1
|
He P, Zhu SF. Spin Crossover and Its Application in Organometallic Catalysis: Concepts and Recent Progress. Chemistry 2024; 30:e202403437. [PMID: 39404030 DOI: 10.1002/chem.202403437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Spin crossover is one of the most important properties of open-shell metal complexes. In organometallic catalytic reactions, catalysts can alter reaction kinetics by spin crossover, i. e., accelerating or hindering the reaction progression, as well as altering reaction pathways, modulating the reaction selectivity or promoting new reactions. This personal account outlines the introduction and development of important concepts such as "two-state reactivity" involving spin crossover, and proposes a new concept, "spin-responsive catalysis" to summarize the catalytic processes in which spin effects are present. Finally, the electronic mechanism of spin crossover accelerating the reaction and the role of spin crossover in changing the reaction path and regulating the reaction selectivity are introduced by taking two recent typical iron-catalyzed reactions recently reported by our group as examples.
Collapse
Affiliation(s)
- Peng He
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Tepaske MA, Fitterer A, Verplancke H, Delony D, Neben MC, de Bruin B, Holthausen MC, Schneider S. C-H Bond Activation by Iridium(III) and Iridium(IV) Oxo Complexes. Angew Chem Int Ed Engl 2024; 63:e202316729. [PMID: 38116899 DOI: 10.1002/anie.202316729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Oxidation of an iridium(III) oxo precursor enabled the structural, spectroscopic, and quantum-chemical characterization of the first well-defined iridium(IV) oxo complex. Side-by-side examination of the proton-coupled electron transfer thermochemistry revealed similar driving forces for the isostructural oxo complexes in two redox states due to compensating contributions from H+ and e- transfer. However, C-H activation of dihydroanthracene revealed significant hydrogen tunneling for the distinctly more basic iridium(III) oxo complex. Our findings complement the growing body of data that relate tunneling to ground state properties as predictors for the selectivity of C-H bond activation.
Collapse
Affiliation(s)
- Martijn A Tepaske
- Georg-August-Universität, Institut für Anorganische Chemie, Tammanstraβe 4, 37077, Göttingen, Germany
| | - Arnd Fitterer
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straβe 7, 60438, Frankfurt am Main, Germany
| | - Hendrik Verplancke
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straβe 7, 60438, Frankfurt am Main, Germany
| | - Daniel Delony
- Georg-August-Universität, Institut für Anorganische Chemie, Tammanstraβe 4, 37077, Göttingen, Germany
| | - Marc C Neben
- Georg-August-Universität, Institut für Anorganische Chemie, Tammanstraβe 4, 37077, Göttingen, Germany
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van't Hoff Institute for Molecular Sciences (HIMS), Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Max C Holthausen
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straβe 7, 60438, Frankfurt am Main, Germany
| | - Sven Schneider
- Georg-August-Universität, Institut für Anorganische Chemie, Tammanstraβe 4, 37077, Göttingen, Germany
| |
Collapse
|
3
|
Carter S, Tao W, Majumder R, Sokolov AY, Zhang S. Two-State Hydrogen Atom Transfer Reactivity of Unsymmetric [Cu 2(O)(NO)] 2+ Complexes. J Am Chem Soc 2023; 145:17779-17785. [PMID: 37540110 DOI: 10.1021/jacs.3c04510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We report the temperature-dependent spin switching of dicopper oxo nitrosyl [Cu2(O)(NO)]2+ complexes and their influence on hydrogen atom transfer (HAT) reactivity. Electron paramagnetic resonance (EPR) and Evans method analysis suggest that [Cu2(O)(NO)]2+ complexes transition from the S = 1/2 to the S = 3/2 state around ca. 202 K. At low temperatures (198 K) where S = 3/2 dominates, a strong correlation between the rate of HAT (kHAT) and the population of the S = 1/2 state was identified (R2 = 0.988), suggesting that the HAT by [Cu2(O)(NO)]2+ complexes proceeds by the S = 1/2 isomer. Installation of functional groups that introduce an unsymmetric secondary coordination environment accelerates the HAT rates through perturbation of the spin equilibria. Given the often unsymmetric coordination sphere of bimetallic active sites in natural proteins, we anticipate that similar strategies could be employed by metalloenzymes to control HAT reactions.
