1
|
Chen X, Mao W, Zhou W, Huang P, Liu H, Wang X, Liang Z, Yang Q, Chen Y, Zhou G, Xu J. In-Situ Fabricated Transparent Flexible Nanowire Device with Wavelength-Regulated Dual-Function of Photodetector and Photonic Synapse. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57512-57523. [PMID: 39401295 DOI: 10.1021/acsami.4c12357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Integrating the dual functionalities of a photodetector and photonic synapse into a single device is challenging due to their conflicting requirements for photocurrent decay rates. This study addresses this issue by seamlessly depositing transparent indium tin oxide (ITO) electrodes onto self-oriented copper hexadecafluoro-phthalocyanine (F16CuPc) nanowires growing horizontally along hot-stamped periodic nanogrooves on a transparent flexible polyimide plastic film. This in-situ-fabricated device achieves bending-stable dual functionalities through wavelength regulation while maintaining high transparency and flexibility. Upon exposure to 450-850 nm light, the device exhibits a rapid and sensitive photoresponse with excellent bending stability, making it ideal for optical sensing in both visible and near-infrared spectra. More importantly, the device exhibits a bending-stable excitation postsynaptic current when exposed to light spikes below 405 nm. This enables the successful emulation of various biological synaptic functionalities, including paired-pulse facilitation, spike-number-dependent plasticity, spike-duration-dependent plasticity, spike-rating-dependent plasticity, configurable plasticity between short-term plasticity and long-term plasticity, and memory learning capabilities. Utilizing this device in an artificial neural network achieves a recognition rate of 95% after 57 training epochs. Its ability to switch between photodetection and synaptic modes by adjusting the light wavelength marks a significant advancement in the field of multifunctional flexible electronics based on nanowire arrays.
Collapse
Affiliation(s)
- Xiangtao Chen
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Wanglong Mao
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Wei Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Pingyang Huang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Hanyu Liu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Xingyu Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Zhanhao Liang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Qiming Yang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Yanbin Chen
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jinyou Xu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
2
|
Liu H, Zhou W, Chen X, Huang P, Wang X, Zhou G, Xu J. Replicating CD Nanogrooves onto PDMS to Guide Nanowire Growth for Monolithic Flexible Photodetectors with High Bending-Stable UV-vis-NIR Photoresponse. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403870. [PMID: 38899831 PMCID: PMC11348143 DOI: 10.1002/advs.202403870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Guided nanowires grown on polymer surfaces facilitate their seamless integration as flexible devices without post-growth processing steps. However, this is challenging due to the inability of polymer films to provide the required lattice-matching effect. In this work, this challenge is addressed by replicating highly aligned nanogrooves from a compact disc (CD) onto a casted flexible polydimethylsiloxane (PDMS) surface. Leveraging the replicated nanogrooves, copper hexadecafluorophthalocyanine (F16CuPc) and various metal phthalocyanines are guided into large-area, self-aligned nanowires. Subsequently, by employing specifically designed shadow masks during electrode deposition, these nanowires are seamlessly integrated as either a monolithic flexible photodetector with a large sensing area or on-chip flexible photodetector arrays. The resulting flexible photodetectors exhibit millisecond and long-term stable response to UV-vis-NIR light. Notably, they demonstrate exceptional bending stability, retaining stable and sensitive photoresponse even at a curvature radius as low as 0.5 cm and after enduring 1000 bending cycles. Furthermore, the photodetector array showcases consistent sensitivity and response speed across the entire array. This work not only proves the viability of guided nanowire growth on flexible polymer surfaces by replicating CD nanogrooves but also underscores the potential for large-scale monolithic integration of guided nanowires as flexible devices.
