5452-5462. [PMID: 35770913 DOI: 10.1039/d2ob00896c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed an improved cyanide-free strategy for the synthesis of glycosyl carboxylic acids, employing stereoselective C-vinyl glycosylation and oxidative cleavage of C-vinyl glycosides as key steps. Compared to our previous work, the amount of NaIO4 required for the oxidative cleavage step is reduced significantly from 18 equivalents to 4.5 equivalents. This modification not only is advantageous in terms of operation and costs but also avoids the over-oxidation problem, thus greatly expanding the substrate scope, which is evidenced by the fact that 10 out of 21 glycosyl carboxylic acids synthesized are undocumented. With differently O5-protected furanosyl acids in hand, we demonstrate that an electron-rich protecting group is beneficial for the decarboxylative arylation of furanosyl carboxylic acids. This represents a rare example of protecting groups affecting the reaction efficiency in radical C-glycosylation. As C-vinyl glycosides can be prepared stereoselectively and the oxidative step is stereoretentive, the approach provides an effective means to access 1,2-trans or 1,2-cis glycosyl acids, which would be a valuable alternative to the cyanide-based synthesis of glycosyl carboxylic acids.
Collapse
Affiliation(s)
- Qiang Pan
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Qi-Min Zhou
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Pei-Xin Rui
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Xiang-Guo Hu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China. .,Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
34
|
Qi R, Wang C, Ma Z, Wang H, Chen Q, Liu L, Pan D, Ren X, Wang R, Xu Z. Visible-Light-Promoted Stereoselective C(sp 3 )-H Glycosylation for the Synthesis of C-Glycoamino Acids and C-Glycopeptides. Angew Chem Int Ed Engl 2022; 61:e202200822. [PMID: 35315966 DOI: 10.1002/anie.202200822] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/09/2022]
Abstract
The glycosylative modification of peptides could improve the pharmacological properties of peptide drugs and deliver them efficiently to the target sites. Compared with O-/N-glycosides, C-glycosides exhibit more metabolic stability. We here disclose the first example of visible-light-promoted and Cu-catalyzed stereoselective C-glycosylation. The mild reaction conditions are compatible with various carbohydrate substrates, as demonstrated with a series of monosaccharides and a disaccharide, and are amenable to the synthesis of a wide variety of C-glycoamino acids and C-glycopeptidomimetics with good yields and excellent stereoselectivities. The dual-functional photocatalyst formed in situ via coordination of the glycine derivative and the chiral phosphine Cu complex could not only catalyze the photoredox process but also control the stereoselectivity of the glycosylation reaction.
Collapse
Affiliation(s)
- Rupeng Qi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Chao Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Zijian Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Hongying Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Qiao Chen
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Liangyu Liu
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Da Pan
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Xiaoyu Ren
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China.,Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou, 730000, China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China.,Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou, 730000, China
| |
Collapse
|
35
|
Qi R, Wang C, Ma Z, Wang H, Chen Q, Liu L, Pan D, Ren X, Wang R, Xu Z. Visible‐Light‐Promoted Stereoselective C(sp
3
)−H Glycosylation for the Synthesis of
C
‐Glycoamino Acids and
C
‐Glycopeptides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rupeng Qi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Chao Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Zijian Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Hongying Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Qiao Chen
- School of Pharmacy Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Liangyu Liu
- School of Pharmacy Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Da Pan
- School of Pharmacy Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Xiaoyu Ren
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China
- Research Unit of Peptide Science 2019RU066 Chinese Academy of Medical Sciences 199 West Donggang Road Lanzhou 730000 China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China
- Research Unit of Peptide Science 2019RU066 Chinese Academy of Medical Sciences 199 West Donggang Road Lanzhou 730000 China
| |
Collapse
|
36
|
Wu J, Kopp A, Ackermann L. Synthesis of C-Oligosaccharides through Versatile C(sp 3 )-H Glycosylation of Glycosides. Angew Chem Int Ed Engl 2022; 61:e202114993. [PMID: 35015329 PMCID: PMC9306939 DOI: 10.1002/anie.202114993] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 12/12/2022]
Abstract
C-oligosaccharides are pharmacologically relevant because they are more hydrolysis-resistant than O-oligosaccharides. Despite indisputable advances, C-oligosaccharides continue to be underdeveloped, likely due to a lack of efficient and selective strategies for the assembly of the interglycosidic C-C linkages. In contrast, we, herein, report a versatile and robust strategy for the synthesis of structurally complex C-oligosaccharides via catalyzed C(sp3 )-H activations. Thus, a wealth of complex interglycosidic (2→1)- and (1→1)-C-oligosaccharides becomes readily available by palladium-catalyzed C(sp3 )-H glycoside glycosylation. The isolation of key palladacycle intermediates and experiments with isotopically-labeled compounds identified a trans-stereoselectivity for the C(sp3 )-H glycosylation. The glycoside C(sp3 )-H activation manifold was likewise exploited for the diversification of furanoses, pyranoses and disaccharides.
