1
|
Zhao Q, Zhu J, Chen Y, Dong H, Zhou S, Yin Y, Cai Q, Chen S, Chen C, Wang L. Trapping and reversing neuromuscular blocking agent by anionic pillar[5]arenes: Understanding the structure-affinity-reversal effects. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133875. [PMID: 38457970 DOI: 10.1016/j.jhazmat.2024.133875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
Selective relaxant binding agents (SRBA) have great potential in clinical surgeries for the precise reversal of neuromuscular blockades. Understanding the relationship between the structure-affinity-reversal effects of SRBA and neuromuscular blockade is crucial for the design of new SRBAs, which has rarely been explored. Seven anionic pillar[5]arenes (AP5As) with different aliphatic chains and anionic groups at both edges were designed. Their binding affinities to the neuromuscular blocking agent decamonium bromide (DMBr) were investigated using 1H NMR, isothermal titration calorimetry (ITC), and theoretical calculations. The results indicate that the capture of DMBr by AP5As is primarily driven by electrostatic interactions, ion-dipole interactions and C-H‧‧‧π interactions. The optimal size matching between the carboxylate AP5As and DMBr was ∼0.80. The binding affinity increased with an increase in the charge quantity of AP5As. Further animal experiments indicated that the reversal efficiency increased with increasing binding affinity for carboxylate or phosphonate AP5As. However, phosphonate AP5As exhibited lower reversal efficiencies than carboxylate AP5As, despite having stronger affinities with DMBr. By understanding the structure-affinity-reversal relationships, this study provides valuable insights into the design of innovative SRBAs for reversing neuromuscular blockade.
Collapse
Affiliation(s)
- Qi Zhao
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Jinpiao Zhu
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, China; Department of Anesthesiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Yi Chen
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Hongqiang Dong
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Siyuan Zhou
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Yongfei Yin
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China
| | - Shigui Chen
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China.
| | - Chang Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, China.
| | - Lu Wang
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China.
| |
Collapse
|
2
|
Delecluse M, Manick AD, Chatelet B, Chevallier-Michaud S, Moraleda D, Riggi ID, Dutasta JP, Martinez A. Ditopic Covalent Cage for Ion-Pair Binding: Influence of Anion Complexation on the Cation Exchange Rate. Chempluschem 2024; 89:e202300558. [PMID: 37950861 DOI: 10.1002/cplu.202300558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
A new hemicryptophane host with a ditopic molecular cavity combining a cyclotriveratrylene (CTV) unit with a tris-urea moiety was synthesized. The complexation of halides, tetramethylammonium (TMA+) cation, and ion pairs was investigated. A positive cooperativity was observed, since halides display a higher binding constant when a TMA+ cation is already present inside the cage. When TMA+ was complexed alone, a decrease of temperature from 298 K to 230 K was required to switch from a fast to a slow exchange regime on the NMR time scale. Nevertheless, the prior complexation of a halide guest in the lower part of the host resulted in significant decrease of the exchange rate of the subsequent complexation of the TMA+ cation. Under these conditions, the 1H NMR signals characteristic of a slow exchange regime were observed at 298 K. Addition of an excess of salts, increases the ionic strength of the solution, restoring the fast exchange dynamics. This result provides insight on how the exchange rate of a cation guest can be modulated by the complexation of a co-guest anion.
Collapse
Affiliation(s)
- Magalie Delecluse
- Aix-Marseille Univ., CNRS, Centrale Marseille iSm2, UMR 7113, 13397, Marseille, France
| | - Anne-Doriane Manick
- Aix-Marseille Univ., CNRS, Institut de Chimie, Radicalaire, UMR 7273, 13397, Marseille, France
| | - Bastien Chatelet
- Aix-Marseille Univ., CNRS, Centrale Marseille iSm2, UMR 7113, 13397, Marseille, France
| | | | - Delphine Moraleda
- Aix-Marseille Univ., CNRS, Centrale Marseille iSm2, UMR 7113, 13397, Marseille, France
| | - Innocenzo de Riggi
- Aix-Marseille Univ., CNRS, Centrale Marseille iSm2, UMR 7113, 13397, Marseille, France
| | - Jean-Pierre Dutasta
- ENS Lyon, CNRS, Laboratoire de Chimie UMR 5182 46 Allée d'Italie, 69364, Lyon, France
| | - Alexandre Martinez
- Aix-Marseille Univ., CNRS, Centrale Marseille iSm2, UMR 7113, 13397, Marseille, France
| |
Collapse
|
3
|
Pavlović RZ, Finnegan TJ, Metlushko A, Hansen AL, Waudby CA, Wang X, Hoefer N, McComb DW, Pavić A, Plackić N, Novaković J, Bradić J, Jeremić N, Jakovljević V, Šmit B, Matić S, Alvarez-Saavedra MA, Čapo I, Moore CE, Stupp SI, Badjić JD. Dynamic and Assembly Characteristics of Deep-Cavity Basket Acting as a Host for Inclusion Complexation of Mitoxantrone in Biotic and Abiotic Systems. Chemistry 2023; 29:e202303374. [PMID: 37851342 DOI: 10.1002/chem.202303374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/19/2023]
Abstract
