1
|
Aida K, Hirao M, Saitoh T, Yamamoto T, Einaga Y, Ota E, Yamaguchi J. Selective C-N Bond Cleavage in Unstrained Pyrrolidines Enabled by Lewis Acid and Photoredox Catalysis. J Am Chem Soc 2024; 146:30698-30707. [PMID: 39440606 PMCID: PMC11544709 DOI: 10.1021/jacs.4c13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Cleavage of inert C-N bonds in unstrained azacycles such as pyrrolidine remains a formidable challenge in synthetic chemistry. To address this, we introduce an effective strategy for the reductive cleavage of the C-N bond in N-benzoyl pyrrolidine, leveraging a combination of Lewis acid and photoredox catalysis. This method involves single-electron transfer to the amide, followed by site-selective cleavage at the C2-N bond. Cyclic voltammetry and NMR studies demonstrated that the Lewis acid is crucial for promoting the single-electron transfer from the photoredox catalyst to the amide carbonyl group. This protocol is widely applicable to various pyrrolidine-containing molecules and enables inert C-N bond cleavage including C-C bond formation via intermolecular radical addition. Furthermore, the current protocol successfully converts pyrrolidines to aziridines, γ-lactones, and tetrahydrofurans, showcasing its potential of the inert C-N bond cleavage for expanding synthetic strategies.
Collapse
Affiliation(s)
- Kazuhiro Aida
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Marina Hirao
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Tsuyoshi Saitoh
- International
Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Yamamoto
- Department
of Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Yasuaki Einaga
- Department
of Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Eisuke Ota
- Waseda
Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
2
|
Li M, Wu Y, Song X, Sun J, Zhang Z, Zheng G, Zhang Q. Visible light-mediated organocatalyzed 1,3-aminoacylation of cyclopropane employing N-benzoyl saccharin as bifunctional reagent. Nat Commun 2024; 15:8930. [PMID: 39414792 PMCID: PMC11484876 DOI: 10.1038/s41467-024-53202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
The carboamination of unsaturated molecules using bifunctional reagents is considered an attractive approach for the synthesis of nitrogen-containing compounds. However, bifunctional C-N reagents have never been employed in the carboamination of cyclopropane. In this study, we use an N-heterocyclic carbene (NHC), N-benzoyl saccharin, as a bifunctional reagent and a photoredox catalyst for a dual-catalyzed 1,3-aminoacylation of cyclopropane. NHCs play multiple roles, functioning as Lewis base catalysts to activate C-N bonds, promoting the oxidative quenching process of PC*, and acting as efficient acyl radical transfer catalysts for the formation of C-C bonds. The oxidative quenching process between the excited-state PC* and acyl NHC adduct is the key to the photooxidation generality of aryl cyclopropanes.
Collapse
Affiliation(s)
- Mingrui Li
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Yingtao Wu
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Xiao Song
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Jiaqiong Sun
- Department of Chemistry, Northeast Normal University, Changchun, China.
- School of Environment, Northeast Normal University, Changchun, China.
| | - Zuxiao Zhang
- Department of Chemistry, University of Hawai'i at Mānoa. 2545 McCarthy Mall, Honolulu, HI, USA
| | - Guangfan Zheng
- Department of Chemistry, Northeast Normal University, Changchun, China.
| | - Qian Zhang
- Department of Chemistry, Northeast Normal University, Changchun, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu, Shanghai, China
| |
Collapse
|
3
|
Ding Z, Wang Z, Wang Y, Wang X, Xue Y, Xu M, Zhang H, Xu L, Li P. Regio- and Diastereoselective Synthesis of Polysubstituted Piperidines Enabled by Boronyl Radical-Catalyzed (4+2) Cycloaddition. Angew Chem Int Ed Engl 2024; 63:e202406612. [PMID: 38924325 DOI: 10.1002/anie.202406612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Piperidines are widely present in small molecule drugs and natural products. Despite many methods have been developed for their synthesis, new approaches to polysubstituted piperidines are highly desirable. This work presents a radical (4+2) cycloaddition reaction for synthesis of piperidines featuring dense substituents at 3,4,5-positions that are not readily accessible by known methods. Using commercially available diboron(4) compounds and 4-phenylpyridine as the catalyst precursors, the boronyl radical-catalyzed cycloaddition between 3-aroyl azetidines and various alkenes, including previously unreactive 1,2-di-, tri-, and tetrasubstituted alkenes, has delivered the polysubstituted piperidines in generally high yield and diastereoselectivity. The reaction also features high modularity, atom economy, broad substrate scope, metal-free conditions, simple catalysts and operation. The utilization of the products has been demonstrated by selective transformations. A plausible mechanism, with the ring-opening of azetidine as the rate-limiting step, has been proposed based on the experimental and computational results.
Collapse
Affiliation(s)
- Zhengwei Ding
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhijun Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Yingying Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Xicheng Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yuanji Xue
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Ming Xu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Hailong Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Mendel M, Karl TM, Hamm J, Kaldas SJ, Sperger T, Mondal B, Schoenebeck F. Dynamic stereomutation of vinylcyclopropanes with metalloradicals. Nature 2024; 631:80-86. [PMID: 38898284 PMCID: PMC11222138 DOI: 10.1038/s41586-024-07555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/10/2024] [Indexed: 06/21/2024]
Abstract
The ever increasing demands for greater sustainability and lower energy usage in chemical processes call for fundamentally new approaches and reactivity principles. In this context, the pronounced prevalence of odd-oxidation states in less precious metals bears untapped potential for fundamentally distinct reactivity modes via metalloradical catalysis1-3. Contrary to the well-established reactivity paradigm that organic free radicals, upon addition to a vinylcyclopropane, lead to rapid ring opening under strain release-a transformation that serves widely as a mechanistic probe (radical clock)4 for the intermediacy of radicals5-we herein show that a metal-based radical, that is, a Ni(I) metalloradical, triggers reversible cis/trans isomerization instead of opening. The isomerization proceeds under chiral inversion and, depending on the substitution pattern, occurs at room temperature in less than 5 min, requiring solely the addition of the non-precious catalyst. Our combined computational and experimental mechanistic studies support metalloradical catalysis as origin of this profound reactivity, rationalize the observed stereoinversion and reveal key reactivity features of the process, including its reversibility. These insights enabled the iterative thermodynamic enrichment of enantiopure cis/trans mixtures towards a single diastereomer through multiple Ni(I) catalysis rounds and also extensions to divinylcyclopropanes, which constitute strategic motifs in natural product- and total syntheses6. While the trans-isomer usually requires heating at approximately 200 °C to trigger thermal isomerization under racemization to cis-divinylcyclopropane, which then undergoes facile Cope-type rearrangement, the analogous contra-thermodynamic process is herein shown to proceed under Ni(I) metalloradical catalysis under mild conditions without any loss of stereochemical integrity, enabling a mild and stereochemically pure access to seven-membered rings, fused ring systems and spirocycles.
Collapse
Affiliation(s)
- Marvin Mendel
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Teresa M Karl
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Jegor Hamm
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Sherif J Kaldas
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Theresa Sperger
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Bhaskar Mondal
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
5
|
Wang J, Lin Phang Y, Yu YJ, Liu NN, Xie Q, Zhang FL, Jin JK, Wang YF. Boryl Radical as a Catalyst in Enabling Intra- and Intermolecular Cascade Radical Cyclization Reactions: Construction of Polycyclic Molecules. Angew Chem Int Ed Engl 2024; 63:e202405863. [PMID: 38589298 DOI: 10.1002/anie.202405863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Cascade radical cyclization constitutes an atom- and step-economic route for rapid assembly of polycyclic molecular skeletons. Although an array of redox-active metal catalysts has recently shown robust applications in enabling various catalytic cascade radical processes, the use of free organic radical as the catalyst, which is capable of triggering strategically distinct cascades, has rarely been developed. Here, we disclosed that the benzimidazolium-based N-heterocyclic carbene (NHC)-boryl radical is capable of catalyzing cascade cyclization reactions in both intra- and intermolecular pathways, assembling [5,5] fused bicyclic and [6,6,6] fused tricyclic molecules, respectively. The catalytic reactions start with the chemo- and regioselective addition of the boryl radical catalyst to a tethered alkene or alkyne moiety, followed by either an intramolecular formal [3+2] or an intermolecular [2+2+2] cycloaddition process to construct bicyclo[3.3.0]octane or tetrahydrophenanthridine skeletons, respectively. Eventually, a β-elimination occurs to release the boryl radical catalyst, completing a catalytic cycle. High to excellent diastereoselectivity is achieved in both catalytic reactions under substrate control.