Collapse
Affiliation(s)
- Hanyu Liu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
| | - Wei Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
| | - Xiangtao Chen
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
| | - Pingyang Huang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
| | - Xingyu Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
| | - Jinyou Xu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
| |
Collapse
|
3
|
Danieli Y, Sanders E, Brontvein O, Joselevich E. Guided CdTe Nanowires Integrated into Fast Near-Infrared Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2637-2648. [PMID: 38174359 PMCID: PMC10797596 DOI: 10.1021/acsami.3c15797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Infrared photodetectors are essential devices for telecommunication and night vision technologies. Two frequently used materials groups for this technology are III-V and II-VI semiconductors, notably, mercury-cadmium-telluride alloys (MCT). However, growing them usually requires expensive substrates that can only be provided on small scales, and their large-scale production as crystalline nanostructures is challenging. In this paper, we present a two-stage process for creating aligned MCT nanowires (NWs). First, we report the growth of planar CdTe nanowires with controlled orientations on flat and faceted sapphire substrates via the vapor-liquid-solid (VLS) mechanism. We utilize this guided growth approach to parallelly integrate the NWs into fast near-infrared photodetectors with characteristic rise and fall times of ∼100 μs at room temperature. An epitaxial effect of the planar growth and the unique structure of the NWs, including size and composition, are suggested to explain the high performance of the devices. In the second stage, we show that cation exchange with mercury can be applied, resulting in a band gap narrowing of up to 55 meV, corresponding to an exchange of 2% Cd with Hg. This work opens new opportunities for creating small, fast, and sensitive infrared detectors with an engineered band gap operating at room temperature.
Collapse
Affiliation(s)
- Yarden Danieli
- Department
of Molecular Chemistry and Materials Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ella Sanders
- Department
of Molecular Chemistry and Materials Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Olga Brontvein
- Chemical
Research Support, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Ernesto Joselevich
- Department
of Molecular Chemistry and Materials Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
Rothman A, Bukvišová K, Itzhak NR, Kaplan-Ashiri I, Kossoy AE, Sui X, Novák L, Šikola T, Kolíbal M, Joselevich E. Real-Time Study of Surface-Guided Nanowire Growth by In Situ Scanning Electron Microscopy. ACS NANO 2022; 16:18757-18766. [PMID: 36305551 PMCID: PMC9706663 DOI: 10.1021/acsnano.2c07480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Surface-guided growth has proven to be an efficient approach for the production of nanowire arrays with controlled orientations and their large-scale integration into electronic and optoelectronic devices. Much has been learned about the different mechanisms of guided nanowire growth by epitaxy, graphoepitaxy, and artificial epitaxy. A model describing the kinetics of surface-guided nanowire growth has been recently reported. Yet, many aspects of the surface-guided growth process remain unclear due to a lack of its observation in real time. Here we observe how surface-guided nanowires grow in real time by in situ scanning electron microscopy (SEM). Movies of ZnSe surface-guided nanowires growing on periodically faceted substrates of annealed M-plane sapphire clearly show how the nanowires elongate along the substrate nanogrooves while pushing the catalytic Au nanodroplet forward at the tip of the nanowire. The movies reveal the timing between competing processes, such as planar vs nonplanar growth, catalyst-selective vapor-liquid-solid elongation vs nonselective vapor-solid thickening, and the effect of topographic discontinuities of the substrate on the growth direction, leading to the formation of kinks and loops. Contrary to some observations for nonplanar nanowire growth, planar nanowires are shown to elongate at a constant rate and not by jumps. A decrease in precursor concentration as it is consumed after long reaction time causes the nanowires to shrink back instead of growing, thus indicating that the process is reversible and takes place near equilibrium. This real-time study of surface-guided growth, enabled by in situ SEM, enables a better understanding of the formation of nanostructures on surfaces.