We describe the preparation, dynamic, assembly characteristics of vase-shaped basket 13- along with its ability to form an inclusion complex with anticancer drug mitoxantrone in abiotic and biotic systems. This novel cavitand has a deep nonpolar pocket consisting of three naphthalimide sides fused to a bicyclic platform at the bottom while carrying polar glycines at the top. The results of 1 H Nuclear Magnetic Resonance (NMR), 1 H NMR Chemical Exchange Saturation Transfer (CEST), Calorimetry, Hybrid Replica Exchange Molecular Dynamics (REMD), and Microcrystal Electron Diffraction (MicroED) measurements are in line with 1 forming dimer [12 ]6- , to be in equilibrium with monomers 1(R) 3- (relaxed) and 1(S) 3- (squeezed). Through simultaneous line-shape analysis of 1 H NMR data, kinetic and thermodynamic parameters characterizing these equilibria were quantified. Basket 1(R) 3- includes anticancer drug mitoxantrone (MTO2+ ) in its pocket to give stable binary complex [MTO⊂1]- (Kd =2.1 μM) that can be precipitated in vitro with UV light or pH as stimuli. Both in vitro and in vivo studies showed that the basket is nontoxic, while at a higher proportion with respect to MTO it reduced its cytotoxicity in vitro. With well-characterized internal dynamics and dimerization, the ability to include mitoxantrone, and biocompatibility, the stage is set to develop sequestering agents from deep-cavity baskets.
Collapse
Affiliation(s)
- Radoslav Z Pavlović
- Department of Chemistry & Biochemistry, The Ohio State University, 1100 W. 18th Avenue, Columbus, OH, 43210, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, 60611, USA
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Materials Science and Engineering, Northwestern University, Chicago, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60208, USA)
| | - Tyler J Finnegan
- Department of Chemistry & Biochemistry, The Ohio State University, 1100 W. 18th Avenue, Columbus, OH, 43210, USA
| | - Anna Metlushko
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, 60611, USA
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Materials Science and Engineering, Northwestern University, Chicago, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60208, USA)
| | - Alexandar L Hansen
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, 43210, USA
| | | | - Xiuze Wang
- Department of Chemistry & Biochemistry, The Ohio State University, 1100 W. 18th Avenue, Columbus, OH, 43210, USA
| | - Nicole Hoefer
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43210, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - David W McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43210, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Aleksandar Pavić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000, Belgrade, Serbia
| | - Nikola Plackić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000, Belgrade, Serbia
| | - Jovana Novaković
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
| | - Jovana Bradić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
| | - Nevena Jeremić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
| | - Vladimir Jakovljević
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
| | - Biljana Šmit
- University of Kragujevac, Institute for Information Technologies, Department of Science, Kragujevac, Serbia)
| | - Sanja Matić
- University of Kragujevac, Institute for Information Technologies, Department of Science, Kragujevac, Serbia)
| | - Matias A Alvarez-Saavedra
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, 60611, USA
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Materials Science and Engineering, Northwestern University, Chicago, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60208, USA)
| | - Ivan Čapo
- Department of Histology and Embryology, Medical Faculty of Novi Sad, Novi Sad, Serbia
| | - Curtis E Moore
- Department of Chemistry & Biochemistry, The Ohio State University, 1100 W. 18th Avenue, Columbus, OH, 43210, USA
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, 60611, USA
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Materials Science and Engineering, Northwestern University, Chicago, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60208, USA)
| | - Jovica D Badjić
- Department of Chemistry & Biochemistry, The Ohio State University, 1100 W. 18th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
4
|
Zhou S, Chen Y, Xu J, Yin Y, Yu J, Liu W, Chen S, Wang L. Supramolecular detoxification of nitrogen mustard via host-guest encapsulation by carboxylatopillar[5]arene. J Mater Chem B 2023; 11:2706-2713. [PMID: 36876404 DOI: 10.1039/d2tb02211g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Nitrogen mustard (NM), a kind of alkylating agent similar to sulfur mustard, remains a threat to public health. However, there is nearly no satisfactory antidote for nitrogen mustard. Herein, we developed a supramolecular antidote to nitrogen mustard through efficient complexation of NM by carboxylatopillar[5]arene potassium salts (CP[5]AK). The cavity of methoxy pillar[5]arene (P5A) is sufficient to encapsulate NM with an association constant of 1.27 × 102 M-1, which was investigated by 1H NMR titration, density functional theory studies and independent gradient model studies. NM degrades to the reactive aziridinium salt (2) in the aqueous phase which irreversibly alkylates DNA and proteins, causing severe tissue damage. Considering the size/charge matching with toxic intermediate 2, water-soluble CP[5]AK was selected to encapsulate the toxic aziridinium salt (2), resulting in a high association constant of 4.10 × 104 M-1. The results of protection experiments of guanosine 5'-monophosphate (GMP) by CP[5]AK indicated that the formation of a complex could effectively inhibit the alkylation of DNA. Besides, in vitro and in vivo experiments also indicated that the toxicity of the aziridinium salt (2) is inhibited with the formation of a stable host-guest complex, and CP[5]AK has a good therapeutic effect on the damage caused by NM. This study provides a new mechanism and strategy for the treatment of NM exposure-induced skin injuries.