Collapse
Affiliation(s)
- Samantha Carter
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Wenjie Tao
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Rajat Majumder
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Zarei S, Raanaei H, Niad M. Investigation of mercury removal by Fe3O4@SiO2-NH2-GO-NC as magnetic nanocomposite. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Zhou Y, Ni J, Lyu Z, Li Y, Wang T, Cheng GJ. Mechanism and Reaction Channels of Iron-Catalyzed Primary Amination of Alkenes by Hydroxylamine Reagents. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yu Zhou
- Warshel Institute for Computational Biology and School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Jie Ni
- Warshel Institute for Computational Biology and School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Zhen Lyu
- Warshel Institute for Computational Biology and School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yang Li
- Warshel Institute for Computational Biology and School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Ting Wang
- Warshel Institute for Computational Biology and School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology and School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| |
Collapse
|
6
|
Ma Z, Nakatani N, Hada M. Insights into the electronic structure and mechanism of norcarane hydroxylation by OxoMn(V) porphyrin complexes: A density functional theory study. J Comput Chem 2021; 42:1920-1928. [PMID: 34448235 DOI: 10.1002/jcc.26715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/05/2022]
Abstract
Norcarane hydroxylation by neutral [PorMn(V)O-L] (L═OH- , F- ) and cationic [PorMn(V)O-L]+ (L═H2 O, imidazole) oxoMn(V) porphyrin complex models has been investigated by density functional theory calculations to better understand the reaction mechanism and electronic structure. We found that the energy barriers of norcarane hydroxylation by cationic oxoMn(V) porphyrin complexes are lower than those by neutral oxoMn(V) porphyrin complexes. This indicates that cationic oxoMn(V) porphyrin complexes enhance norcarane hydroxylation compared with neutral oxoMn(V) porphyrin complexes. According to electronic structure analysis, in the C─H activation step, electron transfer occurs through initial interaction between the σCH and rich-oxygen π(Mn═O) orbitals to form real donor orbitals, followed by transfer to the acceptor π*(Mn═O) orbitals. Moreover, single electron shifts from norcarane (CH) to Mn atom during C─H activation. The positive charge of the cationic complex stabilizes the acceptor orbital more than the donor orbital, reducing the energy gap between these orbitals, thus lowering the reaction barrier.
Collapse
Affiliation(s)
- Zhifeng Ma
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Naoki Nakatani
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Masahiko Hada
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
7
|
Li XX, Xue SS, Lu X, Seo MS, Lee YM, Kim WS, Cho KB, Nam W. Ligand Architecture Perturbation Influences the Reactivity of Nonheme Iron(V)-Oxo Tetraamido Macrocyclic Ligand Complexes: A Combined Experimental and Theoretical Study. Inorg Chem 2021; 60:4058-4067. [PMID: 33645218 DOI: 10.1021/acs.inorgchem.1c00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron(V)-oxo complexes bearing negatively charged tetraamido macrocyclic ligands (TAMLs) have provided excellent opportunities to investigate the chemical properties and the mechanisms of oxidation reactions of mononuclear nonheme iron(V)-oxo intermediates. Herein, we report the differences in chemical properties and reactivities of two iron(V)-oxo TAML complexes differing by modification on the "Head" part of the TAML framework; one has a phenyl group at the "Head" part (1), whereas the other has four methyl groups replacing the phenyl ring (2). The reactivities of 1 and 2 in both C-H bond activation reactions, such as hydrogen atom transfer (HAT) of 1,4-cyclohexadiene, and oxygen atom transfer (OAT) reactions, such as the oxidation of thioanisole and its derivatives, were compared experimentally. Under identical reaction conditions, 1 showed much greater reactivity than 2, such as a 102-fold decrease in HAT and a 105-fold decrease in OAT by replacing the phenyl group (i.e., 1) with four methyl groups (i.e., 2). Then, density functional theory calculations were performed to rationalize the reactivity differences between 1 and 2. Computations reproduced the experimental findings well and revealed that the replacement of the phenyl group in 1 with four methyl groups in 2 not only increased the steric hindrance but also enlarged the energy gap between the electron-donating orbital and the electron-accepting orbital. These two factors, steric hindrance and the orbital energy gap, resulted in differences in the reduction potentials of 1 and 2 and their reactivities in oxidation reactions.
