1
|
Byrka A, Boivin L, d'Astous ÉV, Singhal R, Karsenti PL, Dauphin-Ducharme P, Witulski B, Sharma GD, Harvey PD. Simple A-D 2-A Nonfullerene Acceptors for Efficient Binary Bulk Heterojunction Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3478-3488. [PMID: 39745307 DOI: 10.1021/acsami.4c19947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Two new nonfused ring nonfullerene electron acceptors, NFAs, (dicarbazolyl)bis(2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile) (MDCzM-4H) and -(2-(5,6-fluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile) (MDCzM-4F), thus exhibiting an A-D2-A motif, were synthesized and characterized. As thin films, they exhibit the lowest energy absorption signature near 540 nm, extending down to ∼700 nm. This band is due to an intramolecular charge transfer process from the DCz (nonfused dicarbazoyl; DCz) moiety to the malononitrile-based units (M) based on density functional theory calculations (DFT), which are also corroborated by time-dependent DFT (TDDFT) computations. Both NFAs fluoresce in the near-IR region exhibiting a band maximum peaking near 750 nm with biphasic lifetimes in the 75-410 ps time scale. Electrochemical measurements permitted the determination of their HOMO (∼-5.7 eV) and LUMO (∼-4.0 eV) energies. The absorption bands are complementary to those of the commercial copolymer PTB7-Th, which was used to prepare binary blends for photovoltaic cell performance assessments (ITO/PEDOT:PSS/active layer/PFN-Br/Ag). The power conversion efficiencies (PCE) are found to be 10.17% for MDCzM-4H/PTB7-Th (short-circuit current JSC = 15.87 mA cm-2; open-circuit voltage VOC = 1.03 V; fill factor FF = 0.622) and 14.09% for MDCzM-4F/PTB7-Th (JSC = 20.92 mA cm-2; VOC = 0.965 V; FF = 0.698). The use of nonfused ring NFAs achieving such high performances is significant and reveals a path toward simpler NFAs for use in organic photovoltaics.
Collapse
Affiliation(s)
- Andrii Byrka
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, Normandie Univ, ENSICAEN & UNICAEN, 6 Bvd Maréchal Juin, 14050 Caen, France
| | - Léo Boivin
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Élodie V d'Astous
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Rahul Singhal
- Department of Physics, Malviya National Institute of Technology, JLN Marg, Jaipur, Rajasthan 302017, India
| | | | | | - Bernhard Witulski
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, Normandie Univ, ENSICAEN & UNICAEN, 6 Bvd Maréchal Juin, 14050 Caen, France
| | - Ganesh D Sharma
- Department of Physics and Electronics Communication Engineering, The LNM Institute of Information Technology, Jamdoli, Jaipur, Rajasthan 302031, India
| | - Pierre D Harvey
- Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
2
|
Wen T, Wu Y, Sun J, Zhou J, Tian Q, Shi Y, Chen M, Yu C, Wang Y, Yang S, Hou Y, Yang Z, Peng H. Minimizing Voltage Deficit in Perovskite Indoor Photovoltaics by Interfacial Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408271. [PMID: 39544165 DOI: 10.1002/smll.202408271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Metal halide perovskites with bandgap of ≈1.8 eV are competitive candidates for indoor photovoltaic (IPV) devices, owing to their superior photovoltaic properties and ideal absorption spectra matched to most indoor light sources. However, these perovskite IPVs suffer from severe trap induced non-radiative recombination, resulting in large open-circuit voltage (VOC) losses, particularly under low light intensity. Herein, an effective approach is developed to minimizing trap density by modifying the buried interface of perovskite layer with bifunctional molecular 2-(4-Fluorophenyl)ethylamine Hydrobromide (F-PEABr). The benzene ring of F-PEABr molecules can firmly anchor at the hole transporting layer by π-π stacking interaction, and the other ends can passivate the defects on the buried interface of perovskite layer. Based on that, the F-PEABr modified perovskite IPVs achieved power conversion efficiency (PCE) of 42.3% with a remarkable VOC of 1.13 V under 1000 lux illumination from a 4000 K LED lamp. Finally, perovskite IPV mini-modules with area of 10.40 cm2 are demonstrated with a PCE of 35.2%. This interface modification strategy paves the way for crafting high-performance perovskite IPVs, holding great potential for self-powered internet of things applications.