Collapse
Affiliation(s)
- Siyuan Zhou
- The Institute for Advanced Studies, and Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Yi Chen
- The Institute for Advanced Studies, and Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Jie Xu
- School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430072, P. R. China
| | - Yongfei Yin
- The Institute for Advanced Studies, and Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Jianqing Yu
- School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430072, P. R. China
| | - Wei Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China.
| | - Shigui Chen
- The Institute for Advanced Studies, and Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Lu Wang
- The Institute for Advanced Studies, and Department of Gastroenterology, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| |
Collapse
|
5
|
Gunther MJ, Pavlović RZ, Finnegan TJ, Wang X, Badjić JD. Enantioselective Construction of Modular and Asymmetric Baskets. Angew Chem Int Ed Engl 2021; 60:25075-25081. [PMID: 34672062 DOI: 10.1002/anie.202110849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/19/2022]
Abstract
The precise positioning of functional groups about the inner space of abiotic hosts is a challenging task and of interest for developing more effective receptors and catalysts akin to those found in nature. To address it, we herein report a synthetic methodology for preparing basket-like cavitands comprised of three different aromatics as side arms with orthogonal esters at the rim for further functionalization. First, enantioenriched A (borochloronorbornene), B (iodobromonorbornene), and C (boronorbornene) building blocks were obtained by stereoselective syntheses. Second, consecutive A-to-B and then AB-to-C Suzuki-Miyaura (SM) couplings were optimized to give enantioenriched ABC cavitand as the principal product. The robust synthetic protocol allowed us to prepare (a) an enantioenriched basket with three benzene sides and each holding either tBu, Et, or Me esters, (b) both enantiomers of a so-called "spiral staircase" basket with benzene, naphthalene, and anthracene groups surrounding the inner space, and (c) a photo-responsive basket bearing one anthracene and two benzene arms.
Collapse
Affiliation(s)
- Michael J Gunther
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, USA
| | - Radoslav Z Pavlović
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, USA
| | - Tyler J Finnegan
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, USA
| | - Xiuze Wang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, USA
| | - Jovica D Badjić
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, USA
| |
Collapse
|
6
|
Gunther MJ, Pavlović RZ, Finnegan TJ, Wang X, Badjić JD. Enantioselective Construction of Modular and Asymmetric Baskets. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michael J. Gunther
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH USA
| | - Radoslav Z. Pavlović
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH USA
| | - Tyler J. Finnegan
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH USA
| | - Xiuze Wang
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH USA
| | - Jovica D. Badjić
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH USA
| |
Collapse
|
7
|
Finnegan TJ, Gunawardana VWL, Badjić JD. Molecular Recognition of Nerve Agents and Their Organophosphorus Surrogates: Toward Supramolecular Scavengers and Catalysts. Chemistry 2021; 27:13280-13305. [PMID: 34185362 PMCID: PMC8453132 DOI: 10.1002/chem.202101532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 12/19/2022]
Abstract
Nerve agents are tetrahedral organophosphorus compounds (OPs) that were developed in the last century to irreversibly inhibit acetylcholinesterase (AChE) and therefore impede neurological signaling in living organisms. Exposure to OPs leads to a rapid development of symptoms from excessive salivation, nasal congestion and chest pain to convulsion and asphyxiation which if left untreated may lead to death. These potent toxins are prepared on a large scale from inexpensive staring materials, making it feasible for terrorist groups or states to use them against military and civilians. The existing antidotes provide limited protection and are difficult to apply to a large number of affected individuals. While new prophylactics are currently being developed, there is still need for therapeutics capable of both preventing and reversing the effects of OP poisoning. In this review, we describe how the science of molecular recognition can expand the pallet of tools for rapid and safe sequestration of nerve agents.
