1
|
Katoch A, Mandal D. Computational Insights into Hydrogen Atom Transfer Mediators in C-H Activation Catalysis of Nonheme Fe(IV)O Complexes. J Phys Chem B 2024. [PMID: 39727200 DOI: 10.1021/acs.jpcb.4c05618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
This study presents a detailed density functional theory (DFT) investigation into the mechanism and energetics of C-H activations catalyzed by bioinspired Fe(IV)O complexes, particularly in the presence of N-hydroxy mediators. The findings show that these mediators significantly enhance the reactivity of the iron-oxo complex. The study examines three substrates with varying bond dissociation energies─ethylbenzene, cyclohexane, and cyclohexadiene─alongside the [Fe(IV)O(N4Py)]2+ complex. Mediators N-hydroxyphthalimide (NHPI) and N-hydroxyquinolinimide (NHQI) were chosen for their strong oxidative abilities. The results reveal that NO-H bond cleavage in N-hydroxy compounds occurs more readily than C-H bond cleavage in hydrocarbons, as supported by the Marcus cross-relation applied to H-abstraction. This leads to the rapid formation of aminoxyl radicals, which are more reactive than Fe(IV)O species, lowering the activation energy and enhancing the reaction rate. The C-H bond activation aligns with the Bell-Evans-Polanyi principle, correlating the activation energy with the substrate bond dissociation energy. The investigation reveals that the mediator pathway is favored both thermodynamically and kinetically. Additionally, distortion energy provides a compelling explanation for the observed reactivity trends, further highlighting NHQI's superior efficiency compared to NHPI. Additionally, quantum mechanical tunneling plays a significant role, as evidenced by the computed kinetic isotope effect, which matches experimental data.
Collapse
Affiliation(s)
- Akanksha Katoch
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, Punjab, India
| | - Debasish Mandal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, Punjab, India
| |
Collapse
|
2
|
Gong Z, Wang L, Xu Y, Xie D, Qi X, Nam W, Guo M. Enhanced Reactivities of Iron(IV)-Oxo Porphyrin Species in Oxidation Reactions Promoted by Intramolecular Hydrogen-Bonding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310333. [PMID: 38477431 PMCID: PMC11109629 DOI: 10.1002/advs.202310333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/19/2024] [Indexed: 03/14/2024]
Abstract
High-valent iron-oxo species are one of the common intermediates in both biological and biomimetic catalytic oxidation reactions. Recently, hydrogen-bonding (H-bonding) has been proved to be critical in determining the selectivity and reactivity. However, few examples have been established for mechanistic insights into the H-bonding effect. Moreover, intramolecular H-bonding effect on both C-H activation and oxygen atom transfer (OAT) reactions in synthetic porphyrin model system has not been investigated yet. In this study, a series of heme-containing iron(IV)-oxo porphyrin species with or without intramolecular H-bonding are synthesized and characterized. Kinetic studies revealed that intramolecular H-bonding can significantly enhance the reactivity of iron(IV)-oxo species in OAT, C-H activation, and electron-transfer reactions. This unprecedented unified H-bonding effect is elucidated by theoretical calculations, which showed that intramolecular H-bonding interactions lower the energy of the anti-bonding orbital of iron(IV)-oxo porphyrin species, resulting in the enhanced reactivities in oxidation reactions irrespective of the reaction type. To the best of the knowledge, this is the first extensive investigation on the intramolecular H-bonding effect in heme system. The results show that H-bonding interactions have a unified effect with iron(IV)-oxo porphyrin species in all three investigated reactions.
Collapse
Affiliation(s)
- Zhe Gong
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| | - Liwei Wang
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| | - Yiran Xu
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| | - Duanfeng Xie
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| | - Wonwoo Nam
- Department of Chemistry and Nano ScienceEwha Womans UniversitySeoul03760South Korea
| | - Mian Guo
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| |
Collapse
|
3
|
Kaur L, Mandal D. A density functional theory analysis of the C-H activation reactivity of iron(IV)-oxo complexes with an 'O' substituted tetramethylcyclam macrocycle. Dalton Trans 2024; 53:7527-7535. [PMID: 38597582 DOI: 10.1039/d4dt00063c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In this article, we present a meticulous computational study to foresee the effect of an oxygen-rich macrocycle on the reactivity for C-H activation. For this study, a widely studied nonheme Fe(IV)O molecule with a TMC (1,4,8,11-tetramethyl 1,4,8,11-tetraazacyclotetradecane) macrocycle that is equatorially attached to four nitrogen atoms (designated as N4) and acetonitrile as an axial ligand has been taken into account. For the goal of hetero-substitution, step-by-step replacement of the N4 framework with O atoms, i.e., N4, N3O1, N2O2, N1O3, and O4 systems, has been considered, and dihydroanthracene (DHA) has been used as the substrate. In order to neutralise the system and prevent the self-interaction error in DFT, triflate counterions have also been included in the calculations. The study of the energetics of these C-H bond activation reactions and the potential energy surfaces mapped therefore reveal that the initial hydrogen abstraction, which is the rate-determining step, follows the two-state reactivity (TSR) pattern, which means that the originally excited quintet state falls lower in the transition state and the product. The reaction follows the hydrogen atom transfer (HAT) mechanism, as indicated by the spin density studies. The results revealed a fascinating reactivity order, in which the reactivity increases with the enrichment of the oxygen atom in the equatorial position, namely the order follows N4 < N3O1 < N2O2 < N1O3 < O4. The impacts of oxygen substitution on quantum mechanical tunneling and the H/D kinetic isotope effect have also been investigated. When analysing the causes of this reactivity pattern, a number of variables have been identified, including the reactant-like transition structure, spin density distribution, distortion energy, and energies of the electron acceptor orbital, i.e., the energy of the LUMO (σ*z2), which validate the obtained outcome. Our results also show very good agreement with earlier combined experimental and theoretical studies considering TMC and TMCO-type complexes. The DFT predictions reported here will undoubtedly encourage experimental research in this biomimetic field, as they provide an alternative with higher reactivity in which heteroatoms can be substituted for the traditional nitrogen atom.