Collapse
Affiliation(s)
- Jie Wang
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yee Lin Phang
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - You-Jie Yu
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Nan-Nan Liu
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qiang Xie
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Feng-Lian Zhang
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Ji-Kang Jin
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yi-Feng Wang
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
6
|
Wang G, Yuan JL, Zhou R, Zou HB. Iron(II) Phthalocyanine-Catalyzed Homodimerization and Tandem Diamination of Diazo Compounds with Primary Amines: Access to Construct Substituted 2,3-Diaminosuccinonitriles in One-Pot. J Org Chem 2024. [PMID: 38783702 DOI: 10.1021/acs.joc.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
We herein first report the homodimerization and tandem diamination of diazo compounds with primary amines catalyzed by the iron(II) phthalocyanine (PcFe(II)), which can construct one C-C bond and two C-N bonds within 20 min in one-pot. Compared to the traditional metal-catalyzed N-H insertion reaction between amines with diazo reagents, the developed reaction almost does not generate the N-H insertion product, but the homodimerization/tandem diamination product. The proposed mechanism studies indicate that primary amines play a crucial role in the homocoupling of diazo compounds via dimerization of iron(III)-acetonitrile radical generated from the reaction between diazoacetonitrile with PcFe(II) coordinated by bis(amines); the β-hydride elimination is involved, and then, the attack of primary amines toward the carbon atoms on the formed C-C bond is followed. Moreover, this novel reaction can be used to effectively prepare substituted 2,3-diaminosuccinonitriles with high yields and even up to >99:1 d.r., encouragingly these products contain both 1,2-diamines and succinonitrile motifs, which are two classes of important organic compounds with significant applications in many yields. This reaction is also suitable for the gram-scale preparation of 2,3-bis(phenylamino)succinonitrile (2a) with a yield of 84%. Therefore, the developed reaction represents a new type of transformation.
Collapse
Affiliation(s)
- Gang Wang
- Department of Chemistry & Bioengineering, Yichun Key Laboratory of Applied Chemistry, Key Laboratory of Jiangxi University for Applied Chemistry & Chemical Biology, Yichun University, Yichun 336000, China
| | - Jia-Li Yuan
- Department of Chemistry & Bioengineering, Yichun Key Laboratory of Applied Chemistry, Key Laboratory of Jiangxi University for Applied Chemistry & Chemical Biology, Yichun University, Yichun 336000, China
| | - Rong Zhou
- Department of Chemistry & Bioengineering, Yichun Key Laboratory of Applied Chemistry, Key Laboratory of Jiangxi University for Applied Chemistry & Chemical Biology, Yichun University, Yichun 336000, China
| | - Huai-Bo Zou
- Department of Chemistry & Bioengineering, Yichun Key Laboratory of Applied Chemistry, Key Laboratory of Jiangxi University for Applied Chemistry & Chemical Biology, Yichun University, Yichun 336000, China
| |
Collapse
|
7
|
Lee WCC, Zhang XP. Metalloradical Catalysis: General Approach for Controlling Reactivity and Selectivity of Homolytic Radical Reactions. Angew Chem Int Ed Engl 2024; 63:e202320243. [PMID: 38472114 PMCID: PMC11097140 DOI: 10.1002/anie.202320243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Since Friedrich Wöhler's groundbreaking synthesis of urea in 1828, organic synthesis over the past two centuries has predominantly relied on the exploration and utilization of chemical reactions rooted in two-electron heterolytic ionic chemistry. While one-electron homolytic radical chemistry is both rich in fundamental reactivities and attractive with practical advantages, the synthetic application of radical reactions has been long hampered by the formidable challenges associated with the control over reactivity and selectivity of high-energy radical intermediates. To fully harness the untapped potential of radical chemistry for organic synthesis, there is a pressing need to formulate radically different concepts and broadly applicable strategies to address these outstanding issues. In pursuit of this objective, researchers have been actively developing metalloradical catalysis (MRC) as a comprehensive framework to guide the design of general approaches for controlling over reactivity and stereoselectivity of homolytic radical reactions. Essentially, MRC exploits the metal-centered radicals present in open-shell metal complexes as one-electron catalysts for homolytic activation of substrates to generate metal-entangled organic radicals as the key intermediates to govern the reaction pathway and stereochemical course of subsequent catalytic radical processes. Different from the conventional two-electron catalysis by transition metal complexes, MRC operates through one-electron chemistry utilizing stepwise radical mechanisms.
Collapse
Affiliation(s)
- Wan-Chen Cindy Lee
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467 (USA)
| | - X. Peter Zhang
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467 (USA)
| |
Collapse
|
8
|
Zhelavskyi O, Parikh S, Jhang YJ, Staples RJ, Zimmerman PM, Nagorny P. Green Light Promoted Iridium(III)/Copper(I)-Catalyzed Addition of Alkynes to Aziridinoquinoxalines Through the Intermediacy of Azomethine Ylides. Angew Chem Int Ed Engl 2024; 63:e202318876. [PMID: 38267370 PMCID: PMC10939844 DOI: 10.1002/anie.202318876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
This manuscript describes the development of alkyne addition to the aziridine moiety of aziridinoquinoxalines using dual Ir(III)/Cu(I) catalytic system under green light-emitting diode (LED) photolysis (λmax =525 nm). This mild method features high levels of chemo- and regioselectivity and was used to generate 30 highly functionalized substituted dihydroquinoxalines in 36-98 % yield. This transformation was also carried asymmetrically using phthalazinamine-based chiral ligand to provide 9 chiral addition products in 96 : 4 to 86 : 14 e.r. The experimental and quantum chemical explorations of this reaction suggest a mechanism that involves Ir(III)-catalyzed triplet energy transfer followed by a ring-opening reaction ultimately leading to the formation of azomethine ylide intermediates. These azomethine intermediates undergo sequential protonation/copper(I) acetylide addition to provide the products.
Collapse
Affiliation(s)
- Oleksii Zhelavskyi
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Seren Parikh
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yin-Jia Jhang
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Richard J. Staples
- Department of Chemistry and Chemical Biology, Michigan State University, East Lansing, MI 48824
| | - Paul M. Zimmerman
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pavel Nagorny
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Zhang FP, Wang RH, Li JF, Chen H, Hari Babu M, Ye M. Intermolecular Carbophosphination of Alkynes with Phosphole Oxides via Ni-Al Bimetal-Catalyzed C-P Bond Activation. Angew Chem Int Ed Engl 2023; 62:e202314701. [PMID: 37846814 DOI: 10.1002/anie.202314701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
Intermolecular carbophosphination reaction of alkynes or alkenes with unreactive C-P bonds remains an elusive challenge. Herein, we used a Ni-Al bimetallic catalyst to realize an intermolecular carbophosphination reaction of alkynes with 5-membered phosphole oxides, providing a series of 7-membered phosphepines in up to 94 % yield.
Collapse
Affiliation(s)
- Feng-Ping Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Rong-Hua Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Jiang-Fei Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Hao Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Madala Hari Babu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Mengchun Ye
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| |
Collapse
|
10
|
Williams WL, Gutiérrez-Valencia NE, Doyle AG. Branched-Selective Cross-Electrophile Coupling of 2-Alkyl Aziridines and (Hetero)aryl Iodides Using Ti/Ni Catalysis. J Am Chem Soc 2023; 145:24175-24183. [PMID: 37888947 DOI: 10.1021/jacs.3c08301] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The arylation of 2-alkyl aziridines by nucleophilic ring-opening or transition-metal-catalyzed cross-coupling enables facile access to biologically relevant β-phenethylamine derivatives. However, both approaches largely favor C-C bond formation at the less-substituted carbon of the aziridine, thus enabling access to only linear products. Consequently, despite the attractive bond disconnection that it poses, the synthesis of branched arylated products from 2-alkyl aziridines has remained inaccessible. Herein, we address this long-standing challenge and report the first branched-selective cross-coupling of 2-alkyl aziridines with aryl iodides. This unique selectivity is enabled by a Ti/Ni dual-catalytic system. We demonstrate the robustness of the method by a twofold approach: an additive screening campaign to probe functional group tolerance and a feature-driven substrate scope to study the effect of the local steric and electronic profile of each coupling partner on reactivity. Furthermore, the diversity of this feature-driven substrate scope enabled the generation of predictive reactivity models that guided mechanistic understanding. Mechanistic studies demonstrated that the branched selectivity arises from a TiIII-induced radical ring-opening of the aziridine.
Collapse
Affiliation(s)
- Wendy L Williams
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neyci E Gutiérrez-Valencia
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Abigail G Doyle
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
11
|
Verma K, Mishra M, Maharana PK, Bhattacharyya H, Saha S, Punniyamurthy T. Sc(OTf) 3-Catalyzed Domino C-C/C-N Bond Formation of Aziridines with Quinones via Radical Pathway. Org Lett 2023; 25:7933-7938. [PMID: 37874042 DOI: 10.1021/acs.orglett.3c03318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sc(III)-catalyzed domino C-C and C-N bond formation of N-sulfonyl aziridines with quinones has been accomplished to furnish functionalized indolines at a moderate temperature. The umpolung reactivity of aziridines, radical pathway, mild reaction conditions, substrate scope, and coupling of drug molecules in a postsynthetic application are the important practical features.
