1
|
Ye B, Su L, Zheng K, Gao S, Liu J. Synergistic Photoredox/Palladium Catalyzed Enantioconvergent Carboxylation of Racemic Heterobiaryl (Pseudo)Halides with CO 2. Angew Chem Int Ed Engl 2024:e202413949. [PMID: 39148491 DOI: 10.1002/anie.202413949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Herein, we report a synergistic photoredox/palladium catalytic system for the efficient enantioconvergent synthesis of axially chiral esters from racemic heterobiaryl (pseudo)halides (bromides/triflates) with CO2 and alkyl bromides under mild conditions. A wide range of axially chiral esters were obtained in good to high yields with excellent enantioselectivities. Detailed mechanistic studies unveiled that the ratio of photocatalyst and palladium catalyst exhibited significant impact on the chemo- and enantioselectivities of the reaction. Kinetic studies and control experiments supported the proposed mechanism involving cascade asymmetric carboxylation followed by SN2 substitution. The achievement of high enantioselectivity relies not only on the choice of synergistic metallaphotoredox catalysts but also on the utilization of alkyl bromides, which trap the generated chiral carboxylic anions in situ, thus preventing their immediate racemization.
Collapse
Affiliation(s)
- Bihai Ye
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Lei Su
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Kaiting Zheng
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Shen Gao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Jiawang Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| |
Collapse
|
2
|
Zhang KX, Liu MY, Yao BY, Zhou QL, Xiao LJ. Stereoconvergent and Enantioselective Synthesis of Z-Homoallylic Alcohols via Nickel-Catalyzed Reductive Coupling of Z/ E-1,3-Dienes with Aldehydes. J Am Chem Soc 2024; 146:22157-22165. [PMID: 39102638 DOI: 10.1021/jacs.4c07907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Stereoconvergent reactions enable the transformation of mixed stereoisomers into well-defined, chiral products─a crucial strategy for handling Z/E-mixed olefins, which are common but challenging substrates in organic synthesis. Herein, we report a stereoconvergent and highly enantioselective method for synthesizing Z-homoallylic alcohols via the nickel-catalyzed reductive coupling of Z/E-mixed 1,3-dienes with aldehydes. This process is enabled by an N-heterocyclic carbene ligand characterized by C2-symmetric backbone chirality and bulky 2,6-diisopropyl N-aryl substituents. Our method achieves excellent stereocontrol over both enantioselectivity and Z-selectivity in a single step, producing chiral Z-homoallylic alcohols that are valuable in natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Kai-Xiang Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Mei-Yu Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Bo-Ying Yao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Li-Jun Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Zhu J, Rahim F, Zhou P, Zhang A, Malcolmson SJ. Copper-Catalyzed Diastereo-, Enantio-, and ( Z)-Selective Aminoallylation of Ketones through Reductive Couplings of Azatrienes for the Synthesis of Allylic 1,2-Amino Tertiary Alcohols. J Am Chem Soc 2024; 146:20270-20278. [PMID: 39011628 PMCID: PMC11325848 DOI: 10.1021/jacs.4c05637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
We introduce a method for the (Z)-selective aminoallylation of a range of ketones to prepare allylic 1,2-amino tertiary alcohols with excellent diastereo- and enantioselectivity. Copper-catalyzed reductive couplings of 2-azatrienes with aryl/alkyl and dialkyl ketones proceed with Ph-BPE as the supporting ligand, generating anti-amino alcohols with >98% (Z)-selectivity under mild conditions. The utility of the products is highlighted through several transformations, including those that leverage the (Z)-allylic amine moiety for diastereoselective reactions of the alkene. Calculations illustrate Curtin-Hammett control in the product formation over other possible isomers and the origin of (Z)-selectivity.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Faraan Rahim
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Pengfei Zhou
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Annie Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Steven J Malcolmson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
4
|
Zhou L, Li L, Zhang S, Kuang XK, Zhou YY, Tang Y. Catalytic Regio- and Enantioselective Remote Hydrocarboxylation of Unactivated Alkenes with CO 2. J Am Chem Soc 2024; 146:18823-18830. [PMID: 38950377 DOI: 10.1021/jacs.4c05217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The catalytic regio- and enantioselective hydrocarboxylation of alkenes with carbon dioxide is a straightforward strategy to construct enantioenriched α-chiral carboxylic acids but remains a big challenge. Herein we report the first example of catalytic highly enantio- and site-selective remote hydrocarboxylation of a wide range of readily available unactivated alkenes with abundant and renewable CO2 under mild conditions enabled by the SaBOX/Ni catalyst. The key to this success is utilizing the chiral SaBOX ligand, which combines with nickel to simultaneously control both chain-walking and the enantioselectivity of carboxylation. This process directly furnishes a range of different alkyl-chain-substituted or benzo-fused α-chiral carboxylic acids bearing various functional groups in high yields and regio- and enantioselectivities. Furthermore, the synthetic utility of this methodology was demonstrated by the concise synthesis of the antiplatelet aggregation drug (R)-indobufen from commercial starting materials.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Liping Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Sudong Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xiao-Kang Kuang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - You-Yun Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yong Tang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
5
|
Chen XW, Li C, Gui YY, Yue JP, Zhou Q, Liao LL, Yang JW, Ye JH, Yu DG. Atropisomeric Carboxylic Acids Synthesis via Nickel-Catalyzed Enantioconvergent Carboxylation of Aza-Biaryl Triflates with CO 2. Angew Chem Int Ed Engl 2024; 63:e202403401. [PMID: 38527960 DOI: 10.1002/anie.202403401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Upgrading CO2 to value-added chiral molecules via catalytic asymmetric C-C bond formation is a highly important yet challenging task. Although great progress on the formation of centrally chiral carboxylic acids has been achieved, catalytic construction of axially chiral carboxylic acids with CO2 has never been reported to date. Herein, we report the first catalytic asymmetric synthesis of axially chiral carboxylic acids with CO2, which is enabled by nickel-catalyzed dynamic kinetic asymmetric reductive carboxylation of racemic aza-biaryl triflates. A variety of important axially chiral carboxylic acids, which are valuable but difficult to obtain via catalysis, are generated in an enantioconvergent version. This new methodology features good functional group tolerance, easy to scale-up, facile transformation and avoids cumbersome steps, handling organometallic reagents and using stoichiometric chiral materials. Mechanistic investigations indicate a dynamic kinetic asymmetric transformation process induced by chiral nickel catalysis.
