1
|
Yeung J, Yeganeh-Salman A, Miao L, Stephan DW. Reactions of 1,1- and 1,2-bis-boranes with a protic diamine and hydrazine. Dalton Trans 2024. [PMID: 39494745 DOI: 10.1039/d4dt02704c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The reactions of 1,1- and 1,2-bis-boranes, PhCH2CH(B(C6F5)2)21 and Me3SiCH(B(C6F5)2)CH2B(C6F5)22, with o-phenylenediamine and hydrazine are reported. The coordination of o-phenylenediamine gives the expected adducts, PhCH2CH(B(C6F5)2(H2N))2C6H44 and Me3SiCH(B(C6F5)2)CH2B(C6F5)2((H2N)2C6H4) 6. Under thermal duress, 4 undergoes retrohydroboration, resulting in the reaction of the diamine with HB(C6F5)2 to give (C6F5)2B(NH)(NH2)C6H45. In contrast, 6 undergoes protolytic loss of C6F5H, affording Me3SiCH(B(C6F5)2)CH2(B(C6F5)(NH2)(NH)C6H4) 7. In a related fashion, the bis-boranes react with hydrazine. In the case of bis-borane 1, the isolated adduct PhCH2CH(B(C6F5)2(NH2))2·THF 8 can be deprotonated to give species 9. In contrast, the reaction of 2 proceeds with rapid protonolysis, leading to the formation of Me3SiCH(B(C6F5)2)CHB(C6F5)(N2H3)·THF 10. This study illustrates both the reaction pathways accessible from the adducts of bis-boranes and the impact of coordination to boron on the acidity of NH groups.
Collapse
Affiliation(s)
- Jason Yeung
- Department of Chemistry, University of Toronto, 80 St George St, Toronto, ON, Canada M5S3H6.
| | - Amir Yeganeh-Salman
- Department of Chemistry, University of Toronto, 80 St George St, Toronto, ON, Canada M5S3H6.
| | - Linkun Miao
- Department of Chemistry, University of Toronto, 80 St George St, Toronto, ON, Canada M5S3H6.
| | - Douglas W Stephan
- Department of Chemistry, University of Toronto, 80 St George St, Toronto, ON, Canada M5S3H6.
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, P. R. China
| |
Collapse
|
2
|
Park S, Hwang JY, Shin J, Kim Y. N-Heterocyclic Carbene-Derived Carbon Disulfide Radical Ligands for Palladium Diradicals. J Am Chem Soc 2024. [PMID: 39353058 DOI: 10.1021/jacs.4c11082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
N-heterocyclic carbenes (NHCs) are recognized for their ability to stabilize various main group radicals; however, NHC-derived, sulfur-based radicals remain rare. In this study, we successfully synthesized and characterized a series of palladium diradical complexes that featured new sulfur-based radical ligands from NHC-carbon disulfide adducts. Spectroscopic and computational characterizations of the palladium complexes confirmed the open-shell singlet ground state, which resulted from the antiferromagnetic coupling of two unpaired electrons on each ligand. Proton nuclear magnetic resonance relaxometry was used to experimentally confirm the presence of these unpaired electrons. Moreover, the redox behavior of the complexes was localized on the ligand center, confirming the redox activity of the ligands. The discovery of this sulfur-based, redox-active radical ligand underscores the versatility and significance of NHC-derived radicals, thereby expanding the repertoire of radical ligands and opening new avenues for advanced material and catalytic systems.
Collapse
Affiliation(s)
- Subin Park
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
| | - Jeong-Yoon Hwang
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
| | - Jeongcheol Shin
- Department of Chemistry, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Youngsuk Kim
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
- Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Dong S, Zhu J. Predicting Small Molecule Activations Including Dinitrogen Based on an Inorganic Benzene B 4N 2 Framework. Inorg Chem 2024; 63:15984-15992. [PMID: 39141783 DOI: 10.1021/acs.inorgchem.4c02391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Although main group species have emerged in the field of dinitrogen activation in recent years, the reported examples are particularly rare in comparison with transition metal complexes due to their significant challenges. Herein, we demonstrate a [4 + 2] cycloaddition reaction of N2 (with an activation energy as low as 12.5 kcal mol-1) initiated by an inorganic benzene via density functional theory calculations. Such N2 activation is supported by the elongated nitrogen-nitrogen bond distance (dNN), decreased vibration frequency (νNN), and weakened Wiberg bond index (WBINN). Subsequently, the "push-pull" electronic effect, formed by introducing a Lewis acid, HB(C6F5)2, facilitates the generation of thermodynamically more stable products. In addition, this inorganic benzene could also be used to activate a series of small molecules, including carbon dioxide, acetylene, ethylene, and acetonitrile with reaction barriers ranging from 4.7 to 11.6 kcal mol-1. Our findings provide an alternative approach to N2 activation and functionalization, theoretically validating the feasibility of the dual Lewis acid strategy for dinitrogen activation.
Collapse
Affiliation(s)
- Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
4
|
Fan J, Xu J, Ma Q, Yao S, Zhao L, Frenking G, Driess M. Silylene-Stabilized Neutral Dibora-Aromatics with a B═B Bond. J Am Chem Soc 2024; 146:20458-20467. [PMID: 38980827 PMCID: PMC11273343 DOI: 10.1021/jacs.4c06579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
The unprecedented silylene-supported dibenzodiboraoxepin 2 and 9,10-diboraphenanthrene complexes 6 and 8 were synthesized. The (NHSi)2B2(xanthene) [NHSi = PhC(NtBu)2(Me2N)Si:] 2 results from debromination of the bis(NHSi)-stabilized bis(dibromoboryl)xanthene 1 with potassium graphite (KC8); 2 is capable of activating white phosphorus and ammonia to form the B2P4 cage compound 3 and H2N-B-B-H diborane species 4, respectively. The thermal rearrangement of 2 affords the 9,10-dihydro-9,10-diboraphenanthrene 5 through a bis(NHSi)-assisted intramolecular reductive C-O-C deoxygenation process. Notably, the 9,10-diboraphenanthrene derivatives 6 and 8 could be generated by deoxygenation of 2 with KC8 and 1,3,4,5-tetramethylimidazol-2-ylidene, respectively. The aromaticity of 6 and 8 was confirmed by computational studies. Strikingly, the NHSi ligand in 8 engenders the monodeoxygenation of carbon dioxide in toluene at room temperature to form the CO-stabilized 9,10-diboraphenanthrene derivative 9 via the silaoxadiborinanone intermediate 10.
Collapse
Affiliation(s)
- Jun Fan
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, Berlin 10623, Germany
| | - Jian Xu
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, Berlin 10623, Germany
| | - Qin Ma
- State
Key Laboratory of Materials-Oriented Chemical Engineering, School
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shenglai Yao
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, Berlin 10623, Germany
| | - Lili Zhao
- State
Key Laboratory of Materials-Oriented Chemical Engineering, School
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Gernot Frenking
- State
Key Laboratory of Materials-Oriented Chemical Engineering, School
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- Fachbereich
Chemie, Philipps-Universität Marburg, Marburg 35032, Germany
| | - Matthias Driess
- Department
of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, Berlin 10623, Germany
| |
Collapse
|
5
|
Pattathil V, Pranckevicius C. Aromaticity transfer in an annulated 1,4,2-diazaborole: facile access to Cs symmetric 1,4,2,5-diazadiborinines. Chem Commun (Camb) 2024; 60:7705-7708. [PMID: 38975792 DOI: 10.1039/d4cc02414a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
A tricyclic annulated 1,4,2-diazaborole is readily accessed via reaction of a bidentate pyridyl-carbene ligand with MesBBr2 followed by reduction. Dearomatization of the flanking rings is shown to increase reactivity of this heterocycle in the form of a B-centred alkylation with MeI. Its reaction with hydrido-, fluoro-, and chloro-boranes reveal an unprecedented ring expansion reaction to form a diverse family of B2C2N2 heterocycles, reduction of which allows facile access to the first examples of Cs symmetric 1,4,2,5-diazadiborinines. DFT calculations have shed light on the electronic structures of the reduced species and provide insight into mechanistic aspects of the observed ring-expansion.
