1
|
Gao Y, Xu S, Li Y, Chen B. Mn-doped CsPbCl 3 perovskite quantum dots: A dual-function probe for copper detection and temperature sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125219. [PMID: 39348739 DOI: 10.1016/j.saa.2024.125219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
The low photoluminescence quantum yield (PLQY) of CsPbCl3 perovskite quantum dots (PQDs) poses a significant challenge to their application as ion detection probes. To address this issue, we enhanced the PLQY of CsPbCl3 PQDs through Mn doping. These enhanced PQDs were then employed as probes for the highly sensitive detection of Cu2+ ions and temperature. CsPbCl3:Mn PQDs with varying Mn/Pb ratios were synthesized via hot injection. The Mn doping introduced an emission band near 600 nm, with intensity increasing alongside doping concentration. At an Mn/Pb ratio of 2.0, the PLQY was enhanced nearly tenfold, from 5.46 % for undoped CsPbCl3 to 52.48 % for CsPbCl3:Mn. CsPbCl3:Mn PQDs with the highest PLQY were employed as luminescent probes, utilizing the fluorescence intensity ratio (FIR) technique for copper detection and temperature sensing. The experimental results demonstrated a linear relationship between the FIR and Cu2+ concentration over the range of 22.12 nM-1600 nM, with 22.12 nM being the calculated limit of detection. Analysis of the emission spectra and fluorescence lifetimes at varying Cu2+ concentrations revealed that electron transfer from CsPbCl3 to Cu2+ induced fluorescence quenching. CsPbCl3:Mn exhibits a high relative sensitivity of 15.89 % K-1 at 298 K, along with excellent reversibility. These findings highlight the potential application of CsPbCl3:Mn PQDs in both temperature sensing and the analysis of wear metals in engine lubricating oils.
Collapse
Affiliation(s)
- Yuefeng Gao
- College of Marine Engineering, Dalian Maritime University, Dalian, Liaoning 116026, China
| | - Sai Xu
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, China.
| | - Yanbiao Li
- College of Marine Engineering, Dalian Maritime University, Dalian, Liaoning 116026, China
| | - Baojiu Chen
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, China.
| |
Collapse
|
2
|
Li H, Hu Y, Zhang Y, Zhang H, Yao D, Lin Y, Yan X. Metal Halide Perovskite Nanocrystals-Intermediated Hydrogel for Boosting the Biosensing Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409090. [PMID: 39225445 DOI: 10.1002/adma.202409090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Metal-halide perovskites have become attractive nanomaterials for advanced biosensors, yet the structural design remains challenging due to the trade-off between environmental stability and sensing sensitivity. Herein, a trinity strategy is proposed to address this issue by integrating Mn (II) substitution with CsPb2Cl5 inert shell and NH2-PEG-COOH coating for designing Mn2+-doped CsPbCl3/CsPb2Cl5 core/shell hetero perovskite nanocrystals (PMCP PNCs). The trinity strategy isolates the emissive Mn2+-doped CsPbCl3 core from water and the Mn2+ d-d transition generates photoluminescence with a long lifetime, endowing the NH2-PEG-COOH capped Mn2+-doped CsPbCl3/CsPb2Cl5 PNCs with robust water stability and oxygen-sensitive property. Given the structural integration, photoluminescent hydrogel biosensors are designed by embedding the PMCP PNCs into the hydrogel system to deliver on-site pesticide information on food products. Impressively, benefiting from the dual enzyme triggered-responsive property of PMCP PNCs, the hydrogel biosensor is endowed with ultra-high sensitivity toward chlorpyrifos pesticide at the nanogram per milliliter level. Such a robust PMCP PNCs-based hydrogel sensor can provide accurate pesticide information while guiding the construction of photoluminescent biosensors for upcoming on-site applications.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Food Quality and Safety College of Food Science and Engineering, Jilin University, Changchun, 130062, P. R. China
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Yanan Hu
- Department of Food Quality and Safety College of Food Science and Engineering, Jilin University, Changchun, 130062, P. R. China
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Yan Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Dong Yao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Xu Yan
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
3
|
Wang Y, Wang S, Li R, Li W, Long T, Wang L, Kong L, Cao F, Wu Q, Jia G, Yang X. Quantum-Confined Perovskite Nanocrystals Enabled by Negative Catalyst Strategy for Efficient Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402825. [PMID: 38990086 DOI: 10.1002/smll.202402825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Indexed: 07/12/2024]
Abstract
The perovskite nanocrystals (PeNCs) are emerging as a promising emitter for light-emitting diodes (LEDs) due to their excellent optical and electrical properties. However, the ultrafast growth of PeNCs often results in large sizes exceeding the Bohr diameter, leading to low exciton binding energy and susceptibility to nonradiative recombination, while small-sized PeNCs exhibit a large specific surface area, contributing to an increased defect density. Herein, Zn2+ ions as a negative catalyst to realize quantum-confined FAPbBr3 PeNCs with high photoluminescence quantum yields (PL QY) over 90%. Zn2+ ions exhibit robust coordination with Br- ions is introduced, effectively retarding the participation of Br- ions in the perovskite crystallization process and thus facilitating PeNCs size control. Notably, Zn2+ ions neither incorporate into the perovskite lattice nor are absorbed on the surface of PeNCs. And the reduced growth rate also promotes sufficient octahedral coordination of PeNC that reduces defect density. The LEDs based on these optimized PeNCs exhibits an external quantum efficiency (EQE) of 21.7%, significantly surpassing that of the pristine PeNCs (15.2%). Furthermore, the device lifetime is also extended by twofold. This research presents a novel approach to achieving high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Yuankun Wang
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, 830017, P. R. China
| | - Sheng Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Rui Li
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, 830017, P. R. China
| | - Wenqiang Li
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Tengfei Long
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, 830017, P. R. China
| | - Lin Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Lingmei Kong
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Fan Cao
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Qianqian Wu
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, 6102, Australia
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| |
Collapse
|
4
|
Chatterjee S, Biswas S, Sourav S, Rath J, Akhil S, Mishra N. Strategies To Achieve Long-Term Stability in Lead Halide Perovskite Nanocrystals and Its Optoelectronic Applications. J Phys Chem Lett 2024; 15:10118-10137. [PMID: 39332015 DOI: 10.1021/acs.jpclett.4c02240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
The lead halide perovskite (LHP) nanocrystals (NCs) research area is flourishing due to their exceptional properties and great potential for a wide range of applications in optoelectronics and photovoltaics. Yet, despite the momentum in the field, perovskite devices are not yet ready for commercialization due to degradation caused by intrinsic phase transitions and external factors such as moisture, temperature, and ultraviolet (UV) light. To attain long-term stability, we analyze the origin of instabilities and describe different strategies such as surface modification, encapsulation, and doping for long-term viability. We also assess how these stabilizing strategies have been utilized to obtain optoelectronic devices with long-term stability. This Mini-Review also outlines the future direction of each strategy for producing highly efficient and ultrastable LHP NCs for sustainable applications.
Collapse
Affiliation(s)
- Shovon Chatterjee
- Institute of Chemical Technology-Indian Oil Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre, Samantapuri Mouza, Gajapati Nagar, Bhubaneswar, Odisha 751013, India
| | - Subarna Biswas
- Institute of Chemical Technology-Indian Oil Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre, Samantapuri Mouza, Gajapati Nagar, Bhubaneswar, Odisha 751013, India
| | - Smruti Sourav
- Institute of Chemical Technology-Indian Oil Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre, Samantapuri Mouza, Gajapati Nagar, Bhubaneswar, Odisha 751013, India
| | - Jyotisman Rath
- Institute of Chemical Technology-Indian Oil Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre, Samantapuri Mouza, Gajapati Nagar, Bhubaneswar, Odisha 751013, India
| | - Syed Akhil
- LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Nimai Mishra
- Institute of Chemical Technology-Indian Oil Odisha Campus Bhubaneswar IIT Kharagpur Extension Centre, Samantapuri Mouza, Gajapati Nagar, Bhubaneswar, Odisha 751013, India
| |
Collapse
|
5
|
Zhou K, Tang L, Zhu C, Tang J, Su H, Luo L, Chen L, Zeng D. Recent Advances in Structure Design and Application of Metal Halide Perovskite-Based Gas Sensor. ACS Sens 2024; 9:4425-4449. [PMID: 39185676 DOI: 10.1021/acssensors.4c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Metal halide perovskites (MHPs) are emerging gas-sensing materials and have attracted considerable attention in gas sensors due to their unique bandgap structure and tunable optoelectronic properties. The past decade has witnessed significant developments in the gas-sensing field; however, their intrinsic structural instability and ambiguous gas-sensing mechanisms hamper their practical applications. Herein, we summarize the recent advances in MHP-based gas sensors. The physicochemical properties of MHPs are discussed at first. The structure design, including dimension design and engineering design, is overviewed as well as their fabrication methods, and we put forward our insights into the gas-sensing mechanism of MHPs. It is believed that enhanced understanding of gas-sensing mechanisms of MHPs are helpful for their application as gas-sensing materials, and structure design can enhance their stability, sensing sensitivity, and selectivity to target gases as gas sensors. Subsequently, the latest developments in MHP-based gas sensors are summarized according to their different application scenarios. Finally, we conclude with the current status and challenges in this field and propose future perspectives.
Collapse
Affiliation(s)
- Kechen Zhou
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Lu Tang
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Chaoqi Zhu
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Jiahong Tang
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Huiyu Su
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Lingfei Luo
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Liyan Chen
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Dawen Zeng
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| |
Collapse
|
6
|
Lee JY, Lee S, Ryu J, Kang DW. Bandgap Engineering via Doping Strategies for Narrowing the Bandgap below 1.2 eV in Sn/Pb Binary Perovskites: Unveiling the Role of Bi 3+ Incorporation on Different A-Site Compositions. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1554. [PMID: 39404281 PMCID: PMC11478006 DOI: 10.3390/nano14191554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
The integration of perovskite materials in solar cells has garnered significant attention due to their exceptional photovoltaic properties. However, achieving a bandgap energy below 1.2 eV remains challenging, particularly for applications requiring infrared absorption, such as sub-cells in tandem solar cells and single-junction perovskite solar cells. In this study, we employed a doping strategy to engineer the bandgap and observed that the doping effects varied depending on the A-site cation. Specifically, we investigated the impact of bismuth (Bi3+) incorporation into perovskites with different A-site cations, such as cesium (Cs) and methylammonium (MA). Remarkably, Bi3+ doping in MA-based tin-lead perovskites enabled the fabrication of ultra-narrow bandgap films (~1 eV). Comprehensive characterization, including structural, optical, and electronic analyses, was conducted to elucidate the effects of Bi doping. Notably, 8% Bi-doped Sn-Pb perovskites demonstrated infrared absorption extending up to 1360 nm, an unprecedented range for ABX3-type single halide perovskites. This work provides valuable insights into further narrowing the bandgap of halide perovskite materials, which is essential for their effective use in multi-junction tandem solar cell architectures.
Collapse
Affiliation(s)
- Jeong-Yeon Lee
- Department of Smart Cities, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; (J.-Y.L.); (S.L.); (J.R.)
| | - Seojun Lee
- Department of Smart Cities, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; (J.-Y.L.); (S.L.); (J.R.)
| | - Jun Ryu
- Department of Smart Cities, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; (J.-Y.L.); (S.L.); (J.R.)
| | - Dong-Won Kang
- Department of Smart Cities, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; (J.-Y.L.); (S.L.); (J.R.)