Collapse
Affiliation(s)
- Tianyu Wen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yue Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jinglin Sun
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jie Zhou
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qiushi Tian
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yiheng Shi
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Mengjiong Chen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Chao Yu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yanbo Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 20024, P. R. China
| | - Shuang Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yu Hou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhibin Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Huisheng Peng
- Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
3
|
Shao J, Li M, Chen G, Fang Y, Young Jeong S, Ke Y, Yi X, Young Woo H, Huang B. Developing a Fluorinated Benzothiadiazole-Based Polymer Donor as Guest to Construct High-Performance Ternary Solar Cells. CHEMSUSCHEM 2024:e202402226. [PMID: 39714861 DOI: 10.1002/cssc.202402226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 12/24/2024]
Abstract
Benzothiadiazole (BT) has shown promising applications in fullerene solar cells. However, few BT-based polymer donors exhibited a noticeable power conversion efficiency (PCE) for the fused-ring small molecular acceptor-based polymer solar cells (PSCs). Herein, we developed a D-A (D: donor, A: acceptor) polymer donor F-1 based on fluorinated BT (ffBT) as A unit and chlorinated benzo [1,2-b : 4,5-b'] dithiophene (BDT-2Cl) as D unit. Thanks to the strong electron-withdrawing of ffBT unit, F-1 not only exhibited low-lying energy levels to increase open circuit voltage, but also existence noncovalent S ⋅ ⋅ ⋅ F to enhance molecular planarity and crystallinity. After incorporated F-1 as guest materials on PM6 : L8-BO-based system to construct ternary device, the addition of F-1 can efficient promote the blend films exhibit excellent morphological compatibility, favorable phase separation, and molecular arrangement. As a result, the F-1 (5 %) : PM6 : L8-BO-based device obtained an impressive PCE up to 19.47 %, which is much higher than the counterparts as PCE is 18.35 % for PM6 : L8-BO-based binary device. This study not only provided a practical and promising strategy to develop high-performance polymer donors by utilizing the advantages of noncovalent conformational locks, but also suggested an efficient strategy to further improve device performance by constructing ternary solar cells for BT unit-based PSCs.
Collapse
Affiliation(s)
- Jianfeng Shao
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Min Li
- Ministry of Culture,Sports and Labor, Gannan Health Vocational College, Ganzhou, 341000, P. R. China
| | - Guo Chen
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Yu Fang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Sang Young Jeong
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yuqiu Ke
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Xiaoqing Yi
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Bin Huang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| |
Collapse
|
4
|
Zhang N, Chen T, Li Y, Li S, Yu J, Liu H, Wang M, Ye XK, Ding X, Lu X, Li CZ, Zhu H, Shi M, Chen H. Benzothiadiazole-Fused Cyanoindone: A Superior Building Block for Designing Ultra-Narrow Bandgap Electron Acceptor with Long-Range Ordered Stacking. Angew Chem Int Ed Engl 2024:e202420090. [PMID: 39612240 DOI: 10.1002/anie.202420090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/01/2024]
Abstract
There are great demands of developing ultra-narrow bandgap electron acceptors for multifunctional electronic devices, particularly semi-transparent organic photovoltaics (OPVs) for building-integrated applications. However, current ultra-narrow bandgap materials applied in OPVs, primarily based on electron-rich cores, exhibit defects of high-lying energy levels and inferior performance. We herein proposed a novel strategy by designing the benzothiazole-fused cyanoindone (BTC) unit with ultra-strong electron-withdrawing ability as the terminal to synthesize the acceptor BTC-2. The BTC unit imparts red-shifted absorption up to 1000 nm to BTC-2, attributed to enhanced intramolecular charge transfer and the quinoid resonance effect. Additionally, BTC-2 features deep-lying energy levels with the highest occupied molecular orbital level of -5.81 eV, due to the ultra-strong electron-withdrawing ability of BTC. Furthermore, BTC-2 exhibits long-range ordering in both molecular packing and macroscopic blend morphology, resulting from shoulder-to-shoulder packing of two BTC units, leading to an ultra-long exciton lifetime over 1.1 ns. These superiorities facilitated a 17.17 % efficiency in the binary OPV device with an extremely high photocurrent of 30.34 mA cm-2, representing the best performance for ultra-narrow bandgap electron acceptors, and a record light utilization efficiency of 4.88 % in binary semi-transparent systems. Overall, BTC is a superior building block for designing ultra-narrow bandgap electron acceptors.
Collapse
Affiliation(s)
- Nuo Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Tianyi Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yaokai Li
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Shuixing Li
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Jinyang Yu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Heng Liu
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Mengting Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiu-Kun Ye
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xueyan Ding
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Chang-Zhi Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Minmin Shi
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| |
Collapse
|
5
|
Guo Y, Zhang Y, Ma J, Liao R, Wang F. Wide-range tunable circularly polarized luminescence in triphenylamine supramolecular polymers via charge-transfer complexation. Nat Commun 2024; 15:9303. [PMID: 39468039 PMCID: PMC11519326 DOI: 10.1038/s41467-024-53297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Circularly polarized luminescence materials with broad color tunability are highly valuable for applications in 3D display and photonic technologies. Here we show that incorporating intermolecular charge-transfer complexation into chiral supramolecular polymers is an efficient strategy to achieve this objective. Adjusting the charge-transfer strength between triphenylamine donors and naphthalenemonoimide acceptors enables tunable circularly polarized luminescence signals across the visible light spectrum. This includes blue-colored emission for the supramolecular donor polymers, as well as green, yellow, orange and red-colored emission for supramolecular donor-acceptor polymers. The donor-acceptor packing modes are further influenced by the presence or absence of acetylene linkages on the triphenylamine donors, resulting in ground- or excited-state charge transfer with varying luminescent lifetimes. Additionally, white-light circularly polarized luminescence is achieved by encapsulating blue- and orange-emitting species into surfactant-based micelles in a compartmentalized manner. Overall, manipulating charge-transfer complexation in supramolecular polymers provides an effective approach to wide-range tunable circularly polarized luminescence materials.