Collapse
Affiliation(s)
- Vignesh Pattathil
- Department of Chemistry, Charles E. Fipke Centre for Innovative Research, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, Canada.
| | - Conor Pranckevicius
- Department of Chemistry, Charles E. Fipke Centre for Innovative Research, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, Canada.
| |
Collapse
|
6
|
Das A, Elvers BJ, Chrysochos N, Uddin SI, Gangber T, Krummenacher I, Borah D, Mishra A, Shanmugam M, Yildiz CB, Braunschweig H, Schulzke C, Jana A. Dianionic and Neutral Diboron-Centered Classical Diradicaloids. J Am Chem Soc 2024; 146:9004-9011. [PMID: 38502925 DOI: 10.1021/jacs.3c13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Herein, we report the syntheses and electronic structures of crystalline dianionic as well as neutral diboron-centered classical diradicaloids as boron analogues of classical Thiele, Chichibabin, and Müller (this only for dianionic diradicaloids!) hydrocarbons. These are based on borane radical anion and NHC-stabilized boryl radical spin carriers, respectively. All these dianionic diboron-centered diradicaloids exhibit triplet population at room temperature regardless of the π-conjugated spacer: p-phenylene, p,p'-biphenylene, or p,p″-terphenylene. In the case of neutral diboron-centered diradicaloids, the employed π-conjugated spacer plays a crucial role for the triplet population at room temperature: EPR inactive for p-phenylene vs EPR active for p,p'-biphenylene. The findings emphasize the importance of the spin carriers for the resulting ground-state: borane radical anion vs NHC-stabilized boryl radical along with the pivotal role of the π-conjugated spacer as spin-coupler between two spins. Notably, 100 years (a century) after the first report by Krause of the triphenyl borane radical-anion, being isoelectronic to the triphenylmethyl radical, we convey borane radical anion-based diradicaloids. Furthermore, while donor-stabilized boryl radicals were introduced in the 1980s by Giles and Roberts, said concept is herewith being extended to NHC-stabilized boryl radical-based diradicaloids.
Collapse
Affiliation(s)
- Ayan Das
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, India
| | - Benedict J Elvers
- Institut für Biochemie, Universität Greifswald, Greifswald D-17489, Germany
| | - Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, India
| | - Sk Imraj Uddin
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, India
| | - Tejaswinee Gangber
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, India
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Dipanti Borah
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Anshika Mishra
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, India
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Cem B Yildiz
- Department of Aromatic and Medicinal Plants, Aksaray University, Aksaray 68100, Turkey
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald, Greifswald D-17489, Germany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, India
| |
Collapse
|
7
|
Hollister KK, Molino A, Jones N, Le VV, Dickie DA, Cafiso DS, Wilson DJD, Gilliard RJ. Unlocking Biradical Character in Diborepins. J Am Chem Soc 2024; 146:6506-6515. [PMID: 38420913 DOI: 10.1021/jacs.3c08297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Systems that possess open- and closed-shell behavior attract significant attention from researchers due to their inherent redox and charge transport properties. Herein, we report the synthesis of the first diborepin biradicals. They display tunable biradical character based on the steric and electronic profile of the stabilizing ligand and the resulting geometric deviation of the diborepin core from planarity. While there are numerous all-carbon-based biradical systems, boron-based biradical compounds are comparatively rare, particularly ones in which the radical sites are disjointed. Calculations using density functional theory (DFT) and multireference methods demonstrate that the fused diborepin scaffold exhibits high biradical character, up to 95%. Use of a nonsterically demanding diaminocarbene promotes the planarization of the pentacyclic framework, resulting in the synthetic realization of a diborepin containing a dibora-quinoidal core, which possesses a closed-shell ground state and thermally accessible triplet state. The biradicals were structurally authenticated and characterized by both solution and solid-state electron paramagnetic resonance (EPR) spectroscopy. Half-field transitions were observed at low temperatures (about 170 K), confirming the presence of the triplet state. Initial reactivity studies of the biradicals led to the isolation and structural characterization of bis(borepin hydride) and bis(borepin dianion).
Collapse
Affiliation(s)
- Kimberly K Hollister
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| | - Andrew Molino
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Nula Jones
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - VuongVy V Le
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - David S Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
8
|
Rottschäfer D, Reith S, Schwarzmann J, Tambornino F, Lichtenberg C. Cyclic Hydrocarbon Frameworks Containing Two Bismuth Atoms: Towards 9,10-Dibismaanthracene. Chemistry 2024; 30:e202303363. [PMID: 38116821 DOI: 10.1002/chem.202303363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
When bismuth atoms are incorporated into cyclic organic systems, this commonly goes along with strained or distorted molecular geometries, which can be exploited to modulate the physical and chemical properties of these compounds. In six-membered heterocycles, bismuth atoms are often accompanied by oxygen, sulfur or nitrogen as a second hetero-element. In this work, we present the first examples of six-membered rings, in which two CH units are replaced by BiX moieties (X=Cl, Br, I), resulting in dihydro-anthracene analogs. Their behavior in chemically reversible reduction reactions is explored, aiming at the generation of dibisma-anthracene (bismanthrene). Heterometallic compounds (Bi/Fe, Bi/Mn) are introduced as potential bismanthrene surrogates, as supported by bismanthrene-transfer to selenium. Analytical techniques used to investigate the reported compounds include NMR spectroscopy, high-resolution mass spectrometry, single-crystal X-ray diffraction analyses, and DFT calculations.
Collapse
Affiliation(s)
- Dennis Rottschäfer
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35037, Marburg, Germany
| | - Sascha Reith
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35037, Marburg, Germany
| | - Johannes Schwarzmann
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35037, Marburg, Germany
| | - Frank Tambornino
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35037, Marburg, Germany
| | - Crispin Lichtenberg
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35037, Marburg, Germany
| |
Collapse
|
9
|
Yeganeh-Salman A, Yeung J, Miao L, Stephan DW. Coordination chemistry and FLP reactivity of 1,1- and 1,2-bis-boranes. Dalton Trans 2024; 53:1178-1189. [PMID: 38108120 DOI: 10.1039/d3dt03660j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Coordination chemistry and frustrated Lewis pair (FLP) chemistry have been most commonly studied using monodentate Lewis acids. In this paper, we examine the corresponding reactions employing the 1,1- and 1,2-bis-boranes, PhCH2CH(B(C6F5)2)21 and Me3SiCH(B(C6F5)2)CH2B(C6F5)22, respectively. Coordination of isocyanide to these species results in the formation of the products RCH(B(C6F5)2CNtBu)CH2(B(C6F5)2CNtBu) (R = Ph 3, Me3Si 4). The rearrangement of 1 to give the 1,2-bis-borane adduct 3 was probed and attributed to a donor-induced retrohydroboration and subsequent hydroboration. The analogous reaction of 1 is evident in efforts to use the Gutman-Beckett method to assess its Lewis acidity. However, in combination with tBu3P, bis-boranes 1 and 2 form FLPs and react with H2 to give [tBu3PH][PhCH2CH(B(C6F5)2)2(μ-H)] 5a and [tBu3PH][Me3SiCH(B(C6F5)2)CH2(B(C6F5)2)(μ-H)] 6, respectively. Reactions of 1 and 2 with various donors and PhCCH were shown to give deprotonation and addition products, depending on the nature of the base. However, in the case of 1, products resulting from retrohydroboration, and subsequent hydroboration are evident. Several of these alkyne products are crystallographically characterized.
Collapse
Affiliation(s)
- Amir Yeganeh-Salman
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON, M5S3H6, Canada.
| | - Jason Yeung
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON, M5S3H6, Canada.
| | - Linkun Miao
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON, M5S3H6, Canada.
| | - Douglas W Stephan
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON, M5S3H6, Canada.