Collapse
Affiliation(s)
- Tyler J Finnegan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, USA
| | | | - Jovica D Badjić
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, USA
| |
Collapse
|
8
|
Liu G, Xu X, Dai X, Jiang C, Zhou Y, Lu L, Liu Y. Cucurbituril-activated photoreaction of dithienylethene for controllable targeted lysosomal imaging and anti-counterfeiting. MATERIALS HORIZONS 2021; 8:2494-2502. [PMID: 34870307 DOI: 10.1039/d1mh00811k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supramolecular macrocycle-mediated photoreaction has been a research hotspot recently. Herein, we fabricated a photo-responsive intelligent supramolecular assembly that consisted of a water-soluble dithienylethene derivative (DTE-MPBT) and cucurbit[n]urils (CB[n]). Importantly, CB[n], especially CB[8], could act as activators and trigger conformational alteration of the arm parts (typical molecular rotors) of DTE-MPBT, achieving dual functions, i.e. high-efficiency visible-light-cyclization reaction of the DTE core and fluorescence enhancement of DTE-MPBT, resulting in the formation of a dual visible light-driven fluorescent switch. These unexpected discoveries prompted the supramolecular assembly to be applied to dual-visible-light-controlled targeted lysosomal imaging and QR code information recognition. Moreover, the solid-state assembly exhibited more outstanding fluorescence and visible-light-switched fluorescence performance because of the host-guest-induced aggregation synergistic effect, showing fascinating applications, such as light-manipulative data storage and anti-counterfeiting. In brief, we unprecedentedly adopted a supramolecular strategy of "killing two birds with one stone", i.e. assembly-activated photochromism (AAP) and assembly-activated emission enhancement (AAEE), to fabricate dual-visible-light-driven fluorescent switches, which show promising application prospects in biomimetic smart nanomaterials based on supramolecular self-assembly systems.
Collapse
Affiliation(s)
- Guoxing Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
- College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, P. R. China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Xianyin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Chunhui Jiang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yu Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Lei Lu
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
9
|
Brady KG, Liu B, Li X, Isaacs L. Self Assembled Cages with Mechanically Interlocked Cucurbiturils. Supramol Chem 2021; 33:8-32. [PMID: 34366642 PMCID: PMC8340875 DOI: 10.1080/10610278.2021.1908546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
We report preparation of (bis)aniline ligand 4 which contains a central viologen binding domain and its subcomponent self-assembly with aldehyde 5 and Fe(OTf)2 in CH3CN to yield tetrahedral assembly 6. Complexation of ligand 4 with CB[7] in the form of CB[7]•4•2PF6 allows the preparation of assembly 7 which contains an average of 1.95 (range 1-3) mechanically interlocked CB[7] units. Assemblies 6 and 7 are hydrolytically unstable in water due to their imine linkages. Redesign of our system with water stable 2,2'-bipyridine end groups was realized in the form of ligands 11 and 16 which also contain a central viologen binding domain. Self-assembly of 11 with Fe(NTf2)2 gave tetrahedral MOP 12 as evidenced by 1H NMR, DOSY, and mass spectrometric analysis. In contrast, isomeric ligand 16 underwent self-assembly with Fe(OTf)2 to give cubic assembly 17. Precomplexation of ligands 11 and 16 with CB[7] gave the acetonitrile soluble CB[7]•11•2PF6 and CB[7]•16•2PF6 complexes. Self-assembly of CB[7]•11•2PF6 with Fe(OTf)2 gave tetrahedron 13 which contains on average 1.8 mechanically interlocked CB[7] units as determined by 1H NMR, DOSY, and ESI-MS analysis. Self-assembly of CB[7]•16•2PF6 with Fe(OTf)2 gave cube 13 which contains 6.59 mechanically interlocked CB[7] units as determined by 1H NMR and DOSY measurements.
Collapse
Affiliation(s)
- Kimberly G. Brady
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Bingqing Liu
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
10
|
Liu P, Wang H, Zeng H, Hong X, Huang F. A [1 5]paracyclophenone and its fluorenone-containing derivatives: syntheses and binding to nerve agent mimics via aryl-CH hydrogen bonding interactions. Org Chem Front 2021. [DOI: 10.1039/d0qo00456a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A [15]paracyclophenone and its fluorenone-containing derivatives were synthesized. The novel macrocyclic host I binds nerve agent mimics through the ‘non-traditional’ aryl-CH hydrogen bonding interactions.