Collapse
Affiliation(s)
- Amnon Rothman
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot76100, Israel
| | - Kristýna Bukvišová
- Institute
of Physical Engineering, Brno University
of Technology, Technická 2, 616 69Brno, Czech Republic
- CEITEC
BUT, Brno University of Technology, Purkyňova 123, 612 00Brno, Czech
Republic
| | - Noya Ruth Itzhak
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot76100, Israel
| | - Ifat Kaplan-Ashiri
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot76100, Israel
| | - Anna Eden Kossoy
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot76100, Israel
| | - Xiaomeng Sui
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot76100, Israel
| | - Libor Novák
- Thermo
Fisher Scientific, Vlastimila
Pecha 12, 627 00Brno, Czech Republic
| | - Tomáš Šikola
- Institute
of Physical Engineering, Brno University
of Technology, Technická 2, 616 69Brno, Czech Republic
- CEITEC
BUT, Brno University of Technology, Purkyňova 123, 612 00Brno, Czech
Republic
| | - Miroslav Kolíbal
- Institute
of Physical Engineering, Brno University
of Technology, Technická 2, 616 69Brno, Czech Republic
- CEITEC
BUT, Brno University of Technology, Purkyňova 123, 612 00Brno, Czech
Republic
| | - Ernesto Joselevich
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot76100, Israel
| |
Collapse
|
5
|
Ben-Zvi R, Bar-Elli O, Oron D, Joselevich E. Polarity-dependent nonlinear optics of nanowires under electric field. Nat Commun 2021; 12:3286. [PMID: 34078896 PMCID: PMC8172856 DOI: 10.1038/s41467-021-23488-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/29/2021] [Indexed: 11/09/2022] Open
Abstract
Polar materials display a series of interesting and widely exploited properties owing to the inherent coupling between their fixed electric dipole and any action that involves a change in their charge distribution. Among these properties are piezoelectricity, ferroelectricity, pyroelectricity, and the bulk photovoltaic effect. Here we report the observation of a related property in this series, where an external electric field applied parallel or anti-parallel to the polar axis of a crystal leads to an increase or decrease in its second-order nonlinear optical response, respectively. This property of electric-field-modulated second-harmonic generation (EFM-SHG) is observed here in nanowires of the polar crystal ZnO, and is exploited as an analytical tool to directly determine by optical means the absolute direction of their polarity, which in turn provides important information about their epitaxy and growth mechanism. EFM-SHG may be observed in any type of polar nanostructures and used to map the absolute polarity of materials at the nanoscale. Finding dipole orientation of nanostructures is a challenge. Here the authors report a method to determine the sign of the polarity of a single nanowire using electric-field-modulated second-harmonic generation from surface-guided ZnO nanowire.
Collapse
Affiliation(s)
- Regev Ben-Zvi
- Departments of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| | - Omri Bar-Elli
- Departments of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Dan Oron
- Departments of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel.
| | - Ernesto Joselevich
- Departments of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Kinetics of Guided Growth of Horizontal GaN Nanowires on Flat and Faceted Sapphire Surfaces. NANOMATERIALS 2021; 11:nano11030624. [PMID: 33802317 PMCID: PMC8002117 DOI: 10.3390/nano11030624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022]
Abstract
The bottom-up assembly of nanowires facilitates the control of their dimensions, structure, orientation and physical properties. Surface-guided growth of planar nanowires has been shown to enable their assembly and alignment on substrates during growth, thus eliminating the need for additional post-growth processes. However, accurate control and understanding of the growth of the planar nanowires were achieved only recently, and only for ZnSe and ZnS nanowires. Here, we study the growth kinetics of surface-guided planar GaN nanowires on flat and faceted sapphire surfaces, based on the previous growth model. The data are fully consistent with the same model, presenting two limiting regimes-either the Gibbs-Thomson effect controlling the growth of the thinner nanowires or surface diffusion controlling the growth of thicker ones. The results are qualitatively compared with other semiconductors surface-guided planar nanowires materials, demonstrating the generality of the growth mechanism. The rational approach enabled by this general model provides better control of the nanowire (NW) dimensions and expands the range of materials systems and possible application of NW-based devices in nanotechnology.
Collapse
|
7
|
Xu J, Wang X, Nötzel R. Single-nanostructure bandgap engineering enabled by magnetic-pulling thermal evaporation growth. NANOSCALE ADVANCES 2020; 2:4305-4322. [PMID: 36132888 PMCID: PMC9417569 DOI: 10.1039/d0na00595a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/07/2020] [Indexed: 06/16/2023]
Abstract
Realizing the substantial potential of bottom-up 1D semiconductor nanostructures in developing functional nanodevices calls for dedicated single-nanostructure bandgap engineering by various growth approaches. Although thermal evaporation has been advised as a facile approach for most semiconductors to form 1D nanostructures from bottom-up, its capability of achieving single-nanostructure bandgap engineering was considered a challenge. In 2011, we succeeded in the direct growth of composition-graded CdS1-x Se x (0 ≤ x ≤ 1) nanowires by upgrading the thermal-evaporation tube furnace with a home-made magnetic-pulling module. This report aims to provide a comprehensive review of the latest advances in the single-nanostructure bandgap engineering enabled by the magnetic-pulling thermal evaporation growth. The report begins with the description of different magnetic-pulling thermal evaporation strategies associated with diverse examples of composition-engineered 1D nanostructures. Following is an elaboration on their optoelectronic applications based on the resulting single-nanostructure bandgap engineering, including monolithic white-light sources, proof-of-concept asymmetric light propagation and wavelength splitters, monolithic multi-color and white-light lasers, broadband-response photodetectors, high-performance transistors, and recently the most exciting single-nanowire spectrometer. In the end, this report concludes with some personal perspectives on the directions toward which future research might be advanced.