Collapse
Affiliation(s)
- Lovleen Kaur
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India.
| | - Debasish Mandal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India.
| |
Collapse
|
4
|
Satpathy JK, Yadav R, Bagha UK, Kumar D, Sastri CV, de Visser SP. Enhanced Reactivity through Equatorial Sulfur Coordination in Nonheme Iron(IV)-Oxo Complexes: Insights from Experiment and Theory. Inorg Chem 2024; 63:6752-6766. [PMID: 38551622 DOI: 10.1021/acs.inorgchem.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Sulfur ligation in metalloenzymes often gives the active site unique properties, whether it is the axial cysteinate ligand in the cytochrome P450s or the equatorial sulfur/thiol ligation in nonheme iron enzymes. To understand sulfur ligation to iron complexes and how it affects the structural, spectroscopic, and intrinsic properties of the active species and the catalysis of substrates, we pursued a systematic study and compared sulfur with amine-ligated iron(IV)-oxo complexes. We synthesized and characterized a biomimetic N4S-ligated iron(IV)-oxo complex and compared the obtained results with an analogous N5-ligated iron(IV)-oxo complex. Our work shows that the amine for sulfur replacement in the equatorial ligand framework leads to a rate enhancement for oxygen atom and hydrogen atom transfer reactions. Moreover, the sulfur-ligated iron(IV)-oxo complex reacts through a different reaction mechanism as compared to the N5-ligated iron(IV)-oxo complex, where the former reacts through hydride transfer with the latter reacting via radical pathways. We show that the reactivity differences are caused by a dramatic change in redox potential between the two complexes. Our studies highlight the importance of implementing a sulfur ligand into the equatorial ligand framework of nonheme iron(IV)-oxo complexes and how it affects the physicochemical properties of the oxidant and its reactivity.
Collapse
Affiliation(s)
- Jagnyesh K Satpathy
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Rolly Yadav
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Umesh K Bagha
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Devesh Kumar
- Department of Applied Physics, Babasaheb Bhimrao Ambedkar University, School for Physical Sciences, Vidya Vihar, Rae Bareilly Road, Lucknow 226025, UP, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Sam P de Visser
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
5
|
Tepaske MA, Fitterer A, Verplancke H, Delony D, Neben MC, de Bruin B, Holthausen MC, Schneider S. C-H Bond Activation by Iridium(III) and Iridium(IV) Oxo Complexes. Angew Chem Int Ed Engl 2024; 63:e202316729. [PMID: 38116899 DOI: 10.1002/anie.202316729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Oxidation of an iridium(III) oxo precursor enabled the structural, spectroscopic, and quantum-chemical characterization of the first well-defined iridium(IV) oxo complex. Side-by-side examination of the proton-coupled electron transfer thermochemistry revealed similar driving forces for the isostructural oxo complexes in two redox states due to compensating contributions from H+ and e- transfer. However, C-H activation of dihydroanthracene revealed significant hydrogen tunneling for the distinctly more basic iridium(III) oxo complex. Our findings complement the growing body of data that relate tunneling to ground state properties as predictors for the selectivity of C-H bond activation.
Collapse
Affiliation(s)
- Martijn A Tepaske
- Georg-August-Universität, Institut für Anorganische Chemie, Tammanstraβe 4, 37077, Göttingen, Germany
| | - Arnd Fitterer
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straβe 7, 60438, Frankfurt am Main, Germany
| | - Hendrik Verplancke
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straβe 7, 60438, Frankfurt am Main, Germany
| | - Daniel Delony
- Georg-August-Universität, Institut für Anorganische Chemie, Tammanstraβe 4, 37077, Göttingen, Germany
| | - Marc C Neben
- Georg-August-Universität, Institut für Anorganische Chemie, Tammanstraβe 4, 37077, Göttingen, Germany
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van't Hoff Institute for Molecular Sciences (HIMS), Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Max C Holthausen
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straβe 7, 60438, Frankfurt am Main, Germany
| | - Sven Schneider
- Georg-August-Universität, Institut für Anorganische Chemie, Tammanstraβe 4, 37077, Göttingen, Germany
| |
Collapse
|
6
|
Kumar M, Gupta MK, Ansari M, Ansari A. C-H bond activation by high-valent iron/cobalt-oxo complexes: a quantum chemical modeling approach. Phys Chem Chem Phys 2024; 26:4349-4362. [PMID: 38235511 DOI: 10.1039/d3cp05866b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
High-valent metal-oxo species serve as key intermediates in the activation of inert C-H bonds. Here, we present a comprehensive DFT analysis of the parameters that have been proposed as influencing factors in modeled high-valent metal-oxo mediated C-H activation reactions. Our approach involves utilizing DFT calculations to explore the electronic structures of modeled FeIVO (species 1) and CoIVO ↔ CoIII-O˙ (species 2), scrutinizing their capacity to predict improved catalytic activity. DFT and DLPNO-CCSD(T) calculations predict that the iron-oxo species possesses a triplet as the ground state, while the cobalt-oxo has a doublet as the ground state. Furthermore, we have investigated the mechanistic pathways for the first C-H bond activation, as well as the desaturation of the alkanes. The mechanism was determined to be a two-step process, wherein the first hydrogen atom abstraction (HAA) represents the rate-limiting step, involving the proton-coupled electron transfer (PCET) process. However, we found that the second HAA step is highly exothermic for both species. Our calculations suggest that the iron-oxo species (Fe-O = 1.672 Å) exhibit relatively sluggish behavior compared to the cobalt-oxo species (Co-O = 1.854 Å) in C-H bond activation, attributed to a weak metal-oxygen bond. MO, NBO, and deformation energy analysis reveal the importance of weakening the M-O bond in the cobalt species, thereby reducing the overall barrier to the reaction. This catalyst was found to have a C-H activation barrier relatively smaller than that previously reported in the literature.
