1
|
Allard C, Alvarez L, Bantignies JL, Bendiab N, Cambré S, Campidelli S, Fagan JA, Flahaut E, Flavel B, Fossard F, Gaufrès E, Heeg S, Lauret JS, Loiseau A, Marceau JB, Martel R, Marty L, Pichler T, Voisin C, Reich S, Setaro A, Shi L, Wenseleers W. Advanced 1D heterostructures based on nanotube templates and molecules. Chem Soc Rev 2024; 53:8457-8512. [PMID: 39036944 DOI: 10.1039/d3cs00467h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Recent advancements in materials science have shed light on the potential of exploring hierarchical assemblies of molecules on surfaces, driven by both fundamental and applicative challenges. This field encompasses diverse areas including molecular storage, drug delivery, catalysis, and nanoscale chemical reactions. In this context, the utilization of nanotube templates (NTs) has emerged as promising platforms for achieving advanced one-dimensional (1D) molecular assemblies. NTs offer cylindrical, crystalline structures with high aspect ratios, capable of hosting molecules both externally and internally (Mol@NT). Furthermore, NTs possess a wide array of available diameters, providing tunability for tailored assembly. This review underscores recent breakthroughs in the field of Mol@NT. The first part focuses on the diverse panorama of structural properties in Mol@NT synthesized in the last decade. The advances in understanding encapsulation, adsorption, and ordering mechanisms are detailed. In a second part, the review highlights the physical interactions and photophysics properties of Mol@NT obtained by the confinement of molecules and nanotubes in the van der Waals distance regime. The last part of the review describes potential applicative fields of these 1D heterostructures, providing specific examples in photovoltaics, luminescent materials, and bio-imaging. A conclusion gathers current challenges and perspectives of the field to foster discussion in related communities.
Collapse
Affiliation(s)
| | - Laurent Alvarez
- Laboratoire Charles Coulomb, CNRS-Université de Montpellier, France
| | | | | | | | | | | | - Emmanuel Flahaut
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse, cedex 9, France
| | | | - Frédéric Fossard
- Laboratoire d'Étude des Microstructures, CNRS-Onera, Chatillon, France
| | - Etienne Gaufrès
- Laboratoire Photonique, Numérique et Nanosciences, CNRS-Université de Bordeaux-IOGS, Talence, France.
| | | | - Jean-Sebastien Lauret
- LUMIN, Université Paris Saclay, ENS Paris Saclay, Centrale Supelec, CNRS, Orsay, France
| | - Annick Loiseau
- Laboratoire d'Étude des Microstructures, CNRS-Onera, Chatillon, France
| | - Jean-Baptiste Marceau
- Laboratoire Photonique, Numérique et Nanosciences, CNRS-Université de Bordeaux-IOGS, Talence, France.
| | | | | | | | | | | | - Antonio Setaro
- Free University of Berlin, Germany
- Faculty of Engineering and Informatics, Pegaso University, Naples, Italy
| | - Lei Shi
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology and Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | | |
Collapse
|
2
|
Maeda Y, Morooka R, Zhao P, Yamada M, Ehara M. Control of functionalized single-walled carbon nanotube photoluminescence via competition between thermal rearrangement and elimination. Chem Commun (Camb) 2023; 59:11648-11651. [PMID: 37655792 DOI: 10.1039/d3cc02965d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
We conducted the chiral separation of functionalized single-walled carbon nanotubes (SWNTs) with dibromopropane derivatives. Depending on their chirality and diameter, the thermal treatment of functionalized SWNTs leads to a shift in the emission radiation to longer wavelengths owing to rearrangement reaction in competition with elimination reaction.
Collapse
Affiliation(s)
- Yutaka Maeda
- Department of Chemistry, Tokyo Gakugei University, Tokyo 184-8501, Japan.
| | - Rina Morooka
- Department of Chemistry, Tokyo Gakugei University, Tokyo 184-8501, Japan.
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan.
| | - Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Tokyo 184-8501, Japan.
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan.
| |
Collapse
|
3
|
Podlesny B, Hinkle KR, Hayashi K, Niidome Y, Shiraki T, Janas D. Highly-Selective Harvesting of (6,4) SWCNTs Using the Aqueous Two-Phase Extraction Method and Nonionic Surfactants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207218. [PMID: 36856265 DOI: 10.1002/advs.202207218] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Indexed: 05/18/2023]
Abstract
Monochiral single-walled carbon nanotubes (SWCNTs) are indispensable for advancing the technology readiness level of nanocarbon-based concepts. In recent times, many separation techniques have been developed to obtain specific SWCNTs from raw unsorted materials to catalyze the development in this area. This work presents how the aqueous two-phase extraction (ATPE) method can be enhanced for the straightforward isolation of (6,4) SWCNTs in one step. Introducing nonionic surfactant into the typically employed mixture of anionic surfactants, which drive the partitioning, is essential to increasing the ATPE system's resolution. A thorough analysis of the parameter space by experiments and modeling reveals the underlying interactions between SWCNTs, surfactants, and phase-forming agents, which drive the partitioning. Based on new insight gained on this front, a separation mechanism is proposed. Notably, the developed method is highly robust, which is proven by isolating (6,4) SWCNTs from several raw SWCNT materials, including SWCNT waste generated over the years in the laboratory.