- Department of Energy Systems Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
7
|
Wang T, Li Y, Yang X, Hu Y, Du X, Zhang M, Huang Z, Liu S, Wang Y, Xie W. Efficient C(sp 3)-H Bond Oxidation on Perovskite Quantum Dots Based on Ce-Oxygen Affinity. Angew Chem Int Ed Engl 2024; 63:e202409656. [PMID: 38837290 DOI: 10.1002/anie.202409656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Perovskite quantum dots (QDs) have shown attractive prospects in the field of visible photocatalysis, especially in the synthesis of high value-added chemicals. However, under aerobic conditions, the stable operation of QD catalysts has been limited by the reactive oxygen species (ROS) generated by photoexcitation, especially superoxide species O2⋅-. Here, we propose a strategy of Ce3+ doping in perovskite QDs to guide superoxide species for photocatalytic oxidation reactions. In C(sp3)-H bond oxidation of hydrocarbons, superoxide species were rapidly generated and efficiently utilized on the surface of perovskite QDs, which achieves the stable operation of the catalytic system and obtains a high product conversion rate (15.3 mmol/g/h for benzaldehydes). The mechanism studies show that the strong Ce-oxygen affinity accelerates the relaxation process of photoinduced exciton transfer to superoxide species and inhibits the radiative recombination pathway. This work provides a new idea of utilizing oxygen species on perovskite surface and broadens the design strategy of high-performance QD photocatalysts.
Collapse
Affiliation(s)
- Teng Wang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Yonglong Li
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Xian Yang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Yanfang Hu
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Xiaomeng Du
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Maodi Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Zhuanzhuan Huang
- Ultrafast Electron Microscopy Laboratory, Key Laboratory of Weak-Light Nonlinear Photonics (Ministry of Education), School of Physics, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Siyu Liu
- Ultrafast Electron Microscopy Laboratory, Key Laboratory of Weak-Light Nonlinear Photonics (Ministry of Education), School of Physics, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Ying Wang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Wei Xie
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| |
Collapse
|
8
|
Pradhan A, Rana R, Rajaraman G, Pradhan M, Samal SL. (C 3H 7NH 3) 4Bi 1-xSb xI 9: 0D hybrid halide perovskite-like compounds with isolated triiodide units. Dalton Trans 2024. [PMID: 39087758 DOI: 10.1039/d4dt01692k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Antimony/bismuth-based organic-inorganic hybrid halide perovskite-like compounds have generated enormous research interest due to their excellent optical properties. Exploration of new compounds and understanding of their structural stability and optoelectronic properties is of utmost importance for practical applications of these materials. We report two new 0D perovskite-like compounds and their solid solution, (C3H7NH3)4Bi1-xSbxI9, having propyl amine as the spacer cation and iodine as the halide ion. All compounds crystallized in the space group C2/m at room temperature and undergo a phase transition from C2/m to P21/c at low temperature (90 K) as observed from the single-crystal study. A low-temperature (250 K, 180 K, 150 K and 90 K) single-crystal study shows that the (PA)4BiI9 compound retains the monoclinic space group C2/m until 150 K and undergoes a phase transition to the P21/c space group at 90 K. Further, it is observed that ordering, rearrangement and relaxation of the long-chain propyl amine group are primarily responsible for the structural transition. The structure contains [(Bi/Sb)I6]3- polyhedra along with linear I3- units, giving rise to the formula of (PA)3(Bi/Sb)I6·(PA)I3. The I3- units interact poorly while the [MI6]3- (M = Bi, Sb) octahedral units interact significantly with spacer cations via the H-bond, resulting in more distortion in these octahedral units. Theoretical calculations revealed that iodide ions have dual roles and contribute largely to both the valence band maxima and conduction band minima in these compounds. From both experimental and theoretical calculations, it is observed that the pristine compounds are of the indirect band gap-type and Sb substitution in (PA)4Bi1-xSbxI9 led to a gradual decrease in the band gap.
Collapse
Affiliation(s)
- Abinash Pradhan
- Solid State and Materials Laboratory, Department of Chemistry, National Institute of Technology, Rourkela-769008, India.
| | - Rajanikanta Rana
- Department of Chemistry, Indian Institute of Technology, Bombay-400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology, Bombay-400076, India
| | - Monalisa Pradhan
- Department of Physics, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar 751024, Odisha, India
| | - Saroj L Samal
- Solid State and Materials Laboratory, Department of Chemistry, National Institute of Technology, Rourkela-769008, India.
- Center for Nanomaterials, National Institute of Technology, Rourkela-769008, India
| |
Collapse
|
9
|
Hu B, Zhang W, Chu Y. Hybrid Amino Acid Ligand-Regulated Excited Dynamics of Highly Luminescent Perovskite Quantum Dots for Bright White Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1266. [PMID: 39120371 PMCID: PMC11314455 DOI: 10.3390/nano14151266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
Organic-inorganic hybrid perovskite quantum dots (QDs) have garnered significant research interest owing to their unique structure and optoelectronic properties. However, their poor optical performance in ambient air remains a significant limitation, hindering their advancement and practical applications. Herein, three amino acids (valine, threonine and cysteine) were chosen as surface ligands to successfully prepare highly luminescent CH3NH3PbBr3 (MAPbBr3) QDs. The morphology and XRD results suggest that the inclusion of the amino acid ligands enhances the octahedral structure of the QD solutions. Moreover, the observed blue-shifted phenomenon in the photoluminescence (PL) aligns closely with the blue-shifted phenomenon observed in the ultraviolet-visible (UV-Vis) absorption spectra, attributed to the quantum confinement effect. The time-resolved spectra indicated that the introduction of the amino acid ligands successfully suppressed non-radiative recombination, consequently extending the fluorescence lifetime of the MAPbBr3 QDs. The photoluminescence quantum yields (PLQYs) of the amino acid-treated MAPbBr3 QDs are increased by 94.8%. The color rendering index (CRI) of the produced white light-emitting diode (WLED) is 85.3, with a correlated color temperature (CCT) of 5453 K. Our study presents a novel approach to enhancing the performance of perovskite QDs by employing specially designed surface ligands for surface passivation.
Collapse
Affiliation(s)
- Baoye Hu
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China;
| | - Weiqiang Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Ya Chu
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China;
| |
Collapse
|
10
|
Rahman SU, Song YH, Yao HB. Modification strategies of lead halide perovskite nanocrystals for efficient and stable LEDs. Chem Commun (Camb) 2024; 60:6988-6998. [PMID: 38895748 DOI: 10.1039/d4cc02072c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Lead halide perovskite nanocrystals (PNCs) hold immense promise in high-performance light-emitting diodes (LEDs) for future high-definition displays. Their adjustable bandgaps, vivid colors, and good carrier mobility are key factors that make them a potential game-changer. However, to fully harness their potential, the efficiency and long-term stability of PNCs-based light-emitting diodes (PNC-LEDs) must be enhanced. Recent material research results have shed light on the leading cause of performance decline in PNC-LEDs, which is ionic migration linked to surface defects and grain boundary imperfections. This review aims to present recent advancements in the modification strategies of PNCs, focusing on obtaining high-quality PNCs for LEDs. The PNC modification strategies are first summarized, including crystal structure regulation, nanocrystal size tuning, ligand exchange, and surface passivation. Then, the effects of these material design aspects on LED device performances, such as efficiency, brightness, and stability, are presented. Based on the efficient modification strategies, we propose promising material design insights for efficient and stable PNC-LEDs.
Collapse
Affiliation(s)
- Sami Ur Rahman
- Hefei National Research Centre for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yong-Hui Song
- Hefei National Research Centre for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Hong-Bin Yao
- Hefei National Research Centre for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
11
|
Panigrahi A, Mishra L, Dubey P, Dutta S, Mondal S, Sarangi MK. Interplay between photoinduced charge and energy transfer in manganese doped perovskite quantum dots. J Chem Phys 2024; 160:244702. [PMID: 38912633 DOI: 10.1063/5.0205610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024] Open
Abstract
A comprehensive study on the photo-excited relaxation dynamics in semiconducting perovskite quantum dots (PQDs) is pivotal in realizing their extensive potential for optoelectronics applications. Among different competing photoinduced relaxation kinetics, energy transfer and charge transfer (CT) in PQDs need special attention, as they often influence the device efficacy, particularly with the donor-acceptor hybrid architecture. In this work, we explore a detailed investigation into photoinduced CT dynamics in mixed halide undoped CsPb(Br/Cl)3 and Mn2+ doped CsPb(Br/Cl)3 PQDs with a quinone molecule, p-benzoquinone (BQ). The energy level alignment of undoped PQDs with BQ allows an efficient CT, whereas Mn2+ doping reduces the CT efficiency, experiencing a competition between energy transfer from host to dopant and CT to BQ. The conductive atomic force microscopy measurements unveil a direct correlation with the spectroscopic studies by showing a significant improvement in the conductance of undoped PQDs in the presence of BQ, while an inappreciable change is observed for doped PQDs. A much-reduced transition voltage and barrier height in the presence of BQ further validate faster CT for undoped PQD than the doped one. Furthermore, Mn2+ doping in PQDs is observed to enhance their stability, showing better air and thermal stability compared to their undoped counterparts. These results reveal that doping strategy can regulate the CT dynamics in these PQDs and increase their stability, which will be beneficial for the development of desired optoelectronic devices with long-term stability.
Collapse
Affiliation(s)
- Aradhana Panigrahi
- Department of Physics, Indian Institute of Technology, Patna 801106, India
| | - Leepsa Mishra
- Department of Physics, Indian Institute of Technology, Patna 801106, India
| | - Priyanka Dubey
- Department of Physics, Indian Institute of Technology, Patna 801106, India
| | - Soumi Dutta
- Department of Physics, Indian Institute of Technology, Patna 801106, India
| | - Sankalan Mondal
- Department of Physics, Indian Institute of Technology, Patna 801106, India
| | | |
Collapse
|
12
|
Lu Y, Alam F, Shamsi J, Abdi-Jalebi M. Doping Up the Light: A Review of A/B-Site Doping in Metal Halide Perovskite Nanocrystals for Next-Generation LEDs. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:10084-10107. [PMID: 38919725 PMCID: PMC11194817 DOI: 10.1021/acs.jpcc.4c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
All-inorganic metal halide perovskite nanocrystals (PeNCs) show great potential for the next generation of perovskite light-emitting diodes (PeLEDs). However, trap-assisted recombination negatively impacts the optoelectronic properties of PeNCs and prevents their widespread adoption for commercial exploitation. To mitigate trap-assisted recombination and further enhance the external quantum efficiency of PeLEDs, A/B-site doping has been widely investigated to tune the bandgap of PeNCs. The bandgap of PeNCs is adjustable within a small range (no more than 0.1 eV) by A-site cation doping, resulting in changes in the bond length of Pb-X and the angle of [PbX6]4. Nevertheless, B-site doping of PeNCs has a more significant impact on the bandgap level through modification of surface defect states. In this perspective, we delve into the synthesis of PeNCs with A/B-site doping and their impacts on the structural and optoelectronic properties, as well as their impacts on the performance of subsequent PeLEDs. Furthermore, we explore the A-site and B-site doping mechanisms and the impact of device architecture on doped PeNCs to maximize the performance and stability of PeLEDs. This work presents a comprehensive overview of the studies on A-site and B-site doping in PeNCs and approaches to unlock their full potential in the next generation of LEDs.