Collapse
Affiliation(s)
- Jinyou Xu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University Guangzhou 510006 People's Republic of China
| | - Xingyu Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University Guangzhou 510006 People's Republic of China
| | - Richard Nötzel
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University Guangzhou 510006 People's Republic of China
| |
Collapse
|
8
|
Sun Y, Dong T, Yu L, Xu J, Chen K. Planar Growth, Integration, and Applications of Semiconducting Nanowires. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903945. [PMID: 31746050 DOI: 10.1002/adma.201903945] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Silicon and other inorganic semiconductor nanowires (NWs) have been extensively investigated in the last two decades for constructing high-performance nanoelectronics, sensors, and optoelectronics. For many of these applications, these tiny building blocks have to be integrated into the existing planar electronic platform, where precise location, orientation, and layout controls are indispensable. In the advent of More-than-Moore's era, there are also emerging demands for a programmable growth engineering of the geometry, composition, and line-shape of NWs on planar or out-of-plane 3D sidewall surfaces. Here, the critical technologies established for synthesis, transferring, and assembly of NWs upon planar surface are examined; then, the recent progress of in-plane growth of horizontal NWs directly upon crystalline or patterned substrates, constrained by using nanochannels, an epitaxial interface, or amorphous thin film precursors is discussed. Finally, the unique capabilities of planar growth of NWs in achieving precise guided growth control, programmable geometry, composition, and line-shape engineering are reviewed, followed by their latest device applications in building high-performance field-effect transistors, photodetectors, stretchable electronics, and 3D stacked-channel integration.
Collapse
Affiliation(s)
- Ying Sun
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Taige Dong
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Linwei Yu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Jun Xu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Kunji Chen
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
9
|
Abstract
Surface-guided growth of planar nanowires offers the possibility to control their position, direction, length, and crystallographic orientation and to enable their large-scale integration into practical devices. However, understanding of and control over planar nanowire growth are still limited. Here, we study theoretically and experimentally the growth kinetics of surface-guided planar nanowires. We present a model that considers different kinetic pathways of material transport into the planar nanowires. Two limiting regimes are established by the Gibbs-Thomson effect for thinner nanowires and by surface diffusion for thicker nanowires. By fitting the experimental data for the length-diameter dependence to the kinetic model, we determine the power exponent, which represents the dimensionality of surface diffusion, and results to be different for planar vs. nonplanar nanowires. Excellent correlation between the model predictions and the data is obtained for surface-guided Au-catalyzed ZnSe and ZnS nanowires growing on both flat and faceted sapphire surfaces. These data are compared with those of nonplanar nanowire growth under similar conditions. The results indicate that, whereas nonplanar growth is usually dominated by surface diffusion of precursor adatoms over the nanowire walls, planar growth is dominated by surface diffusion over the substrate. This mechanism of planar nanowire growth can be extended to a broad range of material-substrate combinations for higher control toward large-scale integration into practical devices.
Collapse
|
10
|
Ben-Zvi R, Burrows H, Schvartzman M, Bitton O, Pinkas I, Kaplan-Ashiri I, Brontvein O, Joselevich E. In-Plane Nanowires with Arbitrary Shapes on Amorphous Substrates by Artificial Epitaxy. ACS NANO 2019; 13:5572-5582. [PMID: 30995393 PMCID: PMC6994061 DOI: 10.1021/acsnano.9b00538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
The challenge of nanowire assembly is still one of the major obstacles toward their efficient integration into functional systems. One strategy to overcome this obstacle is the guided growth approach, in which the growth of in-plane nanowires is guided by epitaxial and graphoepitaxial relations with the substrate to yield dense arrays of aligned nanowires. This method relies on crystalline substrates which are generally expensive and incompatible with silicon-based technologies. In this work, we expand the guided growth approach into noncrystalline substrates and demonstrate the guided growth of horizontal nanowires along straight and arbitrarily shaped amorphous nanolithographic open guides on silicon wafers. Nanoimprint lithography is used as a high-throughput method for the fabrication of the high-resolution guiding features. We first grow five different semiconductor materials (GaN, ZnSe, CdS, ZnTe, and ZnO) along straight ridges and trenches, demonstrating the generality of this method. Through crystallographic analysis we find that despite the absence of any epitaxial relations with the substrate, the nanowires grow as single crystals in preferred crystallographic orientations. To further expand the guided growth approach beyond straight nanowires, GaN and ZnSe were grown also along curved and kinked configurations to form different shapes, including sinusoidal and zigzag-shaped nanowires. Photoluminescence and cathodoluminescence were used as noninvasive tools to characterize the sine wave-shaped nanowires. We discuss the similarities and differences between in-plane nanowires grown by epitaxy/graphoepitaxy and artificial epitaxy in terms of generality, morphology, crystallinity, and optical properties.