Collapse
Affiliation(s)
- Manjeet Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Manoj Kumar Gupta
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| | - Mursaleem Ansari
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh-123031, Haryana, India.
| |
Collapse
|
7
|
Katoch A, Mandal D. High-valent nonheme Fe(IV)O/Ru(IV)O complexes catalyze C-H activation reactivity and hydrogen tunneling: a comparative DFT investigation. Dalton Trans 2024; 53:2386-2394. [PMID: 38214597 DOI: 10.1039/d3dt03155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A comprehensive density functional theory investigation has been presented towards the comparison of the C-H activation reactivity between high-valent iron-oxo and ruthenium-oxo complexes. A total of four compounds, e.g., [Ru(IV)O(tpy-dcbpy)] (1), [Fe(IV)O(tpy-dcbpy)] (1'), [Ru(IV)O(TMCS)] (2), and [Fe(IV)O(TMCS)] (2'), have been considered for this investigation. The macrocyclic ligand framework tpy(dcbpy) implies tpy = 2,2':6',2''-terpyridine, dcbpy = 5,5'-dicarboxy-2,2'-bipyridine, and TMCS is TMC with an axially tethered -SCH2CH2 group. Compounds 1 and 2' are experimentally synthesized standard complexes with Ru and Fe, whereas compounds 1' and 2 were considered to keep the macrocycle intact when switching the central metal atom. Three reactants including benzyl alcohol, ethyl benzene, and dihydroanthracene were selected as substrates for C-H activation. It is noteworthy to mention that Fe(IV)O complexes exhibit higher reactivity than those of their Ru(IV)O counterparts. Furthermore, regardless of the central metal, the complex featuring a tpy-dcbpy macrocycle demonstrates higher reactivity than that of TMCS. Here, a thorough analysis of the reactivity-controlling characteristics-such as spin state, steric factor, distortion energy, energy of the electron acceptor orbital, and quantum mechanical tunneling-was conducted. Fe(IV)O exhibits the exchanged enhanced two-state-reactivity with the quintet reactive state, whereas Ru(IV)O has only a triplet reactive state. Both the distortion energy and acceptor orbital energy are low in the case of Fe(IV)O supporting its higher reactivity. All the investigated C-H activation processes involve a significant contribution from hydrogen tunneling, which is more pronounced in the case of Ru, although it cannot alter the reactivity pattern. Furthermore, it has also been found that, independent of the central metal, aliphatic hydroxylation is always preferable to aromatic hydroxylation. Overall, this work is successful in establishing and investigating the cause of enzymes' natural preference for Fe over Ru as a cofactor for C-H activation enzymes.
Collapse
Affiliation(s)
- Akanksha Katoch
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, Punjab, India.
| | - Debasish Mandal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, Punjab, India.
| |
Collapse
|
8
|
Qiu G, Schreiner PR. The Intrinsic Barrier Width and Its Role in Chemical Reactivity. ACS CENTRAL SCIENCE 2023; 9:2129-2137. [PMID: 38033803 PMCID: PMC10683502 DOI: 10.1021/acscentsci.3c00926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023]
Abstract
Chemical reactions are in virtually all cases understood and explained on the basis of depicting the molecular potential energy landscape, i.e., the change in atomic positions vs the free-energy change. With such landscapes, the features of the reaction barriers solely determine chemical reactivities. The Marcus dissection of the barrier height (activation energy) on such a potential into the thermodynamically independent (intrinsic) and the thermodynamically dependent (Bell-Evans-Polanyi) contributions successfully models the interplay of reaction rate and driving force. This has led to the well-known and ubiquitously used reactivity paradigm of "kinetic versus thermodynamic control". However, an analogous dissection concept regarding the barrier width is absent. Here we define and outline the concept of intrinsic barrier width and the driving force effect on the barrier width and report experimental as well as theoretical studies to demonstrate their distinct roles. We present the idea of changing the barrier widths of conformational isomerizations of some simple aromatic carboxylic acids as models and use quantum mechanical tunneling (QMT) half-lives as a read-out for these changes because QMT is particularly sensitive to barrier widths. We demonstrate the distinct roles of the intrinsic and the thermodynamic contributions of the barrier width on QMT half-lives. This sheds light on resolving conflicting trends in chemical reactivities where barrier widths are relevant and allows us to draw some important conclusions about the general relevance of barrier widths, their qualitative definition, and the consequences for more complete descriptions of chemical reactions.
Collapse
Affiliation(s)
- Guanqi Qiu
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
9
|
Sorbelli D, Belpassi L, Belanzoni P. Radical-like reactivity for dihydrogen activation by coinage metal-aluminyl complexes: computational evidence inspired by experimental main group chemistry. Chem Sci 2023; 14:889-896. [PMID: 36755722 PMCID: PMC9890964 DOI: 10.1039/d2sc05815d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The computational study of an unprecedented reactivity of coinage metal-aluminyl complexes with dihydrogen is reported. In close resemblance to group 14 dimetallenes and dimetallynes, the complexes are predicted to activate H2 under mild conditions. Two different reaction pathways are found disclosing a common driving force, i.e., the nucleophilic behavior of the electron-sharing M-Al (M = Cu, Ag, Au) bond, which enables a cooperative and diradical-like mechanism. This mode of chemical reactivity emerges as a new paradigm for dihydrogen activation and calls for experimental feedback.
Collapse
Affiliation(s)
- Diego Sorbelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia Via Elce di Sotto 8 - 06123 Perugia Italy .,CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC) Via Elce di Sotto 8 - 06123 Perugia Italy
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC) Via Elce di Sotto 8 - 06123 Perugia Italy
| | - Paola Belanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia Via Elce di Sotto 8 - 06123 Perugia Italy .,CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC) Via Elce di Sotto 8 - 06123 Perugia Italy
| |
Collapse
|
10
|
Field MJ, Oyala PH, Green MT. 17O Electron Nuclear Double Resonance Analysis of Compound I: Inverse Correlation between Oxygen Spin Population and Electron Donation. J Am Chem Soc 2022; 144:19272-19283. [PMID: 36240444 DOI: 10.1021/jacs.2c05459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the activation of inert C-H bonds by metal-oxo complexes has been widely studied, important questions remain, particularly regarding the role of oxygen spin population (i.e., unpaired electrons on the oxo ligand) in facilitating C-H bond cleavage. In order to shed light on this issue, we have utilized 17O electron nuclear double resonance spectroscopy to measure the oxygen spin populations of three compound I intermediates in heme enzymes with different reactivities toward C-H bonds: chloroperoxidase, cytochrome P450, and a selenolate (selenocysteinyl)-ligated cytochrome P450. The experimental data suggest an inverse correlation between oxygen spin population and electron donation from the axial ligand. We have explored the implications of this result using a Hückel-type molecular orbital model and constrained density functional theory calculations. These investigations have allowed us to examine the relationship between oxygen spin population, oxygen charge, electron donation from the axial ligand, and reactivity.