Collapse
Affiliation(s)
- Ying Lu
- Institute
for Materials Discovery, University College
London, Malet Place, London WC1E
7JE, United Kingdom
| | - Firoz Alam
- Department
of Electronic and Electrical Engineering, University College London, London WC1E 6BT, United
Kingdom
| | - Javad Shamsi
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Mojtaba Abdi-Jalebi
- Institute
for Materials Discovery, University College
London, Malet Place, London WC1E
7JE, United Kingdom
| |
Collapse
|
13
|
Wang H, Qi H, Zhang Z, Wang K, Wang H, Tong Y. Phosphonic Chloride Assisted Fabrication of Highly Emissive Mixed Halide Perovskite Films in Ambient Air for Blue Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28771-28779. [PMID: 38795117 DOI: 10.1021/acsami.3c19394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
Blue perovskite light-emitting diodes (LEDs) have emerged as promising candidates for full-color display and lighting applications. However, the fabrication of blue-emitting perovskite films typically requires an inert environment, leading to increased complexity and cost in the manufacturing process, which is undesirable for applications of perovskite LEDs. Herein, we report a strategy to fabricate bright blue-emitting perovskite films in ambient air by incorporating phosphonic chlorides in a perovskite precursor solution. We used two different phosphonic chlorides, diphenylphosphonic chloride (DPPC) and phenylphosphonic dichloride (PPDC), and comparatively studied their effects on the properties of perovskite films and the blue LEDs. It is found that PPDC possesses a stronger chlorination ability due to higher hydrolysis reactivity; meanwhile, it has a stronger interaction with the perovskite compared to DPPC, resulting in an improved film quality and enhanced blue emission with a photoluminescence quantum yield of 45%, which represents the record value for the air-processed blue perovskite films. Blue perovskite LEDs are fabricated, and the emission wavelengths are effectively tuned by controlling the concentration of phosphonic chlorides. Benefiting from the optimized perovskite films with reduced nonradiative recombination and promoted charge injection and transport, the PPDC-derived blue perovskite LEDs exhibit improved performance with an external quantum efficiency of 3.3% and 1.2% for the 490 and 480 nm emission wavelength, respectively.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Heng Qi
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Zekun Zhang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Kun Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| | - Yu Tong
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China
| |
Collapse
|
14
|
Cai YJ, Luo QX, Jiang QQ, Liu X, Chen XJ, Liu JL, Mao XL, Qi JX, Liang RP, Qiu JD. Hydrogen-Bonded Cocrystals Encapsulating CsPbBr3 Perovskite Nanocrystals with Enhancement of Charge Transport for Photocatalytic Reduction of Uranium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310672. [PMID: 38229539 DOI: 10.1002/smll.202310672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Indexed: 01/18/2024]
Abstract
At present, poor stability and carrier transfer efficiency are the main problems that limit the development of perovskite-based photoelectric technologies. In this work, hydrogen-bonded cocrystal-coated perovskite composite (PeNCs@NHS-M) is easily obtained by inducing rapid crystallization of melamine (M) and N-hydroxysuccinimide (NHS) with PeNCs as the nuclei. The outer NHS-M cocrystal passivates the undercoordinated lead atoms by forming covalent bonds, thereby greatly reducing the trap density while maintaining good structure stability for perovskite nanocrystals. Moreover, benefiting from the interfacial covalent band linkage and long-range ordered structures of cocrystals, the charge transfer efficiency is effectively enhanced and PeNCs@NHS-M displays superior photoelectric performance. Based on the excellent photoelectric performance and abundant active sites of PeNCs@NHS-M, photocatalytic reduction of uranium is realized. PeNCs@NHS-M exhibits U(VI) reduction removal capability of up to 810.1 mg g-1 in the presence of light. The strategy of cocrystals trapping perovskite nanocrystals provides a simple synthesis method for composites and opens up a new idea for simultaneously improving the stability and photovoltaic performance of perovskite.
Collapse
Affiliation(s)
- Yuan-Jun Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Qiu-Xia Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Qiao-Qiao Jiang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xiao-Juan Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Jin-Lan Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xiang-Lan Mao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Jia-Xin Qi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
15
|
Lian K, Zhang X, Zhao Y, Deng Z, Zhang F, Wang Z, Zhang H, Han J, Fan C, Sun C. High-Efficiency Blue-Emitting Mn-Ligand passivated CsPbBr 3 nanoplatelets. J Colloid Interface Sci 2024; 663:157-166. [PMID: 38401437 DOI: 10.1016/j.jcis.2024.02.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Perovskite nanoplatelets (NPLs), as a promising material to achieve pure blue emission, have attracted significant attention in high gamut displays. However, the high surface-to-volume ratio and the loosely connected ligands of NPLs make them susceptible to degradation from light, air and heat. As a result, NPLs often exhibit low photoluminescence (PL) intensity and instability. Here, an Mn-ligand passivation strategy is proposed, in which Mn-doped DMAPbBr3 is used as a precursor. During the perovskite transformation, Mn2+ ions migrate from the lattice of DMAPbBr3 to the surface of CsPbBr3 NPLs, which have strong binding forces with ligands. The final products Mn-CsPbBr3 (M-CPB) NPLs are then acquired by the ligand-induced ripening growth process, which not only exhibit pure blue emission with narrow full width at half maximum (FWHM), but also possess near-unity PL quantum yields (QYs). Besides, M-CPB NPLs show excellent stability due to the strong Mn-ligand passivation layer. Based on the new growth mechanism discovery, the reaction time can be shortened to several minutes by heating. The innovative growth model proposed in this work will provide a paradigm for designing and optimizing future synthesis schemes.
Collapse
Affiliation(s)
- Kai Lian
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, PR China.
| | - Yiwei Zhao
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Zhihui Deng
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Fuhao Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Zhengtong Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Hu Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Jiachen Han
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Chao Fan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| | - Chun Sun
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China; Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
| |
Collapse
|
16
|
Cho K, Park Y, Jo H, Seo S, Moon J, Lee SJ, Park SY, Yoon SJ, Park J. Identification and Dynamics of Microsecond Long-Lived Charge Carriers for CsPbBr 3 Perovskite Quantum Dots, Featuring Ambient Long-Term Stability. J Phys Chem Lett 2024; 15:5795-5803. [PMID: 38780120 DOI: 10.1021/acs.jpclett.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
We analyze the stability and photophysical dynamics of CsPbBr3 perovskite quantum dots (PeQDs), fabricated under mild synthetic conditions and embedded in an amorphous silica (SiOx) matrix (CsPbBr3@SiOx), underscoring their sustained performance in ambient conditions for over 300 days with minimal optical degradation. However, this stability comes at the cost of a reduced photoluminescence efficiency. Time-resolved spectroscopic analyses, including flash-photolysis time-resolved microwave conductivity and time-resolved photoluminescence, show that excitons in CsPbBr3@SiOx films decay within 2.5 ns, while charge carriers recombine over approximately 230 ns. This longevity of the charge carriers is due to photoinduced electron transfer to the SiOx matrix, enabling hole retention. The measured hole mobility in these PeQDs is 0.880 cm2 V-1 s-1, underscoring their potential in optoelectronic applications. This study highlights the role of the silica matrix in enhancing the durability of PeQDs in humid environments and modifying exciton dynamics and photoluminescence, providing valuable insights for developing robust optoelectronic materials.
Collapse
Affiliation(s)
- Kayoung Cho
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youmin Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyeonyeong Jo
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sumi Seo
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jiyoung Moon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soo Jeong Lee
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Seong Yeon Park
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Seog Joon Yoon
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - JaeHong Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
17
|
Roy D, Guha S, Acharya S. Fabrication of water-resistant fluorescent ink using the near-unity photoluminescence quantum yield of CsPbBr 3 doped with NiBr 2. NANOSCALE 2024; 16:9811-9818. [PMID: 38687330 DOI: 10.1039/d4nr00668b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Doping with transition and alkaline earth metal ions into all-inorganic perovskite nanocrystals (NCs) has attracted attention recently for tuning the photoluminescence quantum yield (PLQY). We report on the hot injection synthesis of nickel ion-doped CsPbBr3 NCs with near-unity PLQYs. Nickel ions were successfully incorporated into the octahedral environment of CsPbBr3 NCs, replacing the lead ions. The introduction of nickel ions into CsPbBr3 NCs substantially eliminates intrinsic defects and halide vacancies for improved structural order and near-unity PLQYs. Benefiting from these unique properties, nickel ion-doped CsPbBr3 NCs were dispersed in a polymer to prepare an efficient fluorescent ink. The fluorescent ink shows excellent thermal and water stability under harsh environmental conditions. Moreover, the usefulness of the fluorescent ink for security purposes was demonstrated by designing and recognizing a fluorescent QR code. This study reveals that doped CsPbBr3 NCs can be used to prepare efficient water-resistant fluorescent ink for anti-counterfeiting applications, widening the usefulness of doped all-inorganic perovskite NCs.
Collapse
Affiliation(s)
- Dipanwita Roy
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | - Shramana Guha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | - Somobrata Acharya
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
- Technical Research Centre (TRC), Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
18
|
Reza MS, Rahman MF, Kuddus A, Mohammed MKA, Pal D, Ghosh A, Islam MR, Bhattarai S, Shaaban IA, Amami M. Design and Optimization of High-Performance Novel RbPbBr 3-Based Solar Cells with Wide-Band-Gap S-Chalcogenide Electron Transport Layers (ETLs). ACS OMEGA 2024; 9:19824-19836. [PMID: 38737037 PMCID: PMC11079912 DOI: 10.1021/acsomega.3c08285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 05/14/2024]
Abstract
Inorganic cubic rubidium-lead-halide perovskites have attracted considerable attention owing to their structural, electronic, and unique optical properties. In this study, novel rubidium-lead-bromide (RbPbBr3)-based hybrid perovskite solar cells (HPSCs) with several high-band-gap chalcogenide electron transport layers (ETLs) of In2S3, WS2, and SnS2 were studied by density functional theory (DFT) and using the SCAPS-1D simulator. Initially, the band gap and optical performance were computed using DFT, and these results were utilized for the first time in the SCAPS-1D simulator. Furthermore, the impact of different major influencing parameters, that is, the thickness of the layer, bulk defect density, doping concentration, and defect density of interfaces, including the working temperature, were also investigated and unveiled. Further, a study on an optimized device with the most potential ETL (SnS2) layer was performed systematically. Finally, a comparative study of different reported heterostructures was performed to explore the benchmark of the most recent efficient RbPbBr3-based photovoltaics. The highest power conversion efficiency (PCE) was 29.75% for the SnS2 ETL with Voc of 0.9789 V, Jsc of 34.57863 mA cm-2, and fill factor (FF) of 87.91%, while the PCEs of 21.15 and 24.57% were obtained for In2S3 and WS2 ETLs, respectively. The electron-hole generation, recombination rates, and quantum efficiency (QE) characteristics were also investigated in detail. Thus, the SnS2 ETL shows strong potential for use in RbPbBr3-based hybrid perovskite high-performance photovoltaic devices.