Collapse
Affiliation(s)
- Blazej Podlesny
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| | - Kevin R Hinkle
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH, 45469, USA
| | - Keita Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshiaki Niidome
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| |
Collapse
|
4
|
Wei X, Luo X, Li S, Zhou W, Xie S, Liu H. Length-Dependent Enantioselectivity of Carbon Nanotubes by Gel Chromatography. ACS NANO 2023; 17:8393-8402. [PMID: 37092905 DOI: 10.1021/acsnano.2c12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
High-purity enantiomer separation of chiral single-wall carbon nanotubes (SWCNTs) remains a challenge compared with electrical type and chirality separations due to the limited selectivities for both chirality and handedness, which is important for an exploration of their properties and practical applications. Here, we performed length fractionation for enantiomer-purified SWCNTs and found a phenomenon in which the enantioselectivities were higher for longer nanotubes than for shorter nanotubes due to length-dependent interactions with the gel medium, which provided an effective strategy of controlling nanotube length for high-purity enantiomer separation. Furthermore, we employed a gentler pulsed ultrasonication instead of traditional vigorous ultrasonication for preparation of a low-defect long SWCNT dispersion and achieved the enantiomer separation of single-chirality (6,5) SWCNTs with an ultrahigh enantiomeric purity of up to 98%, which was determined by using the linear relationship between the normalized circular dichroism intensity and the enantiomeric purity. Compared with all results reported previously, the present enantiomeric purity was significantly higher and reached the highest level reported to date. Due to the ultrahigh selectivity in both chirality and handedness, the two obtained enantiomers exhibited perfect symmetry in their circular dichroism spectra, which offers standardization for characterizations and evaluations of SWCNT enantiomers.
Collapse
Affiliation(s)
- Xiaojun Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Department of Physics and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Xin Luo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Department of Optoelectronic, Xiamen University of Technology, Xiamen, Fujian 361024, People's Republic of China
| | - Shilong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, People's Republic of China
| | - Weiya Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Department of Physics and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Sishen Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Department of Physics and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Huaping Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Department of Physics and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
5
|
Rust C, Shapturenka P, Spari M, Jin Q, Li H, Bacher A, Guttmann M, Zheng M, Adel T, Walker ARH, Fagan JA, Flavel BS. The Impact of Carbon Nanotube Length and Diameter on their Global Alignment by Dead-End Filtration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206774. [PMID: 36549899 DOI: 10.1002/smll.202206774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Dead-end filtration has proven to effectively prepare macroscopically (3.8 cm2 ) aligned thin films from solutionbased single-wall carbon nanotubes (SWCNTs). However, to make this technique broadly applicable, the role of SWCNT length and diameter must be understood. To date, most groups report the alignment of unsorted, large diameter (≈1.4 nm) SWCNTs, but systematic studies on their small diameter are rare (≈0.78 nm). In this work, films with an area of A = 3.81 cm2 and a thickness of ≈40 nm are prepared from length-sorted fractions comprising of small and large diameter SWCNTs, respectively. The alignment is characterized by cross-polarized microscopy, scanning electron microscopy, absorption and Raman spectroscopy. For the longest fractions (Lavg = 952 nm ± 431 nm, Δ = 1.58 and Lavg = 667 nm ± 246 nm, Δ = 1.55), the 2D order parameter, S2D, values of ≈0.6 and ≈0.76 are reported for the small and large diameter SWCNTs over an area of A = 625 µm2 , respectively. A comparison of Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory calculations with the aligned domain size is then used to propose a law identifying the required length of a carbon nanotube with a given diameter and zeta potential.