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, P. R. China
| |
Collapse
|
10
|
Chen B, Jäkle F. Boron-Nitrogen Lewis Pairs in the Assembly of Supramolecular Macrocycles, Molecular Cages, Polymers, and 3D Materials. Angew Chem Int Ed Engl 2024; 63:e202313379. [PMID: 37815889 DOI: 10.1002/anie.202313379] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
Covering an exceptionally wide range of bond strengths, the dynamic nature and facile tunability of dative B-N bonds is highly attractive when it comes to the assembly of supramolecular polymers and materials. This Minireview offers an overview of advances in the development of functional materials where Lewis pairs (LPs) play a key role in their assembly and critically influence their properties. Specifically, we describe the reversible assembly of linear polymers with interesting optical, electronic and catalytic properties, discrete macrocycles and molecular cages that take up diverse guest molecules and undergo structural changes triggered by external stimuli, covalent organic frameworks (COFs) with intriguing interlocked structures that can embed and separate gases such as CO2 and acetylene, and soft polymer networks that serve as recyclable, self-healing, and responsive thermosets, gels and elastomeric materials.
Collapse
Affiliation(s)
- Beijia Chen
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
11
|
Dietz M, Arrowsmith M, Braunschweig H. CAAC-stabilised 9,10-diboraanthracene: an electronically and structurally flexible platform for small-molecule activation and metal complexation. Dalton Trans 2024; 53:449-453. [PMID: 38062986 DOI: 10.1039/d3dt03787h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A biradical cyclic alkyl(amino)carbene-stabilised 9,10-diboraanthracene (DBA) activates small molecules such as hydrogen, phenyl azide or TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl) across its two boron atoms, while reactions with [(MeCN)3M(CO)3] (M = Cr, Mo, W) yield the first half-sandwich DBA complexes of the form [(η6-DBA)M(CO)3].
Collapse
Affiliation(s)
- Maximilian Dietz
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
12
|
Liu W, Sun J, Xie Y, Chen L, Xu J. The effective regulation of heterogeneous N-heterocyclic carbenes: structures, electronic properties and transition metal adsorption. Phys Chem Chem Phys 2023; 25:28382-28392. [PMID: 37842982 DOI: 10.1039/d3cp02777e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Heterogeneous N-heterocyclic carbene materials have attracted increasing interest in the fields of materials science and catalysis due to their unique properties and potential applications. However, current heterogeneous systems primarily focus on a single class of carbene. In this work, we simultaneously introduce two classes of typical five-membered carbenes into a graphene lattice, forming a series of novel two-dimensional heterogeneous N-heterocyclic carbene nanomaterials (2D-NCMs) composed of multiple carbenes. First-principles calculations demonstrate the thermodynamic stability of the designed 2D-NCMs, as well as their diverse electronic properties ranging from metallic to semiconducting. The incorporation of carbenes in the 2D-NCMs enables them to adsorb both acidic BCl3 and basic CO molecules, thus exhibiting unique amphoteric properties. Furthermore, the 2D-NCMs exhibit remarkable adsorption capacities for ten transition metals, highlighting their promising potential for future catalytic applications. By adjusting the proportions of the two classes of carbenes, we can effectively regulate the electronic properties and adsorption capacities of small molecules and transition metals in the 2D-NCMs. This study presents a novel strategy for designing and regulating the properties of heterogeneous N-heterocyclic carbenes, offering significant implications in the fields of catalysis and materials science.
Collapse
Affiliation(s)
- Wei Liu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an, Zhejiang, 311300, P. R. China.
| | - Jingchao Sun
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an, Zhejiang, 311300, P. R. China.
| | - Yunhao Xie
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an, Zhejiang, 311300, P. R. China.
| | - Liang Chen
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an, Zhejiang, 311300, P. R. China.
| | - Jing Xu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an, Zhejiang, 311300, P. R. China.
| |
Collapse
|
13
|
Grewelinger P, Wiesmeier T, Präsang C, Morgenstern B, Scheschkewitz D. Diboriranide σ-Complexes of d- and p-Block Metals. Angew Chem Int Ed Engl 2023; 62:e202308678. [PMID: 37522813 DOI: 10.1002/anie.202308678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Diboriranides are the smallest conceivable monoanionic aromatic cycles, yet only limited examples have been reported and their reactivity and complexation behavior remain completely unexplored. We report a straightforward synthesis of the first peraryl diboriranide c-(DurB)2 CPh- as its lithium salt in three steps via the corresponding non-classical diborirane from a readily available 1,2-dichlorodiborane(4) (Dur=2,3,5,6-tetramethylphenyl). With the preparation and complete characterization of representative complexes with tin, copper, gold and zinc, we demonstrate the strong preference of the diboriranide for σ-type coordination modes towards main group and transition metal centers under unperturbed retention of the three-membered B2 C-ring's 2e- π-system.
Collapse
Affiliation(s)
- Philipp Grewelinger
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Tim Wiesmeier
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Carsten Präsang
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Bernd Morgenstern
- Service Center X-ray diffraction, Saarland University, 66123, Saarbrücken, Germany
| | - David Scheschkewitz
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
14
|
Abstract
Heteroatom-centered diradical(oid)s have been in the focus of molecular main group chemistry for nearly 30 years. During this time, the diradical concept has evolved and the focus has shifted to the rational design of diradical(oid)s for specific applications. This review article begins with some important theoretical considerations of the diradical and tetraradical concept. Based on these theoretical considerations, the design of diradical(oid)s in terms of ligand choice, steric, symmetry, electronic situation, element choice, and reactivity is highlighted with examples. In particular, heteroatom-centered diradical reactions are discussed and compared with closed-shell reactions such as pericyclic additions. The comparison between closed-shell reactivity, which proceeds in a concerted manner, and open-shell reactivity, which proceeds in a stepwise fashion, along with considerations of diradical(oid) design, provides a rational understanding of this interesting and unusual class of compounds. The application of diradical(oid)s, for example in small molecule activation or as molecular switches, is also highlighted. The final part of this review begins with application-related details of the spectroscopy of diradical(oid)s, followed by an update of the heteroatom-centered diradical(oid)s and tetraradical(oid)s published in the last 10 years since 2013.
Collapse
Affiliation(s)
- Alexander Hinz
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Jonas Bresien
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| | - Frank Breher
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Axel Schulz
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| |
Collapse
|
15
|
Ferrer M, Alkorta I, Elguero J, Oliva-Enrich JM. A theoretical study of the reaction of borata derivatives of benzene, anthracene and pentacene with CO 2. Phys Chem Chem Phys 2023; 25:22512-22522. [PMID: 37581605 DOI: 10.1039/d3cp02516k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
A theoretical study of the reaction between several borataacenes (1-methylboratabenzene, 9-methyl-9-borataanthracene and cis and trans diboratapentacene) and CO2 has been carried out at the M06-2X computational level. The influence of a counterion (potassium cation), the cation complexation by 18-crown-6-ether and solvent effects have been explored. The computational results predict anti/syn selectivity as found experimentally in the cis- and trans-diboratapentacene reaction with CO2 (Baker et al., J. Am. Chem. Soc., 2023, 145, 2028).
Collapse
Affiliation(s)
- Maxime Ferrer
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain.