Collapse
Affiliation(s)
- Md. Selim Reza
- Advanced
Energy Materials and Solar Cell Research Laboratory, Department of
Electrical and Electronic Engineering, Begum
Rokeya University, Rangpur 5400, Bangladesh
| | - Md. Ferdous Rahman
- Advanced
Energy Materials and Solar Cell Research Laboratory, Department of
Electrical and Electronic Engineering, Begum
Rokeya University, Rangpur 5400, Bangladesh
| | - Abdul Kuddus
- Ritsumeikan
Global Innovation Research Organization, Ritsumeikan University, Shiga 525-8577, Japan
| | | | - Debashish Pal
- Department
of Material Science and Engineering, Tripura
University, Agartala 799022, India
| | - Avijit Ghosh
- Advanced
Energy Materials and Solar Cell Research Laboratory, Department of
Electrical and Electronic Engineering, Begum
Rokeya University, Rangpur 5400, Bangladesh
| | - Md. Rasidul Islam
- Department
of Electrical and Electronic Engineering, Bangamata Sheikh Fojilatunnesa Mujib Science & Technology University, Jamalpur 2012, Bangladesh
| | - Sagar Bhattarai
- Technology
Innovation and Development Foundation, Indian
Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ibrahim A. Shaaban
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 960, Abha 61421, Saudi Arabia
| | - Mongi Amami
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 960, Abha 61421, Saudi Arabia
| |
Collapse
|
19
|
Zhang X, Huang Q, Yin W, Zheng W. Challenges in Developing Perovskite Nanocrystals for Commercial Applications. Chempluschem 2024; 89:e202300693. [PMID: 38179846 DOI: 10.1002/cplu.202300693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Zero-dimensional lead halide perovskite nanocrystals (NCs) exhibit size-dependent bandgap and carrier confinement compared to bulk counterparts due to the quantum confinement effect, making them essential for achieving wide-color-gamut displays, studying excitonic spin relaxation, and constructing superlattices. Despite their promising potential, they face a variety of technical bottlenecks, such as insufficient color reproducibility, limited large-scale production, low stability, and toxicity. An outline of a research roadmap is provided in the review, which highlights key challenges in developing perovskite NCs for commercial applications.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, P. R. China
| | - Qianqian Huang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, P. R. China
| | - Wenxu Yin
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, P. R. China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
20
|
Zhang H, Liu J, Besteiro LV, Selopal GS, Zhao Z, Sun S, Rosei F. Advanced Interface Engineering in Gradient Core/Shell Quantum Dots Enables Efficient Photoelectrochemical Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306203. [PMID: 38128031 DOI: 10.1002/smll.202306203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/19/2023] [Indexed: 12/23/2023]
Abstract
Semiconductor core/shell quantum dots (QDs) are considered promising building blocks to fabricate photoelectrochemical (PEC) cells for the direct conversion of solar energy into hydrogen (H2). However, the lattice mismatch between core and shell in such QDs results in undesirable defects and severe carrier recombination, limiting photo-induced carrier separation/transfer and solar-to-fuel conversion efficiency. Here, an interface engineering approach is explored to minimize the core-shell lattice mismatch in CdS/CdSexS1-x (x = 0.09-1) core/shell QDs (g-CSG). As a proof-of-concept, PEC cells based on g-CSG QDs yield a remarkable photocurrent density of 13.1 mA cm-2 under AM 1.5 G one-sun illumination (100 mW cm-2), which is ≈54.1% and ≈33.7% higher compared to that in CdS/CdSe0.5S0.5 (g-CSA) and CdS/CdSe QDs (g-CS), respectively. Theoretical calculations and carrier dynamics confirm more efficient carrier separation and charge transfer rate in g-CSG QDs with respect to g-CSA and g-CS QDs. These results are attributed to the minimization of the core-shell lattice mismatch by the cascade gradient shell in g-CSG QDs, which modifies carrier confinement potential and reduces interfacial defects. This work provides fundamental insights into the interface engineering of core/shell QDs and may open up new avenues to boost the performance of PEC cells for H2 evolution and other QDs-based optoelectronic devices.
Collapse
Affiliation(s)
- Hui Zhang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Jiabin Liu
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X 1P7, Canada
| | | | - Gurpreet S Selopal
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X 1P7, Canada
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Zhenhuan Zhao
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Shuhui Sun
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X 1P7, Canada
| | - Federico Rosei
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X 1P7, Canada
| |
Collapse
|
21
|
Du L, An J, Katayama T, Duan M, Shi X, Wang Y, Furube A. Photogenerated carrier dynamics of Mn2+ doped CsPbBr3 assembled with TiO2 systems: Effect of Mn doping content. J Chem Phys 2024; 160:164713. [PMID: 38656441 DOI: 10.1063/5.0197068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024] Open
Abstract
In recent years, all-inorganic perovskite materials have become an ideal choice for new thin film solar cells due to their excellent photophysical properties and have become a research hotspot. Studying the ultrafast dynamics of photo-generated carriers is of great significance for further improving the performance of such devices. In this work, we focus on the transient dynamic process of CsPbBr3/TiO2 composite systems with different Mn2+ doping contents using femtosecond transient absorption spectroscopy technology. We used singular value decomposition and global fitting to analyze the transient absorption spectra and obtained three components, which are classified as hot carrier cooling, charge transfer, and charge recombination processes, respectively. We found that the doping concentration of Mn2+ has an impact on all three processes. We think that the following two factors are responsible: one is the density of defect states and the other is the bandgap width of perovskite. As the concentration of doped Mn2+ increases, the charge transfer time constant shows a trend of initially increasing, followed by a subsequent decrease, reaching a turning point. This indicates that an appropriate amount of Mn2+ doping can effectively improve the photoelectric performance of solar cell systems. We proposed a possible charge transfer mechanism model and further elucidated the microscopic mechanism of the effect of Mn2+ doping on the interface charge transfer process of the CsPbBr3/TiO2 solar cell system.
Collapse
Affiliation(s)
- Luchao Du
- Institute of Atomic and Molecular Physics, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jie An
- Institute of Atomic and Molecular Physics, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Tetsuro Katayama
- Institute of Post-LED Photonics, Tokushima University, 2-1, Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Menghan Duan
- Institute of Atomic and Molecular Physics, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - XiaoPing Shi
- Institute of Atomic and Molecular Physics, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yunpeng Wang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Akihiro Furube
- Institute of Post-LED Photonics, Tokushima University, 2-1, Minamijosanjima-cho, Tokushima 770-8506, Japan
| |
Collapse
|
22
|
Hu H, Fehn D, Barr MKS, Harreiss C, Zhao Y, Meyer K, Osvet A, Brabec CJ. Enhanced Photostability of Lead Halide Perovskite Nanocrystals with Mn 3+ Incorporation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17946-17953. [PMID: 38512303 DOI: 10.1021/acsami.4c03356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Recently, lead halide perovskite nanocrystals (NCs) have shown great potential and have been widely studied in lighting and optoelectronic fields. However, the long-term stability of perovskite NCs under irradiation is an important challenge for their application in practice. Mn2+ dopants are mostly proposed as substitutes for the Pb site in perovskite NCs synthesized through the hot-injection method, with the aim of improving both photo- and thermal stability. In this work, we employed a facile ligand-assisted reprecipitate strategy to introduce Mn ions into perovskite lattice, and the results showed that Mn3+ instead of Mn2+, even with a very low level of incorporation of 0.18 mol % as interstitial dopant, can enhance the photostability of perovskite binder film under the ambient conditions without emission change, and the photoluminescent efficiency can retain 70% and be stable under intensive irradiation for 12 h. Besides, Mn3+ incorporation could prolong the photoluminescent decay time by passivating trap defects and modifying the distortion of the lattice, which underscores the significant potential for application as light emitters.
Collapse
Affiliation(s)
- Huiying Hu
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Materials for Electronics and Energy Technology (i-MEET), Martensstraße 7, 91058 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Street 6, 91052 Erlangen, Germany
| | - Dominik Fehn
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Maïssa K S Barr
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Institute of Chemistry of Thin Film Materials, Cauerstraße 3, 91058 Erlangen, Germany
| | - Christina Harreiss
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Materials Science and Engineering, Institute of Micro- and Nanostructure Research, Cauerstraße 3, 91058 Erlangen, Germany
| | - Yicheng Zhao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), 611731 Chengdu, P. R. China
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Andres Osvet
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Materials for Electronics and Energy Technology (i-MEET), Martensstraße 7, 91058 Erlangen, Germany
| | - Christoph J Brabec
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Materials for Electronics and Energy Technology (i-MEET), Martensstraße 7, 91058 Erlangen, Germany
- Helmholtz-Institut Erlangen-Nürnberg, Immerwahrstraße 2, 91058 Erlangen, Germany
| |
Collapse
|
23
|
Hu S, Thiesbrummel J, Pascual J, Stolterfoht M, Wakamiya A, Snaith HJ. Narrow Bandgap Metal Halide Perovskites for All-Perovskite Tandem Photovoltaics. Chem Rev 2024; 124:4079-4123. [PMID: 38527274 PMCID: PMC11009966 DOI: 10.1021/acs.chemrev.3c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024]
Abstract
All-perovskite tandem solar cells are attracting considerable interest in photovoltaics research, owing to their potential to surpass the theoretical efficiency limit of single-junction cells, in a cost-effective sustainable manner. Thanks to the bandgap-bowing effect, mixed tin-lead (Sn-Pb) perovskites possess a close to ideal narrow bandgap for constructing tandem cells, matched with wide-bandgap neat lead-based counterparts. The performance of all-perovskite tandems, however, has yet to reach its efficiency potential. One of the main obstacles that need to be overcome is the─oftentimes─low quality of the mixed Sn-Pb perovskite films, largely caused by the facile oxidation of Sn(II) to Sn(IV), as well as the difficult-to-control film crystallization dynamics. Additional detrimental imperfections are introduced in the perovskite thin film, particularly at its vulnerable surfaces, including the top and bottom interfaces as well as the grain boundaries. Due to these issues, the resultant device performance is distinctly far lower than their theoretically achievable maximum efficiency. Robust modifications and improvements to the surfaces of mixed Sn-Pb perovskite films are therefore critical for the advancement of the field. This Review describes the origins of imperfections in thin films and covers efforts made so far toward reaching a better understanding of mixed Sn-Pb perovskites, in particular with respect to surface modifications that improved the efficiency and stability of the narrow bandgap solar cells. In addition, we also outline the important issues of integrating the narrow bandgap subcells for achieving reliable and efficient all-perovskite double- and multi-junction tandems. Future work should focus on the characterization and visualization of the specific surface defects, as well as tracking their evolution under different external stimuli, guiding in turn the processing for efficient and stable single-junction and tandem solar cell devices.
Collapse
Affiliation(s)
- Shuaifeng Hu
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United
Kingdom
- Institute
for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Jarla Thiesbrummel
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United
Kingdom
- Institute
for Physics and Astronomy, University of
Potsdam,14476 Potsdam-Golm, Germany
| | - Jorge Pascual
- Institute
for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Polymat, University of the
Basque Country UPV/EHU, 20018 Donostia-San
Sebastian, Spain
| | - Martin Stolterfoht
- Institute
for Physics and Astronomy, University of
Potsdam,14476 Potsdam-Golm, Germany
- Electronic
Engineering Department, The Chinese University
of Hong Kong, Hong Kong 999077, SAR China
| | - Atsushi Wakamiya
- Institute
for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Henry J. Snaith
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United
Kingdom
| |
Collapse
|
24
|
Feng Y, Li H, Zhu M, Gao Y, Cai Q, Lu G, Dai X, Ye Z, He H. Nucleophilic Reaction-Enabled Chloride Modification on CsPbI 3 Quantum Dots for Pure Red Light-Emitting Diodes with Efficiency Exceeding 26 . Angew Chem Int Ed Engl 2024; 63:e202318777. [PMID: 38258990 DOI: 10.1002/anie.202318777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Indexed: 01/24/2024]
Abstract
High-performance pure red perovskite light-emitting diodes (PeLEDs) with an emission wavelength shorter than 650 nm are ideal for wide-color-gamut displays, yet remain an unprecedented challenge to progress. Mixed-halide CsPb(Br/I)3 emitter-based PeLEDs suffer spectral stability induced by halide phase segregation and CsPbI3 quantum dots (QDs) suffer from a compromise between emission wavelength and electroluminescence efficiency. Here, we demonstrate efficient pure red PeLEDs with an emission centered at 638 nm based on PbClx -modified CsPbI3 QDs. A nucleophilic reaction that releases chloride ions and manipulates the ligand equilibrium of the colloidal system is developed to synthesize the pure red emission QDs. The comprehensive structural and spectroscopic characterizations evidence the formation of PbClx outside the CsPbI3 QDs, which regulates exciton recombination and prevents the exciton from dissociation induced by surface defects. In consequence, PeLEDs based on PbClx -modified CsPbI3 QDs with superior optoelectronic properties demonstrate stable electroluminescence spectra at high driving voltages, a record external quantum efficiency of 26.1 %, optimal efficiency roll-off of 16.0 % at 1000 cd m-2 , and a half lifetime of 7.5 hours at 100 cd m-2 , representing the state-of-the-art pure red PeLEDs. This work provides new insight into constructing the carrier-confined structure on perovskite QDs for high-performance PeLEDs.