Collapse
Affiliation(s)
- Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shan-Shan Xue
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Xiaoyan Lu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Won-Suk Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
8
|
Kim Y, Kim J, Nguyen LK, Lee YM, Nam W, Kim SH. EPR spectroscopy elucidates the electronic structure of [FeV(O)(TAML)] complexes. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00522g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complete hyperfine tensor of 17O of the FeV-oxo moeity was probed by ENDOR spectroscopy. The EPR spectroscopic results reported here provide a conclusive experimental basis for elucidating the electronic structure of the FeV-oxo complex.
Collapse
Affiliation(s)
- Yujeong Kim
- Western Seoul Center
- Korea Basic Science Institute (KBSI)
- Seoul 03759
- Rep. of Korea
- Department of Chemistry and Nano Science
| | - Jin Kim
- Department of Chemistry
- Sunchon National University
- Suncheon 57922
- Rep. of Korea
| | - Linh K. Nguyen
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Rep. of Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Rep. of Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Rep. of Korea
| | - Sun Hee Kim
- Western Seoul Center
- Korea Basic Science Institute (KBSI)
- Seoul 03759
- Rep. of Korea
- Department of Chemistry and Nano Science
| |
Collapse
|
9
|
Jin L, Wang Q, Chen X, Liu N, Fang X, Yang YF, She YB. Computational Studies on the Mechanism and Origin of the Different Regioselectivities of Manganese Porphyrin-Catalyzed C-H Bond Hydroxylation and Amidation of Equilenin Acetate. J Org Chem 2020; 85:14879-14889. [PMID: 33225704 DOI: 10.1021/acs.joc.0c01444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The manganese porphyrin-catalyzed C-H bond hydroxylation and amidation of equilenin acetate developed by Breslow and his co-worker have been investigated with density functional theory (DFT) calculations. The hydroxylation of C(sp2)-H bond of equilenin acetate leading to the 6-hydroxylated product is more favorable than the hydroxylation of C(sp3)-H bond of equilenin acetate, leading to the 11β-hydroxylation product. The computational results suggest that the C(sp2)-H bond hydroxylation of equilenin acetate undergoes an oxygen-atom-transfer mechanism, which is more favorable than the C(sp3)-H bond hydroxylation undergoing the hydrogen-atom-abstraction/oxygen-rebound (HAA/OR) mechanism by 1.6 kcal/mol. That is why, the 6-hydroxylated product is the major product and the 11β-hydroxylated product is the minor product. In contrast, the 11β-amidated product is the only observed product in manganese porphyrin-catalyzed amidation reaction. The benzylic amidation undergoes a hydrogen-atom-abstraction/nitrogen-rebound (HAA/NR) mechanism, in which hydrogen atom abstraction is followed by nitrogen rebound, leading to the 11β-amidated product. The benzylic C(sp3)-H bond amidation at the C-11 position is more favorable than aromatic amidation at the C-6 position by 4.9 kcal/mol. Therefore, the DFT computational results are consistent with the experiments that manganese porphyrin-catalyzed C-H bond hydroxylation and amidation of equilenin acetate have different regioselectivities.