Collapse
Affiliation(s)
- Mackenzie J Field
- Department of Chemistry and Department of Molecular Biology and Biochemistry, University of California, Irvine, California92697, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Michael T Green
- Department of Chemistry and Department of Molecular Biology and Biochemistry, University of California, Irvine, California92697, United States
| |
Collapse
|
11
|
Jenner LP, Crack JC, Kurth JM, Soldánová Z, Brandt L, Sokol KP, Reisner E, Bradley JM, Dahl C, Cheesman MR, Butt JN. Reaction of Thiosulfate Dehydrogenase with a Substrate Mimic Induces Dissociation of the Cysteine Heme Ligand Giving Insights into the Mechanism of Oxidative Catalysis. J Am Chem Soc 2022; 144:18296-18304. [PMID: 36173876 PMCID: PMC9562282 DOI: 10.1021/jacs.2c06062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 11/29/2022]
Abstract
Thiosulfate dehydrogenases are bacterial cytochromes that contribute to the oxidation of inorganic sulfur. The active sites of these enzymes contain low-spin c-type heme with Cys-/His axial ligation. However, the reduction potentials of these hemes are several hundred mV more negative than that of the thiosulfate/tetrathionate couple (Em, +198 mV), making it difficult to rationalize the thiosulfate oxidizing capability. Here, we describe the reaction of Campylobacter jejuni thiosulfate dehydrogenase (TsdA) with sulfite, an analogue of thiosulfate. The reaction leads to stoichiometric conversion of the active site Cys to cysteinyl sulfonate (Cα-CH2-S-SO3-) such that the protein exists in a form closely resembling a proposed intermediate in the pathway for thiosulfate oxidation that carries a cysteinyl thiosulfate (Cα-CH2-S-SSO3-). The active site heme in the stable sulfonated protein displays an Em approximately 200 mV more positive than the Cys-/His-ligated state. This can explain the thiosulfate oxidizing activity of the enzyme and allows us to propose a catalytic mechanism for thiosulfate oxidation. Substrate-driven release of the Cys heme ligand allows that side chain to provide the site of substrate binding and redox transformation; the neighboring heme then simply provides a site for electron relay to an appropriate partner. This chemistry is distinct from that displayed by the Cys-ligated hemes found in gas-sensing hemoproteins and in enzymes such as the cytochromes P450. Thus, a further class of thiolate-ligated hemes is proposed, as exemplified by the TsdA centers that have evolved to catalyze the controlled redox transformations of inorganic oxo anions of sulfur.
Collapse
Affiliation(s)
- Leon P. Jenner
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Jason C. Crack
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Julia M. Kurth
- Institut
für Mikrobiologie & Biotechnologie, Friedrich Wilhelms
Universität Bonn, D-53115Bonn, Germany
| | - Zuzana Soldánová
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Linda Brandt
- Institut
für Mikrobiologie & Biotechnologie, Friedrich Wilhelms
Universität Bonn, D-53115Bonn, Germany
| | - Katarzyna P. Sokol
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CambridgeCB2 1EW, United Kingdom
| | - Erwin Reisner
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CambridgeCB2 1EW, United Kingdom
| | - Justin M. Bradley
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Christiane Dahl
- Institut
für Mikrobiologie & Biotechnologie, Friedrich Wilhelms
Universität Bonn, D-53115Bonn, Germany
| | - Myles R. Cheesman
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Julea N. Butt
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| |
Collapse
|
12
|
Nandy A, Adamji H, Kastner DW, Vennelakanti V, Nazemi A, Liu M, Kulik HJ. Using Computational Chemistry To Reveal Nature’s Blueprints for Single-Site Catalysis of C–H Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Husain Adamji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David W. Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Azadeh Nazemi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mingjie Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Nayek A, Ahmed ME, Samanta S, Dinda S, Patra S, Dey SG, Dey A. Bioinorganic Chemistry on Electrodes: Methods to Functional Modeling. J Am Chem Soc 2022; 144:8402-8429. [PMID: 35503922 DOI: 10.1021/jacs.2c01842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One of the major goals of bioinorganic chemistry has been to mimic the function of elegant metalloenzymes. Such functional modeling has been difficult to attain in solution, in particular, for reactions that require multiple protons and multiple electrons (nH+/ne-). Using a combination of heterogeneous electrochemistry, electrode and molecule design one may control both electron transfer (ET) and proton transfer (PT) of these nH+/ne- reactions. Such control can allow functional modeling of hydrogenases (H+ + e- → 1/2 H2), cytochrome c oxidase (O2 + 4 e- + 4 H+ → 2 H2O), monooxygenases (RR'CH2 + O2 + 2 e- + 2 H+ → RR'CHOH + H2O) and dioxygenases (S + O2 → SO2; S = organic substrate) in aqueous medium and at room temperatures. In addition, these heterogeneous constructs allow probing unnatural bioinspired reactions and estimation of the inner- and outer-sphere reorganization energy of small molecules and proteins.
Collapse
Affiliation(s)
- Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Md Estak Ahmed
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Souvik Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| |
Collapse
|
14
|
Das B, Al-Hunaiti A, Carey A, Lidin S, Demeshko S, Repo T, Nordlander E. A di‑iron(III) μ-oxido complex as catalyst precursor in the oxidation of alkanes and alkenes. J Inorg Biochem 2022; 231:111769. [DOI: 10.1016/j.jinorgbio.2022.111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022]
|
15
|
Mandal D, Katoch A. Effect of Substituent on C-H Activation Catalysed by a nonheme Fe(IV)O Complex: A Computational Investigation of Reactivity and Hydrogen Tunneling. Dalton Trans 2022; 51:11641-11649. [DOI: 10.1039/d2dt01529c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A density functional theory investigation has been presented here to address the C-H activation reactivity and the influence of quantum mechanical tunneling catalyzed by a non-heme iron(IV)-Oxo complex viz. [FeIVOdpaq-X]+...