Collapse
Affiliation(s)
- Yifeng Feng
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Hongjin Li
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Meiyi Zhu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
| | - Yun Gao
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Qiuting Cai
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Guochao Lu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Xingliang Dai
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Shanxi, 030000, China
| | - Zhizhen Ye
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Shanxi, 030000, China
| | - Haiping He
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Shanxi, 030000, China
| |
Collapse
|
25
|
Yin J, Zhang J, Wu Z, Wu F, Li X, Dai J, Chen C. Origin of Water-Stable CsPbX 3 Quantum Dots Assisted by Zwitterionic Ligands and Sequential Strategies for Enhanced Luminescence Based on Crystal Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307042. [PMID: 37946682 DOI: 10.1002/smll.202307042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Water stability is a crucial issue always addressed for commercial practical application of perovskite quantum dots (QDs). Recent advances in ligand engineering for in situ synthesis of water-stable perovskite QDs have attracted growing interest. However, the exact mechanism remains unclear. Here, the function of 4-bromobutyric acid (BBA) and oleylamine (OLA) is systematically studied in water-stable CsPbX3 (X = Br and I) QDs and confirms that the zwitterionic ligands generated in situ by BBA and OLA are anchored on the QDs surface, thus preventing water from penetrating into the QDs. Cs4PbBr6 intermediate crystal found in the crystal structure evolution process of CsPbX3 QD further reveals a complete crystallization process: PbX2 + CsX + Br- → Cs4PbBr6 crystals + X-→ CsPbX3 QDs + Br-. Furthermore, it is found that the solvent coordination of the precursor solution has a significant effect on the crystallinity of Cs4PbBr6 intermediate crystal, while the Rb+ doping can effectively passivate the surface defects of CsPbX3 QDs, thereby jointly achieving photoluminescence quantum yields (PLQY) of 94.6% for CsPbBr3 QDs (88.2% for CsPbI3 QDs). This work provides new insights and guiding ideas for the green synthesis of high-quality and water-stable perovskite QDs.
Collapse
Affiliation(s)
- Junyang Yin
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jie Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenzi Wu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Feng Wu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiong Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiangnan Dai
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Changqing Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
26
|
S S, Suresh S, Subramaniam MR, Batabyal SK. Improved photoluminescence stability and defect passivation in SbBr 3 post-treated CsPbBr 3 quantum dots under ambient conditions. LUMINESCENCE 2024; 39:e4706. [PMID: 38483095 DOI: 10.1002/bio.4706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Inorganic cesium lead halide perovskites have evoked wide popularity because of their excellent optoelectronic properties, high photoluminescence (PL) quantum yield (PLQY), and narrowband emission. Here, cesium lead bromide (CsPbBr3 ) quantum dots (QDs) were synthesized via the ligand-assisted re-precipitation method. Post-synthesis treatment of CsPbBr3 QDs using antimony tribromide improved the PL stability and optoelectronic properties of the QDs. In addition, the PLQY of the post-treated sample was enhanced to 91% via post-treatment, and the luminescence observed was maintained for 8 days. The post-synthesis treatment ensured defect passivation and improved the stability of CsPbBr3 perovskite QDs. High-resolution transmission electron microscopy revealed the presence of more ordered, uniform-sized CsPbBr3 QDs after post-synthesis treatment, and the uniformity of the sample improved as the day passed. The formation of a mixed crystal phase was observed from X-ray diffraction in both as-synthesized, as well as post-treated QDs samples with the possibility of a polycrystalline nature in the post-treated CsPbBr3 QDs as per the selected area electron diffraction pattern. The X-ray photoelectron spectroscopy spectra confirmed the presence of antimony and the possibility of defect passivation in the post-treated samples. These QDs can act as potential candidates in various optoelectronic applications such as photodetectors and light-emitting diodes due to their high PLQY and longer lifetime.
Collapse
Affiliation(s)
- Sruthi S
- Department of Physics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India
| | - Swapnika Suresh
- Department of Physics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India
| | - Mohan Raj Subramaniam
- Department of Physics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India
| | - Sudip K Batabyal
- Department of Physics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India
- Amrita Center for Industrial Research & Innovation (ACIRI), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India
| |
Collapse
|
27
|
Guan M, Hao J, Qiu L, Molokeev MS, Ning L, Dai Z, Li G. Two-Dimensional Hybrid Perovskite with High-Sensitivity Optical Thermometry Sensors. Inorg Chem 2024; 63:3835-3842. [PMID: 38349821 DOI: 10.1021/acs.inorgchem.3c04140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Optical thermometry has gained significant attention due to its remarkable sensitivity and noninvasive, rapid response to temperature changes. However, achieving both high absolute and relative temperature sensitivity in two-dimensional perovskites presents a substantial challenge. Here, we propose a novel approach to address this issue by designing and synthesizing a new narrow-band blue light-emitting two-dimensional perovskite named (C8H12NO2)2PbBr4 using a straightforward solution-based method. Under excitation of near-ultraviolet light, (C8H12NO2)2PbBr4 shows an ultranarrow emission band with the full width at half-maximum (FWHM) of only 19 nm. Furthermore, its luminescence property can be efficiently tuned by incorporating energy transfer from host excitons to Mn2+. This energy transfer leads to dual emission, encompassing both blue and orange emissions, with an impressive energy transfer efficiency of 38.3%. Additionally, we investigated the temperature-dependent fluorescence intensity ratio between blue emission of (C8H12NO2)2PbBr4 and orange emission of Mn2+. Remarkably, (C8H12NO2)2PbBr4:Mn2+ exhibited maximum absolute sensitivity and relative sensitivity values of 0.055 K-1 and 3.207% K-1, respectively, within the temperature range of 80-360 K. This work highlights the potential of (C8H12NO2)2PbBr4:Mn2+ as a promising candidate for optical thermometry sensor application. Moreover, our findings provide valuable insights into the design of narrow-band blue light-emitting perovskites, enabling the achievement of single-component dual emission in optical thermometry sensors.
Collapse
Affiliation(s)
- Mengyu Guan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jiarui Hao
- Department of Materials and Chemical Engineering, Taiyuan University, Taiyuan 030032, China
| | - Lei Qiu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Maxim S Molokeev
- Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
- Siberian Federal University, Krasnoyarsk 660041, Russia
- Department of Physics, Far Eastern State Transport University, Khabarovsk 680021, Russia
| | - Lixin Ning
- Anhui Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids, Ministry of Education Anhui Normal University, Wuhu 241000, China
| | - Zhigao Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Shenzhen Research Institute China University of Geosciences, Shenzhen 518063, China
| | - Guogang Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Zhejiang Institute China University of Geosciences, Hangzhou 311305, China
| |
Collapse
|
28
|
Wang Z, Wei Y, Chen Y, Zhang H, Wang D, Ke J, Liu Y, Hong M. "Whole-Body" Fluorination for Highly Efficient and Ultra-Stable All-Inorganic Halide Perovskite Quantum Dots. Angew Chem Int Ed Engl 2024; 63:e202315841. [PMID: 38179848 DOI: 10.1002/anie.202315841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
Inherent "soft" ionic lattice nature of halide perovskite quantum dots (QDs), triggered by the weak Pb-X (X=Cl, Br, I) bond, is recognized as the primary culprit for their serious instability. A promising way is to construct exceedingly strong ionic interaction inside the QDs and increase their crystal cohesive energy by substituting the interior X- with highly electronegative F- , however, which is challenging and hitherto remains unreported. Here, a "whole-body" fluorination strategy is proposed for strengthening the interior bonding architecture of QDs, wherein the F- are uniformly distributed throughout the whole nanocrystal encompassing both the interior lattice and surface, successfully stabilizing their "soft" crystal lattice and passivating surface defects. This approach effectively mitigates their intrinsic instability issues including light-induced phase segregation. As a result, light-emitting devices based on these QDs exhibit exceptional efficiency and remarkable stability.
Collapse
Affiliation(s)
- Zhaoyu Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Youchao Wei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Yameng Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Haoyu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Di Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jianxi Ke
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Yongsheng Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
29
|
Annurakshita S, Liu M, Vivo P, Bautista G. Probing compositional engineering effects on lead-free perovskite-inspired nanocrystal thin films using correlative nonlinear optical microscopy. NANOSCALE 2024; 16:2852-2859. [PMID: 38231157 DOI: 10.1039/d3nr05137d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
We introduce the use of correlative third-harmonic generation and multiphoton-induced luminescence microscopy to investigate the impact of manganese (Mn) doping on bismuth (Bi)-based perovskite-inspired nanocrystal thin films. The technique was found to be extremely sensitive to the microscopic features of the perovskite film and its structural compositions, allowing the unambiguous detection of compositionally different emitters in the perovskite film and manipulation of their nonlinear optical responses. Our work unveils a new way to investigate, manipulate, and exploit perovskite-inspired functional materials for nonlinear optical conversion at the nanoscale.
Collapse
Affiliation(s)
- Shambhavee Annurakshita
- Photonics Laboratory, Physics Unit, Tampere University, Korkeakoulunkatu 3, 33720, Tampere, Finland.
| | - Maning Liu
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014 Tampere, Finland
- Centre for Analysis and Synthesis, Lund University, P.O. Box 124, 22100 Lund, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Paola Vivo
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014 Tampere, Finland
| | - Godofredo Bautista
- Photonics Laboratory, Physics Unit, Tampere University, Korkeakoulunkatu 3, 33720, Tampere, Finland.
| |
Collapse
|
30
|
Sun C, Deng Z, Liu X, Zhang F, Lian K, Zhao Y, Zhang H, Han J, Luo M. Highly efficient and stable Cs 3Mn 0.93Zn 0.07Br 5@SiO 2 for wide color gamut backlight displays. Dalton Trans 2024; 53:2153-2158. [PMID: 38189118 DOI: 10.1039/d3dt03874b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mn-based perovskites have become a new candidate material for backlight display applications. However, low efficiency and poor stability are the key problems limiting the application of Mn-based perovskites. In this work, Zn-doped and SiO2-encapsulated Cs3MnBr5, denoted as Cs3Mn0.93Zn0.07Br5@SiO2 (CMZBS), was successfully synthesized to improve the photoluminescence quantum yield (PLQY) and stability. After Zn doping, the PLQY increased from 51% to 72% due to the reduction in the energy transfer between [MnBr4]2-. The PLQY can be further improved to 80% after coating SiO2. Compared with Cs3MnBr5 (CMB), CMZBS showed better stability against thermal, air, light, and polar solvents (ethanol and isopropanol). In addition, a white LED (WLED) device with a CIE of (0.323, 0.325) was fabricated by integrating CMZBS and the red phosphor K2SiF6:Mn4+ on a 465 nm blue GaN chip, which exhibited a high luminous efficiency of 92 lm W-1 and excellent stability, demonstrating its great potential application in wide color gamut displays.
