1
|
Gu X, Shen J, Xu Z, Liu J, Shi M, Wei Y. Visible-Light-Mediated Activation of Remote C(sp 3)-H Bonds by Carbon-Centered Biradical via Intramolecular 1,5- or 1,6-Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2024; 63:e202409463. [PMID: 39031578 DOI: 10.1002/anie.202409463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
In this study, we introduce a novel intramolecular hydrogen atom transfer (HAT) reaction that efficiently yields azetidine, oxetane, and indoline derivatives through a mechanism resembling the carbon analogue of the Norrish-Yang reaction. This process is facilitated by excited triplet-state carbon-centered biradicals, enabling the 1,5-HAT reaction by suppressing the critical 1,4-biradical intermediates from undergoing the Norrish Type II cleavage reaction, and pioneering unprecedented 1,6-HAT reactions initiated by excited triplet-state alkenes. We demonstrate the synthetic utility and compatibility of this method across various functional groups, validated through scope evaluation, large-scale synthesis, and derivatization. Our findings are supported by control experiments, deuterium labeling, kinetic studies, cyclic voltammetry, Stern-Volmer experiments, and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Xintao Gu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jiahao Shen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ziyu Xu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jiaxin Liu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
2
|
Lin Z, Ren H, Lin X, Yu X, Zheng J. Synthesis of Azabicyclo[3.1.1]heptenes Enabled by Catalyst-Controlled Annulations of Bicyclo[1.1.0]butanes with Vinyl Azides. J Am Chem Soc 2024; 146:18565-18575. [PMID: 38935924 DOI: 10.1021/jacs.4c04485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Bridged bicyclic scaffolds are emerging bioisosteres of planar aromatic rings under the concept of "escape from flatland". However, adopting this concept into the exploration of bioisosteres of pyridines remains elusive due to the challenge of incorporating a N atom into such bridged bicyclic structures. Herein, we report practical routes for the divergent synthesis of 2- and 3-azabicyclo[3.1.1]heptenes (aza-BCHepes) as potential bioisosteres of pyridines from the readily accessible vinyl azides and bicyclo[1.1.0]butanes (BCBs) via two distinct catalytic annulations. The reactivity of vinyl azides tailored with BCBs is the key to achieving divergent transformations. TiIII-catalyzed single-electron reductive generation of C-radicals from BCBs allows a concise (3 + 3) annulation with vinyl azides, affording novel 2-aza-BCHepe scaffolds. In contrast, scandium catalysis enables an efficient dipolar (3 + 2) annulation with vinyl azides to generate 2-azidobicyclo[2.1.1]hexanes, which subsequently undergo a chemoselective rearrangement to construct 3-aza-BCHepes. Both approaches efficiently deliver unique azabicyclo[3.1.1]heptene scaffolds with a high functional group tolerance. The synthetic utility has been further demonstrated by scale-up reactions and diverse postcatalytic transformations, providing valuable azabicyclics including 2- and 3-azabicyclo[3.1.1]heptanes and rigid bicyclic amino esters. In addition, the related sp2-hybridized nitrogen atom and the similar geometric property between pyridines and corresponding aza-BCHepes indicate that they are promising bioisosteres of pyridines.
Collapse
Affiliation(s)
- Zhongren Lin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haosong Ren
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xinbo Lin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xinhong Yu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jun Zheng
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
3
|
Merski I, Yin J, VanderLinden RT, Rainier JD. The Role of N-Substitution in Regio- and Stereoselective Vinylogous Imidonaphthoquinone (VINAquinone) [2 + 2] Photocycloadditions. Org Lett 2024; 26:4921-4925. [PMID: 38814707 DOI: 10.1021/acs.orglett.4c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Described in this manuscript are intramolecular [2 + 2] photocycloadditions of readily available vinylogous imidonaphthoquinones whose regio- and diastereoselectivity is dependent on the substitution on the vinylogous imide. When exposed to 419 nm light, 2° vinylogous imidonaphthoquinones give novel bridged tetracyclic aza-anthraquinones from a rare crossed [2 + 2] cycloaddition reaction. In contrast, exposure of the corresponding 3° substrates to white light leads to linear adducts. Also outlined here are auxiliary controlled diastereoselective reactions and cyclobutane fragmentations as a means of generating the spirofused γ-lactam moiety present in the ansalactam family of natural product.
Collapse
Affiliation(s)
- Ian Merski
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84108, United States
| | - Jinya Yin
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84108, United States
| | - Ryan T VanderLinden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84108, United States
| | - Jon D Rainier
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84108, United States
| |
Collapse
|
4
|
Arena D, Verde-Sesto E, Rivilla I, Pomposo JA. Artificial Photosynthases: Single-Chain Nanoparticles with Manifold Visible-Light Photocatalytic Activity for Challenging "in Water" Organic Reactions. J Am Chem Soc 2024; 146:14397-14403. [PMID: 38639303 PMCID: PMC11140743 DOI: 10.1021/jacs.4c02718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
Photocatalyzed reactions of organic substances in aqueous media are challenging transformations, often because of scarce solubility of substrates and catalyst deactivation. Herein, we report single-chain nanoparticles, SCNPs, capable of efficiently catalyzing four different "in water" organic reactions by employing visible light as the only external energy source. Specifically, we decorated a high-molecular-weight copolymer, poly(OEGMA300-r-AEMA), with iridium(III) cyclometalated complex pendants at varying content amounts. The isolated functionalized copolymers demonstrated self-assembly into noncovalent, amphiphilic SCNPs in water, which enabled efficient visible-light photocatalysis of two reactions unprecedentedly reported in water, namely, [2 + 2] photocycloaddition of vinyl arenes and α-arylation of N-arylamines. Additionally, aerobic oxidation of 9-substituted anthracenes and β-sulfonylation of α-methylstyrene were successfully carried out in aqueous media. Hence, by merging metal-mediated photocatalysis and SCNPs for the fabrication of artificial photoenzyme-like nano-objects─i.e., artificial photosynthases (APS)─our work broadens the possibilities for performing challenging "in water" organic transformations via visible-light photocatalysis.
Collapse
Affiliation(s)
- Davide Arena
- Centro
de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center
MPC, P° Manuel Lardizabal 5, E-20018 Donostia, Spain
| | - Ester Verde-Sesto
- Centro
de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center
MPC, P° Manuel Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE-Basque
Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| | - Iván Rivilla
- IKERBASQUE-Basque
Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
- Departamento
de Química Orgánica I, Centro de Innovación en
Química Avanzada (ORFEO−CINQA), University of the Basque Country (UPV/EHU), Faculty of Chemistry, P° Manuel Lardizabal 3, E-20018 Donostia, Spain
- Donostia
International Physics Center (DIPC), P° Manuel Lardizabal 4, E-20018 Donostia, Spain
| | - José A. Pomposo
- Centro
de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center
MPC, P° Manuel Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE-Basque
Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología, University of the Basque
Country (UPV/EHU), Faculty of Chemistry, P° Manuel Lardizabal 3, E-20018 Donostia, Spain
| |
Collapse
|
5
|
Schlosser L, Rana D, Pflüger P, Katzenburg F, Glorius F. EnTdecker - A Machine Learning-Based Platform for Guiding Substrate Discovery in Energy Transfer Catalysis. J Am Chem Soc 2024; 146:13266-13275. [PMID: 38695558 DOI: 10.1021/jacs.4c01352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Due to the magnitude of chemical space, the discovery of novel substrates in energy transfer (EnT) catalysis remains a daunting task. Experimental and computational strategies to identify compounds that successfully undergo EnT-mediated reactions are limited by their time and cost efficiency. To accelerate the discovery process in EnT catalysis, we herein present the EnTdecker platform, which facilitates the large-scale virtual screening of potential substrates using machine-learning (ML) based predictions of their excited state properties. To achieve this, a data set is created containing more than 34,000 molecules aiming to cover a vast fraction of synthetically relevant compound space for EnT catalysis. Using this data predictive models are trained, and their aptitude for an in-lab application is demonstrated by rediscovering successful substrates from literature as well as experimental validation through luminescence-based screening. By reducing the computational effort needed to obtain excited state properties, the EnTdecker platform represents a tool to efficiently guide substrate selection and increase the experimental success rate for EnT catalysis. Moreover, through an easy-to-use web application, EnTdecker is made publicly accessible under entdecker.uni-muenster.de.