Collapse
|
16
|
Fukuzumi S, Lee Y, Nam W. Deuterium kinetic isotope effects as redox mechanistic criterions. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12417] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul Korea
- Faculty of Science and Engineering Meijo University Nagoya Aichi Japan
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul Korea
- Research Institute for Basic Sciences Ewha Womans University Seoul Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul Korea
| |
Collapse
|
17
|
Luo J, Kar S, Rauch M, Montag M, Ben-David Y, Milstein D. Efficient Base-Free Aqueous Reforming of Methanol Homogeneously Catalyzed by Ruthenium Exhibiting a Remarkable Acceleration by Added Catalytic Thiol. J Am Chem Soc 2021; 143:17284-17291. [PMID: 34617436 PMCID: PMC8532156 DOI: 10.1021/jacs.1c09007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 12/11/2022]
Abstract
Production of H2 by methanol reforming is of particular interest due the low cost, ready availability, and high hydrogen content of methanol. However, most current methods either require very high temperatures and pressures or strongly rely on the utilization of large amounts of base. Here we report an efficient, base-free aqueous-phase reforming of methanol homogeneously catalyzed by an acridine-based ruthenium pincer complex, the activity of which was unexpectedly improved by a catalytic amount of a thiol additive. The reactivity of this system is enhanced by nearly 2 orders of magnitude upon addition of the thiol, and it can maintain activity for over 3 weeks, achieving a total H2 turnover number of over 130 000. On the basis of both experimental and computational studies, a mechanism is proposed which involves outer-sphere dehydrogenations promoted by a unique ruthenium complex with thiolate as an assisting ligand. The current system overcomes the need for added base in homogeneous methanol reforming and also highlights the unprecedented acceleration of catalytic activity of metal complexes achieved by the addition of a catalytic amount of thiol.
Collapse
Affiliation(s)
- Jie Luo
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, Rehovot, 76100, Israel
| | - Sayan Kar
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, Rehovot, 76100, Israel
| | - Michael Rauch
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, Rehovot, 76100, Israel
| | - Michael Montag
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, Rehovot, 76100, Israel
| | - Yehoshoa Ben-David
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, Rehovot, 76100, Israel
| | - David Milstein
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, Rehovot, 76100, Israel
| |
Collapse
|
18
|
Mukherjee M, Dey A. Rejigging Electron and Proton Transfer to Transition between Dioxygenase, Monooxygenase, Peroxygenase, and Oxygen Reduction Activity: Insights from Bioinspired Constructs of Heme Enzymes. JACS AU 2021; 1:1296-1311. [PMID: 34604840 PMCID: PMC8479764 DOI: 10.1021/jacsau.1c00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 05/10/2023]
Abstract
Nature has employed heme proteins to execute a diverse set of vital life processes. Years of research have been devoted to understanding the factors which bias these heme enzymes, with all having a heme cofactor, toward distinct catalytic activity. Among them, axial ligation, distal super structure, and substrate binding pockets are few very vividly recognized ones. Detailed mechanistic investigation of these heme enzymes suggested that several of these enzymes, while functionally divergent, use similar intermediates. Furthermore, the formation and decay of these intermediates depend on proton and electron transfer processes in the enzyme active site. Over the past decade, work in this group, using in situ surface enhanced resonance Raman spectroscopy of synthetic and biosynthetic analogues of heme enzymes, a general idea of how proton and electron transfer rates relate to the lifetime of different O2 derived intermediates has been developed. These findings suggest that the enzymatic activities of all these heme enzymes can be integrated into one general cycle which can be branched out to different catalytic pathways by regulating the lifetime and population of each of these intermediates. This regulation can further be achieved by tuning the electron and proton transfer steps. By strategically populating one of these intermediates during oxygen reduction, one can navigate through different catalytic processes to a desired direction by altering proton and electron transfer steps.
Collapse
Affiliation(s)
- Manjistha Mukherjee
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India, 700032
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India, 700032
| |
Collapse
|
19
|
Deutscher J, Gerschel P, Warm K, Kuhlmann U, Mebs S, Haumann M, Dau H, Hildebrandt P, Apfel UP, Ray K. A bioinspired oxoiron(IV) motif supported on a N 2S 2 macrocyclic ligand. Chem Commun (Camb) 2021; 57:2947-2950. [PMID: 33621306 DOI: 10.1039/d1cc00250c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A mononuclear oxoiron(iv) complex 1-trans bearing two equatorial sulfur ligations is synthesized and characterized as an active-site model of the elusive sulfur-ligated FeIV[double bond, length as m-dash]O intermediates in non-heme iron oxygenases. The introduction of sulfur ligands weakens the Fe[double bond, length as m-dash]O bond and enhances the oxidative reactivity of the FeIV[double bond, length as m-dash]O unit with a diminished deuterium kinetic isotope effect, thereby providing a compelling rationale for nature's use of the cis-thiolate ligated oxoiron(iv) motif in key metabolic transformations.