Collapse
Affiliation(s)
- Yuchen Guo
- Department of Vascular Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Yifei Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Jianfei Ma
- Department of Vascular Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Rui Liao
- Department of Vascular Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, PR China.
| | - Feng Wang
- Department of Vascular Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, PR China.
| |
Collapse
|
6
|
Zhang Y, Chen J, Yang J, Fu M, Cao Y, Dong M, Yu J, Dong S, Yang X, Shao L, Hu Z, Cai H, Liu C, Huang F. Sensitive SWIR Organic Photodetectors with Spectral Response Reaching 1.5 µm. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406950. [PMID: 39152933 DOI: 10.1002/adma.202406950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Indexed: 08/19/2024]
Abstract
The performance of organic photodetectors (OPDs) sensitive to the short-wavelength infrared (SWIR) light lags behind commercial indium gallium arsenide (InGaAs) photodetectors primarily due to the scarcity of organic semiconductors with efficient photoelectric responses exceeding 1.3 µm. Limited by the Energy-gap law, ultralow-bandgap organic semiconductors usually suffer from severe non-radiative transitions, resulting in low external quantum efficiency (EQE). Herein, a difluoro-substituted quinoid terminal group (QC-2F) with exceptionally strong electron-negativity is developed for constructing a new non-fullerene acceptor (NFA), Y-QC4F with an ultralow bandgap of 0.83 eV. This subtle structural modification significantly enhances intermolecular packing order and density, enabling an absorption onset up to 1.5 µm while suppressing non-radiation recombination in Y-QC4F films. SWIR OPDs based on Y-QC4F achieve an impressive detectivity (D*) over 1011 Jones from 0.4 to 1.5 µm under 0 V bias, with a maximum of 1.68 × 1012 Jones at 1.16 µm. Furthermore, the resulting OPDs demonstrate competitive performance with commercial photodetectors for high-quality SWIR imaging even under 1.4 µm irradiation.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jingwen Chen
- Lumidar Technology Co., Ltd., Guangzhou, 510530, P. R. China
| | - Jie Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Muyi Fu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yunhao Cao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Minghao Dong
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jiangkai Yu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Sheng Dong
- Lumidar Technology Co., Ltd., Guangzhou, 510530, P. R. China
| | - Xiye Yang
- Lumidar Technology Co., Ltd., Guangzhou, 510530, P. R. China
| | - Lin Shao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhengwei Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Houji Cai
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chunchen Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Fei Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
7
|
Bi X, Li S, He T, Chen H, Li Y, Jia X, Cao X, Guo Y, Yang Y, Ma W, Yao Z, Kan B, Li C, Wan X, Chen Y. Balancing Flexible Side Chains on 2D Conjugated Acceptors Enables High-Performance Organic Solar Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311561. [PMID: 38546001 DOI: 10.1002/smll.202311561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 06/13/2024]
Abstract
Balancing the rigid backbones and flexible side chains of light-harvesting materials is crucially important to reach optimized intermolecular packing, micromorphology, and thus photovoltaic performance of organic solar cells (OSCs). Herein, based on a distinctive CH-series acceptor platform with 2D conjugation extended backbones, a series of nonfullerene acceptors (CH-6F-Cn) are synthesized by delicately tuning the lengths of flexible side chains from n-octyl to n-amyl. A systemic investigation has revealed that the variation of the side chain's length can not only modulate intermolecular packing modes and crystallinity but also dramatically improve the micromorphology of the active layer and eventual photovoltaic parameters of OSCs. Consequently, the highest PCE of 18.73% can be achieved by OSCs employing D18:PM6:CH-6F-C8 as light-harvesting materials.
Collapse
Affiliation(s)
- Xingqi Bi
- State Key Laboratory of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Shitong Li
- State Key Laboratory of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Tengfei He
- State Key Laboratory of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Hongbin Chen
- State Key Laboratory of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Yu Li
- State Key Laboratory of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Xinyuan Jia
- State Key Laboratory of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Xiangjian Cao
- State Key Laboratory of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Yaxiao Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Yang Yang
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (Tianjin), Tianjin, 300192, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaoyang Yao
- State Key Laboratory of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Bin Kan
- State Key Laboratory of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Chenxi Li
- State Key Laboratory of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Xiangjian Wan
- State Key Laboratory of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Yongsheng Chen
- State Key Laboratory of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| |
Collapse
|
8
|
Zhang T, Yuk Lin Lai J, Shi M, Li Q, Zhang C, Yan H. Data Cleansing and Sub-Unit-Based Molecular Description Enable Accurate Prediction of The Energy Levels of Non-Fullerene Acceptors Used in Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308652. [PMID: 38386329 PMCID: PMC11077656 DOI: 10.1002/advs.202308652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 02/23/2024]
Abstract
Non-fullerene acceptors (NFAs) have recently emerged as pivotal materials for enhancing the efficiency of organic solar cells (OSCs). To further advance OSC efficiency, precise control over the energy levels of NFAs is imperative, necessitating the development of a robust computational method for accurate energy level predictions. Unfortunately, conventional computational techniques often yield relatively large errors, typically ranging from 0.2 to 0.5 electronvolts (eV), when predicting energy levels. In this study, the authors present a novel method that not only expedites energy level predictions but also significantly improves accuracy , reducing the error margin to 0.06 eV. The method comprises two essential components. The first component involves data cleansing, which systematically eliminates problematic experimental data and thereby minimizes input data errors. The second component introduces a molecular description method based on the electronic properties of the sub-units comprising NFAs. The approach simplifies the intricacies of molecular computation and demonstrates markedly enhanced prediction performance compared to the conventional density functional theory (DFT) method. Our methodology will expedite research in the field of NFAs, serving as a catalyst for the development of similar computational approaches to address challenges in other areas of material science and molecular research.