Collapse
Affiliation(s)
- Kshitiz Verma
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Hemanga Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | | |
Collapse
|
12
|
Li D, Shen C, Si Z, Liu L. Palladium-Catalyzed Fluorinative Bifunctionalization of Aziridines and Azetidines with gem-Difluorocyclopropanes. Angew Chem Int Ed Engl 2023; 62:e202310283. [PMID: 37572320 DOI: 10.1002/anie.202310283] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/14/2023]
Abstract
An unprecedented Pd-catalyzed fluorinative bifunctionalization of aziridines and azetidines was successfully developed via regioselective C-C and C-F bond cleavage of gem-difluorocyclopropanes, leading to various β,β'-bisfluorinated amines and β,γ-bisfluorinated amines. This reaction was achieved by incorporating a 2-fluorinated allyl group and a fluorine atom scissored from gem-difluorocyclopropane in 100 % atom economy for the first time. The mechanistic investigations indicated that the reaction underwent amine attacking 2-fluorinated allyl palladium complex to generate η2 -coordinated N-allyl aziridine followed by fluoride ligand transfer affording the final β- and γ-fluorinated amines.
Collapse
Affiliation(s)
- Dongdong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Chaoren Shen
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Zhiyao Si
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Lu Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663N Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
13
|
Sahoo SK, Harfmann B, Ai L, Wang Q, Mohapatra S, Choudhury A, Stavropoulos P. Cationic Divalent Metal Sites (M = Mn, Fe, Co) Operating as Both Nitrene-Transfer Agents and Lewis Acids toward Mediating the Synthesis of Three- and Five-Membered N-Heterocycles. Inorg Chem 2023; 62:10743-10761. [PMID: 37352838 PMCID: PMC11531761 DOI: 10.1021/acs.inorgchem.3c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
The tripodal compounds [(TMG3trphen)MII-solv](PF6)2 (M = Mn, Fe, Co; solv = MeCN, DMF) and bipodal analogues [(TMG2biphen)MII(NCMe)x](PF6)2 (x = 3 for Mn, Fe; x = 2 for Co) and [(TMG2biphen)MIICl2] have been synthesized with ligands that feature a triaryl- or diarylmethyl-amine framework and superbasic tetramethylguanidinyl residues (TMG). The dicationic M(II) sites mediate catalytic nitrene-transfer reactions between the imidoiodinane PhI═NTs (Ts = tosyl) and a panel of styrenes in MeCN to afford aziridines and low yields of imidazolines (upon MeCN insertion) with an order of productivity that favors the bipodal over the tripodal reagents and a metal preference of Fe > Co ≥ Mn. In CH2Cl2, the more acidic Fe(II) sites favor formation of 2,4-diaryl-N-tosylpyrrolidines by means of an in situ (3 + 2) cycloaddition of the initially generated 2-aryl-N-tosylaziridine with residual styrene. In the presence of ketone, 1,3-oxazolidines can be formed in practicable yields, involving a single-pot cycloaddition reaction of alkene, nitrene, and ketone (2 + 1 + 2). Mechanistic studies indicate that the most productive bipodal Fe(II) site mediates stepwise addition of nitrene to olefins to generate aziridines with good retention of stereochemistry and further enables aziridine ring opening to unmask a 1,3-zwitterion that can undergo cycloaddition with dipolarophiles (MeCN, alkene, ketone) to afford five-membered N-heterocycles.
Collapse
Affiliation(s)
- Suraj Kumar Sahoo
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Brent Harfmann
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Lin Ai
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Qiuwen Wang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Department of Medicinal Chemistry, BeiGene (Beijing) Company, Limited, Changping District, Beijing 102206, People's Republic of China
| | - Sudip Mohapatra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Department of Chemistry, Kurseong College (affiliated under North Bengal University), Kurseong, Darjeeling, West Bengal PIN-734203, India
| | - Amitava Choudhury
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Pericles Stavropoulos
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
14
|
Höthker S, Gansäuer A. Formal Anti-Markovnikov Addition of Water to Olefins by Titanocene-Catalyzed Epoxide Hydrosilylation: From Stoichiometric to Sustainable Catalytic Reactions. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200240. [PMID: 37483422 PMCID: PMC10362118 DOI: 10.1002/gch2.202200240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Indexed: 07/25/2023]
Abstract
Here, the evolution of the titanocene-catalyzed hydrosilylation of epoxides that yields the corresponding anti-Markovnikov alcohols is summarized. The study focuses on aspects of sustainability, efficient catalyst activation, and stereoselectivity. The latest variant of the reaction employs polymethylhydrosiloxane (PMHS), a waste product of the Müller-Rochow process as terminal reductant, features an efficient catalyst activation with benzylMgBr and the use of the bench stable Cp2TiCl2 as precatalyst. The combination of olefin epoxidation and epoxide hydrosilylation provides a uniquely efficient approach to the formal anti-Markovnikov addition of H2O to olefins.
Collapse
Affiliation(s)
- Sebastian Höthker
- Kekulé‐Institut für Organische Chemie und BiochemieRheinische Friedrich‐Wilhelms‐Universität BonnGerhard‐Domagk‐Straße 153121BonnGermany
| | - Andreas Gansäuer
- Kekulé‐Institut für Organische Chemie und BiochemieRheinische Friedrich‐Wilhelms‐Universität BonnGerhard‐Domagk‐Straße 153121BonnGermany
| |
Collapse
|
15
|
Lee WCC, Wang J, Zhu Y, Zhang XP. Asymmetric Radical Bicyclization for Stereoselective Construction of Tricyclic Chromanones and Chromanes with Fused Cyclopropanes. J Am Chem Soc 2023; 145:11622-11632. [PMID: 37129381 PMCID: PMC10249947 DOI: 10.1021/jacs.3c01618] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Asymmetric radical bicyclization processes have been developed via metalloradical catalysis (MRC) to stereoselectively construct chiral chromanones and chromanes bearing fused cyclopropanes. Through optimization of a versatile D2-symmetric chiral amidoporphyrin ligand platform, a Co(II)-metalloradical system can homolytically activate both diazomalonates and α-aryldiazomethanes containing different alkene functionalities under mild conditions for effective radical bicyclization, delivering cyclopropane-fused tricyclic chromanones and chromanes, respectively, in high yields with excellent control of both diastereoselectivities and enantioselectivities. Combined computational and experimental studies, including the electron paramagnetic resonance (EPR) detection and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) trapping of key radical intermediates, shed light on the working details of the underlying stepwise radical mechanisms of the Co(II)-catalyzed bicyclization processes. The two catalytic radical processes provide effective synthetic tools for stereoselective construction of valuable cyclopropane-fused chromanones and chromanes with newly generated contiguous stereogenic centers. As a specific demonstration of synthetic application, the Co(II)-catalyzed radical bicyclization has been employed as a key step for the first asymmetric total synthesis of the natural product (+)-Radulanin J.
Collapse
Affiliation(s)
- Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingyi Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yiling Zhu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
16
|
Harmata AS, Roldan BJ, Stephenson CRJ. Formal Cycloadditions Driven by the Homolytic Opening of Strained, Saturated Ring Systems. Angew Chem Int Ed Engl 2023; 62:e202213003. [PMID: 36239998 PMCID: PMC9852095 DOI: 10.1002/anie.202213003] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 12/05/2022]
Abstract
The field of strain-driven, radical formal cycloadditions is experiencing a surge in activity motivated by a renaissance in free radical chemistry and growing demand for sp3 -rich ring systems. The former has been driven in large part by the rise of photoredox catalysis, and the latter by adoption of the "Escape from Flatland" concept in medicinal chemistry. In the years since these broader trends emerged, dozens of formal cycloadditions, including catalytic, asymmetric variants, have been developed that operate via radical mechanisms. While cyclopropanes have been studied most extensively, a variety of strained ring systems are amenable to the design of analogous reactions. Many of these processes generate lucrative, functionally decorated sp3 -rich ring systems that are difficult to access by other means. Herein, we summarize recent efforts in this area and analyze the state of the field.