Collapse
Affiliation(s)
- Jennifer Deutscher
- Institut für Chemie Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| | - Philipp Gerschel
- Anorganische Chemie 1 Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Katrin Warm
- Institut für Chemie Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| | - Uwe Kuhlmann
- Institut für Chemie Technische, Universität Berlin, Fakultät II Straße des 17, Juni 135, 10623, Berlin, Germany
| | - Stefan Mebs
- Institut für Physik Freie, Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Michael Haumann
- Institut für Physik Freie, Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Holger Dau
- Institut für Physik Freie, Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie Technische, Universität Berlin, Fakultät II Straße des 17, Juni 135, 10623, Berlin, Germany
| | - Ulf-Peter Apfel
- Anorganische Chemie 1 Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany and Department of Electrosynthesis, Fraunhofer UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Kallol Ray
- Institut für Chemie Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| |
Collapse
|
20
|
Wegeberg C, Skavenborg ML, Liberato A, McPherson JN, Browne WR, Hedegård ED, McKenzie CJ. Engineering the Oxidative Potency of Non-Heme Iron(IV) Oxo Complexes in Water for C-H Oxidation by a cis Donor and Variation of the Second Coordination Sphere. Inorg Chem 2021; 60:1975-1984. [PMID: 33470794 DOI: 10.1021/acs.inorgchem.0c03441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of iron(IV) oxo complexes, which differ in the donor (CH2py or CH2COO-) cis to the oxo group, three with hemilabile pendant donor/second coordination sphere base/acid arms (pyH/py or ROH), have been prepared in water at pH 2 and 7. The νFe═O values of 832 ± 2 cm-1 indicate similar FeIV═O bond strengths; however, different reactivities toward C-H substrates in water are observed. HAT occurs at rates that differ by 1 order of magnitude with nonclassical KIEs (kH/kD = 30-66) consistent with hydrogen atom tunneling. Higher KIEs correlate with faster reaction rates as well as a greater thermodynamic stability of the iron(III) resting states. A doubling in rate from pH 7 to pH 2 for substrate C-H oxidation by the most potent complex, that with a cis-carboxylate donor, [FeIVO(Htpena)]2+, is observed. Supramolecular assistance by the first and second coordination spheres in activating the substrate is proposed. The lifetime of this complex in the absence of a C-H substrate is the shortest (at pH 2, 3 h vs up to 1.3 days for the most stable complex), implying that slow water oxidation is a competing background reaction. The iron(IV)═O complex bearing an alcohol moiety in the second coordination sphere displays significantly shorter lifetimes due to a competing selective intramolecular oxidation of the ligand.
Collapse
Affiliation(s)
- Christina Wegeberg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.,Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Mathias L Skavenborg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.,Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrea Liberato
- Universidad de Cádiz, Facultad de Ciencias, Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Puerto Real, Cádiz 11510, Spain
| | - James N McPherson
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Wesley R Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Erik D Hedegård
- Division of Theoretical Chemistry, Lund University, Naturvetarvägen 14, 221 00 Lund, Sweden
| | - Christine J McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
21
|
|
22
|
Mukherjee M, Dey A. A heterogeneous bio-inspired peroxide shunt for catalytic oxidation of organic molecules. Chem Commun (Camb) 2020; 56:11593-11596. [PMID: 32852503 DOI: 10.1039/d0cc03468a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heme enzymes are capable of catalytically oxidising organic substrates using peroxide via the formation of a high-valent intermediate. Iron porphyrins with three different axial ligands are created on self-assembled monolayer-modified gold electrodes, which can oxidize C-H bonds and epoxidize alkenes efficiently. The kinetic isotope effects suggest that the hydrogen atom transfer reaction by a highly reactive oxidant is likely to be the rate-determining step. Effect of different axial ligands and different secondary structures of the iron porphyrin confirms that the thiolate axial ligand with a hydrophobic distal pocket is the most efficient for this oxidation chemistry.
Collapse
Affiliation(s)
- Manjistha Mukherjee
- School of Chemical Science, Indian Association for the Cultivation of Science, Kolkata, India.
| | | |
Collapse
|
23
|
Prakash O, Chábera P, Rosemann NW, Huang P, Häggström L, Ericsson T, Strand D, Persson P, Bendix J, Lomoth R, Wärnmark K. A Stable Homoleptic Organometallic Iron(IV) Complex. Chemistry 2020; 26:12728-12732. [PMID: 32369645 PMCID: PMC7590184 DOI: 10.1002/chem.202002158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 11/08/2022]
Abstract
A homoleptic organometallic FeIV complex that is stable in both solution and in the solid state at ambient conditions has been synthesized and isolated as [Fe(phtmeimb)2 ](PF6 )2 (phtmeimb=[phenyl(tris(3-methylimidazolin-2-ylidene))borate]- ). This FeIV N-heterocyclic carbene (NHC) complex was characterized by 1 H NMR, HR-MS, elemental analysis, scXRD analysis, electrochemistry, Mößbauer spectroscopy, and magnetic susceptibility. The two latter techniques unequivocally demonstrate that [Fe(phtmeimb)2 ](PF6 )2 is a triplet FeIV low-spin S=1 complex in the ground state, in agreement with quantum chemical calculations. The electronic absorption spectrum of [Fe(phtmeimb)2 ](PF6 )2 in acetonitrile shows an intense absorption band in the red and near IR, due to LMCT (ligand-to-metal charge transfer) excitation. For the first time the excited state dynamics of a FeIV complex was studied and revealed a ≈0.8 ps lifetime of the 3 LMCT excited state of [Fe(phtmeimb)2 ](PF6 )2 in acetonitrile.
Collapse
Affiliation(s)
- Om Prakash
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund, 22100, Sweden
| | - Pavel Chábera
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, Lund, 22100, Sweden
| | - Nils W Rosemann
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, Lund, 22100, Sweden
| | - Ping Huang
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - Lennart Häggström
- Department of Physics, Ångström Laboratory, Uppsala University, Box 528, Uppsala, 751 21, Sweden
| | - Tore Ericsson
- Department of Physics, Ångström Laboratory, Uppsala University, Box 528, Uppsala, 751 21, Sweden
| | - Daniel Strand
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund, 22100, Sweden
| | - Petter Persson
- Theoretical Chemistry Division, Department of Chemistry, Lund University, Box 124, Lund, 22100, Sweden
| | - Jesper Bendix
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Reiner Lomoth
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund, 22100, Sweden
| |
Collapse
|
24
|
Jaglan R, Mandal D. The role of potential energy surface in quantum mechanical tunneling: A computational perspective. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Heavy-Atom Tunneling Processes during Denitrogenation of 2,3-Diazabicyclo[2.2.1]hept-2-ene and Ring Closure of Cyclopentane-1,3-diyl Diradical. Stereoselectivity in Tunneling and Matrix Effect. J Org Chem 2020; 85:8881-8892. [DOI: 10.1021/acs.joc.0c00763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Affiliation(s)
- Sason Shaik
- Institute of Chemistry The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram Jerusalem 9090401 Israel
| |
Collapse
|
27
|
Feldt M, Martín-Fernández C, Harvey JN. Energetics of non-heme iron reactivity: can ab initio calculations provide the right answer? Phys Chem Chem Phys 2020; 22:23908-23919. [DOI: 10.1039/d0cp04401f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We use a variety of computational methods to characterize and compare the hydrogen atom transfer (HAT) and epoxidation reaction pathways for oxidation of cyclohexene by an iron(iv)-oxo complex.