Collapse
Affiliation(s)
- Christian Rust
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287, Darmstadt, Germany
| | - Pavel Shapturenka
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Manuel Spari
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Qihao Jin
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstraße 13, 76131, Karlsruhe, Germany
| | - Han Li
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Andreas Bacher
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Markus Guttmann
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Tehseen Adel
- Quantum Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Angela R Hight Walker
- Quantum Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Jeffrey A Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Hou K, Shi B, Liu Y, Lu C, Li D, Du Z, Li B, Zhu L. Toxicity evaluation of pyraclostrobin exposure in farmland soils and co-exposure with nZnO to Eisenia fetida. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128794. [PMID: 35366441 DOI: 10.1016/j.jhazmat.2022.128794] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Although the toxicity of pyraclostrobin (PYRA) to earthworms in artificial soil is well known, the toxicity of PYRA in farmland soils is yet to be explored in detail. Additionally, with more zinc oxide nanoparticles (nZnO) entering the soil environment, the risk of PYRA co-exposure with nZnO is increasing alarmingly. However, toxicity caused by this co-exposure of PYRA and nZnO is still unknown. Therefore, we assessed the biomarkers responses to reveal the toxicity of PYRA (0.1, 1, 2.5 mg/kg) on earthworms in farmland soils (black soil, fluvo-aquic soil, and red clay) and evaluated the biomarkers responses of Eisenia fetida exposed to PYRA (0.5 mg/kg)/PYRA+nZnO (10 mg/kg). Moreover, transcriptomic analysis was performed on E. fetida exposed to PYRA/PYRA+nZnO for 28 days to reveal the mechanism of genotoxicity. The Integrated Biomarker Responses (IBR) showed PYRA induced more severe oxidative stress and damage to E. fetida in farmland soils than that in artificial soil. The oxidative stress and damage induced by PYRA+nZnO were greater than that induced by PYRA. Transcriptomic analysis showed that PYRA and PYRA+nZnO significantly altered gene expression of both biological processes and molecular functions. These results provided toxicological data for PYRA exposure in three typical farmland soils and co-exposure with nZnO.
Collapse
Affiliation(s)
- Kaixuan Hou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Baihui Shi
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Yu Liu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Chengbo Lu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Dengtan Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, PR China.
| |
Collapse
|
7
|
Nißler R, Ackermann J, Ma C, Kruss S. Prospects of Fluorescent Single-Chirality Carbon Nanotube-Based Biosensors. Anal Chem 2022; 94:9941-9951. [PMID: 35786856 DOI: 10.1021/acs.analchem.2c01321] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Semiconducting single-wall carbon nanotubes (SWCNTs) fluoresce in the near-infrared (NIR), and the emission wavelength depends on their structure (chirality). Interactions with other molecules affect their fluorescence, which has successfully been used for SWCNT-based molecular sensors. So far, most such sensors are assembled from crude mixtures of different SWCNT chiralities, which causes polydisperse sensor responses as well as spectral congestion and limits their performance. The advent of chirality-pure SWCNTs is about to overcome this limitation and paves the way for the next generation of biosensors. Here, we discuss the first examples of chirality-pure SWCNT-based fluorescent biosensors. We introduce routes to such sensors via aqueous two-phase extraction-assisted purification of SWCNTs and highlight the critical interplay between purification and surface modification procedures. Applications include the NIR detection and imaging of neurotransmitters, reactive oxygen species, lipids, bacterial motives, and plant metabolites. Most importantly, we outline a path toward how such monodisperse (chirality-pure) sensors will enable advanced multiplexed sensing with enhanced bioanalytical performance.
Collapse
Affiliation(s)
- Robert Nißler
- Nanoparticle Systems Engineering Lab, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.,Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.,Department of Chemistry, Bochum University, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Julia Ackermann
- Fraunhofer Institute of Microelectronic Circuits and Systems, Finkenstrasse 61, 47057 Duisburg, Germany
| | - Chen Ma
- Department of Chemistry, Bochum University, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Sebastian Kruss
- Department of Chemistry, Bochum University, Universitätsstrasse 150, 44801 Bochum, Germany.,Fraunhofer Institute of Microelectronic Circuits and Systems, Finkenstrasse 61, 47057 Duisburg, Germany
| |
Collapse
|
8
|
Wei X, Li S, Wang W, Zhang X, Zhou W, Xie S, Liu H. Recent Advances in Structure Separation of Single-Wall Carbon Nanotubes and Their Application in Optics, Electronics, and Optoelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200054. [PMID: 35293698 PMCID: PMC9108629 DOI: 10.1002/advs.202200054] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Indexed: 05/04/2023]
Abstract
Structural control of single-wall carbon nanotubes (SWCNTs) with uniform properties is critical not only for their property modulation and functional design but also for applications in electronics, optics, and optoelectronics. To achieve this goal, various separation techniques have been developed in the past 20 years through which separation of high-purity semiconducting/metallic SWCNTs, single-chirality species, and even their enantiomers have been achieved. This progress has promoted the property modulation of SWCNTs and the development of SWCNT-based optoelectronic devices. Here, the recent advances in the structure separation of SWCNTs are reviewed, from metallic/semiconducting SWCNTs, to single-chirality species, and to enantiomers by several typical separation techniques and the application of the corresponding sorted SWCNTs. Based on the separation procedure, efficiency, and scalability, as well as, the separable SWCNT species, purity, and quantity, the advantages and disadvantages of various separation techniques are compared. Combined with the requirements of SWCNT application, the challenges, prospects, and development direction of structure separation are further discussed.