Collapse
Affiliation(s)
- Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Chao Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yong-Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Qi Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jing-Wei Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
6
|
Wei L, Guo Y, Li Z, Jiang H, Qi C. Silver-Catalyzed Coupling of Ethynylbenziodoxolones with CO 2 and Amines to Afford O-β-Oxoalkyl Carbamates. Org Lett 2024. [PMID: 38780900 DOI: 10.1021/acs.orglett.4c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A novel three-component coupling reaction of ethynylbenziodoxolones (EBXs) with CO2 and amines has been achieved via silver catalysis, thereby providing an efficient method for the construction of a range of structurally diverse and valuable O-β-oxoalkyl carbamates. The transformation proceeds under mild reaction conditions and exhibits a wide substrate scope and good functional group compatibility. In addition, this strategy could be extended to the synthesis of α-acyloxyketones using carboxylic acids as the nucleophiles to react with EBXs.
Collapse
Affiliation(s)
- Li Wei
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yanhui Guo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ziyang Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
7
|
Garhwal S, Dong Y, Mai BK, Liu P, Buchwald SL. CuH-Catalyzed Regio- and Enantioselective Formal Hydroformylation of Vinyl Arenes. J Am Chem Soc 2024; 146:13733-13740. [PMID: 38723265 PMCID: PMC11439487 DOI: 10.1021/jacs.4c04287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
A highly enantioselective formal hydroformylation of vinyl arenes enabled by copper hydride (CuH) catalysis is reported. Key to the success of the method was the use of the mild Lewis acid zinc triflate to promote the formation of oxocarbenium electrophiles through the activation of diethoxymethyl acetate. Using the newly developed protocol, a broad range of vinyl arene substrates underwent efficient hydroacetalization reactions to provide access to highly enantioenriched α-aryl acetal products in good yields with exclusively branched regioselectivity. The acetal products could be converted to the corresponding aldehydes, alcohols, and amines with full preservation of the enantiomeric purity. Density functional theory studies support that the key C-C bond-forming event between the alkyl copper intermediate and the oxocarbenium electrophile takes place with inversion of configuration of the Cu-C bond in a backside SE2-type mechanism.
Collapse
Affiliation(s)
- Subhash Garhwal
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yuyang Dong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Zhang Q, Zhang H, Geng S, Zhao X, Liu S, Hong K, Pan J, Yan X. Green transformation of CO 2 into γ-amino alcohols with continuous stereocenters. Chem Commun (Camb) 2024; 60:2062-2065. [PMID: 38288752 DOI: 10.1039/d3cc05193e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Here, we present a synthetic route towards γ-amino alcohols with continuous stereocenters based on a copper-catalyzed asymmetric conjugate addition/CO2-trapping tandem reaction of α,β-unsaturated amide, followed by a reduction of the generated α-carboxyl amide. This strategy provides a green route for the transformation of CO2 into valuable chiral organic molecules.
Collapse
Affiliation(s)
- Qiuxin Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Heng Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Senbai Geng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xian Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Shucheng Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Kun Hong
- Jiangsu Provincial Key Laboratory of Palygorskite Science and Applied Technology, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xingchen Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Zhang S, Li L, Li D, Zhou YY, Tang Y. Catalytic Regio- and Enantioselective Boracarboxylation of Arylalkenes with CO 2 and Diboron. J Am Chem Soc 2024; 146:2888-2894. [PMID: 38277681 DOI: 10.1021/jacs.3c12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Catalytic asymmetric carboxylation of readily available alkenes with CO2, an abundant and sustainable one-carbon building block, that gives access to value-added α-stereogenic carboxylic acids in an atom- and step-economic manner is highly attractive. However, it has remained a formidable challenge for the synthetic community. Here, the first example of Cu-catalyzed highly regio- and enantioselective boracarboxylation reaction on various arylalkenes with diboron under an atmospheric pressure of CO2 is described, which afforded a variety of chiral β-boron-functionalized α-aryl carboxylic acids with up to 87% yield and 97% ee under mild conditions. Importantly, α-substituted arylalkenes could also be subject to this protocol with excellent enantiopurities, thereby rendering an efficient approach for the generation of enantioenriched carboxylic acids with an α-chiral all-carbon quaternary center. Moreover, high functional group tolerance, scalable synthesis, and facile access to bioactive compounds, like (-)-scopolamine, (-)-anisodamine, and (-)-tropicamide, further demonstrated the synthetic utility of this strategy.