Collapse
Affiliation(s)
- Leon Schlosser
- Organisch-Chemisches Institut, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Debanjan Rana
- Organisch-Chemisches Institut, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Philipp Pflüger
- Organisch-Chemisches Institut, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Felix Katzenburg
- Organisch-Chemisches Institut, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
6
|
Liao ZY, Gao F, Ye YH, Yu QH, Yang C, Luo QY, Du F, Pan B, Zhong WW, Liang W. Construction of cyclobutane-fused tetracyclic skeletons via substrate-dependent EnT-enabled dearomative [2+2] cycloaddition of benzofurans (benzothiophenes)/maleimides. Chem Commun (Camb) 2024; 60:4455-4458. [PMID: 38563643 DOI: 10.1039/d4cc00690a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein, a novel and facile organic photosensitizer (thioxanthone)-mediated energy-transfer-enabled (EnT-enabled) dearomative [2+2] cycloaddition of aromatic heterocycles/maleimides for green synthesis of cyclobutane-fused polycyclic skeletons is reported. Mechanistic investigations revealed that different EnT pathways by triplet thioxanthone were initiated when different aromatic heterocycles participated in the reaction, giving the corresponding excited intermediates, which underwent the subsequent intermolecular [2+2] cycloaddition to access the desired highly functionalized cyclobutane-fused polycyclic skeletons.
Collapse
Affiliation(s)
- Zhi-Yu Liao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Fan Gao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Yu-Hang Ye
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Qian-Hui Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Cui Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Qing-Yu Luo
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Fei Du
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Bin Pan
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| | - Wen-Wu Zhong
- Department of Pharmacy, Chongqing Medical and Pharmaceutical College, Shapingba, Chongqing 401334, China.
| | - Wu Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Zhang J, Su JY, Zheng H, Li H, Deng WP. Eu(OTf) 3 -Catalyzed Formal Dipolar [4π+2σ] Cycloaddition of Bicyclo-[1.1.0]butanes with Nitrones: Access to Polysubstituted 2-Oxa-3-azabicyclo[3.1.1]heptanes. Angew Chem Int Ed Engl 2024; 63:e202318476. [PMID: 38288790 DOI: 10.1002/anie.202318476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 02/21/2024]
Abstract
Herein, we have synthesized multifunctionalized 2-oxa-3-azabicyclo[3.1.1]heptanes, which are considered potential bioisosteres for meta-substituted arenes, through Eu(OTf)3 -catalyzed formal dipolar [4π+2σ] cycloaddition of bicyclo[1.1.0]butanes with nitrones. This methodology represents the initial instance of fabricating bicyclo[3.1.1]heptanes adorned with multiple heteroatoms. The protocol exhibits both mild reaction conditions and a good tolerance for various functional groups. Computational density functional theory calculations support that the reaction mechanism likely involves a nucleophilic addition of nitrones to bicyclo[1.1.0]butanes, succeeded by an intramolecular cyclization. The synthetic utility of this novel protocol has been demonstrated in the concise synthesis of the analogue of Rupatadine.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Jia-Yi Su
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wei-Ping Deng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| |
Collapse
|
8
|
Jarach N, Dodiuk H, Kenig S, Magdassi S. Fully Recyclable Cured Polymers for Sustainable 3D Printing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307297. [PMID: 37850591 DOI: 10.1002/adma.202307297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/08/2023] [Indexed: 10/19/2023]
Abstract
The most prevalent materials used in the Additive Manufacturing era are polymers and plastics. Unfortunately, these materials are recognized for their negative environmental impact as they are primarily nonrecyclable, resulting in environmental pollution. In recent years, a new sustainable alternative to these materials has been emerging: Reversible Covalent Bond-Containing Polymers (RCBPs). These materials can be recycled, reprocessed, and reused multiple times without losing their properties. Nonetheless, they have two significant drawbacks when used in 3D printing. First, some require adding new materials every reprinting cycle, and second, others require high temperatures for (re)printing, limiting recyclability, and increasing energy consumption. This study, thus, introduces fully recyclable RCBPs as a sustainable approach for radiation-based printing technologies. This approach enables multiple (re)printing cycles at low temperatures (50 °C lower than the lowest reported) without adding new materials. It involves purposefully synthesized polymers that undergo reversible photopolymerization, composed of a tin-based catalyst. An everyday microwave oven quickly depolymerized these polymers, obtaining complete reversibility.
Collapse
Affiliation(s)
- Natanel Jarach
- The Department of Polymer Materials Engineering, Pernick Faculty of Engineering, Shenkar - Engineering. Design. Art, Raman-Gan, 5252626, Israel
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Hanna Dodiuk
- The Department of Polymer Materials Engineering, Pernick Faculty of Engineering, Shenkar - Engineering. Design. Art, Raman-Gan, 5252626, Israel
| | - Samuel Kenig
- The Department of Polymer Materials Engineering, Pernick Faculty of Engineering, Shenkar - Engineering. Design. Art, Raman-Gan, 5252626, Israel
| | - Shlomo Magdassi
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
9
|
Yang P, Wang RX, Huang XL, Cheng YZ, You SL. Enantioselective Synthesis of Cyclobutane Derivatives via Cascade Asymmetric Allylic Etherification/[2 + 2] Photocycloaddition. J Am Chem Soc 2023; 145:21752-21759. [PMID: 37768553 DOI: 10.1021/jacs.3c08792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Chiral cyclobutane presents as a popular motif in natural products and biologically active molecules, and its derivatives have been extensively used as key synthons in organic synthesis. Herein, we report an efficient synthetic method toward enantioenriched cyclobutane derivatives. The reaction proceeds in a cascade fashion involving Ir-catalyzed asymmetric allylic etherification and visible-light induced [2 + 2] cycloaddition. Readily available branched allyl acetates and cinnamyl alcohols are directly used as the substrates under mild reaction conditions, providing a broad range of chiral cyclobutanes in good yields with excellent diastereo- and enantioselectivities (up to 12:1 dr, >99% ee). It is worth noting that all substrates and catalysts were simultaneously added without any separated step in this approach. The gram-scale reaction and diverse transformations of product further enhance the potential utility of this method.