Collapse
Affiliation(s)
- Ting Zhang
- Department of ComputingThe Hong Kong Polytechnic University11 Yuk Choi Road, Hung Hom, KLNHong Kong999077China
| | - Joshua Yuk Lin Lai
- Department of ChemistryHong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
| | - Mingzhe Shi
- Department of ComputingThe Hong Kong Polytechnic University11 Yuk Choi Road, Hung Hom, KLNHong Kong999077China
| | - Qing Li
- Department of ComputingThe Hong Kong Polytechnic University11 Yuk Choi Road, Hung Hom, KLNHong Kong999077China
| | - Chen Zhang
- Department of ComputingThe Hong Kong Polytechnic University11 Yuk Choi Road, Hung Hom, KLNHong Kong999077China
| | - He Yan
- Department of ChemistryHong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
| |
Collapse
|
9
|
Guo Y, Sun J, Guo T, Liu Y, Yao Z. Emerging Light-Harvesting Materials Based on Organic Photovoltaic D/A Heterojunctions for Efficient Photocatalytic Water Splitting. Angew Chem Int Ed Engl 2024; 63:e202319664. [PMID: 38240469 DOI: 10.1002/anie.202319664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Photocatalytic water splitting to hydrogen is a highly promising method to meet the surging energy consumption globally through the environmentally friendly means. As the initial step before photocatalysis, harvesting photons from sunlight is crucially important, thus making the design of photosensitizers with visible even near-infrared (NIR) absorptions get more and more attentions. In the past three years, organic donor/acceptor (D/A) heterojunctions with absorptions extending to 950 nm, have emerged as the new star light-harvesting materials for photocatalytic water splitting, demonstrating exciting advantages over inorganic materials in solar light utilization, hydrogen yielding rate, etc. This Minireview firstly gives a brief discussion about the principle processes and determining factors for photocatalytic water splitting with organic photovoltaic D/A heterojunction as photosensitizers. Thereafter, the current progress is summarized in details by introducing typical and excellent D/A heterojunction-based photocatalytic systems. Finally, not only the great prospects but also the most challenging issues confronted by organic D/A heterojunctions are indicated along with a perspective on the opportunities and new directions for future material explorations.
Collapse
Affiliation(s)
- Yaxiao Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Jiayuan Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Tao Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Yi Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Zhaoyang Yao
- Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
10
|
Mahadevan S, Liu T, Pratik SM, Li Y, Ho HY, Ouyang S, Lu X, Yip HL, Chow PCY, Brédas JL, Coropceanu V, So SK, Tsang SW. Assessing intra- and inter-molecular charge transfer excitations in non-fullerene acceptors using electroabsorption spectroscopy. Nat Commun 2024; 15:2393. [PMID: 38493131 PMCID: PMC10944474 DOI: 10.1038/s41467-024-46462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
Organic photovoltaic cells using Y6 non-fullerene acceptors have recently achieved high efficiency, and it was suggested to be attributed to the charge-transfer (CT) nature of the excitations in Y6 aggregates. Here, by combining electroabsorption spectroscopy measurements and electronic-structure calculations, we find that the charge-transfer character already exists in isolated Y6 molecules but is strongly increased when there is molecular aggregation. Surprisingly, it is found that the large enhanced charge transfer in clustered Y6 molecules is not due to an increase in excited-state dipole moment, Δμ, as observed in other organic systems, but due to a reduced polarizability change, Δp. It is proposed that such a strong charge-transfer character is promoted by the stabilization of the charge-transfer energy upon aggregation, as deduced from density functional theory and four-state model calculations. This work provides insight into the correlation between molecular electronic properties and charge-transfer characteristics in organic electronic materials.
Collapse
Affiliation(s)
- Sudhi Mahadevan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, PR China
- Centre of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, PR China
- Hong Kong Institute of Clean Energy, City University of Hong Kong, Hong Kong SAR, PR China
| | - Taili Liu
- College of Physics and Electronic Information, Yunnan Normal University, Kunming, 650500, Yunnan, PR China
| | - Saied Md Pratik
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, 85721-0041, USA
| | - Yuhao Li
- Department of Physics, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Hang Yuen Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, PR China
- Centre of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, PR China
- Hong Kong Institute of Clean Energy, City University of Hong Kong, Hong Kong SAR, PR China
| | - Shanchao Ouyang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, PR China
- Centre of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, PR China
- Hong Kong Institute of Clean Energy, City University of Hong Kong, Hong Kong SAR, PR China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, PR China
- Centre of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, PR China
- Hong Kong Institute of Clean Energy, City University of Hong Kong, Hong Kong SAR, PR China
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, PR China
| | - Philip C Y Chow
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, PR China
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, 85721-0041, USA
| | - Veaceslav Coropceanu
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, 85721-0041, USA
| | - Shu Kong So
- Department of Physics and Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, PR China
| | - Sai-Wing Tsang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, PR China.