Collapse
Affiliation(s)
- Sudong Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Liping Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Dingxi Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - You-Yun Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yong Tang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
10
|
Gui YY, Chen XW, Mo XY, Yue JP, Yuan R, Liu Y, Liao LL, Ye JH, Yu DG. Cu-Catalyzed Asymmetric Dicarboxylation of 1,3-Dienes with CO 2. J Am Chem Soc 2024; 146:2919-2927. [PMID: 38277794 DOI: 10.1021/jacs.3c14146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Dicarboxylic acids and derivatives are important building blocks in organic synthesis, biochemistry, and the polymer industry. Although catalytic dicarboxylation with CO2 represents a straightforward and sustainable route to dicarboxylic acids, it is still highly challenging and limited to generation of achiral or racemic dicarboxylic acids. To date, catalytic asymmetric dicarboxylation with CO2 to give chiral dicarboxylic acids has not been reported. Herein, we report the first asymmetric dicarboxylation of 1,3-dienes with CO2 via Cu catalysis. This strategy provides an efficient and environmentally benign route to chiral dicarboxylic acids with high regio-, chemo-, and enantioselectivities. The copper self-relay catalysis, that is, Cu-catalyzed boracarboxylation of 1,3-dienes to give carboxylated allyl boronic ester intermediates and subsequent carboxylation of C-B bonds to give dicarboxylates, is key to the success of this dicarboxylation. Moreover, this protocol exhibits broad substrate scope, good functional group tolerance, easy product derivatizations, and facile synthesis of chiral liquid crystalline polyester and drug-like scaffolds.
Collapse
Affiliation(s)
- Yong-Yuan Gui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao-Yan Mo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Rong Yuan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Yi Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
11
|
Gao S, Liu J, Troya D, Chen M. Copper-Catalyzed Asymmetric Acylboration of 1,3-Butadienylboronate with Acyl Fluorides. Angew Chem Int Ed Engl 2023; 62:e202304796. [PMID: 37712934 PMCID: PMC11144059 DOI: 10.1002/anie.202304796] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Indexed: 09/16/2023]
Abstract
We report herein a Cu-catalyzed regio-, diastereo- and enantioselective acylboration of 1,3-butadienylboronate with acyl fluorides. Under the developed conditions, the reactions provide (Z)-β,γ-unsaturated ketones bearing an α-tertiary stereocenter with high Z-selectivity and excellent enantioselectivities. While direct access to highly enantioenriched E-isomers was not successful, we showed that such molecules can be synthesized with excellent E-selectivity and optical purities via Pd-catalyzed alkene isomerization from the corresponding Z-isomers. The orthogonal chemical reactivities of the functional groups embedded in the ketone products allow for diverse chemoselective transformations, which provides a valuable platform for further derivatization.
Collapse
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, 36849 Auburn, AL (USA); Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 210009 Nanjing, (China)
| | - Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, 36849 Auburn, AL (USA)
| | - Diego Troya
- Department of Chemistry, Virginia Tech, 24061 Blacksburg, VA (USA)
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, 36849 Auburn, AL (USA)
| |
Collapse
|
12
|
Lee TW, Yang HS, Dawange M, Han YK, Yang JW. Transition-Metal-Free Unusual Oxidative Cleavage of Homoallylic Alcohol and Its Application in the Upcycling of Terpene to Value-Added Chemicals. CHEMSUSCHEM 2023; 16:e202202387. [PMID: 36658092 DOI: 10.1002/cssc.202202387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 05/06/2023]
Abstract
A NaOtBu-O2 -mediated oxidative dehomologation of homoallylic alcohols into structurally different carboxylic acids through direct oxidative cleavage of either the C(sp2 )-C(sp2 ) or C(sp3 )-C(sp3 ) bond utilizing enolate chemistry was demonstrated. Furthermore, under transition-metal-free conditions, this protocol has been applied to convert terpene as biomass feedstock into value-added chemicals.
Collapse
Affiliation(s)
- Tae Woo Lee
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Hye Sung Yang
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Monali Dawange
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Young Kwang Han
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jung Woon Yang
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
13
|
Song Z, Liu J, Xing S, Shao X, Li J, Peng J, Bai Y. PNP-type ligands enabled copper-catalyzed N-formylation of amines with CO 2 in the presence of silanes. Org Biomol Chem 2023; 21:832-837. [PMID: 36602113 DOI: 10.1039/d2ob01986h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The sustainable catalytic transformation of carbon dioxide into valuable fine chemicals with high efficiency is a global challenge as although CO2 is an abundant, nontoxic, and sustainable carbon feedstock it is also the most important factor behind the Greenhouse Effect. We describe herein a PNP-type ligand-enabled copper-catalyzed N-formylation of amines utilizing CO2 as the building block in the presence of hydrosilane as the reductant. Our current protocol featured newly synthesized PNP-type ligands with broad substrate scope under mild reaction conditions.