Collapse
Affiliation(s)
- Xiaojun Wei
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Shilong Li
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
| | - Wenke Wang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
| | - Xiao Zhang
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Weiya Zhou
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Sishen Xie
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Huaping Liu
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Center of Materials Science and Optoelectronics Engineeringand School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Beijing Key Laboratory for Advanced Functional Materials and Structure ResearchBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| |
Collapse
|
9
|
Nißler R, Kurth L, Li H, Spreinat A, Kuhlemann I, Flavel BS, Kruss S. Sensing with Chirality-Pure Near-Infrared Fluorescent Carbon Nanotubes. Anal Chem 2021; 93:6446-6455. [PMID: 33830740 DOI: 10.1021/acs.analchem.1c00168] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Semiconducting single-wall carbon nanotubes (SWCNTs) fluoresce in the near-infrared (NIR) region, and the emission wavelength depends on their chirality (n,m). Interactions with the environment affect the fluorescence and can be tailored by functionalizing SWCNTs with biopolymers such as DNA, which is the basis for fluorescent biosensors. So far, such biosensors have been mainly assembled from mixtures of SWCNT chiralities with large spectral overlap, which affects sensitivity as well as selectivity and prevents multiplexed sensing. The main challenge to gain chirality-pure sensors has been to combine approaches to isolate specific SWCNTs and generic (bio)functionalization approaches. Here, we created chirality-pure SWCNT-based NIR biosensors for important analytes such as neurotransmitters and investigated the effect of SWCNT chirality/handedness as well as long-term stability and sensitivity. For this purpose, we used aqueous two-phase extraction (ATPE) to gain chirality-pure (6,5)-, (7,5)-, (9,4)-, and (7,6)-SWCNTs (emission at ∼990, 1040, 1115, and 1130 nm, respectively). An exchange of the surfactant sodium deoxycholate (DOC) to specific single-stranded (ss)DNA sequences yielded monochiral sensors for small analytes (dopamine, riboflavin, ascorbic acid, pH). DOC residues impaired sensitivity, and therefore substantial removal was necessary. The assembled monochiral (6,5)-SWCNTs were up to 10 times brighter than their nonpurified counterparts, and the ssDNA sequence determined the absolute fluorescence intensity as well as colloidal (long-term) stability and selectivity for the analytes. (GT)40-(6,5)-SWCNTs displayed the maximum fluorescence response to the neurotransmitter dopamine (+140%, Kd = 1.9 × 10-7 M) and a long-term stability of >14 days. The specific ssDNA sequences imparted selectivity to the analytes mostly independent of SWCNT chirality and handedness of (±) (6,5)-SWCNTs, which allowed a predictable design. Finally, multiple monochiral/single-color SWCNTs were combined to achieve ratiometric/multiplexed sensing of the important analytes dopamine, riboflavin, H2O2, and pH. In summary, we demonstrated the assembly, characteristics, and potential of monochiral (single-color) SWCNTs for NIR fluorescence sensing applications.
Collapse
Affiliation(s)
- Robert Nißler
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany.,Physical Chemistry II, Bochum University, 44801 Bochum, Germany
| | - Larissa Kurth
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany
| | - Han Li
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Alexander Spreinat
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany
| | - Ilyas Kuhlemann
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Sebastian Kruss
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany.,Physical Chemistry II, Bochum University, 44801 Bochum, Germany.,Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
| |
Collapse
|
10
|
Xu L, Valášek M, Hennrich F, Sedghamiz E, Penaloza-Amion M, Häussinger D, Wenzel W, Kappes MM, Mayor M. Enantiomeric Separation of Semiconducting Single-Walled Carbon Nanotubes by Acid Cleavable Chiral Polyfluorene. ACS NANO 2021; 15:4699-4709. [PMID: 33626282 DOI: 10.1021/acsnano.0c09235] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Helical wrapping by conjugated polymer has been demonstrated as a powerful tool for the sorting of single-walled carbon nanotubes (SWCNTs) according to their electronic type, chiral index, and even handedness. However, a method of one-step extraction of left-handed (M) and right-handed (P) semiconducting SWCNTs (s-SWCNTs) with subsequent cleavage of the polymer has not yet been published. In this work, we designed and synthesized one pair of acid cleavable polyfluorenes with defined chirality for handedness separation of s-SWCNTs from as-produced nanotubes. Each monomer contains a chiral center on the fluorene backbone in the 9-position, and the amino and carbonyl groups in the 2- and 7-positions maintain the head-to-tail regioselective polymerization resulting in polyimines with strictly all-(R) or all-(S) configuration. The obtained chiral polymers exhibit a strong recognition ability toward left- or right-handed s-SWCNTs from commercially available CoMoCAT SWCNTs with a sorting process requiring only bath sonication and centrifugation. Interestingly, the remaining polymer on each single nanotube, which helps to prevent aggregation, does not interfere with the circular dichroism signals from the nanotube at all. Therefore, we observed all four interband transition peaks (E11, E22, E33, E44) in the circular dichroism (CD) spectra of the still wrapped optically enriched left-handed and right-handed (6,5) SWCNTs in toluene. Binding energies obtained from molecular dynamics simulations were consistent with our experimental results and showed a significant preference for one specific handedness from each chiral polymer. Moreover, the imine bonds along the polymer chains enable the release of the nanotubes upon acid treatment. After s-SWNT separation, the polymer can be decomposed into monomers and be cleanly removed under mild acidic conditions, yielding dispersant-free handedness sorted s-SWNTs. The monomers can be almost quantitatively recovered to resynthesize the chiral polymer. This approach enables high selective isolation of polymer-free s-SWNT enantiomers for their further applications in carbon nanotube (CNT) devices.