Collapse
Affiliation(s)
- Milica Feldt
- Division of Quantum Chemistry and Physical Chemistry
- Department of Chemistry
- Katholieke Universiteit Leuven
- 3001 Leuven
- Belgium
| | - Carlos Martín-Fernández
- Division of Quantum Chemistry and Physical Chemistry
- Department of Chemistry
- Katholieke Universiteit Leuven
- 3001 Leuven
- Belgium
| | - Jeremy N. Harvey
- Division of Quantum Chemistry and Physical Chemistry
- Department of Chemistry
- Katholieke Universiteit Leuven
- 3001 Leuven
- Belgium
| |
Collapse
|
28
|
Phung QM, Martín-Fernández C, Harvey JN, Feldt M. Ab Initio Calculations for Spin-Gaps of Non-Heme Iron Complexes. J Chem Theory Comput 2019; 15:4297-4304. [DOI: 10.1021/acs.jctc.9b00370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Quan Manh Phung
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f, Box 2404, 3001 Leuven, Belgium
| | | | - Jeremy N. Harvey
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f, Box 2404, 3001 Leuven, Belgium
| | - Milica Feldt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f, Box 2404, 3001 Leuven, Belgium
| |
Collapse
|
29
|
Bae SH, Li XX, Seo MS, Lee YM, Fukuzumi S, Nam W. Tunneling Controls the Reaction Pathway in the Deformylation of Aldehydes by a Nonheme Iron(III)–Hydroperoxo Complex: Hydrogen Atom Abstraction versus Nucleophilic Addition. J Am Chem Soc 2019; 141:7675-7679. [DOI: 10.1021/jacs.9b02272] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Seong Hee Bae
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Faculty of Science and Engineering, Meijo University, SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
30
|
Mittra K, Green MT. Reduction Potentials of P450 Compounds I and II: Insight into the Thermodynamics of C-H Bond Activation. J Am Chem Soc 2019; 141:5504-5510. [PMID: 30892878 DOI: 10.1021/jacs.9b00242] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present a mixed experimental/theoretical determination of the bond strengths and redox potentials that define the ground-state thermodynamics for C-H bond activation in cytochrome P450 catalysis. Using redox titrations with [Ir(IV)Cl6]2-, we have determined the compound II/ferric (or Fe(IV)OH/Fe(III)OH2) couple and its associated D(O-H)Ferric bond strength in CYP158. Knowledge of this potential as well as the compound II/ferric (or Fe(IV)O/Fe(III)OH) reduction potential in horseradish peroxidase and the two-electron compound I/ferric (or Fe(IV)O(Por•)/Fe(III)OH2(Por)) reduction potential in aromatic peroxidase has allowed us to gauge the accuracy of theoretically determined bond strengths. Using the restricted open shell (ROS) method as proposed by Wright and co-workers, we have obtained O-H bond strengths and associated redox potentials for charge-neutral H-atom reductions of these iron(IV)-hydroxo and -oxo porphyrin species that are within 1 kcal/mol of experimentally determined values, suggesting that the ROS method may provide accurate values for the P450-II O-H bond strength and P450-I reduction potential. The efforts detailed here indicate that the ground-state thermodynamics of C-H bond activation in P450 are best described as follows: E0'Comp-I = 1.22 V (at pH 7, vs NHE) with D(O-H)Comp-II = 95 kcal/mol and E0'Comp-II = 0.99 V (at pH 7, vs NHE) with D(O-H)Ferric = 90 kcal/mol.
Collapse
Affiliation(s)
- Kaustuv Mittra
- Department of Chemistry and Department of Molecular Biology and Biochemistry , University of California , Irvine , California 92697 , United States
| | - Michael T Green
- Department of Chemistry and Department of Molecular Biology and Biochemistry , University of California , Irvine , California 92697 , United States
| |
Collapse
|
31
|
Usman M, Bera KP, Haider G, Sainbileg B, Hayashi M, Lee GH, Peng SM, Chen YF, Lu KL. Single-Molecule-Based Electroluminescent Device as Future White Light Source. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4084-4092. [PMID: 30604616 DOI: 10.1021/acsami.8b17107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During the last two decades, spectacular development of light-emitting diodes (LEDs) has been achieved owing to their widespread application possibilities. However, traditional LEDs suffer from unavoidable energy loss because of the down conversion of photons, toxicity due to the involvement of rare-earth materials in their production, higher manufacturing cost, and reduced thermal stability that prevent them from all-inclusive applications. To address the existing challenges associated with current commercially available white LEDs, herein, we report a broad-band emission originating from an intrinsic lanthanide-free single-molecule-based LED. Self-assembly of a butterfly-shaped strontium-based compound {[Sr(H2btc)2(MeOH)(H2O)2]·2H2O} (1) was achieved through the reaction of Sr(NO3)2 with 1,2,3-benzenetricarboxylic acid hydrate (1,2,3-H3btc) under hydrothermal conditions. A white LED based on this single molecule exhibited a remarkable broad-band luminescence spectrum with Commission Internationale de l'Eclairage (CIE) coordinates at (0.33, 0.32) under 30 mA current injection. Such a broad luminescence spectrum can be attributed to the simultaneous existence of several emission lines originating from the intramolecular interactions within the structure. To further examine the nature of the observed transitions, density functional theory (DFT) calculations were carried out to explore the geometric and electronic properties of the complex. Our study thus paves the way toward a key step for developing a basic understanding and the development of high performance broad-band light-emitting devices with environment-friendly characteristics based on organic-inorganic supramolecular materials.