Collapse
Affiliation(s)
- Chun Sun
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| | - Zhihui Deng
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| | - Xiaohui Liu
- Key Laboratory of Magnetism and Magnetic Materials Autonomous Region, Baotou Teachers' College, Inner Mongolia University of Science and Technology, 3 Kexue Road, Baotou, 014030, P.R. China
- Zhejiang Ruico Advanced Material Co., Ltd, No. 188 Liangshan Road, Huzhou, 313018, PR China
| | - Fuhao Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| | - Kai Lian
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| | - Yiwei Zhao
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| | - Hu Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| | - Jiachen Han
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| | - Mingming Luo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| |
Collapse
|
31
|
Wang S, Wei Z, Xu Q, Yu L, Xiao Y. Trinity Strategy: Enabling Perovskite as Hydrophilic and Efficient Fluorescent Nanozyme for Constructing Biomarker Reporting Platform. ACS NANO 2024; 18:1084-1097. [PMID: 38149588 DOI: 10.1021/acsnano.3c10548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Water instability and sensing homogeneity are the Achilles' heel of CsPbX3 NPs in biological fluids application. This work reports the preparation of Mn2+:CsPbCl3@SiO2 yolk-shell nanoparticles (YSNPs) in aqueous solutions created through the integration of ligand, surface, and crystal engineering strategies. The SN2 reaction between 4-chlorobutyric acid (CBA) and oleylamine (OAm) yields a zwitterionic ligand that facilitates the dispersion of YSNPs in water, while the robust SiO2 shell enhances their overall stability. Besides, Mn2+ doping in YSNPs not only introduces a second emission center but also enables potential postsynthetic designability, leading to the switching from YSNPs to MnO2@YSNPs with excellent oxidase (OXD)-like activity. Theoretical calculations reveal that electron transfer from CsPbCl3 to in situ MnO2 and the adsorption-desorption process of 3,3',5,5'-tetramethylbenzidine (TMB) synergistically amplify the OXD-like activity. In the presence of ascorbic acid (AA), Mn4+ in MnO2@YSNPs (fluorescent nanozyme) is reduced to Mn2+ and dissociated, thereby inhibiting the OXD-like activity and triggering fluorescence "turn-on/off", i.e., dual-mode recognition. Finally, a biomarker reporting platform based on MnO2@YSNPs fluorescent nanozyme is constructed with AA as the reporter molecule, and the accurate detection of human serum alkaline phosphatase (ALP) is realized, demonstrating the vast potential of perovskites in biosensing.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhongyu Wei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Qi Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Long Yu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
32
|
Jagadeeswararao M, Galian RE, Pérez-Prieto J. Photocatalysis Based on Metal Halide Perovskites for Organic Chemical Transformations. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:94. [PMID: 38202549 PMCID: PMC10780689 DOI: 10.3390/nano14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Heterogeneous photocatalysts incorporating metal halide perovskites (MHPs) have garnered significant attention due to their remarkable attributes: strong visible-light absorption, tuneable band energy levels, rapid charge transfer, and defect tolerance. Additionally, the promising optical and electronic properties of MHP nanocrystals can be harnessed for photocatalytic applications through controlled crystal structure engineering, involving composition tuning via metal ion and halide ion variations, dimensional tuning, and surface chemistry modifications. Combination of perovskites with other materials can improve the photoinduced charge separation and charge transfer, building heterostructures with different band alignments, such as type-II, Z-scheme, and Schottky heterojunctions, which can fine-tune redox potentials of the perovskite for photocatalytic organic reactions. This review delves into the activation of organic molecules through charge and energy transfer mechanisms. The review further investigates the impact of crystal engineering on photocatalytic activity, spanning a diverse array of organic transformations, such as C-X bond formation (X = C, N, and O), [2 + 2] and [4 + 2] cycloadditions, substrate isomerization, and asymmetric catalysis. This study provides insights to propel the advancement of metal halide perovskite-based photocatalysts, thereby fostering innovation in organic chemical transformations.
Collapse
Affiliation(s)
| | - Raquel E. Galian
- Institute of Molecular Science, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain;
| | - Julia Pérez-Prieto
- Institute of Molecular Science, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain;
| |
Collapse
|
33
|
Peng W, Hu R, Yang B, Wu Q, Liang P, Cheng L, Cheng X, Li Y, Zou J. Solution-grown millimeter-scale Mn-doped CsPbBr 3/Cs 4PbBr 6 crystals with enhanced photoluminescence and stability for light-emitting applications. Phys Chem Chem Phys 2023; 26:373-380. [PMID: 38073608 DOI: 10.1039/d3cp04371a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Metal halide perovskites are particularly emerging for optoelectronic applications in light-emitting diodes, photodetectors, and solar cells due to their flourishing photophysical properties. However, the poor stability of three-dimensional (3D) lead halide perovskite nanocrystals (NCs) significantly hampers their optoelectronics and photovoltaics applications. Embedding 3D perovskites into zero-dimensional (0D) perovskite crystals and doping ions of appropriate elements into host lattices provide effective approaches to improve the stability and optical-electronic performance. In this study, millimeter-scale Mn-doped and undoped CsPbBr3/Cs4PbBr6 perovskite crystals were successfully fabricated by a one-step slow cooling method. We systematically investigated the effects of Mn2+ ion doping on the PL performance and stability of CsPbBr3/Cs4PbBr6 crystals. Compared with undoped crystals, the existence of Mn2+ ions not only blue-shifted the PL peak but also improved the luminescence performance and stability of the prepared millimeter-sized crystals. Moreover, doping Mn2+ ions can increase the proportion of radiative recombination at low temperature, which may be because Mn2+ ions can effectively accelerate the decay of a dark exciton by the magnetic mixing of bright and dark excitons. In addition, green LED devices with high efficiency packaged as-grown crystals are explored, which promises further application in display backlights.
Collapse
Affiliation(s)
- Wenfang Peng
- School of Science, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Rongrong Hu
- School of Science, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Bobo Yang
- School of Science, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Qiaoyun Wu
- School of Science, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Pan Liang
- College of Arts and Sciences, Shanghai Dianji University, Shanghai 201306, China
| | - Lin Cheng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Xixi Cheng
- School of Science, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Yuefeng Li
- School of Science, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Jun Zou
- School of Science, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
34
|
Ba Q, Meena A, Jana A. Solid-State Synthesis and Optical Studies of Water-Stable Pb 2+-Doped Mn 2+ Complexes. Inorg Chem 2023; 62:19025-19032. [PMID: 37921514 DOI: 10.1021/acs.inorgchem.3c02840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The limited Mn2+ doping that occurs in lead halide perovskites has been widely described, while the Pb2+ doping that occurs in Mn2+ halide perovskites has not been studied well. Generally, a large amount of doping of Mn2+ in lead halide perovskite degrades the perovskite structure; eventually, high orange luminescence of Mn2+ dopant has not been achieved. In our present study, we followed a reverse strategy, i.e., Pb2+ doping in Mn2+ halide perovskites, to increase the amount of Mn2+ in halide perovskites through the high-energy ball milling method. This strategy yields bright-fluorescence orange light-emitting Mn2+-doped perovskite with a Mn/Pb ratio of 95%, which is the highest among Mn2+-doped perovskites. Zero-dimensional (0D) Mn2+ perovskites and two-dimensional (2D) Pb2+-doped Mn2+-based perovskites were successfully synthesized and characterized. During the mechanochemical engineering, Pb2+ ions partially occupy the site of Mn2+ ions and act as a luminescence activator. Mn2+-based 2D perovskites with the proper amounts of Pb2+ ions as dopant ions and phenylethylammonium (PEA+) as dielectric organic cations show enhanced stability in water. The dual-emissive properties of these 2D-Pb2+-doped Mn2+-based perovskites were also investigated by using single-particle imaging fluorescence. We believe that these findings will pave the way for designing eco-friendly dimension and bandgap tunable layered perovskites.
Collapse
Affiliation(s)
- Qiankai Ba
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
- Advanced Solar Technology Institute (ASTI), Xuancheng242000, Anhui, China
| | - Abhishek Meena
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Atanu Jana
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
35
|
Lê K, Heshmati N, Mathur S. Potential and perspectives of halide perovskites in light emitting devices. NANO CONVERGENCE 2023; 10:47. [PMID: 37831205 PMCID: PMC10575846 DOI: 10.1186/s40580-023-00395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
Light emitting diodes (LEDs) have become part of numerous electrical and electronic systems such as lighting, displays, status indicator lamps and wearable electronics. Owing to their excellent optoelectronic properties and deposition via simple solution process, metal halide perovskites possess unique potential for developing halide perovskite-based LEDs (PeLEDs) with superior photoluminescence efficiencies leading to external quantum efficiencies beyond 20% for PeLEDS. However, the limited durability, high operative voltages, and challenges of scale-up are persisting barriers in achieving required technology readiness levels. To build up the existing knowledge and raise the device performance this review provides a state-of-the-art study on the properties, film and device fabrication, efficiency, and stability of PeLEDs. In terms of commercialization, PeLEDs need to overcome materials and device challenges including stability, ion migration, phase segregation, and joule heating, which are discussed in this review. We hope, discussions about the strategies to overcome the stability issues and enhancement the materials intrinsic properties towards development more stable and efficient optoelectronic devices can pave the way for scalability and cost-effective production of PeLEDs.
Collapse
Affiliation(s)
- Khan Lê
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939, Cologne, Germany
| | - Niusha Heshmati
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939, Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939, Cologne, Germany.
| |
Collapse
|
36
|
Kim JI, Zeng Q, Park S, Lee H, Park J, Kim T, Lee TW. Strategies to Extend the Lifetime of Perovskite Downconversion Films for Display Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209784. [PMID: 36525667 DOI: 10.1002/adma.202209784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Metal halide perovskite nanocrystals (PeNCs) have outstanding luminescent properties that are suitable for displays that have high color purity and high absorption coefficient; so they are evaluated for application as light emitters for organic light-emitting diodes, light-converters for downconversion displays, and future near-eye augmented reality/virtual reality displays. However, PeNCs are chemically vulnerable to heat, light, and moisture, and these weaknesses must be overcome before devices that use PeNCs can be commercialized. This review examines strategies to overcome the low stability of PeNCs and thereby permit the fabrication of stable downconversion films, and summarizes downconversion-type display applications and future prospects. First, methods to increase the chemical stability of PeNCs are examined. Second, methods to encapsulate PeNC downconversion films to increase their lifetime are reviewed. Third, methods to increase the long-term compatibility of resin with PeNCs, and finally, how to secure stability using fillers added to the resin are summarized. Fourth, the method to manufacture downconversion films and the procedure to evaluate their reliability for commercialization is then described. Finally, the prospects of a downconversion system that exploits the properties of PeNCs and can be employed to fabricate fine pixels for high-resolution displays and for near-eye augmented reality/virtual reality devices are explored.
Collapse
Affiliation(s)
- Jae Il Kim
- Department of Materials Science and Engineering, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Qingsen Zeng
- Department of Materials Science and Engineering, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Sunghee Park
- School of Chemical and Biological Engineering, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- PEROLED Co. Ltd., 08826, Building 940, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Hyejin Lee
- Department of Materials Science and Engineering, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Jinwoo Park
- Department of Materials Science and Engineering, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Taejun Kim
- School of Chemical and Biological Engineering, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- PEROLED Co. Ltd., 08826, Building 940, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- Soft Foundry, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- Institute of Engineering Research, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- SN Display Co. Ltd., 08826, Building 33, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| |
Collapse
|
37
|
Qin F, Lu M, Lu P, Sun S, Bai X, Zhang Y. Luminescence and Degeneration Mechanism of Perovskite Light-Emitting Diodes and Strategies for Improving Device Performance. SMALL METHODS 2023; 7:e2300434. [PMID: 37434048 DOI: 10.1002/smtd.202300434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/17/2023] [Indexed: 07/13/2023]
Abstract
Perovskite light-emitting diodes (PeLEDs) can be a promising technology for next-generation display and lighting applications due to their excellent optoelectronic properties. However, a systematical overview of luminescence and degradation mechanism of perovskite materials and PeLEDs is lacking. Therefore, it is crucial to fully understand these mechanisms and further improve device performances. In this work, the fundamental photophysical processes of perovskite materials, electroluminescence mechanism of PeLEDs including carrier kinetics and efficiency roll-off as well as device degradation mechanism are discussed in detail. In addition, the strategies to improve device performances are summarized, including optimization of photoluminescence quantum yield, charge injection and recombination, and light outcoupling efficiency. It is hoped that this work can provide guidance for future development of PeLEDs and ultimately realize industrial applications.