Collapse
Affiliation(s)
- Liang Xu
- Institute of Nanotechnology, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Michal Valášek
- Institute of Nanotechnology, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Frank Hennrich
- Institute of Nanotechnology, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
- Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Elaheh Sedghamiz
- Institute of Nanotechnology, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Montserrat Penaloza-Amion
- Institute of Nanotechnology, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Wolfgang Wenzel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
- Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Marcel Mayor
- Institute of Nanotechnology, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
11
|
Staykov A, Toshimitsu F, Hashimoto W, Nakashima N. A flavin-Cu 2+ supramolecular complex for highly selective sorting of semiconducting single-walled carbon nanotubes with specific chiralities. Chem Commun (Camb) 2020; 56:12415-12418. [PMID: 32936134 DOI: 10.1039/d0cc04573j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduce thio-substituents at the 7- and 8-positions of a flavin analogue, which allows for the coordination of metal ions, and demonstrate, based on both experimental and theoretical methods, that the formed Cu2+-based supramolecular assembled complex shows very high selective sorting of semiconducting single-walled carbon nanotubes with (8,6)- and (9,4)-chiralities.
Collapse
Affiliation(s)
- Aleksandar Staykov
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | | | | | | |
Collapse
|
12
|
Gaviria Rojas WA, Hersam MC. Chirality-Enriched Carbon Nanotubes for Next-Generation Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905654. [PMID: 32255238 DOI: 10.1002/adma.201905654] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/10/2019] [Indexed: 05/06/2023]
Abstract
For the past half century, silicon has served as the primary material platform for integrated circuit technology. However, the recent proliferation of nontraditional electronics, such as wearables, embedded systems, and low-power portable devices, has led to increasingly complex mechanical and electrical performance requirements. Among emerging electronic materials, single-walled carbon nanotubes (SWCNTs) are promising candidates for next-generation computing as a result of their superlative electrical, optical, and mechanical properties. Moreover, their chirality-dependent properties enable a wide range of emerging electronic applications including sub-10 nm complementary field-effect transistors, optoelectronic integrated circuits, and enantiomer-recognition sensors. Here, recent progress in SWCNT-based computing devices is reviewed, with an emphasis on the relationship between chirality enrichment and electronic functionality. In particular, after highlighting chirality-dependent SWCNT properties and chirality enrichment methods, the range of computing applications that have been demonstrated using chirality-enriched SWCNTs are summarized. By identifying remaining challenges and opportunities, this work provides a roadmap for next-generation SWCNT-based computing.
Collapse
Affiliation(s)
- William A Gaviria Rojas
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
13
|
Park M, Yoon S, Park J, Park NH, Ju SY. Flavin Mononucleotide-Mediated Formation of Highly Electrically Conductive Hierarchical Monoclinic Multiwalled Carbon Nanotube-Polyamide 6 Nanocomposites. ACS NANO 2020; 14:10655-10665. [PMID: 32806060 DOI: 10.1021/acsnano.0c05170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although the multiwalled carbon nanotube (MWNT) is a promising material for use in the production of high electrical conductivity (σ) polymer nanocomposites, its tendency to aggregate and distribute randomly in a polymer matrix is a problematic issue. In the current study, we developed a highly conductive and monoclinically aligned MWNT-polyamide 6 (PA) nanocomposite containing interfacing flavin moieties. In this system, the flavin mononucleotide (FMN) initially serves as a noncovalent aqueous surfactant for individualizing MWNTs in the form of FMN-wrapped MWNTs (FMN-MWNT), and then partially decomposed FMN (dFMN) induces crystallization of the PA on the MWNTs. The results of experiments performed using material subjected to partial dissolution of PA matrix show that the nanocomposite PA-dFMN-MWNT, formed by melt extrusion of PA and dFMN-MWNT, contains a three-dimensional monoclinic MWNT network embedded in an equally monoclinic PA matrix. An increase in monoclinic network promoted by an increase in the content of MWNT increases σ of the nanocomposite up to 100 S/m, the highest value reported for a polymer-MWNT nanocomposite. X-ray diffraction along with transmission electron microscopy reveal that the presence of dFMN induces the formation of monoclinic PA on dFMN-MWNT. The high σ of the PA-dFMN-MWNT nanocomposite is also a consequence of a minimization of defect formation of MWNT by noncovalent functionalization. Hierarchical structural ordering, yet individualization of MWNTs, provides a viable strategy to improve the physical property of nanocomposites.