Collapse
Affiliation(s)
- Muhammad Usman
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Krishna Prasad Bera
- Nano-Science and Technology Program, Taiwan International Graduate Program , Academia Sinica , Taipei 106 , Taiwan
| | | | | | | | | | | | | | - Kuang-Lieh Lu
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
32
|
Sankaralingam M, Lee YM, Pineda-Galvan Y, Karmalkar DG, Seo MS, Jeon SH, Pushkar Y, Fukuzumi S, Nam W. Redox Reactivity of a Mononuclear Manganese-Oxo Complex Binding Calcium Ion and Other Redox-Inactive Metal Ions. J Am Chem Soc 2019; 141:1324-1336. [PMID: 30580510 DOI: 10.1021/jacs.8b11492] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mononuclear nonheme manganese(IV)-oxo complexes binding calcium ion and other redox-inactive metal ions, [(dpaq)MnIV(O)]+-M n+ (1-Mn+, M n+ = Ca2+, Mg2+, Zn2+, Lu3+, Y3+, Al3+, and Sc3+) (dpaq = 2-[bis(pyridin-2-ylmethyl)]amino- N-quinolin-8-yl-acetamidate), were synthesized by reacting a hydroxomanganese(III) complex, [(dpaq)MnIII(OH)]+, with iodosylbenzene (PhIO) in the presence of redox-inactive metal ions (M n+). The Mn(IV)-oxo complexes were characterized using various spectroscopic techniques. In reactivity studies, we observed contrasting effects of M n+ on the reactivity of 1-M n+ in redox reactions such as electron-transfer (ET), oxygen atom transfer (OAT), and hydrogen atom transfer (HAT) reactions. In the OAT and ET reactions, the reactivity order of 1-M n+, such as 1-Sc3+ ≈ 1-Al3+ > 1-Y3+ > 1-Lu3+ > 1-Zn2+ > 1-Mg2+ > 1-Ca2+, follows the Lewis acidity of M n+ bound to the Mn-O moiety; that is, the stronger the Lewis acidity of M n+, the higher the reactivity of 1-M n+ becomes. In sharp contrast, the reactivity of 1-M n+ in the HAT reaction was reversed, giving the reactivity order 1-Ca2+ > 1-Mg2+ > 1-Zn2+ > 1-Lu3+> 1-Y3+> 1-Al3+ ≈ 1-Sc3+; that is, the higher is Lewis acidity of M n+, the lower the reactivity of 1-M n+ in the HAT reaction. The latter result implies that the Lewis acidity of M n+ bound to the Mn-O moiety can modulate the basicity of the metal-oxo moiety, thus influencing the HAT reactivity of 1-M n+; cytochrome P450 utilizes the axial thiolate ligand to increase the basicity of the iron-oxo moiety, which enhances the reactivity of compound I in C-H bond activation reactions.
Collapse
Affiliation(s)
| | - Yong-Min Lee
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Yuliana Pineda-Galvan
- Department of Physics and Astronomy , Purdue University , 525 Northwestern Avenue , West Lafayette , Indiana 47907 , United States
| | - Deepika G Karmalkar
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - So Hyun Jeon
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Yulia Pushkar
- Department of Physics and Astronomy , Purdue University , 525 Northwestern Avenue , West Lafayette , Indiana 47907 , United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,Faculty of Science and Engineering, SENTAN, Japan Science and Technology Agency (JST) , Meijo University , Nagoya , Aichi 468-8502 , Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP) , Chinese Academy of Sciences , Lanzhou , 730000 , China
| |
Collapse
|
33
|
Mandal D, Mallick D, Shaik S. Kinetic Isotope Effect Determination Probes the Spin of the Transition State, Its Stereochemistry, and Its Ligand Sphere in Hydrogen Abstraction Reactions of Oxoiron(IV) Complexes. Acc Chem Res 2018; 51:107-117. [PMID: 29297671 DOI: 10.1021/acs.accounts.7b00442] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This Account outlines interplay of theory and experiment in the quest to identify the reactive-spin-state in chemical reactions that possess a few spin-dependent routes. Metalloenzymes and synthetic models have forged in recent decades an area of increasing appeal, in which oxometal species bring about functionalization of hydrocarbons under mild conditions and via intriguing mechanisms that provide a glimpse of Nature's designs to harness these reactions. Prominent among these are oxoiron(IV) complexes, which are potent H-abstractors. One of the key properties of oxoirons is the presence of close-lying spin-states, which can mediate H-abstractions. As such, these complexes form a fascinating chapter of spin-state chemistry, in which chemical reactivity involves spin-state interchange, so-called two-state reactivity (TSR) and multistate reactivity (MSR). TSR and MSR pose mechanistic challenges. How can one determine the structure of the reactive transition state (TS) and its spin state for these mechanisms? Calculations can do it for us, but the challenge is to find experimental probes. There are, however, no clear kinetic signatures for the reactive-spin-state in such reactions. This is the paucity that our group has been trying to fill for sometime. Hence, it is timely to demonstrate how theory joins experiment in realizing this quest. This Account uses a set of the H-abstraction reactions of 24 synthetic oxoiron(IV) complexes and 11 hydrocarbons, together undergoing H-abstraction reactions with TSR/MSR options, which provide experimentally determined kinetic isotope effect (KIEexp) data. For this set, we demonstrate that comparing KIEexp results with calculated tunneling-augmented KIE (KIETC) data leads to a clear identification of the reactive spin-state during H-abstraction reactions. In addition, generating KIEexp data for a reaction of interest, and comparing these to KIETC values, provides the mechanistic chemist with a powerful capability to identify the reactive-TS in terms of not only its spin state but also its geometry and ligand-sphere constitution. Since tunneling "cuts through" barriers, it serves as a chemical selectivity factor. Thus, we show that in a family of oxoirons reacting with one hydrocarbon, the tunneling efficiency increases as the ligands become better electron donors. This generates counterintuitive-reactivity patterns, like antielectrophilic reactivity, and induces spin-state reactivity reversals because of differing steric demands of the corresponding 2S+1TS species, etc. Finally, for the same series, the Account reaches intuitive understanding of tunneling trends. It is shown that the increase of ligand's donicity results in electrostatic narrowing of the barrier, while the decrease of donicity and increase of bond-order asymmetry in the TS (inter alia due to Bell-Evans-Polanyi effects) broadens the barrier. Predictions are made that usage of powerful electron-donating ligands may train H-abstractors to activate the strongest C-H bond in a molecule. The concepts developed here are likely to be applicable to other oxometals in the d- and f-blocks.
Collapse
Affiliation(s)
- Debasish Mandal
- Institute of Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| | - Dibyendu Mallick
- Institute of Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| |
Collapse
|