Collapse
Affiliation(s)
- Zijie Song
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Jun Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Shuya Xing
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Xinxin Shao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Jiayun Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Jiajian Peng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Ying Bai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
14
|
Chen Z, Wu XF. Copper-Catalyzed C–C Bond Formation via Carboxylation Reactions with CO2. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2023_82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
15
|
Zhao Y, Guo X, Li S, Fan Y, Ji G, Jiang M, Yang Y, Jiang Y. Transient Stabilization Effect of CO
2
in the Electrochemical Hydrogenation of Azo Compounds and the Reductive Coupling of α‐Ketoesters. Angew Chem Int Ed Engl 2022; 61:e202213636. [DOI: 10.1002/anie.202213636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Yulei Zhao
- Shandong Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 China
| | - Xuqiang Guo
- Shandong Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 China
| | - Shuai Li
- Shandong Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 China
| | - Yuhang Fan
- Shandong Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 China
| | - Guo‐Cui Ji
- Shandong Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 China
| | - Mengmeng Jiang
- Shandong Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 China
| | - Yin Yang
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yuan‐Ye Jiang
- Shandong Key Laboratory of Life-Organic Analysis Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 China
| |
Collapse
|
16
|
Byun Y, Moon K, Park J, Ghosh P, Mishra NK, Kim IS. Methylene Thiazolidinediones as Alkylation Reagents in Catalytic C–H Functionalization: Rapid Access to Glitazones. Org Lett 2022; 24:8578-8583. [DOI: 10.1021/acs.orglett.2c03677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Youjung Byun
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyeongwon Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jihye Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
17
|
MacNeil CS, Mendelsohn LN, Pabst TP, Hierlmeier G, Chirik PJ. Alcohol Synthesis by Cobalt-Catalyzed Visible-Light-Driven Reductive Hydroformylation. J Am Chem Soc 2022; 144:19219-19224. [PMID: 36240429 DOI: 10.1021/jacs.2c07745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A cobalt-catalyzed reductive hydroformylation of terminal and 1,1-disubstituted alkenes is described. One-carbon homologated alcohols were synthesized directly from CO and H2, affording anti-Markovnikov products (34-87% yield) with exclusive regiocontrol (linear/branch >99:1) for minimally functionalized alkenes. Irradiation of the air-stable cobalt hydride, (dcype)Co(CO)2H (dcype = dicyclohexylphosphinoethane) with blue light generated the active catalyst that mediates alkene hydroformylation and subsequent aldehyde hydrogenation. Mechanistic origins of absolute regiocontrol were investigated by in situ monitoring of the tandem catalytic reaction using multinuclear NMR spectroscopy with syngas mixtures.
Collapse
Affiliation(s)
- Connor S MacNeil
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Lauren N Mendelsohn
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tyler P Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gabriele Hierlmeier
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
18
|
Marcum JS, Meek SJ. Efficient Enantio-, Diastereo, E/ Z-, and Site-Selective Nickel-Catalyzed Fragment Couplings of Aldehydes, Dienes, and Organoborons. J Am Chem Soc 2022; 144:19231-19237. [PMID: 36195082 DOI: 10.1021/jacs.2c08742] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enantioselective synthesis of bis-homoallylic alcohols through nickel-catalyzed three-component fragment couplings of simple aldehydes, dienes, and aryl organoborons is disclosed. The reactions proceed through diene dicarbofunctionalization that concurrently forms two C-C bonds and two stereogenic centers. The transformations are promoted by a 5.0 mol % loading of a readily accessible chiral phosphine-nickel complex and afford products with high stereoselectivity.
Collapse
Affiliation(s)
- Justin S Marcum
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Simon J Meek
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
19
|
Wang Y, Yin J, Li Y, Yuan X, Xiong T, Zhang Q. Copper-Catalyzed Asymmetric Conjugate Addition of Alkene-Derived Nucleophiles to Alkenyl-Substituted Heteroarenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ying Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - JianJun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yanfei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
20
|
Deng XH, Jiang JX, Jiang Q, Yang T, Chen B, He L, Chu WD, He CY, Liu QZ. CuH-Catalyzed Enantioselective Reductive Coupling of 1,3-Dienes and Trifluoromethyl Ketoimines or α-Iminoacetates. Org Lett 2022; 24:4586-4591. [PMID: 35714047 DOI: 10.1021/acs.orglett.2c01683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intermolecular addition of allylic copper species generated from diene and copper hydride remains elusive. Herein copper hydride catalyzed asymmetric cross reductive coupling of conjugated dienes and ketoimines including trifluoromethyl ketoimines and α-iminoacetates was first achieved using chiral Ph-BPE as the ligand, providing rapid access to structurally and optically enriched homoallylic amines containing two vicinal stereogenic centers with up to 95% yield, 99% ee, and 11:1 diastereoselectivities.
Collapse
Affiliation(s)
- Xue-Hua Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Jia-Xi Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Qin Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Ting Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Bo Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Long He
- College of Chemistry and Materials Engineering, Guiyang University, Guiyang 550005, China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Si-chuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| |
Collapse
|
21
|
Ruthenium Nanocatalysts Immobilized on DFNS-IL Heterogeneous Catalyst for Hydroformylation of Alkenes with CO2 and H2. Catal Letters 2022. [DOI: 10.1007/s10562-022-03968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Ma B, Sun R, Yang J. Cobalt-catalyzed direct α-hydroxymethylation of amides with methanol as a C1 source. Chem Commun (Camb) 2022; 58:1382-1385. [PMID: 34989725 DOI: 10.1039/d1cc06501g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we report a cobalt-catalyzed α-hydroxymethylation of amides with methanol under mild conditions. Using CoCl2·6H2O as an inexpensive and efficient catalyst, some important bioactive β-hydroxyamides were obtained in moderate to excellent yields. The developed method features a wide substrate scope and good functional group tolerance. In addition, anticholinergic tropicamide was easily synthesized in this way.