Collapse
Affiliation(s)
- Peiren Liu
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High- Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Hongliang Wang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Hong Zeng
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High- Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Xin Hong
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High- Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| |
Collapse
|
11
|
Zhang H, Wang L, Dong P, Mao S, Mao P, Liu G. Photolysis of the BODIPY dye activated by pillar[5]arene. RSC Adv 2021; 11:7454-7458. [PMID: 35423231 PMCID: PMC8694983 DOI: 10.1039/d0ra08611h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Here, a pseudo[3]rotaxane comprising a fluorescent BODIPY derivative and pillar[5]arene was conveniently fabricated via host–guest complexation. Importantly, in this system, the efficient photodecomposition of the BODIPY derivative in the presence of pillar[5]arene was witnessed upon irradiation at 311 nm light, which was demonstrated via UV-Vis absorption, fluorescence emission, NMR and HR-MS spectroscopy techniques, but the only BODIPY dye in the absence of pillar[5]arene couldn't undergo photodegradation. We demonstrated that pillar[5]arene could act as an activator to trigger the photodegradation reaction of BODIPY derivatives via free radical reactions even without supramolecular interactions. The present results provide a new strategy for the efficient photolysis of organic dyes. Here, a pseudo[3]rotaxane comprising a fluorescent BODIPY derivative and pillar[5]arene was conveniently fabricated via host–guest complexation.![]()
Collapse
Affiliation(s)
- Haifan Zhang
- College of Chemistry and Chemical Engineering
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
| | - Long Wang
- College of Chemistry and Chemical Engineering
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
| | - Puyang Dong
- College of Chemistry and Chemical Engineering
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
| | - Shuqiang Mao
- College of Chemistry and Chemical Engineering
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
| | - Pu Mao
- College of Chemistry and Chemical Engineering
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
| | - Guoxing Liu
- College of Chemistry and Chemical Engineering
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
- College of Science
| |
Collapse
|
12
|
Lei Z, Gunther MJ, Liyana Gunawardana VW, Pavlović RZ, Xie H, Zhu X, Keenan M, Riggs A, Badjić JD. A highly diastereoselective synthesis of deep molecular baskets. Chem Commun (Camb) 2020; 56:10243-10246. [PMID: 32756686 DOI: 10.1039/d0cc04650g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We describe a preparative method for directing Mizoroki-Heck cyclotrimerization of enantioenriched bromonorbornenes into molecular baskets having increasingly deeper and extendable aromatic cavities. Such diastereoselective cyclotrimerizations of the bromo-olefinic substrates resulted from prevalent β migratory insertions without the formation of palladacycle intermediate(s). The facile access to multigram quantity of a new series of basket-like hosts clears the way for creating novel supramolecular materials for storage, sequestration and catalysis.
Collapse
Affiliation(s)
- Zhiquan Lei
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, 43210 Columbus, Ohio, USA.
| | - Michael J Gunther
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, 43210 Columbus, Ohio, USA.
| | | | - Radoslav Z Pavlović
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, 43210 Columbus, Ohio, USA.
| | - Han Xie
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, 43210 Columbus, Ohio, USA.
| | - Xingrong Zhu
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, 43210 Columbus, Ohio, USA.
| | - Mason Keenan
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, 43210 Columbus, Ohio, USA.
| | - Alex Riggs
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, 43210 Columbus, Ohio, USA.
| | - Jovica D Badjić
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, 43210 Columbus, Ohio, USA.
| |
Collapse
|
13
|
Abstract
Nerve agents (NAs) are a group of highly toxic organophosphorus compounds developed before World War II. They are related to organophosphorus pesticides, although they have much higher human acute toxicity than commonly used pesticides. After the detection of the presence of NAs, the critical step is the fast decontamination of the environment in order to avoid the lethal effect of these organophosphorus compounds on exposed humans. This review collects the catalytic degradation reactions of NAs, in particular focusing our attention on chemical hydrolysis. These reactions are catalyzed by different catalyst categories (metal-based, polymeric, heterogeneous, enzymatic and MOFs), all of them described in this review.
Collapse
|
14
|
Andrae B, Bauer D, Gaß P, Koller M, Worek F, Kubik S. Influence of cyclic and acyclic cucurbiturils on the degradation pathways of the chemical warfare agent VX. Org Biomol Chem 2020; 18:5218-5227. [PMID: 32602497 DOI: 10.1039/d0ob01167c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The highly toxic nerve agent VX is a methylphosphonothioate that degrades via three pathways in aqueous solution, namely through the hydrolysis of the P-O or P-S bonds, or the cleavage of the C-S bond at the 2-aminoethyl residue. In the latter case, an aziridinium ion and a phosphonothioate is formed. Here it is shown that acyclic or cyclic cucurbiturils inhibit these reactions in phosphate buffer at physiological pH and thus stabilise the nerve agent. When using unbuffered basic solutions as the reaction medium, however, in which the P-S or P-O bonds are normally hydrolysed preferentially, cucurbiturils turned out to strongly shift VX degradation towards the cleavage of the C-S bond. Cucurbit[7]uril, in particular, has a so pronounced effect under suitable conditions that it almost completely suppresses the formation of products resulting from the other degradation pathways. Investigations involving VX analogues in combination with computational methods suggest that one reason for the reaction control exerted by the cucurbiturils is the preorganisation of VX for aziridinium ion formation. In addition, cucurbit[7]uril also lowers the transition state of the reaction by stabilising the positive charge developing on the way to the product. Cucurbiturils thus have a marked effect on the reactivity of a highly toxic nerve agent, which potentially allows using them for decontamination purposes.