Collapse
Affiliation(s)
- Liyuan Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qunmin Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiahe Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ning Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaoli Fang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuan-Bin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
10
|
Affiliation(s)
- Sason Shaik
- Institute of Chemistry The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram Jerusalem 9090401 Israel
| |
Collapse
|
11
|
Liu Z, Lu Y, Guo J, Hu W, Dang Y, Wang ZX. DFT Mechanistic Account for the Site Selectivity of Electron-Rich C(sp 3)-H Bond in the Manganese-Catalyzed Aminations. Org Lett 2020; 22:453-457. [PMID: 31913046 DOI: 10.1021/acs.orglett.9b04215] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
DFT study suggests that the C-H cleavage involved in the C(sp3)-H amination catalyzed by manganese perchlorophthalocyanine complex [MnIII(ClPc)]+ proceeds via hydride transfer (HYT), instead of hydrogen atom transfer (HAT), thus elucidating why the reaction favors aminating the electron-rich C-H bond, rather than that with smaller bond dissociation energy preferred by HAT. Detailed analyses indicate the HYT actually occurs via concerted electron and hydrogen atom transfers and the redox-active ClPc ligand enables the HYT.
Collapse
Affiliation(s)
- Zheyuan Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry , Tianjin University , Tianjin 300072 , China
| | - Yu Lu
- School of Chemical Sciences , University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Jiandong Guo
- School of Chemical Sciences , University of the Chinese Academy of Sciences , Beijing 100049 , China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry , Tianjin University , Tianjin 300072 , China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry , Tianjin University , Tianjin 300072 , China
| | - Zhi-Xiang Wang
- School of Chemical Sciences , University of the Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
12
|
Chen X, Wang Q, Shen H, Li G, Yang YF, She YB. Mechanism and stereoselectivity of benzylic C-H hydroxylation by Ru-porphyrin: a computational study. Org Biomol Chem 2020; 18:346-352. [PMID: 31845954 DOI: 10.1039/c9ob02415h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mechanism and origin of the stereoselectivity of asymmetric benzylic C-H hydroxylation by Ru-porphyrin were elucidated with density functional theory calculations. The reaction proceeds via a hydrogen-atom abstraction/oxygen-rebound pathway, wherein a high-valent ruthenium-oxo species abstracts a hydrogen atom from ethylbenzene to generate a radical pair intermediate, followed by the oxygen-rebound process to form 1-phenylethanol. The hydrogen-atom abstraction step is the rate- and stereoselectivity-determining step. Based on the mechanistic model, the computed stereoselectivity is in agreement with the experimental observations. Analysis of the distortion/interaction model suggests that stereoselectivity is determined by both the distortion energy of the ethylbenzene and the interaction energy between the ethylbenzene and the chiral Ru-porphyrin. The steric repulsion between the phenyl group of ethylbenzene and the bulky substituent of Ru-porphyrin is the leading cause of chiral induction.
Collapse
Affiliation(s)
- Xiahe Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | | | | | | | | | | |
Collapse
|
13
|
Wang Q, Chen X, Li G, Chen Q, Yang YF, She YB. Computational Exploration of Chiral Iron Porphyrin-Catalyzed Asymmetric Hydroxylation of Ethylbenzene Where Stereoselectivity Arises from π-π Stacking Interaction. J Org Chem 2019; 84:13755-13763. [PMID: 31599588 DOI: 10.1021/acs.joc.9b01989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mechanism and origins of stereoselectivity of chiral iron porphyrin-catalyzed asymmetric hydroxylation of ethylbenzene were explored with density functional theory. The hydrogen atom abstraction is the rate- and stereoselectivity-determining step. In good agreement with experimental results, the formation of the (R)-1-phenylethanol product is found to be the most favorable pathway. The transition state of hydrogen atom abstraction which leads to the (S)-1-phenylethanol product is unfavorable by 1.7 kcal/mol compared to the corresponding transition state which leads to the (R)-1-phenylethanol product. Enantioselectivity arises from an attractive π-π stacking interaction between the phenyl group of ethylbenzene substrate and the naphthyl group of the porphyrin ligand.