Collapse
Affiliation(s)
- Ben Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China.
| | - Rongxia Sun
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China.
| | - Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China.
| |
Collapse
|
23
|
Huang WB, Yang M, He LN. Metal-Free Hydroxymethylation of Indole Derivatives with Formic Acid as an Alternative Way to Indirect Utilization of CO 2. J Org Chem 2022; 87:3775-3779. [PMID: 35084854 DOI: 10.1021/acs.joc.1c02831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The selective N-alkylation of indole substrates remains an ongoing research challenge for the relative attenuated nucleophilicity toward nitrogen. Herein, we developed the hydroxymethylation of indole derivatives to afford N-alkylated indole products with formic acid. This metal-free process was promoted by the organic base 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) using phenylsilane as the reductant under mild conditions. Besides, this strategy represents an alternative way for indirect utilization of CO2, considering the facile hydrogenation of CO2 to produce HCOOH.
Collapse
Affiliation(s)
- Wen-Bin Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Meng Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
24
|
Zhang Y, Wang H, Mao Y, Shi S. Ni-Catalyzed Three-Component Coupling Reaction of Butadiene,Aldimines and Alkenylboronic Acids. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Hu Y, Hu L, Gao H, Lv X, Wu Y, Lu G. Computational study of Cu-catalyzed 1,2-hydrocarboxylation of 1,3-dienes with CO2: Pauli repulsion-controlled regioselectivity of Cu–Bpin additions. Org Chem Front 2022. [DOI: 10.1039/d2qo00236a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism and origin of regioselectivity of Cu-catalyzed 1,2-hydrocarboxylation of 1,3-dienes with CO2 were computationally investigated. The results show that CO2 not only acts as a carboxylation reagent, but also...
Collapse
|
26
|
Patel M, Desai B, Sheth A, Dholakiya BZ, Naveen T. Recent Advances in Mono‐ and Difunctionalization of Unactivated Olefins. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Monak Patel
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bhargav Desai
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Aakash Sheth
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bharatkumar Z. Dholakiya
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Togati Naveen
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| |
Collapse
|
27
|
Geng HQ, Meyer T, Franke R, Wu XF. Copper-catalyzed hydroformylation and hydroxymethylation of styrenes. Chem Sci 2021; 12:14937-14943. [PMID: 34820110 PMCID: PMC8597829 DOI: 10.1039/d1sc05474k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
Hydroformylation catalyzed by transition metals is one of the most important homogeneously catalyzed reactions in industrial organic chemistry. Millions of tons of aldehydes and related chemicals are produced by this transformation annually. However, most of the applied procedures use rhodium catalysts. In the procedure described here, a copper-catalyzed hydroformylation of alkenes has been realized. Remarkably, by using a different copper precursor, the aldehydes obtained can be further hydrogenated to give the corresponding alcohols under the same conditions, formally named as hydroxymethylation of alkenes. Under pressure of syngas, various aldehydes and alcohols can be produced from alkenes with copper as the only catalyst, in excellent regioselectivity. Additionally, an all-carbon quaternary center containing ethers and formates can be synthesized as well with the addition of unactivated alkyl halides. A possible reaction pathway is proposed based on our results. A copper-catalyzed hydroformylation and hydroxymethylation of alkenes has been realized.![]()
Collapse
Affiliation(s)
- Hui-Qing Geng
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Tim Meyer
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Robert Franke
- Evonik Operations GmbH, Germany and Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum 44780 Bochum Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany .,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 Liaoning China
| |
Collapse
|
28
|
Davies J, Lyonnet JR, Zimin DP, Martin R. The road to industrialization of fine chemical carboxylation reactions. Chem 2021. [DOI: 10.1016/j.chempr.2021.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Xiang M, Pfaffinger DE, Krische MJ. Allenes and Dienes as Chiral Allylmetal Pronucleophiles in Catalytic Enantioselective C=X Addition: Historical Perspective and State-of-The-Art Survey. Chemistry 2021; 27:13107-13116. [PMID: 34185926 PMCID: PMC8446312 DOI: 10.1002/chem.202101890] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 12/18/2022]
Abstract
The use of allenes and 1,3-dienes as chiral allylmetal pronucleophiles in intermolecular catalytic enantioselective reductive additions to aldehydes, ketones, imines, carbon dioxide and other C=X electrophiles is exhaustively catalogued together with redox-neutral hydrogen auto-transfer processes. Coverage is limited to processes that result in both C-H and C-C bond formation. The use of alkynes as latent allylmetal pronucleophiles and multicomponent C=X allylations involving allenes and dienes is not covered. As illustrated in this review, the ability of allenes and 1,3-dienes to serve as tractable non-metallic pronucleophiles has evoked many useful transformations that have no counterpart in traditional allylmetal chemistry.