Collapse
Affiliation(s)
- Beatrice Andrae
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany.
| | - Daniel Bauer
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany.
| | - Patrick Gaß
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany.
| | - Marianne Koller
- Institut für Pharmakologie und Toxikologie der Bundeswehr, Neuherbergstraße 11, 80937 München, Germany
| | - Franz Worek
- Institut für Pharmakologie und Toxikologie der Bundeswehr, Neuherbergstraße 11, 80937 München, Germany
| | - Stefan Kubik
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany.
| |
Collapse
|
15
|
Wang W, Finnegan TJ, Lei Z, Zhu X, Moore CE, Shi K, Badjić JD. Tuning the allosteric sequestration of anticancer drugs for developing cooperative nano-antidotes. Chem Commun (Camb) 2020; 56:1271-1274. [DOI: 10.1039/c9cc09373g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual-cavity baskets, carrying six γ-aminobutyric acids sequester anticancer anthracyclines in a cooperative manner to be of interest for creating nano-antidotes.
Collapse
Affiliation(s)
- Weikun Wang
- Department of Chemistry & Biochemistry
- The Ohio State University
- 43210 Columbus
- USA
| | - Tyler J. Finnegan
- Department of Chemistry & Biochemistry
- The Ohio State University
- 43210 Columbus
- USA
| | - Zhiquan Lei
- Department of Chemistry & Biochemistry
- The Ohio State University
- 43210 Columbus
- USA
| | - Xingrong Zhu
- Department of Chemistry & Biochemistry
- The Ohio State University
- 43210 Columbus
- USA
| | - Curtis E. Moore
- Department of Chemistry & Biochemistry
- The Ohio State University
- 43210 Columbus
- USA
| | - Kejia Shi
- Department of Chemistry & Biochemistry
- The Ohio State University
- 43210 Columbus
- USA
| | - Jovica D. Badjić
- Department of Chemistry & Biochemistry
- The Ohio State University
- 43210 Columbus
- USA
| |
Collapse
|
16
|
Pavlović RZ, Border SE, Li Y, Li X, Badjić JD. Photoinduced interruption of interannular cooperativity for delivery of cationic guests in water. Chem Commun (Camb) 2020; 56:2987-2990. [DOI: 10.1039/c9cc09903d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Photoinduced decarboxylation of two hexaanionic baskets, surrounding a divalent cationic guest, reduced the interannular cooperativity (i.e. multivalency) holding the complex together to result in the release of guests.
Collapse
Affiliation(s)
- Radoslav Z. Pavlović
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus 43210
- USA
| | - Sarah E. Border
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus 43210
- USA
| | - Yiming Li
- Department of Chemistry
- University of South Florida
- 33620 Tampa
- USA
| | - Xiaopeng Li
- Department of Chemistry
- University of South Florida
- 33620 Tampa
- USA
| | - Jovica D. Badjić
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus 43210
- USA
| |
Collapse
|
17
|
Lu Z, Ronson TK, Nitschke JR. Reversible reduction drives anion ejection and C 60 binding within an Fe II 4L 6 cage. Chem Sci 2019; 11:1097-1101. [PMID: 34084365 PMCID: PMC8146419 DOI: 10.1039/c9sc05728e] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
FeII4L6 tetrahedral cage 1 was prepared from a redox-active dicationic naphthalenediimide (NDI) ligand. The +20 charge of the cage makes it a good host for anionic guests, with no binding observed for neutral aromatic molecules. Following reduction by Cp2Co, the cage released anionic guests; subsequent oxidation by AgNTf2 led to re-uptake of anions. In its reduced form, however, 1 was observed to bind neutral C60. The fullerene guest was subsequently ejected following cage re-oxidation. The guest release process was found to be facilitated by anion-mediated transport from organic to aqueous solution. Cage 1 thus employs electron transfer as a stimulus to control the uptake and release of both neutral and charged guests, through distinct pathways. FeII4L6 cage 1 binds anionic guests but not neutral guests. In its reduced form, the cage can bind neutral C60. Reduction and oxidation of the cage could thus be used as a stimulus to control the uptake and release of both neutral and charged guests.![]()
Collapse
Affiliation(s)
- Zhenpin Lu
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Tanya K Ronson
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jonathan R Nitschke
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
18
|
Pavlović RZ, Border SE, Finnegan TJ, Zhiquan L, Gunther MJ, Mu̅noz E, Moore CE, Hadad CM, Badjić JD. Twist–Turn–Twist Motif Chaperoned Inside Molecular Baskets. J Am Chem Soc 2019; 141:16600-16604. [PMID: 31592662 DOI: 10.1021/jacs.9b09003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Radoslav Z. Pavlović
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Sarah E. Border
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Tyler J. Finnegan
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Lei Zhiquan
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Michael J. Gunther
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Eva Mu̅noz
- Affinimeter, Edificio Emprendia, Campus Vida, Santiago de Compostela, Spain
| | - Curtis E. Moore
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Christopher M. Hadad
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jovica D. Badjić
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
19
|
Wang K, Dou HX, Wang MM, Wu Y, Zhang ZH, Xing SY, Zhu BL, Feng YX. Photolysis of a calixpyridinium-based supramolecular amphiphilic assembly and its selective turn-on fluorescence recognition of lysine in water. Chem Commun (Camb) 2019; 55:12235-12238. [PMID: 31552940 DOI: 10.1039/c9cc07020f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A new calixpyridinium-based light-responsive host-guest recognition motif was found in this work. This host-guest recognition motif was further discovered to be applied as a selective turn-on fluorescent sensor for lysine over other natural amino acids.