- PhD Program in Theoretical Chemistry and Computational Modeling, Doctoral School, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain.
| | - José Elguero
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain.
| | - Josep M Oliva-Enrich
- Instituto de Química-Física Blas Cabrera (CSIC), Serrano, 119, E-28006 Madrid, Spain
| |
Collapse
|
16
|
Zhou B, Gabbaï FP. Four-Electron Reduction of O 2 Using Distibines in the Presence of ortho-Quinones. J Am Chem Soc 2023; 145:13758-13767. [PMID: 37306561 PMCID: PMC10863049 DOI: 10.1021/jacs.3c02223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 06/13/2023]
Abstract
This study, which aims to identify atypical platforms for the reduction of dioxygen, describes the reaction of O2 with two distibines, namely, 4,5-bis(diphenylstibino)-2,7-di-tert-butyl-9,9-dimethylxanthene and 4,5-bis(diphenylstibino)-2,7-di-tert-butyl-9,9-dimethyldihydroacridine, in the presence of an ortho-quinone such as phenanthraquinone. The reaction proceeds by oxidation of the two antimony atoms to the + V state in concert with reductive cleavage of the O2 molecule. As confirmed by 18O labeling experiments, the two resulting oxo units combine with the ortho-quinone to form an α,α,β,β-tetraolate ligand that bridges the two antimony(V) centers. This process, which has been studied both experimentally and computationally, involves the formation of asymmetric, mixed-valent derivatives featuring a stibine as well as a catecholatostiborane formed by oxidative addition of the quinone to only one of the antimony centers. Under aerobic conditions, the catecholatostiborane moiety reacts with O2 to form a semiquinone/peroxoantimony intermediate, as supported by NMR spectroscopy in the case of the dimethyldihydroacridine derivative. These intermediates swiftly evolve into the symmetrical bis(antimony(V)) α,α,β,β-tetraolate complexes via low barrier processes. Finally, the controlled protonolysis and reduction of the bis(antimony(V)) α,α,β,β-tetraolate complex based on the 9,9-dimethylxanthene platform have been investigated and shown to regenerate the starting distibine and the ortho-quinone. More importantly, these last reactions also produce two equivalents of water as the product of O2 reduction.
Collapse
Affiliation(s)
- Benyu Zhou
- Texas A&M University, Department of Chemistry, College
Station, Texas 77843, United States
| | - François P. Gabbaï
- Texas A&M University, Department of Chemistry, College
Station, Texas 77843, United States
| |
Collapse
|
17
|
Kirkland JK, Johnson SK, Vogiatzis KD. Computational investigation of functionalized carbenes on dinitrogen activation. J Comput Chem 2023; 44:832-842. [PMID: 36480003 DOI: 10.1002/jcc.27046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022]
Abstract
Activation of the dinitrogen triple bond is a crucial step in the overall fixation of atmospheric nitrogen into usable forms for industrial and biological applications. Current synthetic catalysts incorporate metal ions to facilitate the activation and cleavage of dinitrogen. The high price of metal-based catalysts and the challenge of catalyst recovery during industrial catalytic processes has led to increasing interest in metal-free catalysts. One step toward metal-free catalysis is the use of frustrated Lewis pairs (FLPs). In this study, we have examined 18 functionalized carbenes as FLPs to elucidate the influence of steric and electronic effects on the activation of dinitrogen. To test the effects of functionalization on dinitrogen activation, we have performed density functional theory (DFT), multireference, non and extended transition state-natural orbital for chemical valence (ETS-NOCV) calculations. Our results suggest that functional groups which introduce strong electron-withdrawing effects and/or engage in extended π/π* systems lead to the lowering of the dissociation energy of the dinitrogen bond, which further contributes to greater nitrogen activation. We conjecture that these effects are due to enhanced back-bonding capability of the p orbital of the carbene carbon atoms to the adjacent nitrogen atoms (increasing Lewis basicity of the carbene carbon atom) and enhanced stability of dissociated products. Our concluding remarks include opportunities to extend this activation study to explore the entire catalytic cycle with promising functionalized carbenes for experimental evaluation.
Collapse
Affiliation(s)
- Justin K Kirkland
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | - Sophia K Johnson
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA.,Department of Chemistry, University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
18
|
Barker JE, Obi AD, Dickie DA, Gilliard RJ. Boron-Doped Pentacenes: Isolation of Crystalline 5,12- and 5,7-Diboratapentacene Dianions. J Am Chem Soc 2023; 145:2028-2034. [PMID: 36689632 DOI: 10.1021/jacs.2c11494] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The syntheses, molecular structures, reactivities, and computational assessment of dipotassium diboratapentacene isomers are described (1 and 2). These compounds represent the first examples of aromatized diboraacenes where the boron atoms are spatially separated in different rings of the acene framework. Both 1 and 2 react with carbon dioxide (CO2) via diastereoselective carboxylation of the pentacene backbone that likely proceeds by a frustrated Lewis pair-like mechanism. The placement of the boron atoms and the reactivity studies provide a platform for later stage functionalization of diboraacenes beyond the central ring of the polycyclic aromatic hydrocarbon core.
Collapse
Affiliation(s)
- Joshua E Barker
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Akachukwu D Obi
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
19
|
Zhang C, Liu X, Wang J, Ye Q. A Three-Dimensional Inorganic Analogue of 9,10-Diazido-9,10-Diboraanthracene: A Lewis Superacidic Azido Borane with Reactivity and Stability. Angew Chem Int Ed Engl 2022; 61:e202205506. [PMID: 35713166 PMCID: PMC9541227 DOI: 10.1002/anie.202205506] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 12/16/2022]
Abstract
Herein, we report the facile synthesis of a three-dimensional (3D) inorganic analogue of 9,10-diazido-9,10-dihydrodiboraantracene, which turned out to be a monomer in both the solid and solution state, and thermally stable up to 230 °C, representing a rare example of azido borane with boosted Lewis acidity and stability in one. Apart from the classical acid-base and Staudinger reactions, E-H bond activation (E=B, Si, Ge) was investigated. While the reaction with B-H (9-borabicyclo[3.3.1]nonane) led directly to the 1,1-addition on Nα upon N2 elimination, the Si-H (Et3 SiH, PhMe2 SiH) activation proceeded stepwise via 1,2-addition, with the key intermediates 5int and 6int being isolated and characterized. In contrast, the cooperative Ge-H was reversible and stayed at the 1,2-addition step.
Collapse
Affiliation(s)
- Chonghe Zhang
- Department of ChemistrySouthern University of Science and Technology518055ShenzhenP. R. China
| | - Xiaocui Liu
- Department of ChemistrySouthern University of Science and Technology518055ShenzhenP. R. China
| | - Junyi Wang
- Department of ChemistrySouthern University of Science and Technology518055ShenzhenP. R. China
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongHong Kong
| | - Qing Ye
- Department of ChemistrySouthern University of Science and Technology518055ShenzhenP. R. China
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
20
|
Wentz KE, Molino A, Freeman LA, Dickie DA, Wilson DJD, Gilliard RJ. Activation of Carbon Dioxide by 9-Carbene-9-borafluorene Monoanion: Carbon Monoxide Releasing Transformation of Trioxaborinanone to Luminescent Dioxaborinanone. J Am Chem Soc 2022; 144:16276-16281. [PMID: 36037435 DOI: 10.1021/jacs.2c06845] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The first structurally characterized example of a trioxaborinanone (2) is produced by the reaction of a 9-carbene-9-borafluorene monoanion and carbon dioxide. When compound 2 is heated or irradiated with UV light, carbon monoxide (CO) is released, and a luminescent dioxaborinanone (3) is formed. Notably, carbon monoxide releasing molecules (CORMs) are of interest for their ability to deliver a specific amount of CO. Due to the turn-on fluorescence observed as a result of the conversion to 3, CORM 2 serves as a means to optically observe CO loss "by eye" under thermal or photochemical conditions.