Collapse
Affiliation(s)
- Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Adelina Kopp
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
- DZHK (German Centre for Cardiovascular Research)Potsdamer Straße 5810785BerlinGermany
| |
Collapse
|
37
|
Chen Q, Zhou X, Han F, Zhang F, Zhao Y. Facile synthesis of novel 3H-1,5-benzodiazepine-derived aryl C-glycosides by coupling of sugar alkynes, acyl chlorides and 1, 2-phenylenediamine. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2045020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Qianxia Chen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Xiang Zhou
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Fen Han
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Fuyi Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Yufen Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| |
Collapse
|
38
|
Singh AK, Venkatesh R, Kanaujiya VK, Tiwari V, Kandasamy J. Palladium‐Catalyzed Reaction of Aryl Iodides and Glycal Enones: Application in the Preparation of Dapagliflozin Analogues. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Varsha Tiwari
- Indian Institute of Technology BHU Varanasi Chemistry INDIA
| | - Jeyakumar Kandasamy
- Indian Institute of Technology (BHU) Chemistry Varanasi 221005 Varanasi INDIA
| |
Collapse
|
39
|
Lu K, Ma Y, Liu S, Guo S, Zhang Y. Highly Stereoselective
C‐Glycosylation
by Photocatalytic Decarboxylative Alkynylation on Anomeric Position: A Facile Access to Alkynyl
C
‐Glycosides. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- KaiLin Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology Shanghai 200237 China
| | - Yingying Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology Shanghai 200237 China
| | - Shihui Liu
- College of Medicine, Jiaxing University, Jiaxing Zhejiang 314001 China
| | - Shixun Guo
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology Shanghai 200237 China
| | - Yongqiang Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
40
|
Synthesis of C‐Oligosaccharides through Versatile C(sp3)–H Glycosylation of Glycosides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Chemoselective and Diastereoselective Synthesis of
C
‐Aryl Nucleoside Analogues by Nickel‐Catalyzed Cross‐Coupling of Furanosyl Acetates with Aryl Iodides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Li Y, Wang Z, Li L, Tian X, Shao F, Li C. Chemoselective and Diastereoselective Synthesis of C-Aryl Nucleoside Analogues by Nickel-Catalyzed Cross-Coupling of Furanosyl Acetates with Aryl Iodides. Angew Chem Int Ed Engl 2022; 61:e202110391. [PMID: 34664354 DOI: 10.1002/anie.202110391] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 11/08/2022]
Abstract
Canonical nucleosides are vulnerable to enzymatic and chemical degradation, yet their stable mimics-C-aryl nucleosides-have demonstrated potential utility in medicinal chemistry, chemical biology, and synthetic biology, although current synthetic methods remain limited in terms of scope and selectivity. Herein, we report a cross-electrophile coupling to prepare C-aryl nucleoside analogues from readily available furanosyl acetates and aryl iodides. This nickel-catalyzed modular approach is characterized by mild reaction conditions, broad substrate scope, excellent β-selectivity, and high functional-group compatibility. The exclusive chemoselectivity with respect to the aryl iodide enables efficient preparation of a variety of C-aryl halide furanosides suitable for various downstream transformations. The practicality of this transformation is demonstrated through the synthesis of a potent analogue of a naturally occurring NF-κB activator.
Collapse
Affiliation(s)
- Yuxi Li
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.,National Institute of Biological Sciences, Beijing, 102206, China
| | - Zheng Wang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Luyang Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xiaoying Tian
- National Institute of Biological Sciences, Beijing, 102206, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 102206, China
| | - Feng Shao
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.,National Institute of Biological Sciences, Beijing, 102206, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 102206, China
| | - Chao Li
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.,National Institute of Biological Sciences, Beijing, 102206, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 102206, China
| |
Collapse
|
43
|
Wu X, Wu B, Gao CF, Ye XS, Xiong DC. Additive-controlled synthesis of 1- and 2-dexoysugars from thioglycosides. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.2015366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xia Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Biao Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chen-Fei Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
44
|
Ma X, Wang H, Liu Y, Zhao X, Zhang J. Mixed Alkyl/Aryl Diphos Ligands for Iron‐Catalyzed Negishi and Kumada Cross Coupling Towards the Synthesis of Diarylmethane. ChemCatChem 2021. [DOI: 10.1002/cctc.202101237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xufeng Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Mei Long Road Shanghai 200237 P. R. China
| | - Han Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Mei Long Road Shanghai 200237 P. R. China
| | - Yao Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Mei Long Road Shanghai 200237 P. R. China
| | - Xing Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Mei Long Road Shanghai 200237 P. R. China
| | - Jun Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Mei Long Road Shanghai 200237 P. R. China
| |
Collapse
|
45
|
Li J, Wang M, Jiang X. Diastereoselective Synthesis of Thioglycosides via Pd-Catalyzed Allylic Rearrangement. Org Lett 2021; 23:9053-9057. [PMID: 34783571 DOI: 10.1021/acs.orglett.1c03302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stereoselective glycosylation is challenging in carbohydrate chemistry. Herein, stereoselective thioglycosylation of glycals via palladium-catalyzed allylic rearrangement yields various substituents on α-isomer thioglycosides. Two comprehensive series of aryl and benzyl thioglycosides were obtained via a combination of thiosulfates with glycals derived from glucose, arabinose, galactose, and rhamnose. Furthermore, diosgenyl α-l-rhamnoside and isoquercitrin achieved selectivity via stereospecific [2,3]-sigma rearrangements of α-sulfoxide-rhamnoside and α-sulfoxide-glucoside, respectively.