Collapse
Affiliation(s)
- Qunmin Wang
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Xiahe Chen
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Guijie Li
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Qidong Chen
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Yun-Fang Yang
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Yuan-Bin She
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| |
Collapse
|
14
|
Conformational turn triggers regio-selectivity in the bioactivation of thiophene-contained compounds mediated by cytochrome P450. J Biol Inorg Chem 2019; 24:1023-1033. [PMID: 31506822 DOI: 10.1007/s00775-019-01699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
Abstract
In the present work, we performed Density Functional Theory calculations to explore the bioactivation mechanism of thiophene-containing molecules mediated by P450s. For this purpose, relatively large size compounds, 2,5-diaminothiophene derivatives were selected particularly for this investigation. Here we found the successive regio-selectivity triggered by conformational turn played a significant role in the occurrence of bioactivation. 2,5-Diaminothiophene was oxidized to a 2,5-diimine thiophene-reactive intermediate by Compound I (Cpd I) through successive activations of two N-H bonds (H3-N11 and H1-N6). This reaction exhibited three special characteristics: (1) self-controlled regio-selectivity during the oxidation process. There was a large scale of conformational turn in the abstraction of the first H atom which triggers the selection of the second H for abstraction. (2) Proton-shuttle mechanism. In high spin (HS) state, proton-shuttle mechanism was observed for the abstraction of the second H atom. (3) Spin-selective manner. In protein environment, the energy barrier in HS state was much lower than that in low spin state. The novel proposed bioactivation mechanism of 2,5-diaminothiophene compounds can help us in rational design of thiophene-contained drugs avoiding the occurrence of bioactivation.
Collapse
|
15
|
Dutta M, Bania KK, Pratihar S. Remote ‘Imidazole’ Based Ruthenium(II)
p
‐Cymene Precatalyst for Selective Oxidative Cleavage of C−C Multiple Bonds. ChemCatChem 2019. [DOI: 10.1002/cctc.201900242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Manali Dutta
- Department of Chemical SciencesTezpur University, Napaam Assam-784028 India
| | - Kusum Kumar Bania
- Department of Chemical SciencesTezpur University, Napaam Assam-784028 India
| | - Sanjay Pratihar
- Department of Chemical SciencesTezpur University, Napaam Assam-784028 India
| |
Collapse
|
16
|
Bae SH, Li XX, Seo MS, Lee YM, Fukuzumi S, Nam W. Tunneling Controls the Reaction Pathway in the Deformylation of Aldehydes by a Nonheme Iron(III)–Hydroperoxo Complex: Hydrogen Atom Abstraction versus Nucleophilic Addition. J Am Chem Soc 2019; 141:7675-7679. [DOI: 10.1021/jacs.9b02272] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Seong Hee Bae
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Faculty of Science and Engineering, Meijo University, SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
17
|
Manna RN, Malakar T, Jana B, Paul A. Unraveling the Crucial Role of Single Active Water Molecule in the Oxidative Cleavage of Aliphatic C–C Bond of 2,4′-Dihydroxyacetophenone Catalyzed by 2,4′-Dihydroxyacetophenone Dioxygenase Enzyme: A Quantum Mechanics/Molecular Mechanics Investigation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rabindra Nath Manna
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Tanmay Malakar
- Raman Center for Atomic, Molecular, and Optical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Ankan Paul
- Raman Center for Atomic, Molecular, and Optical Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
18
|
Postils V, Saint-André M, Timmins A, Li XX, Wang Y, Luis JM, Solà M, de Visser SP. Quantum Mechanics/Molecular Mechanics Studies on the Relative Reactivities of Compound I and II in Cytochrome P450 Enzymes. Int J Mol Sci 2018; 19:E1974. [PMID: 29986417 PMCID: PMC6073316 DOI: 10.3390/ijms19071974] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 02/03/2023] Open
Abstract
The cytochromes P450 are drug metabolizing enzymes in the body that typically react with substrates through a monoxygenation reaction. During the catalytic cycle two reduction and protonation steps generate a high-valent iron (IV)-oxo heme cation radical species called Compound I. However, with sufficient reduction equivalents present, the catalytic cycle should be able to continue to the reduced species of Compound I, called Compound II, rather than a reaction of Compound I with substrate. In particular, since electron transfer is usually on faster timescales than atom transfer, we considered this process feasible and decided to investigate the reaction computationally. In this work we present a computational study using density functional theory methods on active site model complexes alongside quantum mechanics/molecular mechanics calculations on full enzyme structures of cytochrome P450 enzymes. Specifically, we focus on the relative reactivity of Compound I and II with a model substrate for O⁻H bond activation. We show that generally the barrier heights for hydrogen atom abstraction are higher in energy for Compound II than Compound I for O⁻H bond activation. Nevertheless, for the activation of such bonds, Compound II should still be an active oxidant under enzymatic conditions. As such, our computational modelling predicts that under high-reduction environments the cytochromes P450 can react with substrates via Compound II but the rates will be much slower.