Collapse
Affiliation(s)
- Kelsie E Wentz
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| | - Andrew Molino
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Lucas A Freeman
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| |
Collapse
|
21
|
Sun Q, Daniliuc CG, Mück‐Lichtenfeld C, Kehr G, Erker G. Formation of a Hybrid 1‐Bora‐3‐boratabenzene Heteroarene Anion Derivative. Angew Chem Int Ed Engl 2022; 61:e202205565. [DOI: 10.1002/anie.202205565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Qiu Sun
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Christian Mück‐Lichtenfeld
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
22
|
Zhang C, Liu X, Wang J, Ye Q. A Three‐Dimensional Inorganic Analogue of 9,10‐Diazido‐9,10‐Diboraanthracene – A Lewis Superacidic Azido Borane with Reactivity and Stability. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chonghe Zhang
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Xiaocui Liu
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Junyi Wang
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Qing Ye
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Institut für Anorganische Chemie Am Hubland 97074 Würzburg GERMANY
| |
Collapse
|
23
|
Sun Q, Daniliuc CG, Mück-Lichtenfeld C, Kehr G, Erker G. Formation of a Hybrid 1‐Bora‐3‐boratabenzene Heteroarene Anion Derivative. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qiu Sun
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemsiches Institut GERMANY
| | | | - Gerald Kehr
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Gerhard Erker
- Universität Münster Organisch-Chemisches Institut Corrensstr. 40 48149 Münster GERMANY
| |
Collapse
|
24
|
Alharthi S, Alharthy SA, Manaa EA, Abd El‐Magied MO, Salem WM. High adsorption performance of Cr(VI) ions from the electroplating waste solution using surface‐modified porous poly 2‐((methacryloxy)methyl)oxirane polymers. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sarah Alharthi
- Department of Chemistry, Collage of Science Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Saif A Alharthy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences King Abdulaziz University P.O. Box 80216 Jeddah, 21589 Saudi Arabia
- King Fahad Medical Research Center King Abdulaziz University P.O. Box 80216 Jeddah 21589 Saudi Arabia
| | | | | | - Waheed M. Salem
- Medical Laboratories Department, Faculty of Applied Health Sciences Technology Menoufia University Schibin Al-Kaum Egypt
| |
Collapse
|
25
|
Kumar R, Richter S, Maity S, Sarkar P, Chrysochos N, Pati SK, Ghosh P, Schulzke C, Jana A. Activation of O 2 across a C(sp 3)-C(sp 3) bond. Chem Commun (Camb) 2022; 58:3122-3125. [PMID: 35113113 DOI: 10.1039/d2cc00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The activation of atmospheric molecular dioxygen (O2) is reported, which occurred across a C(sp3)-C(sp3) bond of a piperazine derivative without any catalyst at ambient conditions under the formation of 1,2,4,7-dioxadiazoctane, an 8-membered (larger-ring) cyclic organic peroxide.
Collapse
Affiliation(s)
- Rahul Kumar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - Stefan Richter
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, D-17489 Greifswald, Germany.
| | - Suvendu Maity
- Department of Chemistry, Ramakrishna Mission Residential College, Narendrapur, Kolkata-700103, India.
| | - Pallavi Sarkar
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | - Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - Swapan K Pati
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | - Prasanta Ghosh
- Department of Chemistry, Ramakrishna Mission Residential College, Narendrapur, Kolkata-700103, India.
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, D-17489 Greifswald, Germany.
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| |
Collapse
|
26
|
Dietz M, Arrowsmith M, Gärtner A, Radacki K, Bertermann R, Braunschweig H. Harnessing the electronic differences between CAAC-stabilised 1,4-diborabenzene and 9,10-diboraanthracene for synthesis. Chem Commun (Camb) 2021; 57:13526-13529. [PMID: 34668914 DOI: 10.1039/d1cc05173c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidation of doubly cyclic alkyl(amino)carbene-stabilised closed-shell 1,4-diborabenzene with sulfur or selenium yields S4/S5- or Se4-bridged hexa-1,4-dienes, respectively, whereas that of the related open-shell singlet biradical 9,10-diboraanthracene with O2, sulfur or selenium yields the endoperoxo- or S/Se-bridged bicyclic species, respectively.
Collapse
Affiliation(s)
- Maximilian Dietz
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Annalena Gärtner
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Krzysztof Radacki
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Rüdiger Bertermann
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
27
|
Xu S, Essex LA, Nguyen JQ, Farias P, Ziller JW, Harman WH, Evans WJ. Cooperative dinitrogen capture by a diboraanthracene/samarocene pair. Dalton Trans 2021; 50:15000-15002. [PMID: 34693957 DOI: 10.1039/d1dt03220h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The combination of a boron Lewis acid and a decamethylsamarocene, specifically 9,10-Me2-9,10-diboraanthracene with (C5Me5)2SmII(THF)2, in toluene leads to cooperative reductive capture of N2. The product crystallizes as the salt, [(C5Me5)2SmIII(THF)2][(C5Me5)2SmIII(η2-N2B2C14H14)], 1, which formally is comprised of an (NN)2- moiety sandwiched between a [(C5Me5)2SmIII]1+ metallocene cation and the diboraanthracene ditopic Lewis acid.
Collapse
Affiliation(s)
- Song Xu
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA.
| | - Laura A Essex
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | - Joseph Q Nguyen
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA.
| | - Phillip Farias
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA.
| | - W Hill Harman
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | - William J Evans
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA.
| |
Collapse
|
28
|
Cortés I, Cabrera-Trujillo JJ, Fernández I. Influence of the CH/B replacement on the Reactivity of Boranthrene and Related Compounds. ACS ORGANIC & INORGANIC AU 2021; 2:44-52. [PMID: 36855406 PMCID: PMC9954310 DOI: 10.1021/acsorginorgau.1c00023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The influence of the replacement of CH groups by boron atoms on the reactivity of planar polycyclic aromatic hydrocarbons has been explored by means of computational tools. To this end, [4 + 2]-cycloaddition reactions involving anthracene and neutral boranthrene with different dienophiles such as ethylene, acetylene, and CO2 have been compared. In addition, the influence of additional fused aromatic rings (pentacene or borapentacene) on the reactivity of these species has been also explored. It was found that the B-doped systems are systematically much more reactive than their all-carbon counterparts from both kinetic and thermodynamic points of view. The observed trends in reactivity are quantitatively analyzed in detail using state-of-the-art methods, namely, the activation strain model of reactivity and the energy decomposition analysis method. Our calculations reveal the importance of molecular orbital interactions as the key factor responsible for the enhanced reactivity of the B-doped systems.
Collapse
Affiliation(s)
- Iván Cortés
- Facultad
de Ciencias Bioquímicas y Farmacéuticas, Instituto de
Química Rosario (IQUIR, CONICET-UNR), Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Jorge Juan Cabrera-Trujillo
- Departamento
de Química Orgánica I and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Faculdad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)
| | - Israel Fernández
- Departamento
de Química Orgánica I and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Faculdad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain),
| |
Collapse
|
29
|
Sharma MK, Wölper C, Haberhauer G, Schulz S. Reversible and Irreversible [2+2] Cycloaddition Reactions of Heteroallenes to a Gallaphosphene. Angew Chem Int Ed Engl 2021; 60:21784-21788. [PMID: 34324782 PMCID: PMC8519123 DOI: 10.1002/anie.202108370] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/28/2021] [Indexed: 12/11/2022]
Abstract
[2+2] Cycloaddition reactions of gallaphosphene L(Cl)GaPGaL 1 (L=HC[C(Me)N(2,6-i-Pr2 C6 H3 )]2 ) with carbodiimides [C(NR)2 ; R=i-Pr, Cy] and isocyanates [RNCO; R=Et, i-Pr, Cy] yielded four-membered metallaheterocycles LGa(Cl)P[μ-C(X)NR]GaL (X=NR, R=i-Pr 2, Cy 3; X=O, R=Et 4, i-Pr 5, Cy 6). Compounds 4-6 reversibly react with CO2 via [2+2] cycloaddition at ambient temperature to the six-membered metallaheterocycles LGa(Cl)P[μ-C(O)O]-μ-C(O)N(R)GaL (R=Et 7, i-Pr 8, Cy 9). Compounds 2-9 were characterized by IR and heteronuclear (1 H, 13 C{1 H}, 31 P{1 H}) NMR spectroscopy and elemental analysis, while quantum chemical calculations provided a deeper understanding on the energetics of the reactions.