Collapse
Affiliation(s)
- Alexander S. Harmata
- Department of Chemistry, University of Michigan 930 N University Ave Ann Arbor MI, 48109-1055
| | - Bec. J. Roldan
- Department of Chemistry, University of Michigan 930 N University Ave Ann Arbor MI, 48109-1055
| | - Corey R. J. Stephenson
- Department of Chemistry, University of Michigan 930 N University Ave Ann Arbor MI, 48109-1055
| |
Collapse
|
17
|
Erande RD, Shivam S, Chavan KA, Chauhan ANS. Recent Advances in [3+2]-Cycloaddition-Enabled
Cascade Reactions: Application to
Synthesize Complex Organic Frameworks. Synlett 2022. [DOI: 10.1055/s-0042-1751369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractMany natural products and biologically important complex organic scaffolds have convoluted structures around their core skeleton. Interestingly, with just changing the outskirts, the core reflects new and unique degrees of various physical and chemical properties. A very common but intriguing core is a five-membered ring horning heaps of organic molecules crafts. The power of [3+2] cycloaddition reactions to generate five-membered ring systems allocate chemists to envision synthetic procedures of wonder molecules and if it is facilitating a cascade sequence, then the end product will imbibe significant level of complexity having applications in medicinal and pharmaceutical fields. This Account highlights the broad interest in assembling recent advances in cascade reactions involving [3+2] cycloaddition as the power tool in order to conceive breakthrough organic architectures reported in the last ten years. We foresee that our comprehensive collection of astonishing [3+2] cycloaddition enabled cascades will provide valuable insights to polycyclic molecular construction and perseverant approach towards nonconventional synthetic procedures to the organic community.1 Introduction2 Synthesis of Oxindoles Skeleton3 Synthesis of Oxazoles Skeleton4 Synthesis of Oxadiazoles Skeleton5 Synthesis of Nitrogen-Containing Heterocycles6 Synthesis via Formal [3+2] Cycloaddition7 Synthesis of Miscellaneous Scaffolds8 Conclusion
Collapse
|
18
|
Kim S, Chen PP, Houk KN, Knowles RR. Reversible Homolysis of a Carbon-Carbon σ-Bond Enabled by Complexation-Induced Bond-Weakening. J Am Chem Soc 2022; 144:15488-15496. [PMID: 35994332 PMCID: PMC9671280 DOI: 10.1021/jacs.2c01229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A case study of catalytic carbon-carbon σ-bond homolysis is presented. The coordination of a redox-active Lewis acid catalyst reduces the bond-dissociation free energies of adjacent carbon-carbon σ-bonds, and this complexation-induced bond-weakening is used to effect reversible carbon-carbon bond homolysis. Stereochemical isomerization of 1,2-disubstituted cyclopropanes was investigated as a model reaction with a ruthenium (III/II) redox couple adopted for bond weakening. Results from our mechanistic investigation into the stereospecificity of the isomerization reaction are consistent with selective complexation-induced carbon-carbon bond homolysis. The ΔG‡ of catalyzed and uncatalyzed reactions were estimated to be 14.4 and 40.0 kcal/mol, respectively with the computational method, (U)PBE0-D3/def2-TZVPP-SMD(toluene)//(U)B3LYP-D3/def2-SVP. We report this work as the first catalytic example where the complexation-induced bond-weakening effect is quantified through transition state analysis.
Collapse
Affiliation(s)
- Suhong Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Pan-Pan Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
19
|
Wu X, Chang Y, Lin S. Titanium Radical Redox Catalysis: Recent Innovations in Catalysts, Reactions, and Modes of Activation. Chem 2022; 8:1805-1821. [PMID: 36213842 PMCID: PMC9543366 DOI: 10.1016/j.chempr.2022.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radical chemistry has emerged as a cornerstone in modern organic synthesis, providing chemists with numerous new tools to rapidly expand reactivity and chemical space in academic and industrial research. In this regard, titanium complexes have been recognized as an attractive class of catalysts owing to their rich redox activities in addition to the abundance and low toxicity of this early transition metal. Traditionally employed for the activation of epoxides and carbonyl compounds, Ti radical redox catalysis has broken into new grounds in recent years, giving rise to a diverse repertoire of useful transformations. In this Perspective, we highlight recent developments in the area of TiIII/IV catalysis with respect to the activation of different types of chemical bonds. Furthermore, we discuss future opportunities in integrating Ti radical chemistry with other catalytic systems as well as with emerging new technologies such as photochemistry and electrochemistry.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Yejin Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
20
|
Peng X, Hirao Y, Yabu S, Sato H, Higashi M, Akai T, Masaoka S, Mitsunuma H, Kanai M. A Catalytic Alkylation of Ketones via sp3 C-H Bond Activation. J Org Chem 2022; 88:6333-6346. [PMID: 35649206 DOI: 10.1021/acs.joc.2c00603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We identified a ternary hybrid catalyst system composed of an acridinium photoredox catalyst, a thiophosphoric imide (TPI) catalyst, and a titanium complex catalyst that promoted an intermolecular addition reaction of organic molecules with various ketones through sp3 C-H bond activation. The thiyl radical generated via single-electron oxidation of TPI by the excited photoredox catalyst abstracted a hydrogen atom from organic molecules such as toluene, benzyl alcohol, alkenes, aldehydes, and THF. The thus-generated carbon-centered radical species underwent addition to ketones and aldehydes. This intrinsically unfavorable step was promoted by single-electron reduction of the intermediate alkoxy radical by catalytically generated titanium(III) species. This reaction provided an efficient and straightforward route to a broad range of tertiary alcohols and was successfully applied to late-stage functionalization of drugs or their derivatives. The proposed mechanism was supported by both experimental and theoretical studies.
Collapse
Affiliation(s)
- Xue Peng
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Hirao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shunsuke Yabu
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan.,Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Takuya Akai
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Shigeyuki Masaoka
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
21
|
Hong P, Song X, Huang Z, Tan K, Wu A, Lu X. Insights into the Mechanism of Metal-Catalyzed Transformation of Oxime Esters: Metal-Bound Radical Pathway vs Free Radical Pathway. J Org Chem 2022; 87:6014-6024. [PMID: 35389656 DOI: 10.1021/acs.joc.2c00273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Controlling of radical reactivity by binding a radical to the metal center is an elegant strategy to overcome the challenge that radical intermediates are "too reactive to be selective". Yet, its application has seemingly been limited to a few strained-ring substrates, azide compounds, and diazo compounds. Meanwhile, first-row transition-metal-catalyzed (mainly, Fe, Ni, Cu) transformations of oxime esters have been reported recently in which the activation processes are assumed to follow free-radical mechanisms. In this work, we show by means of density functional theory calculations that the activation of oxime esters catalyzed by Fe(II) and Cu(I) catalysts more likely affords a metal-bound iminyl radical, rather than the presumed free iminyl radical, and the whole process follows a metal-bound radical mechanism. The as-formed metal-bound radical intermediates are an Fe(III)-iminyl radical (Stotal = 2, SFe = 5/2, and Siminyl = -1/2) and a Cu(II)-iminyl radical (Stotal = 0, SCu = 1/2, and Siminyl = -1/2). The discovery of such novel substrates affording metal-bound radical intermediates may facilitate the experimental design of metal-catalyzed asymmetric synthesis using oxime esters to achieve the desired enantioselectivity.
Collapse
Affiliation(s)
- Pan Hong
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaolin Song
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhengqi Huang
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kai Tan
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Anan Wu
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
22
|
Yao C, Williams ADN, Gu Y, Norton JR. Isomerization of Aziridines to Allyl Amines via Titanium and Chromium Cooperative Catalysis. J Org Chem 2022; 87:4991-4997. [PMID: 35303410 DOI: 10.1021/acs.joc.1c03054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Ti/Cr cooperative catalyst isomerizes aziridines to allyl amines under mild conditions. The reaction tolerates a broad range of aziridines with various nitrogen substituents. The titanium catalyst is most successful in opening 1,2-disubstituted aziridines, forming radical intermediates in a highly regioselective manner. The chromium catalyst appears to abstract an H• from these radical intermediates and then return the H• to the titanium system in the form of an H+ and an electron. The reaction is complementary to previous reports on the isomerization of aziridines to allyl amines.