- Centre of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, PR China.
- Hong Kong Institute of Clean Energy, City University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
11
|
Fan B, Gao H, Jen AKY. Biaxially Conjugated Materials for Organic Solar Cells. ACS NANO 2024; 18:136-154. [PMID: 38146694 DOI: 10.1021/acsnano.3c11193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Organic solar cells (OSCs) represent one of the most important emerging photovoltaic technologies that can implement solar energy conversion efficiently. The chemical structure of organic semiconductors deployed in the active layer of OSCs plays a critical role in the photovoltaic performance and chemical/physical stability of relevant devices. With the structure innovation of organic semiconductors, especially nonfullerene acceptors (NFAs), the performance of OSCs have been promoted rapidly in recent years, with state-of-the-art power conversion efficiencies (PCEs) exceeding 19.5%. Compared with other photovoltaics like perovskite, the shortcoming of OSCs mainly lies in the high nonradiative recombination loss. However, the photocurrent density is superior in OSCs owing to the easy modulation of the NFA band gap toward the near-infrared region. In these regards, the effort to further boost the PCE of OSCs to achieve a milestone >21% should be devoted to reducing the nonradiative loss while further broadening the absorption band. Developing organic semiconductors with biaxially extended conjugated structures has provided a potential solution to achieve these goals. Herein, we summarize the design rules and performance progress of biaxially extended conjugated materials for OSCs. The descriptions are divided into two major categories, i.e., polymers and NFAs. For p-type polymers, we focus on the biaxial conjugation on some representative building blocks, e.g., polythiophene, triphenylamine, and quinoxaline. Whereas for n-type polymers, some structures with large conjugated planes in the normal direction are presented. We also elaborate on the biaxial conjugation strategies in NFAs with modification site at either the π-core or side-group. The general structure-property relationships are further retrieved within these materials, with focus on the short-wavelength absorption and nonradiative energy loss. Finally, we provide an outlook for the further structure modification strategies of biaxially conjugated materials toward highly efficient, stable, and industry-compatible OSCs.
Collapse
Affiliation(s)
- Baobing Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Huanhuan Gao
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- College of New Energy, Xi'an Shiyou University, Shaanxi, Xi'an 710065, China
- Department of Material Science & Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Material Science & Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195 United States
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
12
|
Yao Z, Cao X, Bi X, He T, Li Y, Jia X, Liang H, Guo Y, Long G, Kan B, Li C, Wan X, Chen Y. Complete Peripheral Fluorination of the Small-Molecule Acceptor in Organic Solar Cells Yields Efficiency over 19 . Angew Chem Int Ed Engl 2023; 62:e202312630. [PMID: 37704576 DOI: 10.1002/anie.202312630] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Due to the intrinsically flexible molecular skeletons and loose aggregations, organic semiconductors, like small molecular acceptors (SMAs) in organic solar cells (OSCs), greatly suffer from larger structural/packing disorders and weaker intermolecular interactions comparing to their inorganic counterparts, further leading to hindered exciton diffusion/dissociation and charge carrier migration in resulting OSCs. To overcome this challenge, complete peripheral fluorination was performed on basis of a two-dimensional (2D) conjugation extended molecular platform of CH-series SMAs, rendering an acceptor of CH8F with eight fluorine atoms surrounding the molecular backbone. Benefitting from the broad 2D backbone, more importantly, strengthened fluorine-induced secondary interactions, CH8F and its D18 blends afford much enhanced and more ordered molecular packings accompanying with enlarged dielectric constants, reduced exciton binding energies and more obvious fibrillary networks comparing to CH6F controls. Consequently, D18:CH8F-based OSCs reached an excellent efficiency of 18.80 %, much better than that of 17.91 % for CH6F-based ones. More excitingly, by employing D18-Cl that possesses a highly similar structure to D18 as a third component, the highest efficiency of 19.28 % for CH-series SMAs-based OSCs has been achieved so far. Our work demonstrates the dramatical structural multiformity of CH-series SMAs, meanwhile, their high potential for constructing record-breaking OSCs through peripheral fine-tuning.
Collapse
Affiliation(s)
- Zhaoyang Yao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiangjian Cao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xingqi Bi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tengfei He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinyuan Jia
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Huazhe Liang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yaxiao Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300350, China
| | - Chenxi Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiangjian Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongsheng Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
13
|
Huang YC, Cha HC, Huang SH, Li CF, Santiago SRM, Tsao CS. Highly Efficient Flexible Roll-to-Roll Organic Photovoltaics Based on Non-Fullerene Acceptors. Polymers (Basel) 2023; 15:4005. [PMID: 37836054 PMCID: PMC10575468 DOI: 10.3390/polym15194005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The ability of organic photovoltaics (OPVs) to be deposited on flexible substrates by roll-to-roll (R2R) processes is highly attractive for rapid mass production. Many research teams have demonstrated the great potential of flexible OPVs. However, the fabrication of R2R-coated OPVs is quite limited. There is still a performance gap between the R2R flexible OPVs and the rigid OPVs. In this study, we demonstrate the promising photovoltaic characteristics of flexible OPVs fabricated from blends of low bandgap polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)] (PBDB-T) and non-fullerene 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITIC). We successfully R2R slot-die coated the flexible OPVs with high power conversion efficiency (PCE) of over 8.9% under irradiation of simulated sunlight. Our results indicate that the processing parameters significantly affect the PCE of R2R flexible OPVs. By adjusting the amount of solvent additive and processing temperature, as well as optimizing thermal annealing conditions, the high PCE of R2R slot-die coated OPVs can be obtained. These results provide significant insights into the fundamentals of highly efficient OPVs for the R2R slot-die coating process.