Collapse
Affiliation(s)
- Verònica Postils
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany i Farnés, 69, 17003 Girona, Catalonia, Spain.
- Manchester Institute of Biotechnology, School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Maud Saint-André
- Manchester Institute of Biotechnology, School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Amy Timmins
- Manchester Institute of Biotechnology, School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Xiao-Xi Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yong Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Josep M Luis
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany i Farnés, 69, 17003 Girona, Catalonia, Spain.
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany i Farnés, 69, 17003 Girona, Catalonia, Spain.
| | - Sam P de Visser
- Manchester Institute of Biotechnology, School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
19
|
Jana K, Bandyopadhyay T, Ganguly B. Stereoselective Metabolism of Omeprazole by Cytochrome P450 2C19 and 3A4: Mechanistic Insights from DFT Study. J Phys Chem B 2018; 122:5765-5775. [PMID: 29741901 DOI: 10.1021/acs.jpcb.8b01179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The efficacy of S-omeprazole as a proton pump inhibitor compared with that of its enantiomer R-omeprazole is studied using density functional theoretical calculations. The pharmacokinetic studies suggest that the efficacy of S-omeprazole presumably depends on metabolic pathway and excretion from the human body. The density functional theory calculations at SMDwater-B3LYP-D3/6-311+G(d,p)/LANL2DZ//B3LYP/6-31G(d)/LANL2DZ with triradicaloid model active species, [Por•+FeIV(SH)O], of CYP2C19 enzyme with high-spin quartet and low-spin doublet states demonstrate C-H bond activation mechanism through a two-state rebound process for the hydroxylation of R-omeprazole and S-omeprazole. The calculated activation free energy barriers for the hydrogen abstraction are 15.7 and 17.5 kcal/mol for R-omeprazole and S-omeprazole, respectively. The hydroxylation of R-omeprazole and S-omeprazole is thermodynamically favored; however, the hydroxylated intermediate of S-omeprazole further disintegrates to metabolite 5- O-desmethylomeprazole with a higher kinetic barrier. We have examined the sulfoxidation of S-omeprazole to omeprazole sulfone metabolite by CYP3A4, and the observed activation free energy barrier is 9.9 kcal/mol. The computational results reveal that CYP2C19 exclusively metabolizes R-omeprazole to hydroxyomeprazole, which is hydrophilic and can easily excrete, whereas CYP3A4 metabolizes S-omeprazole to lipophilic sulfone; hence, the excretion of this metabolite would be relatively slower from the body. The spin density analysis and molecular orbital analysis performed using biorthogonalization calculations indicate that R-omeprazole favors high-spin pathway for metabolism process whereas S-omeprazole prefers the low-spin pathway.