Collapse
Affiliation(s)
- Pusu Yang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Rui-Xiang Wang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xu-Lun Huang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yuan-Zheng Cheng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
10
|
Giovanelli R, Lombardi L, Pedrazzani R, Monari M, Reis MC, López CS, Bertuzzi G, Bandini M. Nickel Catalyzed Carbonylation/Carboxylation Sequence via Double CO 2 Incorporation. Org Lett 2023; 25:6969-6974. [PMID: 37669466 PMCID: PMC10546374 DOI: 10.1021/acs.orglett.3c02394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 09/07/2023]
Abstract
A carbonylation-carboxylation synthetic sequence, via double CO2 fixation, is described. The productive merger of a Ni-catalyzed cross-electrophile coupling manifold, with the use of AlCl3, triggered a cascade reaction with the formation of three consecutive C-C bonds in a single operation. This strategy traces an unprecedented synthetic route to ketones under Lewis acid assisted carbon dioxide valorization. Computational insights revealed a unique double function of AlCl3, and labeling (13CO2) experiments validate the genuine incorporation of CO2 in both functional groups.
Collapse
Affiliation(s)
- Riccardo Giovanelli
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
- Center
for Chemical Catalysis − C3, Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum
− Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Lorenzo Lombardi
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Riccardo Pedrazzani
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
- Center
for Chemical Catalysis − C3, Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum
− Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Magda Monari
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
- Center
for Chemical Catalysis − C3, Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum
− Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Marta Castiñeira Reis
- Departamento
de Química Orgánica, Universidad
de Vigo, As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Carlos Silva López
- Departamento
de Química Orgánica, Universidad
de Vigo, As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Giulio Bertuzzi
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
- Center
for Chemical Catalysis − C3, Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum
− Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| | - Marco Bandini
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
- Center
for Chemical Catalysis − C3, Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum
− Università di Bologna, Via P. Gobetti 85, 40129, Bologna, Italy
| |
Collapse
|
11
|
Reinhold M, Steinebach J, Golz C, Walker JCL. Synthesis of polysubstituted bicyclo[2.1.1]hexanes enabling access to new chemical space. Chem Sci 2023; 14:9885-9891. [PMID: 37736652 PMCID: PMC10510755 DOI: 10.1039/d3sc03083k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Saturated bridged-bicyclic compounds are currently under intense investigation as building blocks for pharmaceutical drug design. However, the most common methods for their preparation only provide access to bridgehead-substituted structures. The synthesis of bridge-functionalised species is highly challenging but would open up many new opportunities for molecular design. We describe a photocatalytic cycloaddition reaction that provides unified access to bicyclo[2.1.1]hexanes with 11 distinct substitution patterns. Bridge-substituted structures that represent ortho-, meta-, and polysubstituted benzene bioisosteres, as well as those that enable the investigation of chemical space inaccessible to aromatic motifs can all be prepared using this operationally simple protocol. Proof-of-concept examples of the application of the method to the synthesis of saturated analogues of biorelevant trisubstituted benzenes are also presented.
Collapse
Affiliation(s)
- Marius Reinhold
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| | - Justin Steinebach
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| | - Johannes C L Walker
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| |
Collapse
|
12
|
Herter L, Perrin T, Fessard T, Salomé C. Preparation of 3,5-Methanobenzo[ b]azepines: An sp 3-Rich Quinolone Isostere. Org Lett 2023; 25:6161-6166. [PMID: 37573582 DOI: 10.1021/acs.orglett.3c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The replacement of the aromatic ring in bioactive compounds with saturated bioisosteres has become a popular tactic to obtain novel structures with improved physicochemical profiles. In this paper, we describe an efficient synthesis of 3,5-methanobenzo[b]azepine analogues and suggest them as isosteres of quinolones. Quinolones are heteroaromatic, flat rings and considered as privileged scaffolds. An isosteric version of this scaffold with more 3D character would offer new options to expand their use.
Collapse
Affiliation(s)
- Loïc Herter
- SpiroChem, Rosental area, WRO-1047-3, Mattenstrasse 22, 4058 Basel, Switzerland
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Timothé Perrin
- SpiroChem, Rosental area, WRO-1047-3, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Thomas Fessard
- SpiroChem, Rosental area, WRO-1047-3, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Christophe Salomé
- SpiroChem, Rosental area, WRO-1047-3, Mattenstrasse 22, 4058 Basel, Switzerland
| |
Collapse
|
13
|
Harvey FM, Heidecker AH, Merten C, Bach T. Diastereoselective, Lewis acid-mediated Diels-Alder reactions of allenoic acid derivatives and 1,3-cyclopentadienes. Org Biomol Chem 2023; 21:4422-4428. [PMID: 37184215 DOI: 10.1039/d3ob00598d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Allenes with different substituents at their terminal carbon atom display axial chirality and can be obtained in enantiopure form by a photochemical deracemization protocol. It has now been studied under which conditions allenoic acid derivatives undergo a Diels-Alder reaction with 1,3-cyclopentadienes and which products result. Cyclic derivatives (lactams, lactones) underwent an exo-selective reaction catalyzed by the Lewis acid Eu(fod)3, while acyclic derivatives yielded with high preference the endo-products (EtAlCl2 as the preferred Lewis acid). The exocyclic double bond forms with exquisite diastereoselectivity and the chirality transfer is close to perfect. The method was applied to the synthesis of the sesquiterpenes β-santalol (1) and 10(E)-β-santalic acid (13).
Collapse
Affiliation(s)
- Freya M Harvey
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | - Alexandra H Heidecker
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | - Christian Merten
- Organische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Thorsten Bach
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747 Garching, Germany.
| |
Collapse
|
14
|
Yang H, Xu J, Cao H, Wu J, Zhao D. Recovery of homogeneous photocatalysts by covalent organic framework membranes. Nat Commun 2023; 14:2726. [PMID: 37169759 PMCID: PMC10175538 DOI: 10.1038/s41467-023-38424-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/03/2023] [Indexed: 05/13/2023] Open
Abstract
Transition metal-based homogeneous photocatalysts offer a wealth of opportunities for organic synthesis. The most versatile ruthenium(II) and iridium(III) polypyridyl complexes, however, are among the rarest metal complexes. Moreover, immobilizing these precious catalysts for recycling is challenging as their opacity may obstruct light transmission. Recovery of homogeneous catalysts by conventional polymeric membranes is promising but limited, as the modulation of their pore structure and tolerance of polar organic solvents are challenging. Here, we report the effective recovery of homogeneous photocatalysts using covalent organic framework (COF) membranes. An array of COF membranes with tunable pore sizes and superior organic solvent resistance were prepared. Ruthenium and iridium photoredox catalysts were recycled for 10 cycles in various types of photochemical reactions, constantly achieving high catalytical performance, high recovery rates, and high permeance. We successfully recovered the photocatalysts at gram-scale. Furthermore, we demonstrated a cascade isolation of an iridium photocatalyst and purification of a small organic molecule product with COF membranes possessing different pore sizes. Our results indicate an intriguing potential to shift the paradigm of the pharmaceutical and fine chemical synthesis campaign.
Collapse
Affiliation(s)
- Hao Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Jinhui Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Hui Cao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore.