Collapse
Affiliation(s)
- Yu-Ching Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Department of Chemical and Materials Engineering, College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hou-Chin Cha
- Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
| | - Shih-Han Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Chia-Feng Li
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | | | - Cheng-Si Tsao
- Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
14
|
Tsai CH, Li FN, Liao CY, Su YY, Tsai KW, Hsiao YT, Chang YM. Dimerized Small-Molecular Acceptor Enables the Organic Bulk-Heterojunction Layer with High Thermal Stability. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37277315 DOI: 10.1021/acsami.3c03073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Incorporation of a non-fullerene acceptor (NFA) into an organic bulk-heterojunction currently has realized the extendable spectral response and high photocurrent generation in organic photodiodes. However, to allow these organic materials to be industrially commercialized, the thermal stability which enables the materials to survive under the process integration and operation needs to be considered. Generally, NFA small molecules showed high crystallinity, which aggregated through heating and led to the poor thermal stability. To tackle the thermal stability issue of highly efficient NFAs, two IDIC-based NFA dimers─IDIC-T Dimer and IDIC-TT Dimer─were designed, synthesized, and characterized; the thermal stability of the BHJ layer incorporating these dimer molecules was evaluated and compared with that of the BHJ layer using the monomer, IDIC-4Cl, as acceptors. Eventually, a power conversion efficiency of 9.44% was achieved for organic photovoltaic devices based on the NFA dimer. The dimers also showed remarkable thermal stability than the IDIC-4Cl monomer, which provided a promising direction for the polymer/small-molecule system in organic photodiodes for industrial practicability.
Collapse
Affiliation(s)
- Chia-Hua Tsai
- Raynergy Tek Incorporation, 2F, 60, Park Ave. 2, Hsinchu Science Park, Hsinchu 30844, Taiwan
| | - Fang-Ning Li
- Raynergy Tek Incorporation, 2F, 60, Park Ave. 2, Hsinchu Science Park, Hsinchu 30844, Taiwan
| | - Chuang-Yi Liao
- Raynergy Tek Incorporation, 2F, 60, Park Ave. 2, Hsinchu Science Park, Hsinchu 30844, Taiwan
| | - Yu-Yang Su
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Kuen-Wei Tsai
- Raynergy Tek Incorporation, 2F, 60, Park Ave. 2, Hsinchu Science Park, Hsinchu 30844, Taiwan
| | - Yu-Tang Hsiao
- Raynergy Tek Incorporation, 2F, 60, Park Ave. 2, Hsinchu Science Park, Hsinchu 30844, Taiwan
| | - Yi-Ming Chang
- Raynergy Tek Incorporation, 2F, 60, Park Ave. 2, Hsinchu Science Park, Hsinchu 30844, Taiwan
| |
Collapse
|
15
|
Wang L, Zhang L, Kim S, Wang T, Yuan Z, Yang C, Hu Y, Zhao X, Chen Y. Halogen-Free Donor Polymers Based on Dicyanobenzotriazole with Low Energy Loss and High Efficiency in Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206607. [PMID: 36717277 DOI: 10.1002/smll.202206607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/17/2022] [Indexed: 05/04/2023]
Abstract
Halogenation of organic semiconductors is an efficient strategy for improving the performance of organic solar cells (OSCs), while the introduction of halogens usually involves complex synthetic process and serious environment pollution problems. Herein, three halogen-free ternary copolymer donors (PCNx, x = 3, 4, 5) based on electron-withdrawing dicyanobenzotriazole are reported. When blended with the Y6, PCN3 with strong interchain interactions results in appropriate crystallinity and thermodynamic miscibility of the blend film. Grazing-incidence wide-angle X-ray scattering measurements indicate that PCN3 has more ordered arrangement and stronger π-π stacking than previous PCN2. Fourier-transform photocurrent spectroscopy and external quantum efficiency of electroluminescence measurements show that PCN3-based OSCs have lower energy loss than PCN2, which leads to their higher open-circuit voltage (0.873 V). The device based on PCN3 reaches power conversion efficiency (PCE) of 15.33% in binary OSCs, one of the highest values for OSCs with halogen-free donor polymers. The PCE of 17.80% and 18.10% are obtained in PM6:PCN3:Y6 and PM6:PCN3:BTP-eC9 ternary devices, much higher than those of PM6:Y6 (16.31%) and PM6:BTP-eC9 (17.33%) devices. Additionally, this ternary OSCs exhibit superior stability compared to binary host system. This work gives a promising path for halogen-free donor polymers to achieve low energy loss and high PCE.