Collapse
Affiliation(s)
- Feisong Qin
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Min Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Po Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Siqi Sun
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
38
|
Kim DY, Jung JG, Lee YJ, Park MH. Lead-Free Halide Perovskite Nanocrystals for Light-Emitting Diodes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6317. [PMID: 37763594 PMCID: PMC10532894 DOI: 10.3390/ma16186317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Lead-based halide perovskite nanocrystals (PeNCs) have demonstrated remarkable potential for use in light-emitting diodes (LEDs). This is because of their high photoluminescence quantum yield, defect tolerance, tunable emission wavelength, color purity, and high device efficiency. However, the environmental toxicity of Pb has impeded their commercial viability owing to the restriction of hazardous substances directive. Therefore, Pb-free PeNCs have emerged as a promising solution for the development of eco-friendly LEDs. This review article presents a detailed analysis of the various compositions of Pb-free PeNCs, including tin-, bismuth-, antimony-, and copper-based perovskites and double perovskites, focusing on their stability, optoelectronic properties, and device performance in LEDs. Furthermore, we address the challenges encountered in using Pb-free PeNC-LEDs and discuss the prospects and potential of these Pb-free PeNCs as sustainable alternatives to lead-based PeLEDs. In this review, we aim to shed light on the current state of Pb-free PeNC LEDs and highlight their significance in driving the development of eco-friendly LED technologies.
Collapse
Affiliation(s)
- Do-Young Kim
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Jae-Geun Jung
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Ye-Ji Lee
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
| | - Min-Ho Park
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
- Integrative Institute of Basic Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| |
Collapse
|
39
|
Baumeler T, Saleh AA, Wani TA, Huang S, Jia X, Bai X, Abdi-Jalebi M, Arora N, Grätzel M, Dar MI. Champion Device Architectures for Low-Cost and Stable Single-Junction Perovskite Solar Cells. ACS MATERIALS LETTERS 2023; 5:2408-2421. [PMID: 37680545 PMCID: PMC10482147 DOI: 10.1021/acsmaterialslett.3c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/10/2023] [Indexed: 09/09/2023]
Abstract
High power conversion efficiencies (PCE), low energy payback time (EPBT), and low manufacturing costs render perovskite solar cells (PSCs) competitive; however, a relatively low operational stability impedes their large-scale deployment. In addition, state-of-the-art PSCs are made of expensive materials, including the organic hole transport materials (HTMs) and the noble metals used as the charge collection electrode, which induce degradation in PSCs. Thus, developing inexpensive alternatives is crucial to fostering the transition from academic research to industrial development. Combining a carbon-based electrode with an inorganic HTM has shown the highest potential and should replace noble metals and organic HTMs. In this review, we illustrate the incorporation of a carbon layer as a back contact instead of noble metals and inorganic HTMs instead of organic ones as two cornerstones for achieving optimal stability and economic viability for PSCs. We discuss the primary considerations for the selection of the absorbing layer as well as the electron-transporting layer to be compatible with the champion designs and ultimate architecture for single-junction PSCs. More studies regarding the long-term stability are still required. Using the recommended device architecture presented in this work would pave the way toward constructing low-cost and stable PSCs.
Collapse
Affiliation(s)
- Thomas Baumeler
- Laboratory
of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale
de Lausanne, Lausanne 1015, Switzerland
| | - Amina A. Saleh
- Department
of Chemistry, School of Science and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo, 11835, Cairo Egypt
| | - Tajamul A. Wani
- Department
of Materials Science and Engineering, Indian
Institute of Technology Delhi, New Delhi, 110016, India
| | - Siming Huang
- Institute
for Materials Discovery, University College
London, Malet Place, London, WC1E
7JE, United Kingdom
| | - Xiaohan Jia
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United
Kingdom
| | - Xinyu Bai
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United
Kingdom
| | - Mojtaba Abdi-Jalebi
- Institute
for Materials Discovery, University College
London, Malet Place, London, WC1E
7JE, United Kingdom
| | - Neha Arora
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United
Kingdom
- Department
of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - Michael Grätzel
- Laboratory
of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale
de Lausanne, Lausanne 1015, Switzerland
| | - M. Ibrahim Dar
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United
Kingdom
| |
Collapse
|
40
|
Bian L, Cao F, Li L. Performance Improvement of Lead-Based Halide Perovskites through B-Site Ion-Doping Strategies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302700. [PMID: 37144436 DOI: 10.1002/smll.202302700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Owing to their excellent properties, lead halide perovskites have attracted extensive attention in the photoelectric field. Presently, the certified power conversion efficiency of perovskite solar cells has reached 25.7%, the specific detectivity of perovskite photodetectors has exceeded 1014 Jones, and the external quantum efficiency of perovskite-based light-emitting diode has exceeded 26%. However, their practical applications are limited by the inherent instability induced by the perovskite structure due to moisture, heat, and light. Therefore, one of the widely used strategies to address the issue is to replace partial ions of the perovskites with ions of smaller radii to shorten the bond length between halides and metal cations, improving the bond energy and enhancing the perovskite stability. Particularly, the B-site cation in the perovskite structure can affect the size of eight cubic octahedrons and their gap. However, the X-site can only affect four such voids. This review comprehensively summarizes the recent progress in B-site ion-doping strategies for lead halide perovskites and provides some perspectives for further performance improvements.
Collapse
Affiliation(s)
- Liukang Bian
- School of Physical Science and Technology, Center for Energy Conversion Materials and Physics (CECMP), Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, China
| | - Fengren Cao
- School of Physical Science and Technology, Center for Energy Conversion Materials and Physics (CECMP), Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, China
| | - Liang Li
- School of Physical Science and Technology, Center for Energy Conversion Materials and Physics (CECMP), Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, China
| |
Collapse
|
41
|
Lai Y, Zhou Y, Liu H, Guo T, Zou A, Wang L, Chen Y, Zhao X, Zheng K, Tong X, Wang R. Fast and Reversible Quasi-Solid-State Anion Exchange in Highly Luminescent CsPbX 3 Perovskite Nanocrystals for Dual-Mode Encryption-Decryption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304377. [PMID: 37649212 DOI: 10.1002/smll.202304377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Solid-state anion exchange method is easy to handle and beneficial to improve stability of CsPbX3 (X = Cl, Br, I) perovskites nanocrystals (NCs) with respect to anion exchange in liquid phase. However, the corresponding exchange rate is rather slow due to the limited diffusion rate of anions from solid phases, resulting in mixed-halide perovskite NCs. Herein, a fast and reversible post-synthetic quasi-solid-state anion exchange method in CsPbX3 NCs with inorganic potassium halide KX salts/polyvinylpyrrolidone (PVP) thin film is firstly reported. Original morphology of the exchanged NCs is well-preserved for all samples. Complete anion exchange from Br- to Cl- or I- is successfully achieved in CsPbX3 NCs within ≈20 min through possible vacancies-assisted ion exchange mechanism, under ambient conditions and vice versa. Particularly, Br- -exchanged CsPbCl3 and CsPbI3 NCs exhibit improved optical properties. Encouraged by the attractive fluorescence and persistent luminescence as well as good stability of the resulted CsPbX3 NCs, an effective dual-mode information storage-reading application is demonstrated. It is believed that this method can open a new avenue for the synthesis of other direct-synthesis challenging quantum-confined perovskite NCs/nanoplates/nanodisks or CsSnX3 NCs/thin film and provide an opportunity for advanced information storage compatible for practical applications.
Collapse
Affiliation(s)
- Yueling Lai
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yufeng Zhou
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Hongjiang Liu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Tongyin Guo
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Anqi Zou
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Lianju Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yiqing Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xianglong Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kanghui Zheng
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xin Tong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu, 610065, P. R. China
| |
Collapse
|
42
|
Pradhan A, Samal SL. Structural Transition in (C 2H 5NH 3) 3Bi 2-xSb xI 9:[(Bi/Sb) 2I 9] 3- Dimers to [(Bi/Sb) 3I 12] 3- Trimers to (∞ 1)[(Bi/Sb) 2I 93-] 1D Infinite Chains. Inorg Chem 2023; 62:13802-13811. [PMID: 37589494 DOI: 10.1021/acs.inorgchem.3c01498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Antimony/bismuth-based lead-free hybrid halide defect 2D perovskites have been generating enormous research interest due to their inherent excellent optical properties. Exploration of new phases and understanding of their structural and optoelectronic properties are of paramount importance in the process of developing materials for practical solar cell applications. In this article, we have reported a structural transition from the 0D hexagonal phase containing isolated [M2I9]3- (M = Bi/Sb) units to the 1D orthorhombic phase via a new monoclinic phase with novel isolated trimeric [M3I12]3- units in (C2H5NH3)3Bi2-2xSb2xI9. The hexagonal phase is stable up to 2x = 0.6 in (C2H5NH3)3Bi2-2xSb2xI9. With gradual substitution of Sb, the cation-cation repulsion increases, which destabilizes the [M2I9]3- unit, and hence, the hexagonal phase becomes unstable. At intermediate composition, 2x = 0.8-1.6, a new monoclinic phase (S.G.: C2/m) with the composition (C2H5NH3)2Bi2-2xSb2xI8 is formed, containing isolated [M3I12]3- units. The symmetry reduction resulted in larger distortion, which relaxes the strain and stabilizes the trimeric unit in the intermediate compositions. Finally, at higher Sb compositions (2x = 1.9-2.0), the compounds crystallize in the orthorhombic 1D phase. In all three phases of (C2H5NH3)3Bi2-2xSb2xI9, the cationic ethylammonium units are completely disordered over the whole unit cell. Raman study clearly shows the phase transition in (C2H5NH3)3Bi2-2xSb2xI9 and also the structural distortion in (C2H5NH3)2Bi2-2xSb2xI8. Optical property study shows that all the compounds are of indirect band gap type. Furthermore, PL study shows better emission properties of the 1D orthorhombic Sb compounds as compared to the 0D hexagonal and monoclinic phases.
Collapse
Affiliation(s)
- Abinash Pradhan
- Solid State and Materials Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Saroj L Samal
- Solid State and Materials Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
- Center for Nanomaterials, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
43
|
Wang J, Zou L, Yang M, Cheng J, Jiang Y, Huang G, Dong J. Improvement of the Stability and Optical Properties of CsPbBr 3 QDs. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2372. [PMID: 37630957 PMCID: PMC10457982 DOI: 10.3390/nano13162372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
All-inorganic perovskite quantum dots (CsPbX3 QDs) (X = Cl, Br, I) have the advantages of adjustable emission position, narrow emission spectrum, high fluorescence quantum efficiency (PLQY), easy preparation, and elevated defect tolerance; therefore, they are widely used in optoelectronic devices, such as solar cells, light-emitting diodes, and lasers. However, their stability still constrains their development due to their intrinsic crystal structure, ionic exchange of surface ligands, and exceptional sensitivity to environmental factors, such as light, water, oxygen, and heat. Therefore, in this paper, we investigate the stability improvement of CsPbX3 QDs and apply fabricated high-efficiency, stable perovskite QDs to solar cells to improve the performance of the cells further. In this paper, we focus on CsPbBr3 QDs with intrinsic extreme stability and optimize CsPbBr3 QDs using strategies, such as Mn+ doping, ligand regulation, and polymer encapsulation, which can improve optical properties while ensuring their stability. The test results show that the above five methods can improve the strength and luminescence performance of QDs, with the best stability achieved when PMMA encapsulates QDs with a ratio of PMMA = 2:1 and PLQY increases from 60.2% to 90.1%.