Collapse
Affiliation(s)
- Chengbo Yao
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Alana D N Williams
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Yiting Gu
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Jack R Norton
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
23
|
Wang J, Xie J, Lee WCC, Wang DS, Zhang XP. Radical differentiation of two ester groups in unsymmetrical diazomalonates for highly asymmetric olefin cyclopropanation. CHEM CATALYSIS 2022; 2:330-344. [PMID: 35494099 PMCID: PMC9049825 DOI: 10.1016/j.checat.2021.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diazomalonates have been demonstrated as effective metalloradicophiles for asymmetric radical olefin cyclopropanation via Co(II)-metalloradical catalysis (MRC). Supported by D 2-symmetric chiral amidoporphyrin ligand, Co(II)-based metalloradical system can efficiently activate unsymmetrical methyl phenyl diazomalonate (MPDM) with effective differentiation of the two ester groups for asymmetric cyclopropanation, enabling stereoselective construction of 1,1-cyclopropanediesters bearing two contiguous chiral centers, including all-carbon quaternary stereogenic center. The Co(II)-catalyzed asymmetric cyclopropanation, which operates at room temperature without slow addition of the diazo compound, is generally applicable to broad-ranging olefins and tolerates various functionalities, providing a streamlined synthesis of chiral 1,1-cyclopropanediesters in high yields with both high diastereoselectivity and enantioselectivity. Combined computational and experimental studies support the underlying stepwise radical mechanism for Co(II)-catalyzed cyclopropanation. In addition to functioning as 1,3-dipoles for forming five-membered structures, enantioenriched (E)-1,1-cyclopropanediesters serve as useful building blocks for stereoselective synthesis of different cyclopropane derivatives. In addition, the enantioenriched (E)-1,1-cyclopropanediesters can be stereoselectively converted to (Z)-diastereomers.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Jingjing Xie
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Duo-Sheng Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - X. Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
- Lead contact
- Correspondence:
| |
Collapse
|
24
|
Ke J, Lee WCC, Wang X, Wang Y, Wen X, Zhang XP. Metalloradical Activation of In Situ-Generated α-Alkynyldiazomethanes for Asymmetric Radical Cyclopropanation of Alkenes. J Am Chem Soc 2022; 144:2368-2378. [PMID: 35099966 PMCID: PMC9032462 DOI: 10.1021/jacs.1c13154] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
α-Alkynyldiazomethanes, generated in situ from the corresponding sulfonyl hydrazones in the presence of a base, can serve as effective metalloradicophiles in Co(II)-based metalloradical catalysis (MRC) for asymmetric cyclopropanation of alkenes. With D2-symmetric chiral amidoporphyrin 2,6-DiMeO-QingPhyrin as the optimal supporting ligand, the Co(II)-based metalloradical system can efficiently activate different α-alkynyldiazomethanes at room temperature for highly asymmetric cyclopropanation of a broad range of alkenes. This catalytic radical process provides a general synthetic tool for stereoselective construction of alkynyl cyclopropanes in high yields with high both diastereoselectivity and enantioselectivity. Combined computational and experimental studies offer several lines of evidence in support of the underlying stepwise radical mechanism for the Co(II)-catalyzed olefin cyclopropanation involving a unique α-metalloradical intermediate that is associated with two resonance forms of α-Co(III)-propargyl radical and γ-Co(III)-allenyl radical. The resulting enantioenriched alkynyl cyclopropanes, as showcased with several stereospecific transformations, may serve as valuable chiral building blocks for stereoselective organic synthesis.
Collapse
Affiliation(s)
- Jing Ke
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xiaoxu Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yong Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xin Wen
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X. Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
25
|
Henriques DSG, Rojo‐Wiechel E, Klare S, Mika R, Höthker S, Schacht JH, Schmickler N, Gansäuer A. Titanocene(III)‐Catalyzed Precision Deuteration of Epoxides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dina Schwarz G. Henriques
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Elena Rojo‐Wiechel
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Sven Klare
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Regine Mika
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Sebastian Höthker
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Jonathan H. Schacht
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Niklas Schmickler
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
26
|
Henriques DSG, Rojo‐Wiechel E, Klare S, Mika R, Höthker S, Schacht JH, Schmickler N, Gansäuer A. Titanocene(III)-Catalyzed Precision Deuteration of Epoxides. Angew Chem Int Ed Engl 2022; 61:e202114198. [PMID: 34845824 PMCID: PMC9305931 DOI: 10.1002/anie.202114198] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 12/13/2022]
Abstract
We describe a titanocene(III)-catalyzed deuterosilylation of epoxides that provides β-deuterated anti-Markovnikov alcohols with excellent D-incorporation, in high yield, and often excellent diastereoselectivity after desilylation. The key to the success of the reaction is a novel activation method of Cp2 TiCl2 and (tBuC5 H4 )2 TiCl2 with BnMgBr and PhSiD3 to provide [(RC5 H4 )2 Ti(III)D] without isotope scrambling. It was developed after discovering an off-cycle scrambling with the previously described method. Our precision deuteration can be applied to the synthesis of drug precursors and highlights the power of combining radical chemistry with organometallic catalysis.
Collapse
Affiliation(s)
- Dina Schwarz G. Henriques
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Elena Rojo‐Wiechel
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Sven Klare
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Regine Mika
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Sebastian Höthker
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Jonathan H. Schacht
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Niklas Schmickler
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
27
|
Del Horno E, Jover J, Mena M, Pérez-Redondo A, Yélamos C. Low-Valent Titanium Species Stabilized with Aluminum/Boron Hydride Fragments. Chemistry 2021; 28:e202103085. [PMID: 34735025 DOI: 10.1002/chem.202103085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 11/09/2022]
Abstract
Low-valent titanium species were prepared by reaction of [TiCp*X3 ] (Cp*=η5 -C5 Me5 ; X=Cl, Br, Me) with LiEH4 (E=Al, B) or BH3 (thf), and their structures elucidated by experimental and theoretical methods. The treatment of trihalides [TiCp*X3 ] with LiAlH4 in ethereal solvents (L) leads to the hydride-bridged heterometallic complexes [{TiCp*(μ-H)}2 {(μ-H)2 AlX(L)}2 ] (L=thf, X=Cl, Br; L=OEt2 , X=Cl). Density functional theory (DFT) calculations for those compounds reveal an open-shell singlet ground state with a Ti-Ti bond and can be described as titanium(II) species. The theoretical analyses also show strong interactions between the Ti-Ti bond and the empty s orbitals of the Al atom of the AlH2 XL fragments, which behave as σ-accepting (Z-type) ligands. Analogous reactions of [TiCp*X3 ] with LiBH4 (2 and 3 equiv.) in tetrahydrofuran at room temperature and at 85 °C lead to the titanium(III) compounds [{TiCp*(BH4 )(μ-X)}2 ] (X=Cl, Br) and [{TiCp*(BH4 )(μ-BH4 )}2 ], respectively. The treatment of [TiCp*Me3 ] with 4 and 5 equiv. of BH3 (thf) produces the diamagnetic [{TiCp*(BH3 Me)}2 (μ-B2 H6 )] and paramagnetic [{TiCp*(μ-B2 H6 )}2 ] complexes, respectively.
Collapse
Affiliation(s)
- Estefanía Del Horno
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28805 Alcalá de, Henares-Madrid, Spain
| | - Jesús Jover
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Miguel Mena
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28805 Alcalá de, Henares-Madrid, Spain
| | - Adrián Pérez-Redondo
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28805 Alcalá de, Henares-Madrid, Spain
| | - Carlos Yélamos
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28805 Alcalá de, Henares-Madrid, Spain
| |
Collapse
|
28
|
Xie J, Xu P, Zhu Y, Wang J, Lee WCC, Zhang XP. New Catalytic Radical Process Involving 1,4-Hydrogen Atom Abstraction: Asymmetric Construction of Cyclobutanones. J Am Chem Soc 2021; 143:11670-11678. [PMID: 34292709 PMCID: PMC8399868 DOI: 10.1021/jacs.1c04968] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While alkyl radicals have been well demonstrated to undergo both 1,5- and 1,6-hydrogen atom abstraction (HAA) reactions, 1,4-HAA is typically a challenging process both entropically and enthalpically. Consequently, chemical transformations based on 1,4-HAA have been scarcely developed. Guided by the general mechanistic principles of metalloradical catalysis (MRC), 1,4-HAA has been successfully incorporated as a key step, followed by 4-exo-tet radical substitution (RS), for the development of a new catalytic radical process that enables asymmetric 1,4-C-H alkylation of diazoketones for stereoselective construction of cyclobutanone structures. The key to success is the optimization of the Co(II)-based metalloradical catalyst through judicious modulation of D2-symmetric chiral amidoporphyrin ligand to adopt proper steric, electronic, and chiral environments that can utilize a network of noncovalent attractive interactions for effective activation of the substrate and subsequent radical intermediates. Supported by an optimal chiral ligand, the Co(II)-based metalloradical system, which operates under mild conditions, is capable of 1,4-C-H alkylation of α-aryldiazoketones with varied electronic and steric properties to construct chiral α,β-disubstituted cyclobutanones in good to high yields with high diastereoselectivities and enantioselectivities, generating dinitrogen as the only byproduct. Combined computational and experimental studies have shed light on the mechanistic details of the new catalytic radical process, including the revelation of facile 1,4-HAA and 4-exo-tet-RS steps. The resulting enantioenriched α,β-disubstituted cyclobutanones, as showcased with several enantiospecific transformations to other types of cyclic structures, may find useful applications in stereoselective organic synthesis.
Collapse
Affiliation(s)
- Jingjing Xie
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Pan Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yiling Zhu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingyi Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
29
|
Wood DP, Guan W, Lin S. Titanium and Cobalt Bimetallic Radical Redox Relay for the Isomerization of N-Bz Aziridines to Allylic Amides. SYNTHESIS-STUTTGART 2021; 53:4213-4220. [PMID: 34764520 PMCID: PMC8579959 DOI: 10.1055/s-0037-1610779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Herein a bimetallic radical redox-relay strategy is employed to generate alkyl radicals under mild conditions with titanium(III) catalysis and terminated via hydrogen atom transfer with cobalt(II) catalysis to enact base-free isomerizations of N-Bz aziridines to N-Bz allylic amides. This reaction provides an alternative strategy for the synthesis of allylic amides from alkenes via a three-step sequence to accomplish a formal transpositional allylic amination.