Collapse
Affiliation(s)
- Mahendra K. Sharma
- Institute of Inorganic Chemistry, and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| | - Christoph Wölper
- Institute of Inorganic Chemistry, and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| | - Gebhard Haberhauer
- Institute of Organic ChemistryUniversity of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| |
Collapse
|
30
|
Sharma MK, Wölper C, Haberhauer G, Schulz S. Reversible und irreversible [2+2]‐Cycloadditionen von Heteroallenen an ein Gallaphosphen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mahendra K. Sharma
- Institut für Anorganische Chemie und Center for Nanointegration Duisburg-Essen (CENIDE) Universität Duisburg-Essen Universitätsstraße 5–7 45141 Essen Deutschland
| | - Christoph Wölper
- Institut für Anorganische Chemie und Center for Nanointegration Duisburg-Essen (CENIDE) Universität Duisburg-Essen Universitätsstraße 5–7 45141 Essen Deutschland
| | - Gebhard Haberhauer
- Institut für Organische Chemie Universität Duisburg-Essen Universitätsstraße 5–7 45141 Essen Deutschland
| | - Stephan Schulz
- Institut für Anorganische Chemie und Center for Nanointegration Duisburg-Essen (CENIDE) Universität Duisburg-Essen Universitätsstraße 5–7 45141 Essen Deutschland
| |
Collapse
|
31
|
Taniguchi T. Correction: Advances in chemistry of N-heterocyclic carbene boryl radicals. Chem Soc Rev 2021; 50:9344. [PMID: 34341813 DOI: 10.1039/d1cs90070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Correction for 'Advances in chemistry of N-heterocyclic carbene boryl radicals' by Tsuyoshi Taniguchi, Chem. Soc. Rev., 2021, DOI: .
Collapse
Affiliation(s)
- Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
32
|
Protchenko AV, Fuentes MÁ, Hicks J, McManus C, Tirfoin R, Aldridge S. Reactions of a diborylstannylene with CO 2 and N 2O: diboration of carbon dioxide by a main group bis(boryl) complex. Dalton Trans 2021; 50:9059-9067. [PMID: 33973614 DOI: 10.1039/d1dt01216a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The reactions of the boryl-substituted stannylene Sn{B(NDippCH)2}2 (1) with carbon dioxide have been investigated and shown to proceed via pathways involving insertion into the Sn-B bond(s). In the first instance this leads to formation of the (boryl)tin(ii) borylcarboxylate complex Sn{B(NDippCH)2}{O2CB(NDippCH)2} (2), which has been structurally characterized and shown to feature a κ2 mode of coordination of the [(HCDippN)2BCO2]- ligand at the metal centre. 2 undergoes B-O reductive elimination in hexane solution (in the absence of further CO2) to give the boryl(borylcarboxylate)ester {(HCDippN)2B}O2C{B(NDippCH)2} (3) i.e. the product of formal diboration of carbon dioxide. Alternatively, 2 can assimilate a second equivalent of CO2 to give the homoleptic bis(borylcarboxylate) Sn{O2CB(NDippCH)2}2 (4), which can be prepared via an alternative route from SnBr2 and the potassium salt of [(HCDippN)2BCO2]-, and structurally characterized as its DMAP (N,N-dimethylaminopyridine) adduct. Structural and reactivity studies also point to the possibility for extrusion of CO from the [(HCDippN)2BCO2]- fragment to generate the boryloxy system [(HCDippN)2BO]-, a ligand which can be generated directly from 1via reaction with N2O. The initially formed unsymmetrical species Sn{B(NDippCH)2}{OB(NDippCH)2} has been shown to be amenable to crystallographic study in the solid state, but to undergo ligand redistribution in solution to generate a mixture of 1 and the bis(boryloxy) complex Sn{OB(NDippCH)2}2.
Collapse
Affiliation(s)
- Andrey V Protchenko
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - M Ángeles Fuentes
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Jamie Hicks
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Caitilín McManus
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Rémi Tirfoin
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| |
Collapse
|
33
|
Sigmund LM, Ehlert C, Enders M, Graf J, Gryn'ova G, Greb L. Disauerstoffaktivierung und Pyrrol‐α‐Spaltung mit Calix[4]pyrrolatoaluminaten: Enzymmodell durch strukturellen Zwang. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lukas Maximilian Sigmund
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Christopher Ehlert
- Heidelberger Institut für Theoretische Studien (HITS gGmbH) Schloss-Wolfsbrunnenweg 35 69118 Heidelberg Deutschland
- Interdisziplinäres Zentrum für wissenschaftliches Rechnen (IWR) Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 205 69120 Heidelberg Deutschland
| | - Markus Enders
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Jürgen Graf
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Ganna Gryn'ova
- Heidelberger Institut für Theoretische Studien (HITS gGmbH) Schloss-Wolfsbrunnenweg 35 69118 Heidelberg Deutschland
- Interdisziplinäres Zentrum für wissenschaftliches Rechnen (IWR) Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 205 69120 Heidelberg Deutschland
| | - Lutz Greb
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| |
Collapse
|
34
|
Sigmund LM, Ehlert C, Enders M, Graf J, Gryn'ova G, Greb L. Dioxygen Activation and Pyrrole α-Cleavage with Calix[4]pyrrolato Aluminates: Enzyme Model by Structural Constraint. Angew Chem Int Ed Engl 2021; 60:15632-15640. [PMID: 33955154 PMCID: PMC8362023 DOI: 10.1002/anie.202104916] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Indexed: 01/30/2023]
Abstract
The present work describes the reaction of triplet dioxygen with the porphyrinogenic calix[4]pyrrolato aluminates to alkylperoxido aluminates in high selectivity. Multiconfigurational quantum chemical computations disclose the mechanism for this spin‐forbidden process. Despite a negligible spin–orbit coupling constant, the intersystem crossing (ISC) is facilitated by singlet and triplet state degeneracy and spin–vibronic coupling. The formed peroxides are stable toward external substrates but undergo an unprecedented oxidative pyrrole α‐cleavage by ligand aromatization/dearomatization‐initiated O−O σ‐bond scission. A detailed comparison of the calix[4]pyrrolato aluminates with dioxygen‐related enzymology provides insights into the ISC of metal‐ or cofactor‐free enzymes. It substantiates the importance of structural constraint and element–ligand cooperativity for the functions of aerobic life.
Collapse
Affiliation(s)
- Lukas Maximilian Sigmund
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Christopher Ehlert
- Heidelberg Institute for Theoretical Studies (HITS gGmbH), Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Markus Enders
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jürgen Graf
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Ganna Gryn'ova
- Heidelberg Institute for Theoretical Studies (HITS gGmbH), Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
35
|
Zhang C, Wang J, Su W, Lin Z, Ye Q. Synthesis, Characterization, and Density Functional Theory Studies of Three-Dimensional Inorganic Analogues of 9,10-Diboraanthracene-A New Class of Lewis Superacids. J Am Chem Soc 2021; 143:8552-8558. [PMID: 33984238 DOI: 10.1021/jacs.1c03057] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The three-dimensional inorganic analogues of 9,10-diboraanthracene, B2X2(C2B10H10)2 (X = Cl, 1; X = Br, 2), were attained by salt elimination of Li2C2B10H10 and trihaloboranes. The methyl- and phenyl-substituted compounds B2Me2(C2B10H10)2 (3) and B2Ph2(C2B10H10)2 (4) were obtained by treating 1 or 2 with the corresponding Grignard reagents. These compounds were fully characterized by NMR, cyclic voltammetry (CV), IR, and single-crystal X-ray diffraction analyses. Experimental (CV and Gutmann-Beckett method) and computational (fluoride ion affinity, hydride ion affinity and LUMO energy) results suggest that the order of Lewis acidity is 2 > 1 > 4 > 3 > SbF5. Treatment of 1 or 2 with HSiEt3 gave a rare neutral borane-silane adduct, (Et3SiH)2B2H2(C2B10H10)2 (5). The equilibrium of 5 in solution was thoroughly investigated by spectroscopy and quantum calculations.