Collapse
Affiliation(s)
| | | | | | | | | | - Guangdong Huang
- School of Science, China University of Geosciences Beijing, No. 29 College Road, Haidian District, Beijing 100083, China
| | - Jingjing Dong
- School of Science, China University of Geosciences Beijing, No. 29 College Road, Haidian District, Beijing 100083, China
| |
Collapse
|
44
|
Zhang X, Yang P. CsPbX 3 (X = Cl, Br, and I) Nanocrystals in Substrates toward Stable Photoluminescence: Nanoarchitectonics, Properties, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11188-11212. [PMID: 37548228 DOI: 10.1021/acs.langmuir.3c01848] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Cesium lead halide (CsPbX3, X = Cl, Br, and I) perovskite nanocrystals (NCs) possess great potential in light-emitting diode applications because of their high brightness, low cost, tunable luminescence, and facile synthesis nature. However, these NCs are often disadvantaged by their instability in nonsolvent environment that hinders the practical applications of the material. In order to solve these issues, cesium lead halide NCs prepared using a solvent environment can be placed on substrates to retain the high stability and expand the applicability of the material. This Review focuses on the transfer of the all-inorganic cesium lead halide NCs (synthesized in solutions) onto matrix materials and their direct synthesis on these bases, including the inert shell growth (inorganic and organic shell), embedment in matrixes (e.g., metal organic frameworks, porous SiO2, glass, ZrO2, Al2O3, and AlOOH), and direct synthesis in substrates. In particular, the strategies for stability and PL property improvement of the materials are also summarized. The purpose of this Review is to provide inspiration for the encapsulation of cesium lead halide NCs with high brightness and stability in matrixes to expand the applicability of these materials in wide color gamut backlighting (e.g., white-light-emitting devices).
Collapse
Affiliation(s)
- Xiao Zhang
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Krakow 31-155, Poland
| | - Ping Yang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
45
|
Guan M, Xie Y, Zhang Y, Gu Z, Qiu L, He Z, Ye B, Suwardi A, Dai Z, Li G, Hu G. Moisture-Tailored 2D Dion-Jacobson Perovskites for Reconfigurable Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210611. [PMID: 37058138 DOI: 10.1002/adma.202210611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/01/2023] [Indexed: 06/02/2023]
Abstract
Humidity- and moisture-induced degradation has been a longstanding problem in perovskite materials, affecting their long-term stability during applications. Counterintuitively, the moisture is leveraged to tailor the reversible hydrochromic behaviors of a new series of 2D Dion-Jacobson (DJ) perovskites for reconfigurable optoelectronics. In particular, the hydrogen bonds between organic cations and water molecules can be dynamically modulated via moisture removal/exposure. Remarkably, such modulation confines the movement of the organic cations close to the original position, preventing their escape from crystal lattices. Furthermore, this mechanism is elucidated by theoretical analysis using first-principles calculations and confirmed with the experimental characterizations. The reversible fluorescent transition 2D DJ perovskites show excellent cyclical properties, presenting untapped opportunities for reconfigurable optoelectronic applications. As a proof-of-concept demonstration, an anti-counterfeiting display is shown based on patterned reversible 2D DJ perovskites. The results represent a new avenue of reconfigurable optoelectronic application with 2D DJ perovskites for humidity detection, anti-counterfeiting, sensing, and other emerging photoelectric intelligent technologies.
Collapse
Affiliation(s)
- Mengyu Guan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Yunlong Xie
- Institute for Advanced Materials, Hubei Normal University, Huangshi, 435002, P. R. China
| | - Yang Zhang
- School of Materials Science and Engineering, Center of Advanced Analysis & Gene Sequencing, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zixin Gu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Lei Qiu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Zhuojie He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Bingkun Ye
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Ady Suwardi
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Zhigao Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
- Shenzhen Research Institute, China University of Geosciences, Shenzhen, 518063, P. R. China
| | - Guogang Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
- Zhejiang Institute China University of Geosciences, Hangzhou, 311305, P. R. China
| | - Guangwei Hu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
46
|
Xu G, Wang C, Li Y, Meng W, Luo G, Peng M, Xu B, Deng Z. Solid-state synthesis of cesium manganese halide nanocrystals in glass with bright and broad red emission for white LEDs. Chem Sci 2023; 14:5309-5315. [PMID: 37234884 PMCID: PMC10207884 DOI: 10.1039/d3sc01084h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/15/2023] [Indexed: 05/28/2023] Open
Abstract
Recently, lead halide perovskite nanocrystals (NCs) have attracted extensive attention due to their unique optical properties. However, the toxicity of lead and the instability to moisture obstruct their further commercial development. Herein, a series of lead-free CsMnX3 (X = Cl, Br, and I) NCs embedded in glasses were synthesized by a high temperature solid-state chemistry method. These NCs embedded in glass can remain stable after soaking in water for 90 days. It is found that increasing the amount of cesium carbonate in the synthesis process can not only prevent the oxidation of Mn2+ to Mn3+ and promote the transparency of glass in the 450-700 nm region, but also significantly increase its photoluminescence quantum yield (PLQY) from 2.9% to 65.1%, which is the highest reported value of the red CsMnX3 NCs so far. Using CsMnBr3 NCs with a red emission peak at 649 nm and full-width-at-half-maximum (FWHM) of 130 nm as the red light source, a white light-emitting diode (LED) device with International Commission on illumination (CIE) coordinates of (0.33, 0.36) and a color rendering index (CRI) of 94 was obtained. These findings, together with future research, are likely to yield stable and bright lead-free NCs for the next generation of solid-state lighting.
Collapse
Affiliation(s)
- Guangyong Xu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Chuying Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Yacong Li
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Wen Meng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Guigen Luo
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Min Peng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Bin Xu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Zhengtao Deng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University Nanjing Jiangsu 210023 P. R. China
| |
Collapse
|
47
|
Sasaki M, Hashimoto S, Iso Y, Oaki Y, Isobe T, Imai H. Enhanced and stabilized photoluminescence of perovskite cesium lead bromide nanocubes through ordered assemblies. NANOSCALE ADVANCES 2023; 5:2553-2557. [PMID: 37143814 PMCID: PMC10153085 DOI: 10.1039/d2na00784c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/31/2023] [Indexed: 05/06/2023]
Abstract
This work clarified the effects of self-assembly of perovskite cesium lead bromide (CsPbBr3) nanocubes (NCs) covered with didodecyldimethyl ammonium bromide (DDAB) on photoluminescence (PL) properties. Although the PL intensity of isolated NCs was weakened in the solid state even under inert conditions, the quantum yield of PL (PLQY) and the photostability of DDAB-covered NCs were drastically improved by the formation of two-dimensional (2D) ordered arrays on a substrate. The PLQY of the 2D arrays increased to ca. 60% by initial excitation illumination at 468 nm and was maintained for over 4000 h. The improved PL properties are attributable to the fixation of the surface ligand around the NCs in the specific ordered arrays.
Collapse
Affiliation(s)
- Moeka Sasaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Shota Hashimoto
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Yoshiki Iso
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Tetsuhiko Isobe
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Hiroaki Imai
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
48
|
Hou J, Liu R, Han P, Luo C, Ding Z, Zhou W, Li C, Li J, Zhao Y, Chen J, Liu J, Yang B. Unveiling the Localized Exciton-Based Photoluminescence of Manganese Doped Cesium Zinc Halide Nanocrystals. NANO LETTERS 2023; 23:3762-3768. [PMID: 37096965 DOI: 10.1021/acs.nanolett.2c05101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lead-free metal halide nanocrystals (NCs) have aroused increasing attention due to their unique optoelectronic properties based on localized excitons (LEs). However, the vital influencing factors for the LEs based photoluminescence (PL) are still not well-understood due to the coupling of various intrinsic and extrinsic factors of the NCs. Herein, by engineering the phase, size, morphology, and chemical composition, we are able to decouple the intrinsic and extrinsic factors of manganese doped cesium zinc-halide NCs. We found both the intrinsic metal-halide coordination field and the extrinsic crystal defects have significant influences on the LEs' recombination and energy transfer processes, and hence determine the PL efficiency. Unlike for the free excitons (FEs) based PL, the phase as well as the crystal morphology do not play major roles for the LEs based PL. This work provides a new insight for the study of LE dynamics of metal halide NCs.
Collapse
Affiliation(s)
- Jie Hou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of the Chinese Academy of sciences, Beijing 100049, P. R. China
| | - Runze Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Peigeng Han
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Cheng Luo
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of the Chinese Academy of sciences, Beijing 100049, P. R. China
| | - Zhiling Ding
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Wei Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Cheng Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Juntao Li
- University of the Chinese Academy of sciences, Beijing 100049, P. R. China
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P. R. China
| | - Yang Zhao
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Junsheng Chen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Jianyong Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of the Chinese Academy of sciences, Beijing 100049, P. R. China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of the Chinese Academy of sciences, Beijing 100049, P. R. China
| |
Collapse
|
49
|
Lin Z, Lin Z, Guo Y, Wu H, Song J, Zhang Y, Zhang W, Li H, Hou D, Huang R. Effect of a-SiC xN y:H Encapsulation on the Stability and Photoluminescence Property of CsPbBr 3 Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13071228. [PMID: 37049319 PMCID: PMC10097036 DOI: 10.3390/nano13071228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/12/2023]
Abstract
The effect of a-SiCxNy:H encapsulation layers, which are prepared using the very-high-frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) technique with SiH4, CH4, and NH3 as the precursors, on the stability and photoluminescence of CsPbBr3 quantum dots (QDs) were investigated in this study. The results show that a-SiCxNy:H encapsulation layers containing a high N content of approximately 50% cause severe PL degradation of CsPbBr3 QDs. However, by reducing the N content in the a-SiCxNy:H layer, the PL degradation of CsPbBr3 QDs can be significantly minimized. As the N content decreases from around 50% to 26%, the dominant phase in the a-SiCxNy:H layer changes from SiNx to SiCxNy. This transition preserves the inherent PL characteristics of CsPbBr3 QDs, while also providing them with long-term stability when exposed to air, high temperatures (205 °C), and UV illumination for over 600 days. This method provided an effective and practical approach to enhance the stability and PL characteristics of CsPbBr3 QD thin films, thus holding potential for future developments in optoelectronic devices.
Collapse
Affiliation(s)
- Zewen Lin
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhenxu Lin
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Yanqing Guo
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Haixia Wu
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Jie Song
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Yi Zhang
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Wenxing Zhang
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Hongliang Li
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Dejian Hou
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Rui Huang
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| |
Collapse
|
50
|
Li H, Liu X, Zhou D, Dong B, Xu L, Bai X, Song H. Realization of 1.54-µm Light-Emitting Diodes Based on Er 3+ /Yb 3+ Co-Doped CsPbCl 3 Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300118. [PMID: 36989311 DOI: 10.1002/adma.202300118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Erbium ions (Er3+ , 1.54 µm) electric pumped light sources with excellent optical properties and a simple fabrication process are urgently desired to satisfy the development of silicon-based integration photonics. The previous Er-based electroluminescence devices are mainly based on Er-complexes or Er-doped oxide compounds, which usually suffer from low external quantum efficiency(EQE)or high applied voltage etc. In this work, a novel type of Er3+ /Yb3+ co-doped lead-halide perovskite films (Er3+ /Yb3+ :CsPbCl3 ) with the maximum photoluminescence quantum yield of 30.12% are prepared by a simple two-step solution-coating method and the corresponding light emitting diodes (Er-PeLEDs) are fabricated, which demonstrate an almost pure 1.54-µm emission and a peak EQE up to 0.366% at a low applied voltage of 1.4 V. Strong negative thermal quenching effect may help Er-PeLEDs suppress Joule heating quenching. These excellent LED properties benefit mainly from the outstanding regulatory performance of acetate to perovskite films, the excellent semiconductor behavior and strong ionic property of the perovskite, and the involvement of Yb3+ ions, which can directly and efficiently transfer the exciton energy to Er3+ through a quantum cutting process. Overall, the realization of 1.54-µm Er-PeLEDs offers new opportunities for silicon-based integrated light sources.
Collapse
Affiliation(s)
- Hongfei Li
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xiaoqi Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, National Demonstration Center for Experimental Physics Education, Jilin Normal University, Changchun 130103 and, Siping, 136000, P. R. China
| | - Donglei Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Lin Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xue Bai
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Hongwei Song
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|