Collapse
Affiliation(s)
- Minsuk Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Seulki Yoon
- Human Convergence Technology Group, Korea Institute of Industrial Technology, Ansan-Si, Gyeonggi-Do 15588, Republic of Korea
| | - Junmo Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - No-Hyung Park
- Department of Textile Convergence of Biotechnology and Nanotechnology, Korea Institute of Industrial Technology, Ansan-Si, Gyeonggi-Do 15588, Republic of Korea
| | - Sang-Yong Ju
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
14
|
Li H, Gordeev G, Garrity O, Peyyety NA, Selvasundaram PB, Dehm S, Krupke R, Cambré S, Wenseleers W, Reich S, Zheng M, Fagan JA, Flavel BS. Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime. ACS NANO 2020; 14:948-963. [PMID: 31742998 PMCID: PMC6994058 DOI: 10.1021/acsnano.9b08244] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/19/2019] [Indexed: 05/06/2023]
Abstract
The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm diameter are isolated, including both metallics and semiconductors. We characterize these populations by absorbance spectroscopy, circular dichroism spectroscopy, resonance Raman spectroscopy, and photoluminescence mapping, revealing and substantiating mod-dependent optical dependencies. Using knowledge of the competitive adsorption of surfactants to the SWCNTs that controls partitioning within the ATPE separation, we describe an advanced acid addition methodology that enables the fine control of the separation of these select nanotubes. Furthermore, we show that endohedral filling is a previously unrecognized but important factor to ensure a homogeneous starting material and further enhance the separation yield, with the best results for alkane-filled SWCNTs, followed by empty SWCNTs, with the intrinsic inhomogeneity of water-filled SWCNTs causing them to be worse for separations. Lastly, we demonstrate the potential use of these nanotubes in field-effect transistors.
Collapse
Affiliation(s)
- Han Li
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Karlsruhe 76021, Germany
| | - Georgy Gordeev
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Oisin Garrity
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Naga Anirudh Peyyety
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Karlsruhe 76021, Germany
- Institute
of Materials Science, Technische Universität
Darmstadt, Darmstadt 64287, Germany
| | - Pranauv Balaji Selvasundaram
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Karlsruhe 76021, Germany
- Institute
of Materials Science, Technische Universität
Darmstadt, Darmstadt 64287, Germany
| | - Simone Dehm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Karlsruhe 76021, Germany
| | - Ralph Krupke
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Karlsruhe 76021, Germany
- Institute
of Materials Science, Technische Universität
Darmstadt, Darmstadt 64287, Germany
| | - Sofie Cambré
- Physics
Department, University of Antwerp, Antwerp 2020, Belgium
| | - Wim Wenseleers
- Physics
Department, University of Antwerp, Antwerp 2020, Belgium
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Ming Zheng
- Materials
Science and Engineering Division, National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jeffrey A. Fagan
- Materials
Science and Engineering Division, National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Benjamin S. Flavel
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Karlsruhe 76021, Germany
| |
Collapse
|
15
|
Wei X, Tanaka T, Li S, Tsuzuki M, Wang G, Yao Z, Li L, Yomogida Y, Hirano A, Liu H, Kataura H. Photoluminescence Quantum Yield of Single-Wall Carbon Nanotubes Corrected for the Photon Reabsorption Effect. NANO LETTERS 2020; 20:410-417. [PMID: 31860318 DOI: 10.1021/acs.nanolett.9b04095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Photoluminescence (PL) from single-wall carbon nanotubes (SWCNTs) enables structural identification, but to derive the content rate of the specific chirality species it is necessary to know the quantum yield of each chirality. However, in the PL of SWCNTs, because the Stokes shift is small, the photon reabsorption effect is dominant and the apparent PL spectral shape and emission intensity are greatly modified depending on the concentration. This problem makes quantitative identification of SWCNTs by PL difficult. In this study, the concentration dependence of the PL of SWCNTs separated into a few chiralities was analyzed in detail, including the effect of reabsorption. It is clear that all changes in the PL spectrum occurring in the high concentration range can be explained simply by the reabsorption effect, and additional effects such as Coulomb interactions between SWCNTs can be negligible. Furthermore, a reliable quantum yield was derived from the emission intensity corrected for the reabsorption effect. The PL quantum yield varied with SWCNT chirality and exhibited a clear "family pattern". This is consistent with the theoretical report showing that the chirality-dependent PL quantum yield is dominated mainly by relaxation by optical phonons from E22 to E11.