Collapse
Affiliation(s)
- Jiagen Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Ming Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| |
Collapse
|
46
|
Jiang Y, Wang Q, Zhang X, Koh MJ. Synthesis of C-glycosides by Ti-catalyzed stereoselective glycosyl radical functionalization. Chem 2021. [DOI: 10.1016/j.chempr.2021.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Li CY, Ma Y, Lei ZW, Hu XG. Glycosyl-Radical-Based Synthesis of C-Alkyl Glycosides via Photomediated Defluorinative gem-Difluoroallylation. Org Lett 2021; 23:8899-8904. [PMID: 34726057 DOI: 10.1021/acs.orglett.1c03390] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We have developed a stereoselective, glycosyl radical-based method for the synthesis of C-alkyl glycosides via a photomediated defluorinative gem-difluoroallylation reaction. We demonstrate for the first time that glycosyl radicals, generated from glycosyl bromides, can readily participate in a photomediated radical polar crossover process, affording a diverse array of gem-difluoroalkene containing C-glycosides. Notable features of this method include scalability, mild conditions, broad substrate scope, and suitability for the late-stage modification of complex molecules.
Collapse
Affiliation(s)
- Cai-Yi Li
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Yue Ma
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Zhi-Wei Lei
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Xiang-Guo Hu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
48
|
Sun Q, Zhang H, Wang Q, Qiao T, He G, Chen G. Stereoselective Synthesis of C-Vinyl Glycosides via Palladium-Catalyzed C-H Glycosylation of Alkenes. Angew Chem Int Ed Engl 2021; 60:19620-19625. [PMID: 34228869 DOI: 10.1002/anie.202104430] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/22/2021] [Indexed: 12/12/2022]
Abstract
C-vinyl glycosides are an important class of carbohydrates and pose a unique synthetic challenge. A new strategy has been developed for stereoselective synthesis of C-vinyl glycosides via Pd-catalyzed directed C-H glycosylation of alkenes with glycosyl chloride donors using an easily removable bidentate auxiliary. Both the γ C-H bond of allylamines and the δ C-H bond of homoallyl amine substrates can be glycosylated in high efficiency and with excellent regio- and stereoselectivity. The resulting C-vinyl glycosides can be further converted to a variety of C-alkyl glycosides with high stereospecificity. These reactions offer a broadly applicable method to streamline the synthesis of complex C-vinyl glycosides from easily accessible starting materials.
Collapse
Affiliation(s)
- Qikai Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Huixing Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Quanquan Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tianjiao Qiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
49
|
Sagandira CR, Khasipo AZ, Sagandira MB, Watts P. An overview of the synthetic routes to essential oral anti-diabetes drugs. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Wei Y, Lam J, Diao T. Synthesis of C-acyl furanosides via the cross-coupling of glycosyl esters with carboxylic acids. Chem Sci 2021; 12:11414-11419. [PMID: 34667550 PMCID: PMC8447929 DOI: 10.1039/d1sc03596g] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
C-Acyl furanosides are versatile synthetic precursors to a variety of natural products, nucleoside analogues, and pharmaceutical molecules. This report addresses the unmet challenge in preparing C-acyl furanosides by developing a cross-coupling reaction between glycosyl esters and carboxylic acids. A key step is the photoredox activation of the glycosyl ester, which promotes the homolysis of the strong anomeric C–O bond through CO2 evolution to afford glycosyl radicals. This method embraces a large scope of furanoses, pyranoses, and carboxylic acids, and is readily applicable to the synthesis of a thymidine analogue and diplobifuranylone B, as well as the late-stage modification of (+)-sclareolide. The convenient preparation of the redox active glycosyl ester from native sugars and the compatibility with common furanoses exemplifies the potential of this method in medicinal chemistry. A cross-coupling of glycosyl esters with carboxylic acids to prepare C-acyl furanosides and pyranosides. The reaction proceeds through photoredox activation of the glycosyl ester to afford glycosyl radicals.![]()
Collapse
Affiliation(s)
- Yongliang Wei
- Department of Chemistry, New York University 100 Washington Square East New York NY 10003 USA
| | - Jenny Lam
- Department of Chemistry, New York University 100 Washington Square East New York NY 10003 USA
| | - Tianning Diao
- Department of Chemistry, New York University 100 Washington Square East New York NY 10003 USA
| |
Collapse
|