Collapse
Affiliation(s)
- Devin P Wood
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Weiyang Guan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
30
|
Zhang C, Wang DS, Lee WCC, McKillop AM, Zhang XP. Controlling Enantioselectivity and Diastereoselectivity in Radical Cascade Cyclization for Construction of Bicyclic Structures. J Am Chem Soc 2021; 143:11130-11140. [PMID: 34260202 PMCID: PMC8399859 DOI: 10.1021/jacs.1c04719] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Radical cascade cyclization reactions are highly attractive synthetic tools for the construction of polycyclic molecules in organic synthesis. While it has been successfully implemented in diastereoselective synthesis of natural products and other complex compounds, radical cascade cyclization faces a major challenge of controlling enantioselectivity. As the first application of metalloradical catalysis (MRC) for controlling enantioselectivity as well as diastereoselectivity in radical cascade cyclization, we herein report the development of a Co(II)-based catalytic system for asymmetric radical bicyclization of 1,6-enynes with diazo compounds. Through the fine-tuning of D2-symmetric chiral amidoporphyrins as the supporting ligands, the Co(II)-catalyzed radical cascade process, which proceeds in a single operation under mild conditions, enables asymmetric construction of multisubstituted cyclopropane-fused tetrahydrofurans bearing three contiguous stereogenic centers, including two all-carbon quaternary centers, in high yields with excellent stereoselectivities. Combined computational and experimental studies have shed light on the underlying stepwise radical mechanism for this new Co(II)-based cascade bicyclization that involves the relay of several Co-supported C-centered radical intermediates, including α-, β-, γ-, and ε-metalloalkyl radicals. The resulting enantioenriched cyclopropane-fused tetrahydrofurans that contain a trisubstituted vinyl group at the bridgehead, as showcased in several stereospecific transformations, may serve as useful intermediates for stereoselective organic synthesis. The successful demonstration of this new asymmetric radical process via Co(II)-MRC points out a potentially general approach for controlling enantioselectivity as well as diastereoselectivity in synthetically attractive radical cascade reactions.
Collapse
Affiliation(s)
- Congzhe Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Duo-Sheng Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Alexander M McKillop
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
31
|
Wang X, Ke J, Zhu Y, Deb A, Xu Y, Zhang XP. Asymmetric Radical Process for General Synthesis of Chiral Heteroaryl Cyclopropanes. J Am Chem Soc 2021; 143:11121-11129. [PMID: 34282613 PMCID: PMC8399893 DOI: 10.1021/jacs.1c04655] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A highly efficient catalytic method has been developed for asymmetric radical cyclopropanation of alkenes with in situ-generated α-heteroaryldiazomethanes via Co(II)-based metalloradical catalysis (MRC). Through fine-tuning the cavity-like environments of newly-synthesized D2-symmetric chiral amidoporphyrins as the supporting ligand, the optimized Co(II)-based metalloradical system is broadly applicable to α-pyridyl and other α-heteroaryldiazomethanes for asymmetric cyclopropanation of wide-ranging alkenes, including several types of challenging substrates. This new catalytic methodology provides a general access to valuable chiral heteroaryl cyclopropanes in high yields with excellent both diastereoselectivities and enantioselectivities. Combined computational and experimental studies further support the underlying stepwise radical mechanism of the Co(II)-based olefin cyclopropanation involving α- and γ-metalloalkyl radicals as the key intermediates.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jing Ke
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yiling Zhu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Arghya Deb
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yijie Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
32
|
Zhang Z, Stückrath JB, Grimme S, Gansäuer A. Titanocene‐Catalyzed [2+2] Cycloaddition of Bisenones and Comparison with Photoredox Catalysis and Established Methods. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Zhenhua Zhang
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| | - Julius B. Stückrath
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Universität Bonn Beringstrasse 4 53115 Bonn Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Universität Bonn Beringstrasse 4 53115 Bonn Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Strasse 1 53121 Bonn Germany
| |
Collapse
|
33
|
Zhang Z, Stückrath JB, Grimme S, Gansäuer A. Titanocene-Catalyzed [2+2] Cycloaddition of Bisenones and Comparison with Photoredox Catalysis and Established Methods. Angew Chem Int Ed Engl 2021; 60:14339-14344. [PMID: 33871126 PMCID: PMC8251790 DOI: 10.1002/anie.202102739] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 12/17/2022]
Abstract
Cp2 Ti(TFA) is a broadly applicable catalyst for the [2+2] cycloaddition of bisenones by inner-sphere electron transfer. The attractiveness of this mechanism is shown by comparison with outer-sphere ET methods. DFT calculations show that the reaction proceeds through a unique unfavorable 5-exo (the rate-determining step) and a favorable 4-exo cyclization.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Strasse 153121BonnGermany
| | - Julius B. Stückrath
- Mulliken Center for Theoretical ChemistryInstitut für Physikalische und Theoretische ChemieUniversität BonnBeringstrasse 453115BonnGermany
| | - Stefan Grimme
- Mulliken Center for Theoretical ChemistryInstitut für Physikalische und Theoretische ChemieUniversität BonnBeringstrasse 453115BonnGermany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Strasse 153121BonnGermany
| |
Collapse
|
34
|
Cindy Lee WC, Wang DS, Zhang C, Xie J, Li B, Zhang XP. Asymmetric Radical Cyclopropanation of Dehydroaminocarboxylates: Stereoselective Synthesis of Cyclopropyl α-Amino Acids. Chem 2021; 7:1588-1601. [PMID: 34693072 PMCID: PMC8528158 DOI: 10.1016/j.chempr.2021.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A catalytic radical process has been developed for asymmetric cyclopropanation of dehydroaminocarboxylates with in situ-generated α-aryldiazomethanes via Co(II)-based metalloradical catalysis (MRC). Through fine-tuning the environments of D 2-symmetric chiral amidoporphyrin platform as the supporting ligands, the Co(II)-metalloradical system can effectively activate various α-aryldiazomethanes to cyclopropanate different dehydroaminocarboxylates under mild conditions, enabling the stereoselective synthesis of chiral cyclopropyl α-amino acid derivatives. In addition to high yields and excellent enantioselectivities, the Co(II)-catalyzed asymmetric radical cyclopropanation exhibits (Z)-diastereoselectivity, which is the opposite of uncatalyzed thermal reaction. Combined computational and experimental studies support a stepwise radical mechanism for the Co(II)-catalyzed cyclopropanation reaction. The resulting enantioenriched (Z)-α-amino-β-arylcyclopropanecarboxylates, as showcased for the efficient synthesis of dipeptides, may serve as unique non-proteinogenic amino acid building blocks for the design and preparation of novel peptides with restricted conformations.
Collapse
Affiliation(s)
- Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Duo-Sheng Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Congzhe Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingjing Xie
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Bo Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X. Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
35
|
Kalra A, Bagchi V, Paraskevopoulou P, Das P, Ai L, Sanakis Y, Raptopoulos G, Mohapatra S, Choudhury A, Sun Z, Cundari TR, Stavropoulos P. Is the Electrophilicity of the Metal Nitrene the Sole Predictor of Metal-Mediated Nitrene Transfer to Olefins? Secondary Contributing Factors as Revealed by a Library of High-Spin Co(II) Reagents. Organometallics 2021; 40:1974-1996. [PMID: 35095166 PMCID: PMC8797515 DOI: 10.1021/acs.organomet.1c00267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent research has highlighted the key role played by the electron affinity of the active metal-nitrene/imido oxidant as the driving force in nitrene additions to olefins to afford valuable aziridines. The present work showcases a library of Co(II) reagents that, unlike the previously examined Mn(II) and Fe(II) analogues, demonstrate reactivity trends in olefin aziridinations that cannot be solely explained by the electron affinity criterion. A family of Co(II) catalysts (17 members) has been synthesized with the assistance of a trisphenylamido-amine scaffold decorated by various alkyl, aryl, and acyl groups attached to the equatorial amidos. Single-crystal X-ray diffraction analysis, cyclic voltammetry and EPR data reveal that the high-spin Co(II) sites (S = 3/2) feature a minimal [N3N] coordination and span a range of 1.4 V in redox potentials. Surprisingly, the Co(II)-mediated aziridination of styrene demonstrates reactivity patterns that deviate from those anticipated by the relevant electrophilicities of the putative metal nitrenes. The representative L4Co catalyst (-COCMe3 arm) is operating faster than the L8Co analogue (-COCF3 arm), in spite of diminished metal-nitrene electrophilicity. Mechanistic data (Hammett plots, KIE, stereocontrol studies) reveal that although both reagents follow a two-step reactivity path (turnover-limiting metal-nitrene addition to the C b atom of styrene, followed by product-determining ring-closure), the L4Co catalyst is associated with lower energy barriers in both steps. DFT calculations indicate that the putative [L4Co]NTs and [L8Co]NTs species are electronically distinct, inasmuch as the former exhibits a single-electron oxidized ligand arm. In addition, DFT calculations suggest that including London dispersion corrections for L4Co (due to the polarizability of the tert-Bu substituent) can provide significant stabilization of the turnover-limiting transition state. This study highlights how small ligand modifications can generate stereoelectronic variants that in certain cases are even capable of overriding the preponderance of the metal-nitrene electrophilicity as a driving force.