Collapse
Affiliation(s)
- Xiaojun Wei
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
| | - Takeshi Tanaka
- Nanomaterials Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Ibaraki 305-8565 , Japan
| | - Shilong Li
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
- Department of Physical Science , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Mayumi Tsuzuki
- Nanomaterials Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Ibaraki 305-8565 , Japan
| | - Guowei Wang
- Nanomaterials Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Ibaraki 305-8565 , Japan
| | - Zhihui Yao
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
| | - Linhai Li
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
- Department of Physical Science , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yohei Yomogida
- Department of Physics, Faculty of Science , Tokyo Metropolitan University , Hachioji , Tokyo 192-0397 , Japan
| | - Atsushi Hirano
- Nanomaterials Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Ibaraki 305-8565 , Japan
| | - Huaping Liu
- Beijing National Laboratory for Condensed Matter Physics , Institute of Physics, Chinese Academy of Sciences , Beijing 100190 , China
- Department of Physical Science , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Hiromichi Kataura
- Nanomaterials Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Ibaraki 305-8565 , Japan
| |
Collapse
|
16
|
Park M, Hong KI, Jin SM, Lee E, Jang WD, Ju SY. Helical Assembly of Flavin Mononucleotides on Carbon Nanotubes as Multimodal Near-IR Hg(II)-Selective Probes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8400-8411. [PMID: 30724070 DOI: 10.1021/acsami.8b18781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of novel methods to detect mercury is of paramount importance owing to the impact of this metal on human health and the environment. We observed that flavin mononucleotide (FMN) and its helical assembly with a single-walled carbon nanotube (SWNT) selectively bind Hg2+ arising from HgCl2 and MeHgCl. Absorption spectroscopic studies show that FMN preferentially forms a 2:1 rather than a 1:1 complex with Hg2+ at high FMN concentrations. On the basis of the analogy to the thymine-Hg-thymine complex, it is proposed that the 2:1 complex between FMN and Hg2+ comprises a Hg-bridged pair of FMN groups, regardless of the presence of SWNT. Upon addition of as little as a few hundred nanomoles of Hg2+, both FMN and FMN-SWNT exhibit absorption and photoluminescence (PL) changes. Moreover, FMN-SWNT displays simultaneous multiple sigmoidal changes in PL of SWNT tubes having different chiral vectors. Assessment of binding affinities using the Hill equation suggests that 2:1 and 1:1 complexes form between Hg2+ and FMN groups on the FMN-SWNT. Theoretical calculations indicate that optical changes of the FMN-SWNT originate from Hg-mediated conformational changes occurring on the helical array of FMN on the SWNT. High-resolution transmission electron microscopy revealed that the presence of Hg2+ in complexes with the FMN-SWNT enables visualization of helical periodic undulation of FMN groups along SWNT without the need for staining. Circular dichroism (CD) study revealed that FMN-SWNT whose CD signal mainly originates from FMN decreases dichroic bands upon the addition of Hg2+ owing to the formation of a centrosymmetric FMN-Hg-FMN triad on SWNT. The binding mode specificity and multimodal changes observed in response to Hg2+ ions suggest that systems based on FMN-SWNT can serve as in vivo NIR beacons for the detection of various mercury derivatives.
Collapse
Affiliation(s)
- Minsuk Park
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-Gu, Seoul 03722 , Republic of Korea
| | - Kyeong-Im Hong
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-Gu, Seoul 03722 , Republic of Korea
| | - Seon-Mi Jin
- Graduate School of Analytical Science and Technology , Chungnam National University , Daejeon 34134 , Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology (GIST) , Gwangju 61005 , Republic of Korea
| | - Woo-Dong Jang
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-Gu, Seoul 03722 , Republic of Korea
| | - Sang-Yong Ju
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-Gu, Seoul 03722 , Republic of Korea
| |
Collapse
|
17
|
Li H, Gordeev G, Garrity O, Reich S, Flavel BS. Separation of Small-Diameter Single-Walled Carbon Nanotubes in One to Three Steps with Aqueous Two-Phase Extraction. ACS NANO 2019; 13:2567-2578. [PMID: 30673278 DOI: 10.1021/acsnano.8b09579] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An aqueous two-phase extraction (ATPE) technique capable of separating small-diameter single-walled carbon nanotubes in one, two, or at the most three steps is presented. Separation is performed in the well-studied two-phase system containing polyethylene glycol and dextran, but it is achieved without changing the global concentration or ratio of cosurfactants. Instead, the technique is reliant upon the different surfactant shell around each nanotube diameter at a fixed surfactant concentration. The methodology to obtain a single set of surfactant conditions is provided, and strategies to optimize these for other diameter regimes are discussed. In total, 11 different chiralities in the diameter range 0.69-0.91 nm are separated. These include semiconducting and both armchair and nonarmchair metallic nanotube species. Titration of cosurfactant suspensions reveal separation to be driven by the pH of the suspension with each ( n, m) species partitioning at a fixed pH. This allows for an ( n, m) separation approach to be presented that is as simple as pipetting known volumes of acid into the ATPE system.