Collapse
Affiliation(s)
- Ming Xiang
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Dana E. Pfaffinger
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| |
Collapse
|
30
|
Yoon WS, Han JT, Yun J. Divergent Access to Benzocycles through Copper‐Catalyzed Borylative Cyclizations. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wan Seok Yoon
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| | - Jung Tae Han
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| | - Jaesook Yun
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| |
Collapse
|
31
|
|
32
|
Wang H, Zhang R, Zhang Q, Zi W. Synergistic Pd/Amine-Catalyzed Stereodivergent Hydroalkylation of 1,3-Dienes with Aldehydes: Reaction Development, Mechanism, and Stereochemical Origins. J Am Chem Soc 2021; 143:10948-10962. [PMID: 34264662 DOI: 10.1021/jacs.1c02220] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metal-hydride-catalyzed hydroalkylation of 1,3-dienes with enolizable carbonyl compounds is an atom- and step-economical method for preparing chiral molecules with allylic stereocenters. Although high diastereo- and enantioselectivities have been achieved for many coupling partners, aldehydes have not yet been used for this purpose because they are less stable than other carbonyl compounds under basic conditions and they have the potential to rapidly epimerize at the α-position. Moreover, stereodivergent hydroalkylation reactions of 1,3-dienes to access complementary diastereomers with vicinal stereocenters is challenging. Herein, we describe a synergistic palladium/amine catalyst system that allowed us to achieve the first stereodivergent hydroalkylation reactions of 1,3-dienes with aldehydes. By choosing an appropriate combination of chiral palladium and amine catalysts, we could obtain either syn or anti coupling products, and this method therefore provides highly diastereo- and enantioselective access to complementary diastereomers of chiral aldehydes with α,β-vicinal stereocenters. Density functional theory calculations revealed a mechanism involving PdH formation and migratory insertion into the alkene, followed by C-C bond formation. The origin of the stereoselectivities was investigated by means of distortion/interaction analysis.
Collapse
Affiliation(s)
- Hongfa Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ruiyuan Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qinglong Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
33
|
Larson GL, Liberatore RJ. Organosilanes in Metal-Catalyzed, Enantioselective Reductions. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Gerald L. Larson
- Vice President, Research and Development, emeritus, Gelest, Inc., Morrisville, Pennsylvania 19067, United States
| | | |
Collapse
|
34
|
Cooze CJC, McNutt W, Schoetz MD, Sosunovych B, Grigoryan S, Lundgren RJ. Diastereo-, Enantio-, and Z-Selective α,δ-Difunctionalization of Electron-Deficient Dienes Initiated by Rh-Catalyzed Conjugate Addition. J Am Chem Soc 2021; 143:10770-10777. [PMID: 34253021 DOI: 10.1021/jacs.1c05427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metal-catalyzed enantioselective conjugate additions are highly reliable methods for stereoselective synthesis; however, multicomponent reactions that are initiated by conjugate arylation of acyclic π-systems are rare. These reactions generally proceed with poor diastereoselectivity while requiring basic, moisture sensitive organometallic nucleophiles. Here, we show that Rh-catalysts supported by a tetrafluorobenzobarrelene ligand (Ph-tfb) enable the enantio-, diastereo-, and Z-selective α,δ-difunctionalization of electron-deficient 1,3-dienes with organoboronic acid nucleophiles and aldehyde electrophiles to generate Z-homoallylic alcohols with three stereocenters. The reaction accommodates diene substrates activated by ester, amide, ketone, or aromatic groups and can be used to couple aryl, alkenyl, or alkyl aldehydes. Diastereoselective functionalization of the Z-olefin unit in the addition products allows for the generation of compounds with five stereocenters in high dr and ee. Mechanistic studies suggest aldehyde allylrhodation is the rate-determining step, and unlike reactions of analogous Rh-enolates, the Rh-allyl species generated by δ-arylation undergoes aldehyde trapping rather than protonolysis, even when water is present as a cosolvent. These findings should have broader implications in the use of privileged metal-catalyzed conjugate addition reactions as entry points toward the preparation of acyclic molecules containing nonadjacent stereocenters.
Collapse
Affiliation(s)
| | - Wesley McNutt
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Markus D Schoetz
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Bohdan Sosunovych
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Svetlana Grigoryan
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
35
|
Kanayama K, Sawada A, Suda K, Fujihara T. Copper-Catalyzed Regioselective Sila-Acylation and Silaformylation of 1,3-Dienes Using Esters. J Org Chem 2021; 86:9869-9875. [PMID: 34184898 DOI: 10.1021/acs.joc.1c00945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The regioselective sila-acylation and silaformylation of 1,3-dienes was achieved over a copper catalyst using a silylborane as a silyl source. β,γ-Unsaturated ketones with a (dimethylphenylsilyl)methyl moiety at the α-position were obtained using esters, while β,γ-unsaturated aldehydes were obtained using formate esters.
Collapse
Affiliation(s)
- Kazutaka Kanayama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ayumi Sawada
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Katsushi Suda
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tetsuaki Fujihara
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
36
|
Jin X, Fu HC, Wang MY, Huang S, Wang Y, He LN, Ma X. Chemodivergent Synthesis of One-Carbon-Extended Alcohols via Copper-Catalyzed Hydroxymethylation of Alkynes with Formic Acid. Org Lett 2021; 23:4997-5001. [PMID: 34061546 DOI: 10.1021/acs.orglett.1c01473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of selective catalytic reactions that utilize easily available reagents for the efficient synthesis of alcohols is a long-standing goal of chemical research. Here an intriguing strategy for the chemodivergent copper-catalyzed hydroxymethylation of alkynes with formic acid and hydrosilane has been developed. By simply tuning the amount of formic acid and reaction temperature, distinct one-carbon-extended primary alcohols, that is, allylic alcohols and β-branched alkyl alcohols, were produced with high levels of Z/E-, regio-, and enantioselectivity.