Collapse
Affiliation(s)
- Lei Wang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Lifu Zhang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, P. R. China
| | - Seoyoung Kim
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Tingting Wang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Zhongyi Yuan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Yu Hu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Xiaohong Zhao
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, P. R. China
| |
Collapse
|
16
|
Fan B, Gao W, Zhang R, Kaminsky W, Lin FR, Xia X, Fan Q, Li Y, An Y, Wu Y, Liu M, Lu X, Li WJ, Yip HL, Gao F, Jen AKY. Correlation of Local Isomerization Induced Lateral and Terminal Torsions with Performance and Stability of Organic Photovoltaics. J Am Chem Soc 2023; 145:5909-5919. [PMID: 36877211 DOI: 10.1021/jacs.2c13247] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Organic photovoltaics (OPVs) have achieved great progress in recent years due to delicately designed non-fullerene acceptors (NFAs). Compared with tailoring of the aromatic heterocycles on the NFA backbone, the incorporation of conjugated side-groups is a cost-effective way to improve the photoelectrical properties of NFAs. However, the modifications of side-groups also need to consider their effects on device stability since the molecular planarity changes induced by side-groups are related to the NFA aggregation and the evolution of the blend morphology under stresses. Herein, a new class of NFAs with local-isomerized conjugated side-groups are developed and the impact of local isomerization on their geometries and device performance/stability are systematically investigated. The device based on one of the isomers with balanced side- and terminal-group torsion angles can deliver an impressive power conversion efficiency (PCE) of 18.5%, with a low energy loss (0.528 V) and an excellent photo- and thermal stability. A similar approach can also be applied to another polymer donor to achieve an even higher PCE of 18.8%, which is among the highest efficiencies obtained for binary OPVs. This work demonstrates the effectiveness of applying local isomerization to fine-tune the side-group steric effect and non-covalent interactions between side-group and backbone, therefore improving both photovoltaic performance and stability of fused ring NFA-based OPVs.
Collapse
Affiliation(s)
- Baobing Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Wei Gao
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Rui Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Francis R Lin
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Xinxin Xia
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong 999077, China
| | - Qunping Fan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yanxun Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yidan An
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yue Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Ming Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong 999077, China
| | - Wen Jung Li
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
17
|
Rashid EU, Hadia NMA, Shawky AM, Ijaz N, Essid M, Iqbal J, Alatawi NS, Ans M, Khera RA. Quantum modeling of dimethoxyl-indaceno dithiophene based acceptors for the development of semiconducting acceptors with outstanding photovoltaic potential. RSC Adv 2023; 13:4641-4655. [PMID: 36760314 PMCID: PMC9900428 DOI: 10.1039/d2ra07957g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
In the current DFT study, seven dimethoxyl-indaceno dithiophene based semiconducting acceptor molecules (ID1-ID7) are designed computationally by modifying the parent molecule (IDR). Here, based on a DFT exploration at a carefully selected level of theory, we have compiled a list of the optoelectronic properties of ID1-ID7 and IDR. In light of these results, all newly designed molecules, except ID5 have shown a bathochromic shift in their highest absorbance (λ max). ID1-ID4, ID6 and ID7 molecules have smaller band gap (E gap) and excitation energy (E x). IP of ID5 is the smallest and EA of ID1 is the largest among all others. Compared to the parent molecule, ID1-ID3 have increased electron mobility, with ID1 being the most improved in hole mobility. ID4 had the best light harvesting efficiency in this investigation, due to its strongest oscillator. The acceptor molecules' open-circuit voltages (V OC) were computed after being linked to the PTB7-Th donor molecule. Fill factor (FF) and normalized V OC of ID1-ID7 were calculated and compared to the parent molecule. Based on the outcomes of this study, the modified acceptors may be further scrutinised for empirical usage in the production of organic solar cells with enhanced photovoltaic capabilities.
Collapse
Affiliation(s)
- Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - N. M. A. Hadia
- Physics Department, College of Science, Jouf UniversityP.O. Box 2014SakakaAl-JoufSaudi Arabia
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura UniversityMakkah 21955Saudi Arabia
| | - Nashra Ijaz
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Manel Essid
- Chemistry Department, College of Science, King Khalid University (KKU)P.O. Box 9004AbhaSaudi Arabia,Université de Carthage, Faculté des Sciences de Bizerte, LR13ES08 Laboratoire de Chimie des MatériauxZarzouna Bizerte7021Tunisia
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Naifa S. Alatawi
- Physics Department, Faculty of Science, University of TabukTabuk 71421Saudi Arabia
| | - Muhammad Ans
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| |
Collapse
|
18
|
Wang Q, Hou Y, Shi S, Yang T, Huang C, Yao S, Zhang Z, Zhao C, Liu Y, Huang H, Wang L, Zhao C, Hao M, Tian Y, Zou B, Zhang G. Multicomponent Solar Cells with High Fill Factors and Efficiencies Based on Non-Fullerene Acceptor Isomers. Molecules 2022; 27:molecules27185802. [PMID: 36144539 PMCID: PMC9504682 DOI: 10.3390/molecules27185802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Multicomponent organic solar cells (OSCs), such as the ternary and quaternary OSCs, not only inherit the simplicity of binary OSCs but further promote light harvesting and power conversion efficiency (PCE). Here, we propose a new type of multicomponent solar cells with non-fullerene acceptor isomers. Specifically, we fabricate OSCs with the polymer donor J71 and a mixture of isomers, ITCF, as the acceptors. In comparison, the ternary OSC devices with J71 and two structurally similar (not isomeric) NFAs (IT-DM and IT-4F) are made as control. The morphology experiments reveal that the isomers-containing blend film demonstrates increased crystallinity, more ideal domain size, and a more favorable packing orientation compared with the IT-DM/IT-4F ternary blend. The favorable orientation is correlated with the balanced charge transport, increased exciton dissociation and decreased bimolecular recombination in the ITCF-isomer-based blend film, which contributes to the high fill factor (FF), and thus the high PCE. Additionally, to evaluate the generality of this method, we examine other acceptor isomers including IT-M, IXIC-2Cl and SY1, which show same trend as the ITCF isomers. These results demonstrate that using isomeric blends as the acceptor can be a promising approach to promote the performance of multicomponent non-fullerene OSCs.