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore.
| |
Collapse
|
15
|
Zhu K, Ma Y, Wu Z, Wu J, Lu Y. Energy-Transfer-Enabled Regioconvergent Alkylation of Azlactones via Photocatalytic Radical–Radical Coupling. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
16
|
Zhen G, Zeng G, Jiang K, Wang F, Cao X, Yin B. Visible-Light-Induced Diradical-Mediated ipso-Cyclization towards Double Dearomative [2+2]-Cycloaddition or Smiles-Type Rearrangement. Chemistry 2023; 29:e202203217. [PMID: 36460618 DOI: 10.1002/chem.202203217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/05/2022]
Abstract
When mono-radical ipso-cyclization of aryl sulfonamides tend to undergo Smiles-type rearrangement through aromatization-driven C-S bond cleavage, diradical-mediated cyclization must perform in a distinct reaction pathway. It is interesting meanwhile challenging to tune the rate of C-S bond cleavage to achieve a chemically divergent reaction of (hetero) aryl sulfonamides in a visible-light induced energy transfer (EnT) reaction pathway involving diradical species. Herein a chemically divergent reaction based on the designed indole-tethered (hetero)arylsulfonamides is reported which involves a diradical-mediated ipso-cyclization and a controllable cleavage of an inherent C-S bond. The combined experimental and computational results have revealed that the cleavage of the C-S bond in these substrates can be controlled by tuning the heteroaryl moieties: a) If the (hetero)aryl is thienyl, furyl, phenanthryl, etc., the radical coupling of double dearomative diradicals (DDDR) precedes over C-S bond cleavage to afford cyclobutene fused indolines by double dearomative [2+2]-cycloaddition; b) if the (hetero)aryl is phenyl, naphthyl, pyridyl, indolyl etc., the cleavage of C-S bond in DDDR is favored over radical coupling to afford biaryl products.
Collapse
Affiliation(s)
- Guangjin Zhen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Guohui Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kai Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Furong Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaohui Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
17
|
Yu T, Yang J, Wang Z, Ding Z, Xu M, Wen J, Xu L, Li P. Selective [2σ + 2σ] Cycloaddition Enabled by Boronyl Radical Catalysis: Synthesis of Highly Substituted Bicyclo[3.1.1]heptanes. J Am Chem Soc 2023; 145:4304-4310. [PMID: 36763965 DOI: 10.1021/jacs.2c13740] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In contrast to the traditional and widely-used cycloaddition reactions involving at least a π bond component, a [2σ + 2σ] radical cycloaddition between bicyclo[1.1.0]butanes (BCBs) and cyclopropyl ketones has been developed to provide a modular, concise, and atom-economical synthetic route to substituted bicyclo[3.1.1]heptane (BCH) derivatives that are 3D bioisosteres of benzenes and core skeleton of a number of terpene natural products. The reaction was catalyzed by a combination of simple tetraalkoxydiboron(4) compound B2pin2 and 3-pentyl isonicotinate. The broad substrate scope has been demonstrated by synthesizing a series of new highly functionalized BCHs with up to six substituents on the core with up to 99% isolated yield. Computational mechanistic investigations supported a pyridine-assisted boronyl radical catalytic cycle.
Collapse
Affiliation(s)
- Tao Yu
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jinbo Yang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Zhijun Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Zhengwei Ding
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ming Xu
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jingru Wen
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Dong YJ, Zhao ZW, Geng Y, Su ZM, Zhu B, Guan W. Theoretical Insight on the High Reactivity of Reductive Elimination of Ni III Based on Energy- and Electron-Transfer Mechanisms. Inorg Chem 2023; 62:1156-1164. [PMID: 36625518 DOI: 10.1021/acs.inorgchem.2c03502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Iridium/nickel (Ir/Ni) metallaphotoredox dual catalysis overcomes the challenging reductive elimination (RE) of Ni(II) species and has made a breakthrough progress to construct a wide range of C-X (X = C, N, S, and P) bonds. However, the corresponding reaction mechanisms are still ambiguous and controversial because the systematic research on the nature of this synergistic catalysis is not sufficient. Herein, IrIII/NiII and IrIII/Ni0 metallaphotoredox catalysis have been theoretically explored taking the aryl esterification reaction of benzoic acid and aryl bromide as an example by a combination of density functional theory (DFT), molecular dynamics, and time-dependent DFT computations. It is found that an electron-transfer mechanism is applicable to IrIII/NiII metallaphotoredox catalysis, but an energy-transfer mechanism is applicable to IrIII/Ni0 combination. The IrIII/NiII metallaphotoredox catalysis succeeds to construct a NiI-NiIII catalytic cycle to avoid the challenging RE of Ni(II) species, while the RE occurs from triplet excited-state Ni(II) species in the IrIII/Ni0 metallaphotoredox catalysis. In addition, the lower lowest unoccupied molecular orbital energy level of Ni(III) species than that of Ni(II) species accelerates RE from Ni(III) one. The triplet excited-state Ni(II) species can resemble a Ni(III) center, considering the metal-to-ligand charge transfer character to promote the RE.
Collapse
Affiliation(s)
- Yu-Jiao Dong
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Zhi-Wen Zhao
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, People's Republic of China
| | - Yun Geng
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Zhong-Min Su
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Bo Zhu
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Wei Guan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
19
|
Liang Y, Kleinmans R, Daniliuc CG, Glorius F. Synthesis of Polysubstituted 2-Oxabicyclo[2.1.1]hexanes via Visible-Light-Induced Energy Transfer. J Am Chem Soc 2022; 144:20207-20213. [DOI: 10.1021/jacs.2c09248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yujie Liang
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| | - Roman Kleinmans
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
20
|
Liu J, Hao T, Qian L, Shi M, Wei Y. Construction of Benzocyclobutenes Enabled by Visible‐Light‐Induced Triplet Biradical Atom Transfer of Olefins. Angew Chem Int Ed Engl 2022; 61:e202204515. [DOI: 10.1002/anie.202204515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Jiaxin Liu
- State Key Laboratory of Organometallic Chemistry University of Chinese Academy of Sciences Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- CAS Key Laboratory of Energy Regulation Materials Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Tonggang Hao
- State Key Laboratory of Organometallic Chemistry University of Chinese Academy of Sciences Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ling Qian
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry University of Chinese Academy of Sciences Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry University of Chinese Academy of Sciences Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
21
|
Liu J, Hao T, Qian L, Shi M, Wei Y. Construction of Benzocyclobutenes Enabled by Visible‐Light‐Induced Triplet Biradical Atom Transfer of Olefins. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiaxin Liu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Organometallic Chemistry Shanghai CHINA
| | - Tonggang Hao
- Shanghai Institute of Organic Chemistry State Key Laboratory of Organometallic Chemistry Shanghai CHINA
| | - Ling Qian
- East China University of Science and Technology School of Chemistry & Molecular Engineering Shanghai CHINA
| | - Min Shi
- Shanghai Institute of Organic Chemistry State Key Laboratory of Organometallic Chemistry Shanghai CHINA
| | - Yin Wei
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences State Key Laboratory of Organometallic Chemistry 345 Lingling Road 200032 Shanghai CHINA
| |
Collapse
|
22
|
Liu Y, Ni D, Stevenson BG, Tripathy V, Braley SE, Raghavachari K, Swierk JR, Brown MK. Photosensitized [2+2]-Cycloadditions of Alkenylboronates and Alkenes. Angew Chem Int Ed Engl 2022; 61:e202200725. [PMID: 35446458 DOI: 10.1002/anie.202200725] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 12/17/2022]
Abstract
A new strategy for the synthesis of highly versatile cyclobutylboronates via the photosensitized [2+2]-cycloaddition of alkenylboronates and alkenes is presented. The process is mechanistically different from other processes in that energy transfer occurs with the alkenylboronate as opposed to the other alkene. This strategy allows for the synthesis of an array of diverse cyclobutylboronates. The conversion of these adducts to other compounds as well as their utility in the synthesis of melicodenine C is demonstrated.