Collapse
Affiliation(s)
- Chonghe Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Junyi Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wei Su
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Qing Ye
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
36
|
Schmid P, Fantuzzi F, Klopf J, Schröder NB, Dewhurst RD, Braunschweig H, Engel V, Engels B. Twisting versus Delocalization in CAAC- and NHC-Stabilized Boron-Based Biradicals: The Roles of Sterics and Electronics. Chemistry 2021; 27:5160-5170. [PMID: 33225473 PMCID: PMC8048672 DOI: 10.1002/chem.202004619] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Indexed: 11/06/2022]
Abstract
Twisted boron-based biradicals featuring unsaturated C2 R2 (R=Et, Me) bridges and stabilization by cyclic (alkyl)(amino)carbenes (CAACs) were recently prepared. These species show remarkable geometrical and electronic differences with respect to their unbridged counterparts. Herein, a thorough computational investigation on the origin of their distinct electrostructural properties is performed. It is shown that steric effects are mostly responsible for the preference for twisted over planar structures. The ground-state multiplicity of the twisted structure is modulated by the σ framework of the bridge, and different R groups lead to distinct multiplicities. In line with the experimental data, a planar structure driven by delocalization effects is observed as global minimum for R=H. The synthetic elusiveness of C2 R2 -bridged systems featuring N-heterocyclic carbenes (NHCs) was also investigated. These results could contribute to the engineering of novel main group biradicals.
Collapse
Affiliation(s)
- Paul Schmid
- Institute for Physical and Theoretical ChemistryJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Felipe Fantuzzi
- Institute for Physical and Theoretical ChemistryJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jonas Klopf
- Institute for Physical and Theoretical ChemistryJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Niklas B. Schröder
- Institute for Physical and Theoretical ChemistryJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Rian D. Dewhurst
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Volker Engel
- Institute for Physical and Theoretical ChemistryJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Bernd Engels
- Institute for Physical and Theoretical ChemistryJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| |
Collapse
|
37
|
|
38
|
Shao Y, Huang M, Gu F, Zhao C, Qu LB, Ke Z. Diazadiborinine as an ambiphilic catalyst for metal-free hydrogenation: a computational study on the structural design and reaction mechanism. Org Chem Front 2021. [DOI: 10.1039/d0qo01510e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity and mechanism of hydrogenation by a metal-free ambiphilic catalyst.
Collapse
Affiliation(s)
- Youxiang Shao
- School of Materials Science and Engineering
- PCFM Lab
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Ming Huang
- School of Clinical Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| | - Fenglong Gu
- MOE Key Laboratory of Theoretical Chemistry of the Environment
- School of Chemistry and Environment
- South China Normal University
- Guangzhou 510006
- P. R. China
| | - Cunyuan Zhao
- School of Materials Science and Engineering
- PCFM Lab
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Ling-Bo Qu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Zhuofeng Ke
- School of Materials Science and Engineering
- PCFM Lab
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
39
|
Prey SE, Wagner M. Threat to the Throne: Can Two Cooperating Boron Atoms Rival Transition Metals in Chemical Bond Activation and Catalysis? Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001356] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sven E. Prey
- Institut für Anorganische Chemie Goethe-Universität Frankfurt am Main Max-von-Laue-Str. 7 60438 Frankfurt (Main) Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie Goethe-Universität Frankfurt am Main Max-von-Laue-Str. 7 60438 Frankfurt (Main) Germany
| |
Collapse
|
40
|
Riu MLY, Cummins CC. 3,5-Diphenyl-2-phosphafuran: Synthesis, Structure, and Thermally Reversible [4 + 2] Cycloaddition Chemistry. J Org Chem 2020; 85:14810-14816. [PMID: 33161714 DOI: 10.1021/acs.joc.0c02025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Treatment of trans-chalcone with dibenzo-7-phosphanorbornadiene EtOPA (A = C14H10, anthracene), a source of ethoxyphosphinidene, followed by formal elimination of ethanol yields 3,5-diphenyl-2-phosphafuran (DPF) in 43% yield. We show that the phosphadiene moiety of DPF is a potent diene in the Diels-Alder reaction and reacts with dienophiles dimethyl acetylenedicarboxylate (DPF·DMAD, 68%), norbornene (DPF·norbornene, 73%), and ethylene (DPF·C2H4, 80%) under ambient conditions. Mild heating of DPF·C2H4 results in the corresponding retro-Diels-Alder reaction, establishing DPF as a molecule that is able to reversibly bind ethylene.
Collapse
Affiliation(s)
- Martin-Louis Y Riu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
41
|
Taylor JW, Harman WH. H 2 evolution from H 2O via O-H oxidative addition across a 9,10-diboraanthracene. Chem Commun (Camb) 2020; 56:13804-13807. [PMID: 33078792 DOI: 10.1039/d0cc05261b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The water reactivity of the boroauride complex ([Au(B2P2)][K(18-c-6)]; (B2P2, 9,10-bis(2-(diisopropylphosphino)-phenyl)-9,10-dihydroboranthrene) and its corresponding two-electron oxidized complex, Au(B2P2)Cl, are presented. Au(B2P2)Cl is tolerant to H2O and forms the hydroxide complex Au(B2P2)OH in the presence of H2O and triethylamine. [Au(B2P2)]Cl and [Au(B2P2)]OH are poor Lewis acids as judged by the Gutmann-Becket method, with [Au(B2P2)]OH displaying facile hydroxide exchange between B atoms of the DBA ring as evidenced by variable temperature NMR spectroscopy. The reduced boroauride complex [Au(B2P2)]- reacts with 1 equivalent of H2O to produce a hydride/hydroxide product, [Au(B2P2)(H)(OH)]-, that rapidly evolves H2 upon further H2O reaction to yield the dihydroxide compound, [Au(B2P2)(OH)2]-. [Au(B2P2)]Cl can be regenerated from [Au(B2P2)(OH)2]-via HCl·Et2O, providing a synthetic cycle for H2 evolution from H2O enabled by O-H oxidative addition at a diboraanthracene unit.
Collapse
Affiliation(s)
- Jordan W Taylor
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA.
| | | |
Collapse
|
42
|
Saalfrank C, Fantuzzi F, Kupfer T, Ritschel B, Hammond K, Krummenacher I, Bertermann R, Wirthensohn R, Finze M, Schmid P, Engel V, Engels B, Braunschweig H. cAAC-Stabilized 9,10-diboraanthracenes-Acenes with Open-Shell Singlet Biradical Ground States. Angew Chem Int Ed Engl 2020; 59:19338-19343. [PMID: 32662218 PMCID: PMC7589216 DOI: 10.1002/anie.202008206] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/19/2022]
Abstract
Narrow HOMO-LUMO gaps and high charge-carrier mobilities make larger acenes potentially high-efficient materials for organic electronic applications. The performance of such molecules was shown to significantly increase with increasing number of fused benzene rings. Bulk quantities, however, can only be obtained reliably for acenes up to heptacene. Theoretically, (oligo)acenes and (poly)acenes are predicted to have open-shell singlet biradical and polyradical ground states, respectively, for which experimental evidence is still scarce. We have now been able to dramatically lower the HOMO-LUMO gap of acenes without the necessity of unfavorable elongation of their conjugated π system, by incorporating two boron atoms into the anthracene skeleton. Stabilizing the boron centers with cyclic (alkyl)(amino)carbenes gives neutral 9,10-diboraanthracenes, which are shown to feature disjointed, open-shell singlet biradical ground states.