Collapse
Affiliation(s)
- Xin Jin
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hong-Chen Fu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Mei-Yan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shouying Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Liang-Nian He
- Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China.,State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
37
|
Chen X, Yue J, Wang K, Gui Y, Niu Y, Liu J, Ran C, Kong W, Zhou W, Yu D. Nickel‐Catalyzed Asymmetric Reductive Carbo‐Carboxylation of Alkenes with CO
2. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102769] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiao‐Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jun‐Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Kuai Wang
- The Center for Precision Synthesis Institute for Advanced Studies Wuhan University Wuhan 430072 P. R. China
| | - Yong‐Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610068 P. R. China
| | - Ya‐Nan Niu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jie Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Chuan‐Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Wangqing Kong
- The Center for Precision Synthesis Institute for Advanced Studies Wuhan University Wuhan 430072 P. R. China
| | - Wen‐Jun Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- College of Chemistry and Chemical Engineering Neijiang Normal University Neijiang 641100 P. R. China
| | - Da‐Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
38
|
Chen X, Yue J, Wang K, Gui Y, Niu Y, Liu J, Ran C, Kong W, Zhou W, Yu D. Nickel‐Catalyzed Asymmetric Reductive Carbo‐Carboxylation of Alkenes with CO
2. Angew Chem Int Ed Engl 2021; 60:14068-14075. [DOI: 10.1002/anie.202102769] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 01/07/2023]
Affiliation(s)
- Xiao‐Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jun‐Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Kuai Wang
- The Center for Precision Synthesis Institute for Advanced Studies Wuhan University Wuhan 430072 P. R. China
| | - Yong‐Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610068 P. R. China
| | - Ya‐Nan Niu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jie Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Chuan‐Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Wangqing Kong
- The Center for Precision Synthesis Institute for Advanced Studies Wuhan University Wuhan 430072 P. R. China
| | - Wen‐Jun Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- College of Chemistry and Chemical Engineering Neijiang Normal University Neijiang 641100 P. R. China
| | - Da‐Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
39
|
Santana CG, Krische MJ. From Hydrogenation to Transfer Hydrogenation to Hydrogen Auto-Transfer in Enantioselective Metal-Catalyzed Carbonyl Reductive Coupling: Past, Present, and Future. ACS Catal 2021; 11:5572-5585. [PMID: 34306816 PMCID: PMC8302072 DOI: 10.1021/acscatal.1c01109] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atom-efficient processes that occur via addition, redistribution or removal of hydrogen underlie many large volume industrial processes and pervade all segments of chemical industry. Although carbonyl addition is one of the oldest and most broadly utilized methods for C-C bond formation, the delivery of non-stabilized carbanions to carbonyl compounds has relied on premetalated reagents or metallic/organometallic reductants, which pose issues of safety and challenges vis-à-vis large volume implementation. Catalytic carbonyl reductive couplings promoted via hydrogenation, transfer hydrogenation and hydrogen auto-transfer allow abundant unsaturated hydrocarbons to serve as substitutes to organometallic reagents, enabling C-C bond formation in the absence of stoichiometric metals. This perspective (a) highlights past milestones in catalytic hydrogenation, hydrogen transfer and hydrogen auto-transfer, (b) summarizes current methods for catalytic enantioselective carbonyl reductive couplings, and (c) describes future opportunities based on the patterns of reactivity that animate transformations of this type.
Collapse
Affiliation(s)
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| |
Collapse
|
40
|
Feng S, Buchwald SL. CuH-Catalyzed Regio- and Enantioselective Hydrocarboxylation of Allenes: Toward Carboxylic Acids with Acyclic Quaternary Centers. J Am Chem Soc 2021; 143:4935-4941. [PMID: 33761252 PMCID: PMC8058699 DOI: 10.1021/jacs.1c01880] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report a method to prepare α-chiral carboxylic acid derivatives, including those bearing all-carbon quaternary centers, through an enantioselective CuH-catalyzed hydrocarboxylation of allenes with a commercially available fluoroformate. A broad range of heterocycles and functional groups on the allenes were tolerated in this protocol, giving enantioenriched α-quaternary and tertiary carboxylic acid derivatives in good yields with exclusive branched regioselectivity. The synthetic utility of this approach was further demonstrated by derivatization of the products to afford biologically important compounds, including the antiplatelet drug indobufen.
Collapse
Affiliation(s)
- Sheng Feng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
41
|
Zhong F, Pan ZZ, Zhou SW, Zhang HJ, Yin L. Copper(I)-Catalyzed Regioselective Asymmetric Addition of 1,4-Pentadiene to Ketones. J Am Chem Soc 2021; 143:4556-4562. [PMID: 33734679 DOI: 10.1021/jacs.1c02084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
By using commercially available 1,4-pentadiene as a pronucleophile, a copper(I)-catalyzed regioselective asymmetric allylation of ketones is achieved. A variety of chiral tertiary alcohols bearing a terminal (Z)-1,3-diene unit are generated in high (Z)/(E) ratio and high enantioselectivity. Both aromatic ketones and aliphatic ketones serve as suitable substrates. Furthermore, the reactions with (E)-C1(alkyl)-1,4-dienes proceed in moderate yields with acceptable enantioselectivity but with low (Z,E)/others ratio, which demonstrates the partial isomerization of (E)-allylcopper(I) species to (Z)-allylcopper(I) species through 1,3-migration. Subsequent Heck reaction and olefin metathesis compensate for the low efficiency with C1-1,4-dienes. The synthetic utility of the product is further demonstrated by a copper(I)-catalyzed regioselective borylation of the 1,3-diene group.