Collapse
Affiliation(s)
- Regev Ben-Zvi
- Departments
of Materials and Interfaces and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hadassah Burrows
- Departments
of Materials and Interfaces and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mark Schvartzman
- Departments
of Materials and Interfaces and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ora Bitton
- Departments
of Materials and Interfaces and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Iddo Pinkas
- Departments
of Materials and Interfaces and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ifat Kaplan-Ashiri
- Departments
of Materials and Interfaces and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Olga Brontvein
- Departments
of Materials and Interfaces and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ernesto Joselevich
- Departments
of Materials and Interfaces and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
11
|
Tong T, Wang S, Zhao J, Cheng B, Xiao Y, Lei S. Erasable memory properties of spectral selectivity modulated by temperature and bias in an individual CdS nanobelt-based photodetector. NANOSCALE HORIZONS 2019; 4:138-147. [PMID: 32254149 DOI: 10.1039/c8nh00182k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Single CdS nanobelt-based photodetectors are strongly dependent on bias and temperature. They not only show a strong photoresponse to close bandgap energy light with ultrahigh responsivity of approximately 107 A W-1, large photo-to-dark current ratio of 104, photoconductive gain of 107, and fast response and recovery speed at a large bias of 20 V, but can also show a weak photoresponse to above- and below-bandgap energy light. Moreover, their spectral response range can show tunable selectivity to above- and below-bandgap light, which can be accurately controlled by temperature and bias. More importantly, the modulated spectral response characteristics show excellent memory behaviour after reversible writing and erasing by using temperature and bias. In nanostructures, abundant surface states and stacking fault-related traps play a vital role in the ultrahigh photoresponse to bandgap light and the erasable memory effect on spectral response range selectivity. Given the erasable memory of the spectral response selectivity with excellent photoconduction performance, the CdS NBs possess important applications in new-generation photodetection and photomemory devices.
Collapse
Affiliation(s)
- Tao Tong
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China.
| | | | | | | | | | | |
Collapse
|
12
|
Xu J, Rechav K, Popovitz-Biro R, Nevo I, Feldman Y, Joselevich E. High-Gain 200 ns Photodetectors from Self-Aligned CdS-CdSe Core-Shell Nanowalls. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800413. [PMID: 29603418 DOI: 10.1002/adma.201800413] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/13/2018] [Indexed: 06/08/2023]
Abstract
1D core-shell heterojunction nanostructures have great potential for high-performance, compact optoelectronic devices owing to their high interface area to volume ratio, yet their bottom-up assembly toward scalable fabrication remains a challenge. Here the site-controlled growth of aligned CdS-CdSe core-shell nanowalls is reported by a combination of surface-guided vapor-liquid-solid horizontal growth and selective-area vapor-solid epitaxial growth, and their integration into photodetectors at wafer-scale without postgrowth transfer, alignment, or selective shell-etching steps. The photocurrent response of these nanowalls is reduced to 200 ns with a gain of up to 3.8 × 103 and a photoresponsivity of 1.2 × 103 A W-1 , the fastest response at such a high gain ever reported for photodetectors based on compound semiconductor nanostructures. The simultaneous achievement of sub-microsecond response and high-gain photocurrent is attributed to the virtues of both the epitaxial CdS-CdSe heterojunction and the enhanced charge-separation efficiency of the core-shell nanowall geometry. Surface-guided nanostructures are promising templates for wafer-scale fabrication of self-aligned core-shell nanostructures toward scalable fabrication of high-performance compact photodetectors from the bottom-up.