Collapse
Affiliation(s)
- Christian Saalfrank
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Felipe Fantuzzi
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institut für Physikalische und Theoretische ChemieJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Thomas Kupfer
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Benedikt Ritschel
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Kai Hammond
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Rüdiger Bertermann
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Raphael Wirthensohn
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Maik Finze
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Paul Schmid
- Institut für Physikalische und Theoretische ChemieJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Volker Engel
- Institut für Physikalische und Theoretische ChemieJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Bernd Engels
- Institut für Physikalische und Theoretische ChemieJulius-Maximilians-Universität WürzburgEmil-Fischer-Strasse 4297074WürzburgGermany
| | - Holger Braunschweig
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
43
|
Saalfrank C, Fantuzzi F, Kupfer T, Ritschel B, Hammond K, Krummenacher I, Bertermann R, Wirthensohn R, Finze M, Schmid P, Engel V, Engels B, Braunschweig H. cAAC‐stabilisierte 9,10‐Diboraanthracene – offenschalige Singulettbiradikale. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christian Saalfrank
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Felipe Fantuzzi
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer-Straße 42 97074 Würzburg Germany
| | - Thomas Kupfer
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Benedikt Ritschel
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Kai Hammond
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Rüdiger Bertermann
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Raphael Wirthensohn
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Maik Finze
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Paul Schmid
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer-Straße 42 97074 Würzburg Germany
| | - Volker Engel
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer-Straße 42 97074 Würzburg Germany
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie Julius-Maximilians-Universität Würzburg Emil-Fischer-Straße 42 97074 Würzburg Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
44
|
Siddiqui MM, Banerjee S, Bose S, Sarkar SK, Gupta SK, Kretsch J, Graw N, Herbst-Irmer R, Stalke D, Dutta S, Koley D, Roesky HW. Cyclic (Alkyl)(Amino)Carbene-Stabilized Aluminum and Gallium Radicals Based on Amidinate Scaffolds. Inorg Chem 2020; 59:11253-11258. [DOI: 10.1021/acs.inorgchem.0c01913] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mujahuddin M. Siddiqui
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, Göttingen 37077, Germany
| | - Samya Banerjee
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, Göttingen 37077, Germany
| | - Sanjoy Bose
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata 741246, India
| | - Samir Kumar Sarkar
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, Göttingen 37077, Germany
| | - Sandeep K. Gupta
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, Göttingen 37077, Germany
| | - Johannes Kretsch
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, Göttingen 37077, Germany
| | - Nico Graw
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, Göttingen 37077, Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, Göttingen 37077, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, Göttingen 37077, Germany
| | - Sayan Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata 741246, India
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata 741246, India
| | - Herbert W. Roesky
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, Göttingen 37077, Germany
| |
Collapse
|
45
|
Karimi M, Borthakur R, Dorsey CL, Chen CH, Lajeune S, Gabbaï FP. Bifunctional Carbenium Dications as Metal-Free Catalysts for the Reduction of Oxygen. J Am Chem Soc 2020; 142:13651-13656. [DOI: 10.1021/jacs.0c04841] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mohammadjavad Karimi
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Rosmita Borthakur
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Christopher L. Dorsey
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Chang-Hong Chen
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Sébastien Lajeune
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - François P. Gabbaï
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| |
Collapse
|
46
|
Huang Z, Wang S, Dewhurst RD, Ignat'ev NV, Finze M, Braunschweig H. Boron: Its Role in Energy-Related Processes and Applications. Angew Chem Int Ed Engl 2020; 59:8800-8816. [PMID: 31625661 PMCID: PMC7317435 DOI: 10.1002/anie.201911108] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Indexed: 12/21/2022]
Abstract
Boron's unique position in the Periodic Table, that is, at the apex of the line separating metals and nonmetals, makes it highly versatile in chemical reactions and applications. Contemporary demand for renewable and clean energy as well as energy-efficient products has seen boron playing key roles in energy-related research, such as 1) activating and synthesizing energy-rich small molecules, 2) storing chemical and electrical energy, and 3) converting electrical energy into light. These applications are fundamentally associated with boron's unique characteristics, such as its electron-deficiency and the availability of an unoccupied p orbital, which allow the formation of a myriad of compounds with a wide range of chemical and physical properties. For example, boron's ability to achieve a full octet of electrons with four covalent bonds and a negative charge has led to the synthesis of a wide variety of borate anions of high chemical and electrochemical stability-in particular, weakly coordinating anions. This Review summarizes recent advances in the study of boron compounds for energy-related processes and applications.
Collapse
Affiliation(s)
- Zhenguo Huang
- School of Civil & Environmental EngineeringUniversity of Technology Sydney81 BroadwayUltimoNSW2007Australia
| | - Suning Wang
- Department of ChemistryQueen's UniversityKingstonOntarioK7L 3N6Canada
| | - Rian D. Dewhurst
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Nikolai V. Ignat'ev
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Merck KGaA64293DarmstadtGermany
| | - Maik Finze
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
47
|
Feng Z, Fang Y, Ruan H, Zhao Y, Tan G, Wang X. Stable Radical Cation and Dication of an N‐Heterocyclic Carbene Stabilized Digallene: Synthesis, Characterization and Reactivity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhongtao Feng
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 P. R. China
| | - Yong Fang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 P. R. China
| | - Huapeng Ruan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 P. R. China
| | - Gengwen Tan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 P. R. China
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Xinping Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 P. R. China
| |
Collapse
|
48
|
Feng Z, Fang Y, Ruan H, Zhao Y, Tan G, Wang X. Stable Radical Cation and Dication of an N-Heterocyclic Carbene Stabilized Digallene: Synthesis, Characterization and Reactivity. Angew Chem Int Ed Engl 2020; 59:6769-6774. [PMID: 31994317 DOI: 10.1002/anie.202000051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Indexed: 11/06/2022]
Abstract
One- and two-electron oxidation of a digallene stabilized by an N-heterocyclic carbene afforded the first stable gallium-based radical cation and dication salts, respectively. Structural analysis and theoretical calculations reveal that the oxidation occurs at the Ga=Ga double bond, leading to removal of π electrons of the double bond and a decrease of the bond order. The spin density of the radical cation mainly locates at the two gallium centers as demonstrated by EPR spectroscopy and theoretical calculations. Moreover, the reactivity of the radical cation salt toward nBu3 SnH and cyclo-S8 was studied; a digallium-hydride cation salt containing a Ga-Ga single bond and a gallium sulfide cluster bearing an unprecedented ladder-like Ga4 S4 core structure were obtained, respectively.
Collapse
Affiliation(s)
- Zhongtao Feng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yong Fang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Gengwen Tan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China.,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
49
|
Huang Z, Wang S, Dewhurst RD, Ignat'ev NV, Finze M, Braunschweig H. Bor in energiebezogenen Prozessen und Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911108] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhenguo Huang
- School of Civil & Environmental Engineering University of Technology Sydney 81 Broadway Ultimo NSW 2007 Australien
| | - Suning Wang
- Department of Chemistry Queen's University Kingston Ontario K7L 3N6 Kanada
| | - Rian D. Dewhurst
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Nikolai V. Ignat'ev
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Merck KGaA 64293 Darmstadt Deutschland
| | - Maik Finze
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Holger Braunschweig
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
50
|
Wang W, Tan G, Feng R, Fang Y, Chen C, Ruan H, Zhao Y, Wang X. Stable, yet "naked", azo radical anion ArNNAr - and dianion ArNNAr 2- (Ar = 4-CN-2,6- iPr 2-C 6H 2) with selective CO 2 activation. Chem Commun (Camb) 2020; 56:3285-3288. [PMID: 32073045 DOI: 10.1039/c9cc07382e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azo radical anion 1˙- and dianion 12- have been isolated by one- and two-electron reduction of the azo compound 1 (ArNNAr, Ar = 4-CN-2,6-iPr2-C6H2) with alkali metals, respectively. The reduced species have been characterized by single-crystal X-ray analysis, EPR, UV and FT-IR spectroscopy, as well as SQUID measurements. The filling of one and two electrons in the π* orbital of the N-N double bond of 1 leads to a half-double N-N bond in 1˙- and a single N-N bond in 12-. The uncoordinated nature of these reduced species enables them to activate CO2. The exposure of 1˙- solution to CO2 led to the formation of oxalate anion C2O42-, while that of 12- solution to CO2 afforded the hydrazine dicarboxylate dianion [1-2CO2]2-, which reversibly dissociated back to 1 and CO2 upon oxidation.
Collapse
Affiliation(s)
- Wenqing Wang
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, China and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Gengwen Tan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Rui Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yong Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Chao Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|