Collapse
Affiliation(s)
| | - Tusar Bandyopadhyay
- Theoretical Chemistry Section, Chemistry Group MOD LAB , Bhabha Atomic Research Centre , Trombay , Mumbai 400085 , India
| | | |
Collapse
|
20
|
Mandal D, Mallick D, Shaik S. Kinetic Isotope Effect Determination Probes the Spin of the Transition State, Its Stereochemistry, and Its Ligand Sphere in Hydrogen Abstraction Reactions of Oxoiron(IV) Complexes. Acc Chem Res 2018; 51:107-117. [PMID: 29297671 DOI: 10.1021/acs.accounts.7b00442] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This Account outlines interplay of theory and experiment in the quest to identify the reactive-spin-state in chemical reactions that possess a few spin-dependent routes. Metalloenzymes and synthetic models have forged in recent decades an area of increasing appeal, in which oxometal species bring about functionalization of hydrocarbons under mild conditions and via intriguing mechanisms that provide a glimpse of Nature's designs to harness these reactions. Prominent among these are oxoiron(IV) complexes, which are potent H-abstractors. One of the key properties of oxoirons is the presence of close-lying spin-states, which can mediate H-abstractions. As such, these complexes form a fascinating chapter of spin-state chemistry, in which chemical reactivity involves spin-state interchange, so-called two-state reactivity (TSR) and multistate reactivity (MSR). TSR and MSR pose mechanistic challenges. How can one determine the structure of the reactive transition state (TS) and its spin state for these mechanisms? Calculations can do it for us, but the challenge is to find experimental probes. There are, however, no clear kinetic signatures for the reactive-spin-state in such reactions. This is the paucity that our group has been trying to fill for sometime. Hence, it is timely to demonstrate how theory joins experiment in realizing this quest. This Account uses a set of the H-abstraction reactions of 24 synthetic oxoiron(IV) complexes and 11 hydrocarbons, together undergoing H-abstraction reactions with TSR/MSR options, which provide experimentally determined kinetic isotope effect (KIEexp) data. For this set, we demonstrate that comparing KIEexp results with calculated tunneling-augmented KIE (KIETC) data leads to a clear identification of the reactive spin-state during H-abstraction reactions. In addition, generating KIEexp data for a reaction of interest, and comparing these to KIETC values, provides the mechanistic chemist with a powerful capability to identify the reactive-TS in terms of not only its spin state but also its geometry and ligand-sphere constitution. Since tunneling "cuts through" barriers, it serves as a chemical selectivity factor. Thus, we show that in a family of oxoirons reacting with one hydrocarbon, the tunneling efficiency increases as the ligands become better electron donors. This generates counterintuitive-reactivity patterns, like antielectrophilic reactivity, and induces spin-state reactivity reversals because of differing steric demands of the corresponding 2S+1TS species, etc. Finally, for the same series, the Account reaches intuitive understanding of tunneling trends. It is shown that the increase of ligand's donicity results in electrostatic narrowing of the barrier, while the decrease of donicity and increase of bond-order asymmetry in the TS (inter alia due to Bell-Evans-Polanyi effects) broadens the barrier. Predictions are made that usage of powerful electron-donating ligands may train H-abstractors to activate the strongest C-H bond in a molecule. The concepts developed here are likely to be applicable to other oxometals in the d- and f-blocks.
Collapse
Affiliation(s)
- Debasish Mandal
- Institute of Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| | - Dibyendu Mallick
- Institute of Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| |
Collapse
|
21
|
Klein JEMN, Mandal D, Ching WM, Mallick D, Que L, Shaik S. Privileged Role of Thiolate as the Axial Ligand in Hydrogen Atom Transfer Reactions by Oxoiron(IV) Complexes in Shaping the Potential Energy Surface and Inducing Significant H-Atom Tunneling. J Am Chem Soc 2017; 139:18705-18713. [PMID: 29179544 DOI: 10.1021/jacs.7b11300] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An H/D kinetic isotope effect (KIE) of 80 is found at -20 °C for the oxidation of 9,10-dihydroanthracene by [FeIV(O)(TMCS)]+, a complex supported by the tetramethylcyclam (TMC) macrocycle with a tethered thiolate. This KIE value approaches that previously predicted by DFT calculations. Other [FeIV(O)(TMC)(anion)] complexes exhibit values of 20, suggesting that the thiolate ligand of [FeIV(O)(TMCS)]+ plays a unique role in facilitating tunneling. Calculations show that tunneling is most enhanced (a) when the bond asymmetry between C-H bond breaking and O-H bond formation in the transition state is minimized, and (b) when the electrostatic interactions in the O---H---C moiety are maximal. These two factors-which peak for the best electron donor, the thiolate ligand-afford a slim and narrow barrier through which the H-atom can tunnel most effectively.
Collapse
Affiliation(s)
- Johannes E M N Klein
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Debasish Mandal
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem , 91904 Jerusalem, Israel
| | - Wei-Min Ching
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Dibyendu Mallick
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem , 91904 Jerusalem, Israel
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Sason Shaik
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem , 91904 Jerusalem, Israel
| |
Collapse
|