Collapse
Affiliation(s)
- Yanyao Liu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| | - Dongshun Ni
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| | - Bernard G Stevenson
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| | - Vikrant Tripathy
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| | - Sarah E Braley
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| | - John R Swierk
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| |
Collapse
|
23
|
Lin Y, Avvacumova M, Zhao R, Chen X, Beard MC, Yan Y. Triplet Energy Transfer from Lead Halide Perovskite for Highly Selective Photocatalytic 2 + 2 Cycloaddition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25357-25365. [PMID: 35609341 DOI: 10.1021/acsami.2c03411] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Triplet excitons are generally confined within a semiconductor. Hence, solar energy utilization via direct triplet energy transfer (TET) from semiconductors is challenging. TET from lead halide perovskite semiconductors to nearby organic molecules has been illustrated with ultrafast spectroscopy. Direct utilization of solar energy, i.e., visible light, via TET for photocatalysis is an important route but has not yet been demonstrated with lead halide perovskite semiconductors. Here, we show that a photocatalytic reaction, focusing on a 2 + 2 cycloaddition reaction, can been successfully demonstrated via TET from lead halide perovskite nanocrystals (PNCs). The triplet excitons are shown to induce a highly diastereomeric syn-selective 2 + 2 cycloaddition starting from olefins. Such photocatalytic reactions probe the TET process previously only observed spectroscopically. Moreover, our observation demonstrates that bulk-like PNCs (size, >10 nm; PL = 530 nm), in addition to quantum-confined smaller PNCs, are also effective for TET. Our findings may render a new energy conversion pathway to employ PNCs via direct TET for photocatalytic organic synthesis.
Collapse
Affiliation(s)
- Yixiong Lin
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Mariana Avvacumova
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Ruilin Zhao
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Xihan Chen
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Matthew C Beard
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Yong Yan
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| |
Collapse
|
24
|
Wang X, Liu F, Xu T. Catalytic diastereoselective construction of multiple contiguous quaternary carbon stereocenters via [2 + 2] cycloaddition and mechanistic insight. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Sivaguru J, Bach T, Ramamurthy V. Keeping the name clean: [2 + 2] photocycloaddition. Photochem Photobiol Sci 2022; 21:1333-1340. [PMID: 35610462 DOI: 10.1007/s43630-022-00239-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/23/2022] [Indexed: 11/28/2022]
Abstract
Crossed [2 + 2] photocycloaddition is a specific case of intramolecular photocycloaddition reaction. Recently, the term "crossed [2 + 2] photocycloaddition" is interchangeably used to represent intermolecular [2 + 2] photocycloaddition reactions of two dissimilar double bonds/alkenes. To avoid confusion and to help researchers use the correct terminologies, this perspective clarifies the terminology used for different [2 + 2] photocycloaddition processes based on prior literature with the hope of establishing a standard for addressing the diverse set of photocycloaddition reactions that will be helpful to the chemical community.
Collapse
Affiliation(s)
- Jayaraman Sivaguru
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center, School of Natural Sciences, Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany.
| | | |
Collapse
|
26
|
Mechanistic insights into photochemical nickel-catalyzed cross-couplings enabled by energy transfer. Nat Commun 2022; 13:2737. [PMID: 35585041 PMCID: PMC9117274 DOI: 10.1038/s41467-022-30278-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/19/2022] [Indexed: 12/26/2022] Open
Abstract
Various methods that use a photocatalyst for electron transfer between an organic substrate and a transition metal catalyst have been established. While triplet sensitization of organic substrates via energy transfer from photocatalysts has been demonstrated, the sensitization of transition metal catalysts is still in its infancy. Here, we describe the selective alkylation of C(sp3)-H bonds via triplet sensitization of nickel catalytic intermediates with a thorough elucidation of its reaction mechanism. Exergonic Dexter energy transfer from an iridium photosensitizer promotes the nickel catalyst to the triplet state, thus enabling C-H functionalization via the release of bromine radical. Computational studies and transient absorption experiments support that the reaction proceeds via the formation of triplet states of the organometallic nickel catalyst by energy transfer.
Collapse
|
27
|
Liu Y, Ni D, Stevenson BG, Tripathy V, Braley SE, Raghavachari K, Swierk JR, Brown MK. Photosensitized [2+2]‐Cycloadditions of Alkenylboronates and Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yanyao Liu
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - Dongshun Ni
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - Bernard G. Stevenson
- Department of Chemistry Binghamton University 4400 Vestal Parkway East Binghamton NY 13902 USA
| | - Vikrant Tripathy
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - Sarah E. Braley
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - Krishnan Raghavachari
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - John R. Swierk
- Department of Chemistry Binghamton University 4400 Vestal Parkway East Binghamton NY 13902 USA
| | - M. Kevin Brown
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| |
Collapse
|
28
|
Das A. LED Light Sources in Organic Synthesis: An Entry to a Novel Approach. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210916164132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
In recent years, photocatalytic technology has shown great potential as a low-cost, environmentally
friendly, and sustainable technology. Compared to other light sources in photochemical reaction,
LEDs have advantages in terms of efficiency, power, compatibility, and environmentally friendly
nature. This review highlights the most recent advances in LED-induced photochemical reactions. The
effect of white and blue LEDs in reactions such as oxidation, reduction, cycloaddition, isomerization,
and sensitization is discussed in detail. No other reviews have been published on the importance of
white and blue LED sources in the photocatalysis of organic compounds. Considering all the facts, this
review is highly significant and timely.
Collapse
Affiliation(s)
- Aparna Das
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin
Fahd University, Al Khobar, Kingdom of Saudi Arabia
| |
Collapse
|
29
|
Luque A, Groß J, Zähringer TJB, Kerzig C, Opatz T. Vinylcyclopropane [3+2] Cycloaddition with Acetylenic Sulfones Based on Visible Light Photocatalysis. Chemistry 2022; 28:e202104329. [PMID: 35133690 PMCID: PMC9314945 DOI: 10.1002/chem.202104329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 01/25/2023]
Abstract
The first intermolecular visible light [3+2] cycloaddition reaction performed on a meta photocycloadduct employing acetylenic sulfones is described. The developed methodology exploits the advantages of combining UV and visible-light in a two-step sequence that provides a photogenerated cyclopropane which, through a strain-release process, generates a new cyclopentane ring while significantly increasing the molecular complexity. Mechanistic studies and DFT calculations indicate an energy transfer pathway for the visible light-driven reaction step. This strategy could be extended to simpler vinylcyclopropanes.