Collapse
Affiliation(s)
- Jinyou Xu
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Katya Rechav
- Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ronit Popovitz-Biro
- Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Iftach Nevo
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yishay Feldman
- Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ernesto Joselevich
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
13
|
Oksenberg E, Sanders E, Popovitz-Biro R, Houben L, Joselevich E. Surface-Guided CsPbBr 3 Perovskite Nanowires on Flat and Faceted Sapphire with Size-Dependent Photoluminescence and Fast Photoconductive Response. NANO LETTERS 2018; 18:424-433. [PMID: 29210586 DOI: 10.1021/acs.nanolett.7b04310] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
All-inorganic lead halide perovskite nanowires have been the focus of increasing interest since they exhibit improved stability compared to their hybrid organic-inorganic counterparts, while retaining their interesting optical and optoelectronic properties. Arrays of surface-guided nanowires with controlled orientations and morphology are promising as building blocks for various applications and for systematic research. We report the horizontal and aligned growth of CsPbBr3 nanowires with a uniform crystallographic orientation on flat and faceted sapphire surfaces to form arrays with 6-fold and 2-fold symmetries, respectively, along specific directions of the sapphire substrate. We observed waveguiding behavior and diameter-dependent photoluminescence emission well beyond the quantum confinement regime. The arrays were easily integrated into multiple devices, displaying p-type behavior and photoconductivity. Photodetectors based on those nanowires exhibit the fastest rise and decay times for any CsPbBr3-based photodetectors reported so far. One-dimensional arrays of halide perovskite nanowires are a promising platform for investigating the intriguing properties and potential applications of these unique materials.
Collapse
Affiliation(s)
- Eitan Oksenberg
- Department of Materials and Interfaces and ‡Chemical Research Support, Weizmann Institute of Science , Rehovot, 76100, Israel
| | - Ella Sanders
- Department of Materials and Interfaces and ‡Chemical Research Support, Weizmann Institute of Science , Rehovot, 76100, Israel
| | - Ronit Popovitz-Biro
- Department of Materials and Interfaces and ‡Chemical Research Support, Weizmann Institute of Science , Rehovot, 76100, Israel
| | - Lothar Houben
- Department of Materials and Interfaces and ‡Chemical Research Support, Weizmann Institute of Science , Rehovot, 76100, Israel
| | - Ernesto Joselevich
- Department of Materials and Interfaces and ‡Chemical Research Support, Weizmann Institute of Science , Rehovot, 76100, Israel
| |
Collapse
|
14
|
Shoaib M, Wang X, Zhang X, Zhang Q, Pan A. Controllable Vapor Growth of Large-Area Aligned CdS x Se 1-x Nanowires for Visible Range Integratable Photodetectors. NANO-MICRO LETTERS 2018; 10:58. [PMID: 30393706 PMCID: PMC6199103 DOI: 10.1007/s40820-018-0211-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/03/2018] [Indexed: 05/10/2023]
Abstract
The controllable growth of large area band gap engineered-semiconductor nanowires (NWs) with precise orientation and position is of immense significance in the development of integrated optoelectronic devices. In this study, we have achieved large area in-plane-aligned CdS x Se1-x nanowires via chemical vapor deposition method. The orientation and position of the alloyed CdS x Se1-x NWs could be controlled well by the graphoepitaxial effect and the patterns of Au catalyst. Microstructure characterizations of these as-grown samples reveal that the aligned CdS x Se1-x NWs possess smooth surface and uniform diameter. The aligned CdS x Se1-x NWs have strong photoluminescence and high-quality optical waveguide emission covering almost the entire visible wavelength range. Furthermore, photodetectors were constructed based on individual alloyed CdS x Se1-x NWs. These devices exhibit high performance and fast response speed with photoresponsivity ~ 670 A W-1 and photoresponse time ~ 76 ms. Present work provides a straightforward way to realize in-plane aligned bandgap engineering in semiconductor NWs for the development of large area NW arrays, which exhibit promising applications in future optoelectronic integrated circuits.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, Hunan, People's Republic of China
| | - Xiaoxia Wang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, Hunan, People's Republic of China
| | - Xuehong Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, Hunan, People's Republic of China
| | - Qinglin Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, Hunan, People's Republic of China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, Hunan, People's Republic of China.
| |
Collapse
|