Collapse
Affiliation(s)
- Anshika Kalra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Vivek Bagchi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States; Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Patrina Paraskevopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Purak Das
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Lin Ai
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States; College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yiannis Sanakis
- Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, NCSR "Demokritos", Athens 15310, Greece
| | - Grigorios Raptopoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Sudip Mohapatra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Amitava Choudhury
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Zhicheng Sun
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - Thomas R Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - Pericles Stavropoulos
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
36
|
Nakagawa Y, Yamaguchi K, Hosokawa S. Iodide-Mediated [3 + 2]-Cycloaddition Reaction with N-Tosylaziridines and α,β-Unsaturated Ketones. J Org Chem 2021; 86:7787-7796. [PMID: 34032429 DOI: 10.1021/acs.joc.1c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The [3 + 2]-cycloaddition reaction between N-tosylaziridines and α,β-unsaturated ketones was promoted with lithium iodide. The reaction proceeded under mild conditions to provide N-tosylpyrrolidines. Quaternary carbon-possessing 3,3-disubstituted pyrrolidines including spiro compounds were afforded in high yields. A simple procedure with easy to handle reagents makes this reaction concise. The intramolecular version of this reaction was applied to synthesize tropane skeletons.
Collapse
Affiliation(s)
- Yuya Nakagawa
- Department of Applied Chemistry, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Keigo Yamaguchi
- Department of Applied Chemistry, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Seijiro Hosokawa
- Department of Applied Chemistry, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
37
|
Sumiyama K, Toriumi N, Iwasawa N. Use of Isopropyl Alcohol as a Reductant for Catalytic Dehydoxylative Dimerization of Benzylic Alcohols Utilizing Ti−O Bond Photohomolysis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Keiichi Sumiyama
- Department of Chemistry Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Naoyuki Toriumi
- Department of Chemistry Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Nobuharu Iwasawa
- Department of Chemistry Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
38
|
Liu J, Yang Y, Ouyang K, Zhang WX. Transition-metal-catalyzed transformations of C–N single bonds: Advances in the last five years, challenges and prospects. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
39
|
Riart-Ferrer X, Sang P, Tao J, Xu H, Jin LM, Lu H, Cui X, Wojtas L, Zhang XP. Metalloradical activation of carbonyl azides for enantioselective radical aziridination. Chem 2021; 7:1120-1134. [PMID: 33869888 DOI: 10.1016/j.chempr.2021.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Organic azides have been increasingly employed as nitrogen sources for catalytic olefine aziridination due to their ease of preparation and generation of benign N2 as the only byproduct. Among common organic azides, carbonyl azides have not been previously demonstrated as effective nitrogen sources for intermolecular olefin aziridination despite the synthetic utilities of N-carbonyl aziridines. As a new application of metalloradical catalysis, we have developed a catalytic system that can effectively employ the carbonyl azide TrocN3 for highly asymmetric aziridination of alkenes at room temperature. The resulting enantioenriched N-Trocaziridines have been shown as valuable chiral synthons for stereoselective synthesis of other chiral aziridines and various chiral amines. The Co(II)-based metalloradical system, which proceeds with distinctive stepwise radical mechanism, may provide a general method for asymmetric synthesis of chiral aziridines from alkenes with organic azides.
Collapse
Affiliation(s)
- Xavier Riart-Ferrer
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
- These authors contributed equally
| | - Peng Sang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
- These authors contributed equally
| | - Jingran Tao
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
- These authors contributed equally
| | - Hao Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Li-Mei Jin
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Hongjian Lu
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Xin Cui
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
- Lead contact
| |
Collapse
|
40
|
Hilche T, Reinsberg PH, Klare S, Liedtke T, Schäfer L, Gansäuer A. Design Platform for Sustainable Catalysis with Radicals: Electrochemical Activation of Cp 2 TiCl 2 for Catalysis Unveiled. Chemistry 2021; 27:4903-4912. [PMID: 33085978 PMCID: PMC7986168 DOI: 10.1002/chem.202004519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 12/17/2022]
Abstract
The combination of synthesis, rotating ring-disk electrode (RRDE) and cyclic voltammetry (CV) measurements, and computational investigations with the aid of DFT methods shows how a thiourea, a squaramide, and a bissulfonamide as additives affect the Eq Cr equilibrium of Cp2 TiCl2 . We have, for the first time, provided quantitative data for the Eq Cr equilibrium and have determined the stoichiometry of adduct formation of [Cp2 Ti(III)Cl2 ]- , [Cp2 Ti(III)Cl] and [Cp2 Ti(IV)Cl2 ] and the additives. By studying the structures of the complexes formed by DFT methods, we have established the Gibbs energies and enthalpies of complex formation as well as the adduct structures. The results not only demonstrate the correctness of our use of the Eq Cr equilibrium as predictor for sustainable catalysis. They are also a design platform for the development of novel additives in particular for enantioselective catalysis.
Collapse
Affiliation(s)
- Tobias Hilche
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Philip H. Reinsberg
- Institut für Physikalische und Theoretische Chemie, Universität BonnRömerstraße 16453117BonnGermany
| | - Sven Klare
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Theresa Liedtke
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Luise Schäfer
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| |
Collapse
|
41
|
Agasti S, Beattie NA, McDouall JJW, Procter DJ. SmI 2-Catalyzed Intermolecular Coupling of Cyclopropyl Ketones and Alkynes: A Link between Ketone Conformation and Reactivity. J Am Chem Soc 2021; 143:3655-3661. [PMID: 33629852 PMCID: PMC8028054 DOI: 10.1021/jacs.1c01356] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The archetypal single electron transfer reductant, samarium(II) diiodide (SmI2, Kagan's reagent), remains one of the most important reducing agents and mediators of radical chemistry after four decades of widespread use in synthesis. While the chemistry of SmI2 is very often unique, and thus the reagent is indispensable, it is almost invariably used in superstoichiometric amounts, thus raising issues of cost and waste. Of the few reports of the use of catalytic SmI2, all require the use of superstoichiometric amounts of a metal coreductant to regenerate Sm(II). Here, we describe a SmI2-catalyzed intermolecular radical coupling of aryl cyclopropyl ketones and alkynes. The process shows broad substrate scope and delivers a library of decorated cyclopentenes with loadings of SmI2 as low as 15 mol %. The radical relay strategy negates the need for a superstoichiometric coreductant and additives to regenerate SmI2. Crucially, our study uncovers an intriguing link between ketone conformation and efficient cross-coupling and thus provides an insight into the mechanism of radical relays involving SmI2. The study lays further groundwork for the future use of the classical reagent SmI2 in contemporary radical catalysis.
Collapse
Affiliation(s)
- Soumitra Agasti
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Nicholas A Beattie
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Joseph J W McDouall
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - David J Procter
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
42
|
Funk P, Richrath RB, Bohle F, Grimme S, Gansäuer A. Oxidation Under Reductive Conditions: From Benzylic Ethers to Acetals with Perfect Atom-Economy by Titanocene(III) Catalysis. Angew Chem Int Ed Engl 2021; 60:5482-5488. [PMID: 33245820 PMCID: PMC7986230 DOI: 10.1002/anie.202013561] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Indexed: 12/19/2022]
Abstract
Described here is a titanocene-catalyzed reaction for the synthesis of acetals and hemiaminals from benzylic ethers and benzylic amines, respectively, with pendant epoxides. The reaction proceeds by catalysis in single-electron steps. The oxidative addition comprises an epoxide opening. An H-atom transfer, to generate a benzylic radical, serves as a radical translocation step, and an organometallic oxygen rebound as a reductive elimination. The reaction mechanism was studied by high-level dispersion corrected hybrid functional DFT with implicit solvation. The low-energy conformational space was searched by the efficient CREST program. The stereoselectivity was deduced from the lowest lying benzylic radical structures and their conformations are controlled by hyperconjugative interactions and steric interactions between the titanocene catalyst and the aryl groups of the substrate. An interesting mechanistic aspect is that the oxidation of the benzylic center occurs under reducing conditions.