Collapse
Affiliation(s)
- Adriana Luque
- Johannes Gutenberg UniversityDepartment of ChemistryDuesbergweg 10–1455128MainzGermany
| | - Jonathan Groß
- Johannes Gutenberg UniversityDepartment of ChemistryDuesbergweg 10–1455128MainzGermany
| | - Till J. B. Zähringer
- Johannes Gutenberg UniversityDepartment of ChemistryDuesbergweg 10–1455128MainzGermany
| | - Christoph Kerzig
- Johannes Gutenberg UniversityDepartment of ChemistryDuesbergweg 10–1455128MainzGermany
| | - Till Opatz
- Johannes Gutenberg UniversityDepartment of ChemistryDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
30
|
Gore BS, Kuo CY, Wang JJ. Visible light-assisted Ni-/Ir-catalysed atom-economic synthesis of spiro[furan-3,1'-indene] derivatives. Chem Commun (Camb) 2022; 58:4087-4090. [PMID: 35262163 DOI: 10.1039/d2cc00717g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An atom-economic, efficient, and highly convenient construction of spiro[furan-3,1'-indene] skeletons from isocyanides and 1,5-enynes by synergistic nickel- and iridium-photocatalysis is reported. Spirocyclization was developed under practical and mild conditions, which features excellent functional group tolerance, gram-scale synthesis and representative synthetic transformations for the obtained products and broad substrate scope. Primary mechanistic studies demonstrated that the reaction proceeds through energy-transfer-mediated excitation of intermediate catalytic species.
Collapse
Affiliation(s)
- Babasaheb Sopan Gore
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung City, 807, Taiwan.
| | - Chiao-Ying Kuo
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung City, 807, Taiwan.
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung City, 807, Taiwan. .,Department of Medical Research, Kaohsiung Medical University, Hospital No. 100, Tzyou 1st Road, Sanmin District, Kaohsiung City, 807, Taiwan
| |
Collapse
|
31
|
Li H, He Y, Zhang D, Yang L, Zhang J, Long RL, Lu J, Wei J, Yang L, Wei S, Yi D, Zhang Z, Fu Q. Hydrogen bond serving as a protecting group to enable the photocatalytic [2+2] cycloaddition of redox-active aliphatic-amine-containing indole derivatives. Chem Commun (Camb) 2022; 58:3194-3197. [PMID: 35171972 DOI: 10.1039/d1cc06935g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox-sensitive functionalities such as aliphatic amines with low oxidation potentials and easily oxidized by photocatalysts are generally not compatible with photocatalytic reactions. We describe a hydrogen-bond-assisted visible-light-mediated [2+2] cycloaddition of redox-sensitive aliphatic-amine-containing indole derivatives providing a range of cyclobutane-fused polycyclic indoline derivatives, especially bridged-cyclic indolines. Mechanistic studies indicated that the success of the reaction was based on on the formation of H-bonds between the N-atom and alcohol proton of TFE or HFIP, with this formation preventing or blocking the single-electron transfer from the aliphatic amine functionality to the excited photocatalyst.
Collapse
Affiliation(s)
- Hao Li
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Yishu He
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Di Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Li Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China. .,Department of Pharmacy, Chengdu Seventh People's Hospital, Chengdu 610000, China
| | - Jiarui Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Rui-Ling Long
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Ji Lu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jun Wei
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Lin Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Siping Wei
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Dong Yi
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhijie Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Qiang Fu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China. .,Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
32
|
Rigotti T, Schwinger DP, Graßl R, Jandl C, Bach T. Enantioselective crossed intramolecular [2+2] photocycloaddition reactions mediated by a chiral chelating Lewis acid. Chem Sci 2022; 13:2378-2384. [PMID: 35310494 PMCID: PMC8864722 DOI: 10.1039/d2sc00113f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/01/2022] [Indexed: 12/01/2022] Open
Abstract
In intramolecular [2+2] photocycloaddition reactions, the two tethered olefins can approach each other in a straight or in a crossed fashion. Despite the fact that the latter reaction mode leads to intriguing, otherwise inaccessible bridged skeletons, there has so far not been any enantioselective variants thereof. This study concerned the crossed [2+2]-photocycloaddition of 2-(alkenyloxy)cyclohex-2-enones to bridged cyclobutanes. It was found that the reaction could be performed with high enantioselectivity (80-94% ee) under visible light conditions when employing a chiral rhodium Lewis acid as a catalyst (2 mol%).
Collapse
Affiliation(s)
- Thomas Rigotti
- School of Natural Sciences, Department Chemie, Catalysis Research Center (CRC), Technische Universität München 85747 Garching Germany +49 89 28913315 +49 89 28913330
| | - Daniel P Schwinger
- School of Natural Sciences, Department Chemie, Catalysis Research Center (CRC), Technische Universität München 85747 Garching Germany +49 89 28913315 +49 89 28913330
| | - Raphaela Graßl
- School of Natural Sciences, Department Chemie, Catalysis Research Center (CRC), Technische Universität München 85747 Garching Germany +49 89 28913315 +49 89 28913330
| | - Christian Jandl
- School of Natural Sciences, Department Chemie, Catalysis Research Center (CRC), Technische Universität München 85747 Garching Germany +49 89 28913315 +49 89 28913330
| | - Thorsten Bach
- School of Natural Sciences, Department Chemie, Catalysis Research Center (CRC), Technische Universität München 85747 Garching Germany +49 89 28913315 +49 89 28913330
| |
Collapse
|
33
|
Advances in the synthesis of three-dimensional molecular architectures by dearomatizing photocycloadditions. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Kalaitzakis D, Kampouropoulos I, Sofiadis M, Montagnon T, Vassilikogiannakis G. Access to high value sp 3-rich frameworks using photocatalyzed [2+2]-cycloadditions of γ-alkylidene-γ-lactams. Chem Commun (Camb) 2022; 58:8085-8088. [DOI: 10.1039/d2cc03009h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By harnessing an energy transfer process, new photocatalyzed [2+2]-cycloadditions occurring between γ-alkylidene-γ-lactams and unsaturated substrates have been developed. The reaction mode is particularly powerful because it leads to the formation...
Collapse
|
35
|
Zhang X, Rovis T. Photocatalyzed Triplet Sensitization of Oximes Using Visible Light Provides a Route to Nonclassical Beckmann Rearrangement Products. J Am Chem Soc 2021; 143:21211-21217. [PMID: 34905347 PMCID: PMC8862120 DOI: 10.1021/jacs.1c10148] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oximes are valuable synthetic intermediates for the preparation of a variety of functional groups. To date, the stereoselective synthesis of oximes remains a major challenge, as most current synthetic methods either provide mixtures of E and Z isomers or furnish the thermodynamically preferred E isomer. Herein we report a mild and general method to achieve Z isomers of aryl oximes by photoisomerization of oximes via visible-light-mediated energy transfer (EnT) catalysis. Facile access to (Z)-oximes provides opportunities to achieve regio- and chemoselectivity complementary to those of widely used transformations employing oxime starting materials. We show an enhanced one-pot protocol for photocatalyzed oxime isomerization and subsequent Beckmann rearrangement that enables novel reactivity with alkyl groups migrating preferentially over aryl groups, reversing the regioselectivity of the traditional Beckmann reaction. Chemodivergent N- or O- cyclizations of alkenyl oximes are also demonstrated, leading to nitrones or cyclic oxime ethers, respectively.