Collapse
Affiliation(s)
- Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Hong-Xi Dou
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Meng-Meng Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Yue Wu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Ze-Hao Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Si-Yang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Bo-Lin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Yu-Xin Feng
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| |
Collapse
|
20
|
Gunther MJ, Pavlović RZ, Fernandez JP, Zhiquan L, Gallucci J, Hadad CM, Badjić JD. Stereo- and Regioselective Synthesis of Molecular Baskets. J Org Chem 2019; 84:4392-4401. [PMID: 30873839 DOI: 10.1021/acs.joc.9b00330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a stereoselective method for obtaining multigram quantities of molecular basket 1 syn in overall 11% yield, using inexpensive cyclopentadiene and diethyl fumarate as starting materials. First, an asymmetric synthesis of enantioenriched bromo(trimethylstannyl)alkene (-)-8 was accomplished by the stereoselective bromination of dibromonorbornene (+)-4 guided by anchimeric assistance and subsequent syn- exo-elimination of tetrabromonorbornane (-)-5a as the key steps. Subsequent Cu(I)-catalyzed cyclotrimerization of (-)-8 was optimized to give 1 syn/ anti in 85% yield and 1:1 ratio of diastereomers. Importantly, the results of our mechanistic experiments were in line with the cyclotrimerization occurring in a chain-type fashion with racemization of a Cu(I) homochiral dimeric intermediate, reducing the stereoselectivity of the transformation. Enabled by more facile access to molecular baskets of type 1 syn, a range of recognition studies can now be completed for producing novel supramolecular catalysts, organophosphorus scavengers, and nanostructured materials.
Collapse
Affiliation(s)
- Michael J Gunther
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| | - Radoslav Z Pavlović
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| | - Joseph P Fernandez
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| | - Lei Zhiquan
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| | - Judith Gallucci
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| | - Jovica D Badjić
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| |
Collapse
|
21
|
Wu JR, Li B, Zhang JW, Yang YW. Semi-Rigid Molecular-Clip-Based Molecular Crystal Gearshift. ACS APPLIED MATERIALS & INTERFACES 2019; 11:998-1003. [PMID: 30525365 DOI: 10.1021/acsami.8b20108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A new version of molecular clip, with a semi-rigid symmetrical crab-type architecture and flexible cavity size, has been successfully designed and synthesized via a one-pot Friedel-Crafts alkylation reaction. The X-ray single-crystal diffraction data provide a simple and intuitive explanation, not only for its well-preorganized and regulated conformation but also for its selective and tunable guest-binding capability. For the first time, the newly designed molecular clip was demonstrated to be not only a controllable variable-speed nonporous adsorption material in solution iodine capture, but also capable of on-off switching in volatile iodine capture. The presented new concept of molecular crystal gearshift directly from the molecular clip crystals represents an important advance in the development of synthetic receptor chemistry, which will exert a significant influence on small-molecule crystallography.
Collapse
Affiliation(s)
| | | | - Jiang-Wei Zhang
- State Key Laboratory of Catalysis & Gold Catalysis Research Center Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | | |
Collapse
|
22
|
Xie H, Zhiquan L, Pavlović RZ, Gallucci J, Badjić JD. Stackable molecular chairs. Chem Commun (Camb) 2019; 55:5479-5482. [DOI: 10.1039/c9cc01664c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular chairs, carrying three amino acids or peptides, stack in an antiparallel fashion to give hexavalent assemblies for bottom-up construction of novel soft materials and therapeutics.
Collapse
Affiliation(s)
- Han Xie
- Department of Chemistry & Biochemistry
- The Ohio State University
- 43210 Columbus
- USA
| | - Lei Zhiquan
- Department of Chemistry & Biochemistry
- The Ohio State University
- 43210 Columbus
- USA
| | - Radoslav Z. Pavlović
- Department of Chemistry & Biochemistry
- The Ohio State University
- 43210 Columbus
- USA
| | - Judith Gallucci
- Department of Chemistry & Biochemistry
- The Ohio State University
- 43210 Columbus
- USA
| | - Jovica D. Badjić
- Department of Chemistry & Biochemistry
- The Ohio State University
- 43210 Columbus
- USA
| |
Collapse
|
23
|
Border SE, Pavlović RZ, Zhiquan L, Gunther MJ, Wang H, Cui H, Badjić JD. Photo-induced formation of organic nanoparticles possessing enhanced affinities for complexing nerve agent mimics. Chem Commun (Camb) 2019; 55:1987-1990. [DOI: 10.1039/c8cc08938h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Organic nanoparticles, composed of molecular baskets, could act as nanocarriers for selective “mopping” of toxic CWAs or pesticides, after being assembled by a light stimulus.