Collapse
Affiliation(s)
- Han Li
- Institute of Nanotechnology , Karlsruhe Institute of Technology , Karlsruhe 76344 , Germany
| | - Georgy Gordeev
- Department of Physics , Freie Universität Berlin , Berlin 14195 , Germany
| | - Oisin Garrity
- Department of Physics , Freie Universität Berlin , Berlin 14195 , Germany
| | - Stephanie Reich
- Department of Physics , Freie Universität Berlin , Berlin 14195 , Germany
| | - Benjamin S Flavel
- Institute of Nanotechnology , Karlsruhe Institute of Technology , Karlsruhe 76344 , Germany
- Institute of Materials Science , Technische Universität Darmstadt , Darmstadt 64289 , Germany
| |
Collapse
|
18
|
Abd El-Mageed AIA, Handayani M, Chen Z, Inose T, Ogawa T. Assignment of the Absolute-Handedness Chirality of Single-Walled Carbon Nanotubes Using Organic Molecule Supramolecular Structures. Chemistry 2019; 25:1941-1948. [PMID: 30395702 DOI: 10.1002/chem.201804832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Indexed: 11/07/2022]
Abstract
Supramolecular structures of organic molecules on planar nanocarbon surfaces, such as highly oriented pyrolytic graphite (HOPG), have been extensively studied and the factors that control them are generally well-established. In contrast, the properties of supramolecular structures on curved nanocarbon surfaces like carbon nanotubes remain challenging to predict and/or to understand. This paper reports an investigation into the first study of the supramolecular structures of 5,15-bisdodecylporphyrin (C12P) on chiral, concentrated single-walled carbon nanotubes (SWNTs; with right-handed helix P- and left-handed helix M-) surfaces using STM. Furthermore, the study is the first of its kind to experimentally assign the absolute-handedness chirality of SWNTs, as well as to understand their effect on the supramolecular structures of organic molecules on their surfaces. Interestingly, these SWNT enantiomers resulted in supramolecular structures of opposite chirality based on the handedness chirality. With molecular modelling, we predicted the absolute-handedness chirality of SWNTs, before demonstrating this experimentally.
Collapse
Affiliation(s)
- Ahmed I A Abd El-Mageed
- Chemistry Department, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Murni Handayani
- Chemistry Department, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Indonesian Institute of Sciences (LIPI), Research Center for Metallurgy and Materials, Tangerang Selatan, Banten, 15314, Indonesia
| | - Zhijin Chen
- Chemistry Department, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Tomoko Inose
- Chemistry Department, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Research Institute for Electronic Science, Hokkaido University, 20-10 Kita-ku Kita, Sapporo, Hokkaido 001-0020, Japan
| | - Takuji Ogawa
- Chemistry Department, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
19
|
Pu C, Xu Y, Liu Q, Zhu A, Shi G. Enantiomers of Single Chirality Nanotube as Chiral Recognition Interface for Enhanced Electrochemical Chiral Analysis. Anal Chem 2019; 91:3015-3020. [DOI: 10.1021/acs.analchem.8b05336] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chunling Pu
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Yunxia Xu
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Qi Liu
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Anwei Zhu
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| |
Collapse
|
20
|
Bati ASR, Yu L, Batmunkh M, Shapter JG. Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes. NANOSCALE 2018; 10:22087-22139. [PMID: 30475354 DOI: 10.1039/c8nr07379a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have attracted significant attention due to their outstanding mechanical, chemical and optoelectronic properties, which makes them promising candidates for use in a wide range of applications. However, as-produced SWCNTs have a wide distribution of various chiral species with different properties (i.e. electronic structures). In order to take full advantage of SWCNT properties, highly purified and well-separated SWCNTs are of great importance. Recent advances have focused on developing new strategies to effectively separate nanotubes into single-chirality and/or semiconducting/metallic species and integrating them into different applications. This review highlights recent progress in this cutting-edge research area alongside the enormous development of their identification and structural characterization techniques. A comprehensive review of advances in both controlled synthesis and post-synthesis separation methods of SWCNTs are presented. The relationship between the unique structure of SWCNTs and their intrinsic properties is also discussed. Finally, important future directions for the development of sorting and purification protocols for SWCNTs are provided.
Collapse
Affiliation(s)
- Abdulaziz S R Bati
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | - LePing Yu
- College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Munkhbayar Batmunkh
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. and College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Joseph G Shapter
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. and College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| |
Collapse
|