Collapse
Affiliation(s)
- Feng Zhong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhi-Zhou Pan
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Si-Wei Zhou
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hai-Jun Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
42
|
Jiang WS, Ji DW, Zhang WS, Zhang G, Min XT, Hu YC, Jiang XL, Chen QA. Orthogonal Regulation of Nucleophilic and Electrophilic Sites in Pd-Catalyzed Regiodivergent Couplings between Indazoles and Isoprene. Angew Chem Int Ed Engl 2021; 60:8321-8328. [PMID: 33463001 DOI: 10.1002/anie.202100137] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 12/29/2022]
Abstract
Depending on the reactant property and reaction mechanism, one major regioisomer can be favored in a reaction that involves multiple active sites. Herein, an orthogonal regulation of nucleophilic and electrophilic sites in the regiodivergent hydroamination of isoprene with indazoles is demonstrated. Under Pd-hydride catalysis, the 1,2- or 4,3-insertion pathway with respect to the electrophilic sites on isoprene could be controlled by the choice of ligands. In terms of the nucleophilic sites on indazoles, the reaction occurs at either the N1 - or N2 -position of indazoles is governed by the acid co-catalysts. Preliminary experimental studies have been performed to rationalize the mechanism and regioselectivity. This study not only contributes a practical tool for selective functionalization of isoprene, but also provides a guide to manipulate the regioselectivity for the N-functionalization of indazoles.
Collapse
Affiliation(s)
- Wen-Shuang Jiang
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.,Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Wei-Song Zhang
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Gong Zhang
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiang-Ting Min
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xu-Liang Jiang
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
43
|
Jiang W, Ji D, Zhang W, Zhang G, Min X, Hu Y, Jiang X, Chen Q. Orthogonal Regulation of Nucleophilic and Electrophilic Sites in Pd‐Catalyzed Regiodivergent Couplings between Indazoles and Isoprene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wen‐Shuang Jiang
- Department of Medicinal Chemistry Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Ding‐Wei Ji
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wei‐Song Zhang
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Gong Zhang
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xiang‐Ting Min
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yan‐Cheng Hu
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xu‐Liang Jiang
- Department of Medicinal Chemistry Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China
| | - Qing‐An Chen
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
44
|
Li YQ, Chen G, Shi SL. Regio- and Trans-Selective Ni-Catalyzed Coupling of Butadiene, Carbonyls, and Arylboronic Acids to Homoallylic Alcohols under Base-Free Conditions. Org Lett 2021; 23:2571-2577. [PMID: 33661655 DOI: 10.1021/acs.orglett.1c00488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We herein report a Ni-catalyzed three-component coupling of 1,3-butadiene, carbonyl compounds, and arylboronic acids as a general synthetic approach to 1,4-disubstituted homoallylic alcohols, an important class of compounds, which have previously not been straightforward to access. The reaction occurs efficiently using a Ni(cod)2 catalyst without any external base and ligand at ambient temperature and allows a highly regioselective and trans-selective 1,4-dicarbofunctionalization of feedstock butadiene in a single operation. This simple and practical protocol could apply to a comprehensive scope of substrates. The neutral conditions show extraordinary tolerance for even highly base-sensitive functional groups.
Collapse
Affiliation(s)
- Yu-Qing Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guang Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
45
|
Computational and Experimental Insights into Asymmetric Rh‐Catalyzed Hydrocarboxylation with CO
2. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Butera V, Detz H. Hydrogenation of CO 2 to methanol by the diphosphine–ruthenium( ii) cationic complex: a DFT investigation to shed light on the decisive role of carboxylic acids as promoters. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00502b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a quantum-chemical investigation of the CO2 hydrogenation to methanol catalyzed by the recently proposed diphosphine–ruthenium(ii) cationic complex, Ru2, in presence of carboxylic acids.
Collapse
Affiliation(s)
- Valeria Butera
- CEITEC – Central European Institute of Technology Central European Institute of Technology
- Brno University of Technology
- Brno 612 00
- Czech Republic
| | - Hermann Detz
- CEITEC – Central European Institute of Technology Central European Institute of Technology
- Brno University of Technology
- Brno 612 00
- Czech Republic
- Center for Micro- and Nanostructures & Institute of Solid State Electronics
| |
Collapse
|
47
|
Li YQ, Shi SL. Nickel-Catalyzed Multicomponent Coupling of Butadiene, Aldehydes, Alkynes and Schwartz Reagent to Form 1,4-Dienes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Huang W, Qiu L, Ren F, He L. Advances on Transition-Metal Catalyzed CO 2 Hydrogenation. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
Copper‐Catalyzed and Proton‐Directed Selective Hydroxymethylation of Alkynes with CO
2. Angew Chem Int Ed Engl 2020; 60:3984-3988. [DOI: 10.1002/anie.202012768] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Indexed: 12/21/2022]
|
50
|
Wang M, Jin X, Wang X, Xia S, Wang Y, Huang S, Li Y, He L, Ma X. Copper‐Catalyzed and Proton‐Directed Selective Hydroxymethylation of Alkynes with CO
2. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Mei‐Yan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Fuzhou 350207 China
| | - Xin Jin
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Xiaofei Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Shumei Xia
- State Key Laboratory and Institute of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yue Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Shouying Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Ying Li
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Liang‐Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin University Tianjin 300072 China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Fuzhou 350207 China
| |
Collapse
|