Collapse
Affiliation(s)
- Pierre Funk
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard Domagk-Str. 153121BonnGermany
| | - Ruben B. Richrath
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard Domagk-Str. 153121BonnGermany
| | - Fabian Bohle
- Mulliken Center for Theoretical ChemistryInstitut für Physikalische und Theoretische ChemieUniversität BonnBeringstraße 453115BonnGermany
| | - Stefan Grimme
- Mulliken Center for Theoretical ChemistryInstitut für Physikalische und Theoretische ChemieUniversität BonnBeringstraße 453115BonnGermany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und BiochemieUniversität BonnGerhard Domagk-Str. 153121BonnGermany
| |
Collapse
|
43
|
Funk P, Richrath RB, Bohle F, Grimme S, Gansäuer A. Oxidation Under Reductive Conditions: From Benzylic Ethers to Acetals with Perfect Atom‐Economy by Titanocene(III) Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Pierre Funk
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard Domagk-Str. 1 53121 Bonn Germany
| | - Ruben B. Richrath
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard Domagk-Str. 1 53121 Bonn Germany
| | - Fabian Bohle
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Universität Bonn Beringstraße 4 53115 Bonn Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Universität Bonn Beringstraße 4 53115 Bonn Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard Domagk-Str. 1 53121 Bonn Germany
| |
Collapse
|
44
|
Li Y, Chen F, Zhu S, Chu L. Photoinduced triiodide-mediated [3 + 2] cycloaddition of N-tosyl aziridines and alkenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00102g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A photoinduced triiodide-mediated [3 + 2] cycloaddition of N-Ts aziridines and alkenes is described herein. This operationally simple protocol enables regioselective access to a wide range of substituted pyrrolidines under mild-free conditions.
Collapse
Affiliation(s)
- Yuanbo Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Fan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| |
Collapse
|
45
|
Zhu WQ, Zhang ZW, Han WY, Fang YC, Yang P, Li LQ, Chen YZ. Aziridine used as a vinylidene unit in palladium-catalyzed [2 + 2 + 1] domino annulation. Org Chem Front 2021. [DOI: 10.1039/d1qo00458a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of chromone fused methylenecyclopentanes are efficiently constructed in moderate to good yields by Pd-catalyzed [2 + 2 + 1] annulation, in which aziridine is used as a vinylidene unit by cleavage of two C–N bonds for the first time.
Collapse
Affiliation(s)
- Wen-Qing Zhu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Zi-Wei Zhang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Yu-Chen Fang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Ping Yang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Lin-Qiang Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| |
Collapse
|
46
|
Lang K, Li C, Kim I, Zhang XP. Enantioconvergent Amination of Racemic Tertiary C-H Bonds. J Am Chem Soc 2020; 142:20902-20911. [PMID: 33249845 DOI: 10.1021/jacs.0c11103] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Racemization is considered to be an intrinsic stereochemical feature of free radical chemistry as can be seen in traditional radical halogenation reactions of optically active tertiary C-H bonds. If the facile process of radical racemization could be effectively combined with an ensuing step of bond formation in an enantioselective fashion, then it would give rise to deracemizative functionalization of racemic tertiary C-H bonds for stereoselective construction of chiral molecules bearing quaternary stereocenters. As a demonstration of this unique potential in radical chemistry, we herein report that metalloradical catalysis can be successfully applied to devise Co(II)-based catalytic system for enantioconvergent radical amination of racemic tertiary C(sp3)-H bonds. The key to the success of the radical process is the development of Co(II)-based metalloradical catalyst with fitting steric, electronic, and chiral environments of the D2-symmetric chiral amidoporphyrin as the supporting ligand. The existence of optimal reaction temperature is recognized as an important factor in the realization of the enantioconvergent radical process. Supported by an optimized chiral ligand, the Co(II)-based metalloradical system can effectively catalyze the enantioconvergent 1,6-amination of racemic tertiary C(sp3)-H bonds at the optimal temperature, affording chiral α-tertiary amines in excellent yields with high enantiocontrol of the newly created quaternary stereocenters. Systematic studies, including experiments utilizing optically active deuterium-labeled C-H substrates as a model system, shed light on the underlying mechanistic details of this new catalytic process for enantioconvergent radical C-H amination. The remarkable power to create quaternary stereocenters bearing multiple functionalities from ubiquitous C-H bonds, as showcased with stereoselective construction of bicyclic N-heterocycles, opens the door for future synthetic applications of this new radical technology.
Collapse
Affiliation(s)
- Kai Lang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chaoqun Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Isaac Kim
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
47
|
Jin LM, Xu P, Xie J, Zhang XP. Enantioselective Intermolecular Radical C-H Amination. J Am Chem Soc 2020; 142:20828-20836. [PMID: 33238707 DOI: 10.1021/jacs.0c10415] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Radical reactions hold a number of inherent advantages in organic synthesis that may potentially impact the planning and practice for construction of organic molecules. However, the control of enantioselectivity in radical processes remains one of the longstanding challenges. While significant advances have recently been achieved in intramolecular radical reactions, the governing of asymmetric induction in intermolecular radical reactions still poses challenging issues. We herein report a catalytic approach that is highly effective for controlling enantioselectivity as well as reactivity of the intermolecular radical C-H amination of carboxylic acid esters with organic azides via Co(II)-based metalloradical catalysis (MRC). The key to the success lies in the catalyst development to maximize noncovalent attractive interactions through fine-tuning of the remote substituents of the D2-symmetric chiral amidoporphyrin ligand. This noncovalent interaction strategy presents a solution that may be generally applicable in controlling reactivity and enantioselectivity in intermolecular radical reactions. The Co(II)-catalyzed intermolecular C-H amination, which operates under mild conditions with the C-H substrate as the limiting reagent, exhibits a broad substrate scope with high chemoselectivity, providing effective access to valuable chiral amino acid derivatives with high enantioselectivities. Systematic mechanistic studies shed light into the working details of the underlying stepwise radical pathway for the Co(II)-based C-H amination.
Collapse
Affiliation(s)
- Li-Mei Jin
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Pan Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingjing Xie
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
48
|
Huo Z, Xia L, Li G, Xiao X. A "Polymer Template" Strategy for Carbonized Polymer Dots with Controllable Properties. Chemistry 2020; 26:14754-14764. [PMID: 32841406 DOI: 10.1002/chem.202003379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 01/07/2023]
Abstract
Limited avenues are available for property control of carbonized polymer dots (PDs) owing to the unsatisfactory understanding of PDs" formation. Herein, a de novo "polymer template" strategy is presented for PDs with customizable functional surface groups (FSG), size, and underlying fluorescence, with a detailed mechanism. The strategy relies on novel di-active site polymers (DASPs) prepared from alkenyl azides via [3+2] cycloaddition and guanidino hydrolysis. Benefiting from these specific reactions, the DASPs were convenient for mass production and stable for storage, and could be transformed to PDs upon addition of nucleophilic agents through nucleophilic addition and substitution at 70 °C. By regulating the types of alkenyl azides, nucleophilic agents, and reaction conditions, the as-prepare PDs could be tailored with controlled types of core, FSG, and particle size, as well as fluorescence properties of quantum yield from 8.2-55.6 %, and emission maximum from 380-500 nm. These specialties make this "polymer template" strategy a promising start for building PDs-based sensor platforms. Moreover, the strategy could further our understanding towards PDs' formation, and open up a new way to customize PDs for specific needs in the fields of analysis, catalysis, images, etc.
Collapse
Affiliation(s)
- Zhiming Huo
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
49
|
Martínez AR, Morales LP, Ojeda ED, Rodríguez MC, Rodríguez-García I. The Proven Versatility of Cp 2TiCl. J Org Chem 2020; 86:1311-1329. [PMID: 33147037 DOI: 10.1021/acs.joc.0c01233] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last two decades, titanocene monochloride has been postulated as a monoelectronic transfer reagent capable of catalyzing an important variety of chemical transformations. In this Perspective, our contributions to this growing field of research are summarized and analyzed. Especially known have been our contributions in C-C bond formation reactions, hydrogen-atom transfer from water to radicals, and isomerization reactions, as well as the development of a catalytic cycle that has subsequently allowed the preparation of a great variety of natural terpenes. It is also worth mentioning our contribution in the postulation of this single-electron transfer agent (SET) as a new green catalyst with a broad range of applications in organic and organometallic chemistry. The most significant catalytic processes developed by other research groups are also briefly described, with special emphasis on the reaction mechanisms involved. Finally, a reflection is made on the future trends in the research of this SET, aimed at consolidating this chemical as a new green reagent that will be widely used in fine chemistry, green chemistry, and industrial chemical processes.
Collapse
Affiliation(s)
- Antonio Rosales Martínez
- Department of Chemical Engineering, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain
| | - Laura Pozo Morales
- Department of Chemical Engineering, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain
| | - Emilio Díaz Ojeda
- Department of Chemical Engineering, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain
| | - María Castro Rodríguez
- Department of Chemical Engineering, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain
| | | |
Collapse
|
50
|
Xie H, Guo J, Wang YQ, Wang K, Guo P, Su PF, Wang X, Shu XZ. Radical Dehydroxylative Alkylation of Tertiary Alcohols by Ti Catalysis. J Am Chem Soc 2020; 142:16787-16794. [DOI: 10.1021/jacs.0c07492] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Xie
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Jiandong Guo
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
| | - Yu-Quan Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Ke Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Peng Guo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Pei-Feng Su
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiaotai Wang
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, Colorado 80217-3364, United States
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|