Collapse
Affiliation(s)
- Sarah E. Border
- Department of Chemistry & Biochemistry
- The Ohio State University
- 43210 Columbus
- USA
| | - Radoslav Z. Pavlović
- Department of Chemistry & Biochemistry
- The Ohio State University
- 43210 Columbus
- USA
| | - Lei Zhiquan
- Department of Chemistry & Biochemistry
- The Ohio State University
- 43210 Columbus
- USA
| | - Michael J. Gunther
- Department of Chemistry & Biochemistry
- The Ohio State University
- 43210 Columbus
- USA
| | - Han Wang
- Department of Chemical and Biomolecular Engineering
- The Johns Hopkins University
- 21218 Baltimore
- USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering
- The Johns Hopkins University
- 21218 Baltimore
- USA
| | - Jovica D. Badjić
- Department of Chemistry & Biochemistry
- The Ohio State University
- 43210 Columbus
- USA
| |
Collapse
|
24
|
Liu WE, Chen Z, Yang LP, Au-Yeung HY, Jiang W. Molecular recognition of organophosphorus compounds in water and inhibition of their toxicity to acetylcholinesterase. Chem Commun (Camb) 2019; 55:9797-9800. [DOI: 10.1039/c9cc04603h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
endo-Functionalized molecular tubes are able to recognize toxic organophosphorus compounds in water. They can be used as a fluorescent sensor and as an inhibitor to reduce the toxicity of paraoxon to acetylcholinesterase.
Collapse
Affiliation(s)
- Wei-Er Liu
- Department of Chemistry
- The University of Hong Kong
- China
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
| | - Zhao Chen
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Liu-Pan Yang
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | | | - Wei Jiang
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| |
Collapse
|
25
|
Neal TA, Wang W, Zhiquan L, Peng R, Soni P, Xie H, Badjić JD. A Hexavalent Basket for Bottom‐Up Construction of Functional Soft Materials and Polyvalent Drugs through a “Click” Reaction. Chemistry 2018; 25:1242-1248. [PMID: 30466183 DOI: 10.1002/chem.201805246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/19/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Taylor A. Neal
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Weikun Wang
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Lei Zhiquan
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Ruojing Peng
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Priti Soni
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Han Xie
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Jovica D. Badjić
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| |
Collapse
|
26
|
Wu H, Chen Y, Zhang L, Anamimoghadam O, Shen D, Liu Z, Cai K, Pezzato C, Stern CL, Liu Y, Stoddart JF. A Dynamic Tetracationic Macrocycle Exhibiting Photoswitchable Molecular Encapsulation. J Am Chem Soc 2018; 141:1280-1289. [DOI: 10.1021/jacs.8b10526] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Huang Wu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, P. R. China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ommid Anamimoghadam
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dengke Shen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhichang Liu
- School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Kang Cai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Cristian Pezzato
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L. Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| |
Collapse
|
27
|
Border SE, Pavlović RZ, Zhiquan L, Gunther MJ, Wang H, Cui H, Badjić JD. Light‐Triggered Transformation of Molecular Baskets into Organic Nanoparticles. Chemistry 2018; 25:273-279. [PMID: 30133001 DOI: 10.1002/chem.201803693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/17/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Sarah E. Border
- Department of Chemistry & BiochemistryThe Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Radoslav Z. Pavlović
- Department of Chemistry & BiochemistryThe Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Lei Zhiquan
- Department of Chemistry & BiochemistryThe Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Michael J. Gunther
- Department of Chemistry & BiochemistryThe Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Han Wang
- Department of Chemical and Biomolecular EngineeringThe Johns Hopkins University, Maryland Hall 221 3400 North Charles Street 21218 Baltimore Maryland USA
| | - Honggang Cui
- Department of Chemical and Biomolecular EngineeringThe Johns Hopkins University, Maryland Hall 221 3400 North Charles Street 21218 Baltimore Maryland USA
| | - Jovica D. Badjić
- Department of Chemistry & BiochemistryThe Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| |
Collapse
|
28
|
Zhiquan L, Xie H, Border SE, Gallucci J, Pavlović RZ, Badjić JD. A Stimuli-Responsive Molecular Capsule with Switchable Dynamics, Chirality, and Encapsulation Characteristics. J Am Chem Soc 2018; 140:11091-11100. [PMID: 30099876 DOI: 10.1021/jacs.8b06190] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lei Zhiquan
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Han Xie
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Sarah E. Border
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Judith Gallucci
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Radoslav Z. Pavlović
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jovica D. Badjić
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|