Collapse
|
36
|
Beliaeva M, Belyaev A, Grachova EV, Steffen A, Koshevoy IO. Ditopic Phosphide Oxide Group: A Rigidifying Lewis Base to Switch Luminescence and Reactivity of a Disilver Complex. J Am Chem Soc 2021; 143:15045-15055. [PMID: 34491736 DOI: 10.1021/jacs.1c04413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterodentate phosphines containing anionic organophosphorus groups remain virtually unexplored ligands in the coordination chemistry of coinage metals. A hybrid phosphine-phosphine oxide (o-Ph2PC6H4)2P(O)H (HP3O) readily forms the disilver complex [Ag2(P3O)2] (1) upon deprotonation of the (O)P-H fragment. Due to the electron-rich nature, the anionic phosphide oxide unit in 1 takes part in efficient intermolecular hydrogen bonding, which has an unusual and remarkably strong impact on the photoluminescence of 1, changing the emission from red (644 nm) to green-yellow (539 nm) in the solid. The basicity of the R2(O)P- group and its affinity for both inter- and intramolecular donor-acceptor interactions allow converting 1 into hydrohalogenated (2, 3) and boronated (4) derivatives, which reveal a gradual hypsochromic shift of luminescence, reaching the wavelength of 489 nm. Systematic variable-temperature analysis of the excited state properties suggests that thermally activated delayed fluorescence is involved in the emission process. The long-lived excited states for 1-4, the energy of which is largely regulated by means of the phosphide oxide unit, are potentially suitable for triplet energy transfer photocatalysis. With the highest T1 energy among 1-4, complex 4 demonstrates excellent photocatalytic activity in a [2+2] cycloaddition reaction, which has been realized for the first time for silver(I) compounds.
Collapse
Affiliation(s)
- Mariia Beliaeva
- Department of Chemistry, University of Eastern Finland, Joensuu, 80101, Finland
| | - Andrey Belyaev
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Elena V Grachova
- Department of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504, St. Petersburg, Russia
| | - Andreas Steffen
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, Joensuu, 80101, Finland
| |
Collapse
|
37
|
de Souza WC, Matsuo BT, Matos PM, Correia JTM, Santos MS, König B, Paixão MW. Photocatalyzed Intramolecular [2+2] Cycloaddition of N-Alkyl-N-(2-(1-arylvinyl)aryl)cinnamamides. Chemistry 2021; 27:3722-3728. [PMID: 32955792 DOI: 10.1002/chem.202003641] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 02/05/2023]
Abstract
N-Alkyl-N-(2-(1-arylvinyl)aryl)cinnamamides are converted into natural product inspired scaffolds via iridium photocatalyzed intramolecular [2+2] photocycloaddition. The protocol has a broad substrate scope, whilst operating under mild reaction conditions. Tethering four components forming a trisubstituted cyclobutane core builds rapidly high molecular complexity. Our approach allows the design and synthesis of a variety of tetrahydrocyclobuta[c]quinolin-3(1H)-ones, in yields ranging between 20-99 %, and with excellent regio- and diastereoselectivity. Moreover, it was demonstrated that the intramolecular [2+2]-cycloaddition of 1,7-enynes-after fragmentation of the cyclobutane ring-leads to enyne-metathesis-like products.
Collapse
Affiliation(s)
- Wanderson C de Souza
- Department of Chemistry, Federal University of São Carlos-UFSCar, Centre of Excellence for Research in Sustainable Chemistry, (CERSusChem), São Carlos, São Paulo, Brazil
| | - Bianca T Matsuo
- Department of Chemistry, Federal University of São Carlos-UFSCar, Centre of Excellence for Research in Sustainable Chemistry, (CERSusChem), São Carlos, São Paulo, Brazil
| | - Priscilla M Matos
- Department of Chemistry, Federal University of São Carlos-UFSCar, Centre of Excellence for Research in Sustainable Chemistry, (CERSusChem), São Carlos, São Paulo, Brazil
| | - José Tiago M Correia
- Department of Chemistry, Federal University of São Carlos-UFSCar, Centre of Excellence for Research in Sustainable Chemistry, (CERSusChem), São Carlos, São Paulo, Brazil
| | - Marilia S Santos
- Department of Chemistry, Federal University of São Carlos-UFSCar, Centre of Excellence for Research in Sustainable Chemistry, (CERSusChem), São Carlos, São Paulo, Brazil.,Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany
| | - Marcio W Paixão
- Department of Chemistry, Federal University of São Carlos-UFSCar, Centre of Excellence for Research in Sustainable Chemistry, (CERSusChem), São Carlos, São Paulo, Brazil
| |
Collapse
|
38
|
Liu J, Wei Y, Shi M. Mechanistic Studies on Propargyl
Alcohol‐Tethered
Alkylidenecyclopropane with Aryldiazonium Salt Initiated by Visible Light. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jiaxin Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen Guangdong 518000 China
| |
Collapse
|
39
|
Gu X, Wei Y, Shi M. Construction of polysubstituted spiro[2.3] or [3.3] cyclic frameworks fused with a tosylated pyrrolidine promoted by visible-light-induced photosensitization. Org Chem Front 2021. [DOI: 10.1039/d1qo01373d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel visible-light-induced intramolecular [2 + 2] cycloaddition of methylenecyclopropanes (MCPs) for the rapid construction of polysubstituted spiro[2.3] or [3.3] cyclic frameworks fused with a tosylated pyrrolidine.
Collapse
Affiliation(s)
- Xintao Gu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
40
|
Ni Q, Song X, Png CW, Zhang Y, Zhao Y. Access to substituted cyclobutenes by tandem [3,3]-sigmatropic rearrangement/[2 + 2] cycloaddition of dipropargylphosphonates under Ag/Co relay catalysis. Chem Sci 2020; 11:12329-12335. [PMID: 34094441 PMCID: PMC8162479 DOI: 10.1039/d0sc02972f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/16/2020] [Indexed: 11/21/2022] Open
Abstract
We present herein an unconventional tandem [3,3]-sigmatropic rearrangement/[2 + 2] cycloaddition of simple dipropargylphosphonates to deliver a range of bicyclic polysubstituted cyclobutenes and cyclobutanes under Ag/Co relay catalysis. An interesting switch from allene-allene to allene-alkyne cycloaddition was observed based on the substitution of the substrates, which further diversified the range of compounds accessible from this practical method. Significantly, preliminary biological screening of these new compounds identified promising candidates as suppressors of cellular proliferation.
Collapse
Affiliation(s)
- Qijian Ni
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 Anhui China
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Xiaoxiao Song
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 Anhui China
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Chin Wen Png
- Centre for Life Sciences, National University of Singapore #03-09, 28 Medical Drive 117456 Singapore
| | - Yongliang Zhang
- Centre for Life Sciences, National University of Singapore #03-09, 28 Medical Drive 117456 Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
41
|
Tian H, Yang H, Tian C, An G, Li G. Cross-Dehydrogenative Coupling of Strong C(sp3)–H with N-Heteroarenes through Visible-Light-Induced Energy Transfer. Org Lett 2020; 22:7709-7715. [DOI: 10.1021/acs.orglett.0c02912] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Haitao Tian
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
| | - Hui Yang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
| | - Chao Tian
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
| | - Guanghui An
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China
| |
Collapse
|
42
|
Zhang Z, Yi D, Zhang M, Wei J, Lu J, Yang L, Wang J, Hao N, Pan X, Zhang S, Wei S, Fu Q. Photocatalytic Intramolecular [2 + 2] Cycloaddition of Indole Derivatives via Energy Transfer: A Method for Late-Stage Skeletal Transformation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01841] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhijie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dong Yi
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Min Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jun Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ji Lu
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lin Yang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Na Hao
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xianchao Pan
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Shiqi Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Siping Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qiang Fu
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
43
|
Graßl R, Jandl C, Bach T. Visible Light-Mediated Photochemical Reactions of 2-(2'-Alkenyloxy)cycloalk-2-enones. J Org Chem 2020; 85:11426-11439. [PMID: 32806100 PMCID: PMC7476038 DOI: 10.1021/acs.joc.0c01501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The title compounds were prepared, and their reactivity was studied upon sensitized irradiation at λ = 420 nm. Thioxanthen-9-one was employed as the sensitizer at a loading of 10 mol % in small-scale reactions and of 2.5 mol % on a larger scale. Cyclohex-2-enones substituted by a 2'-propenyloxy, 2'-butenyloxy, 2'-pentenyloxy, or 2'-methyl-2'-propenyloxy group in the 2-position gave the products of an intramolecular [2 + 2] photocycloadditon. The reaction proceeded with high regioselectivity (crossed product) and perfect diastereoselectivity (nine examples, 34-99% yield). If the olefin in the tether was trisubstituted (3'-methyl-2'-butenyloxy), no cycloaddition was observed. Rather, a cyclization with subsequent hydrogen abstraction occurred (three examples, 65-86% yield). The results are consistent with a reaction course via a triplet enone intermediate and the formation of a 1,4-diradical by an initial cyclization. The analogous cyclopent-2-enones were less prone to an intramolecular reaction. Instead, decomposition or intermolecular [2 + 2] photocycloaddition reactions prevailed. In the latter event, two main products were identified (three examples, 30-43% yield), resulting either from a head-to-head [2 + 2]-photodimerization or from a twofold [2 + 2] photocycloaddition of the enone to the olefin. The latter reaction sequence generated pentacyclic products with a central [1,5]dioxocane ring. The structure assignment of the two product types was corroborated by a single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Raphaela Graßl
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| |
Collapse
|
44
|
Serafino A, Balestri D, Marchiò L, Malacria M, Derat E, Maestri G. Orthogonal Syntheses of 3.2.0 Bicycles from Enallenes Promoted by Visible Light. Org Lett 2020; 22:6354-6359. [PMID: 32806183 PMCID: PMC8010793 DOI: 10.1021/acs.orglett.0c02193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Enallenes
can be readily converted into two families of 3.2.0 (hetero)bicycles
with high diastereoselectivities through the combination of visible
light with a suitable Ir(III) complex (1 mol %). Two complementary
pathways, namely, a photocycloaddition versus a radical chain, can
then take place. Both manifolds grant complete regiocontrol of the
allene difunctionalization. This is accompanied by an original 1,3-group
shift using sulfonyl allenamides that deliver a congested tetrasubstituted
headbridging carbon in the corresponding product.
Collapse
Affiliation(s)
- Andrea Serafino
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Davide Balestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Luciano Marchiò
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Max Malacria
- Faculty of Science and Engineering, CNRS, Institut Parisien de Chimie Moléculaire (UMR CNRS 8232), 4 place Jussieu, Paris 75252 Cedex 05, France
| | - Etienne Derat
- Faculty of Science and Engineering, CNRS, Institut Parisien de Chimie Moléculaire (UMR CNRS 8232), 4 place Jussieu, Paris 75252 Cedex 05, France
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
45
|
Guo K, Zhang Z, Li A, Li Y, Huang J, Yang Z. Photoredox-Catalyzed Isomerization of Highly Substituted Allylic Alcohols by C-H Bond Activation. Angew Chem Int Ed Engl 2020; 59:11660-11668. [PMID: 32281730 DOI: 10.1002/anie.202000743] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/15/2022]
Abstract
Photoredox-catalyzed isomerization of γ-carbonyl-substituted allylic alcohols to their corresponding carbonyl compounds was achieved for the first time by C-H bond activation. This catalytic redox-neutral process resulted in the synthesis of 1,4-dicarbonyl compounds. Notably, allylic alcohols bearing tetrasubstituted olefins can also be transformed into their corresponding carbonyl compounds. Density functional theory calculations show that the carbonyl group at the γ-position of allylic alcohols are beneficial to the formation of their corresponding allylic alcohol radicals with high vertical electron affinity, which contributes to the completion of the photoredox catalytic cycle.
Collapse
Affiliation(s)
- Kai Guo
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Zhongchao Zhang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Anding Li
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yuanhe Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Jun Huang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
- Shenzhen Bay laboratory, Shenzhen, 518055, P. R. China
| |
Collapse
|
46
|
Rolka AB, Koenig B. Dearomative Cycloadditions Utilizing an Organic Photosensitizer: An Alternative to Iridium Catalysis. Org Lett 2020; 22:5035-5040. [DOI: 10.1021/acs.orglett.0c01622] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alessa B. Rolka
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Burkhard Koenig
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
47
|
Tanaka K, Iwama Y, Kishimoto M, Ohtsuka N, Hoshino Y, Honda K. Redox Potential Controlled Selective Oxidation of Styrenes for Regio- and Stereoselective Crossed Intermolecular [2 + 2] Cycloaddition via Organophotoredox Catalysis. Org Lett 2020; 22:5207-5211. [PMID: 32525321 DOI: 10.1021/acs.orglett.0c01852] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A redox potential controlled intermolecular [2 + 2] cross-cycloaddition has been developed in the presence of a thioxanthylium photoredox catalyst. Electron-rich styrenes such as β-bromostyrene (Ep/2 = +1.61 V vs SCE) were selectively oxidized by a thioxanthylium photoredox catalyst (E1/2 (C*/C•-) = +1.76 V vs SCE) to styryl radical cations and reacted with styrene (Ep/2 = +1.97 V vs SCE) to furnish polysubstituted cyclobutanes in high yields. The present reaction can be successfully applied to intermolecular [2 + 2] cross-cycloaddition of β-halogenostyrenes, which cannot be effectively achieved by the hitherto reported representative organophotoredox catalysts.
Collapse
Affiliation(s)
- Kenta Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yoshinori Iwama
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Mami Kishimoto
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Naoya Ohtsuka
- Institute for Molecular Science, Okazaki, Aichi 444-8787, Japan.,SOKENDAI, Okazaki, Aichi 444-8787, Japan
| | - Yujiro Hoshino
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kiyoshi Honda
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
48
|
Guo K, Zhang Z, Li A, Li Y, Huang J, Yang Z. Photoredox‐Catalyzed Isomerization of Highly Substituted Allylic Alcohols by C−H Bond Activation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kai Guo
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Zhongchao Zhang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Anding Li
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Yuanhe Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS) Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 P. R. China
| | - Jun Huang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS) Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 P. R. China
- Shenzhen Bay laboratory Shenzhen 518055 P. R. China
| |
Collapse
|
49
|
Ma J, Schäfers F, Daniliuc C, Bergander K, Strassert CA, Glorius F. Gadolinium Photocatalysis: Dearomative [2+2] Cycloaddition/Ring‐Expansion Sequence with Indoles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jiajia Ma
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Felix Schäfers
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Constantin Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Klaus Bergander
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Cristian A. Strassert
- CeNTech, CiMIC, SoN, Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Münster Germany
| | - Frank Glorius
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
50
|
Ma J, Schäfers F, Daniliuc C, Bergander K, Strassert CA, Glorius F. Gadolinium Photocatalysis: Dearomative [2+2] Cycloaddition/Ring‐Expansion Sequence with Indoles. Angew Chem Int Ed Engl 2020; 59:9639-9645. [DOI: 10.1002/anie.202001200] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Jiajia Ma
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Felix Schäfers
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Constantin Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Klaus Bergander
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Cristian A. Strassert
- CeNTech, CiMIC, SoN, Institut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Münster Germany
| | - Frank Glorius
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|