Collapse
Affiliation(s)
- Qiuning Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Yiwen Hou
- Julong College, Shenzhen Technology University, Shenzhen 518118, China
| | - Shasha Shi
- Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Tao Yang
- Julong College, Shenzhen Technology University, Shenzhen 518118, China
- Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (T.Y.); (M.H.); (Y.T.); (B.Z.); (G.Z.)
| | - Ciyuan Huang
- Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Shangfei Yao
- Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Ziyang Zhang
- Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Chenfu Zhao
- Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Yudie Liu
- Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Hui Huang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Lihong Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Chaoyue Zhao
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Minghui Hao
- Suzhou Key Laboratory of Advanced Lighting and Display Technologies, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
- Correspondence: (T.Y.); (M.H.); (Y.T.); (B.Z.); (G.Z.)
| | - Ye Tian
- Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Correspondence: (T.Y.); (M.H.); (Y.T.); (B.Z.); (G.Z.)
| | - Bingsuo Zou
- Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Correspondence: (T.Y.); (M.H.); (Y.T.); (B.Z.); (G.Z.)
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
- Correspondence: (T.Y.); (M.H.); (Y.T.); (B.Z.); (G.Z.)
| |
Collapse
|
19
|
High electron mobility due to extra π-conjugation in the end-capped units of non-fullerene acceptor molecules: a DFT/TD-DFT-based prediction. J Mol Model 2022; 28:278. [PMID: 36028595 DOI: 10.1007/s00894-022-05283-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022]
Abstract
A combination of high open-circuit voltage (Voc) and short-circuit current density (Jsc) typically creates effective organic solar cells (OSCs). To enhance the open-circuit voltage, we have designed three new fullerene-free acceptor molecules with elongated π-conjugation in the end-capped units. Y-series-based newly designed molecules (CPSS-4F, CPSS-4Cl, CPSS-4CN) exhibited a narrow energy bandgap with high electron mobility. Red shift in the absorption spectrum with high intensities is also noted for designed molecules. Low binding and excitation energies of designed molecules favor easy excitation of exciton in the excited state. Further, CPSS-4F, CPSS-4Cl, and CPSS-4CN exhibited better open-circuit voltage with favorable molecular orbitals contributions. Transition density analysis (TDM) was also performed to locate the total transitions in the designed molecules. Outcomes of all analyses suggested that designed molecules are effective contributors to the active layer of organic solar cells.
Collapse
|
20
|
Gao W, Jiang M, Wu Z, Fan B, Jiang W, Cai N, Xie H, Lin FR, Luo J, An Q, Woo HY, Jen AK. Intramolecular Chloro–Sulfur Interaction and Asymmetric Side‐Chain Isomerization to Balance Crystallinity and Miscibility in All‐Small‐Molecule Solar Cells. Angew Chem Int Ed Engl 2022; 61:e202205168. [DOI: 10.1002/anie.202205168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Gao
- Department of Materials Science and Engineering City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Hong Kong Institute for Clean Energy City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Mengyun Jiang
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Ziang Wu
- Department of Chemistry College of Science Korea University Seoul 136-713 Republic of Korea
| | - Baobing Fan
- Department of Materials Science and Engineering City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Hong Kong Institute for Clean Energy City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Wenlin Jiang
- Department of Materials Science and Engineering City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Hong Kong Institute for Clean Energy City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Ning Cai
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Hua Xie
- School of Water Resources and Hydropower Wuhan University Wuhan 430072 China
| | - Francis R. Lin
- Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Hong Kong Institute for Clean Energy City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Jingdong Luo
- Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Hong Kong Institute for Clean Energy City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| | - Qiaoshi An
- Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Han Young Woo
- Department of Chemistry College of Science Korea University Seoul 136-713 Republic of Korea
| | - Alex K.‐Y. Jen
- Department of Materials Science and Engineering City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Department of Chemistry City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
- Department of Materials Science and Engineering University of Washington Seattle WA 98195-2120 USA
- Hong Kong Institute for Clean Energy City University of Hong Kong Kowloon 999077 Hong Kong Hong Kong
| |
Collapse
|
21
|
Zhang G, Lin FR, Qi F, Heumüller T, Distler A, Egelhaaf HJ, Li N, Chow PCY, Brabec CJ, Jen AKY, Yip HL. Renewed Prospects for Organic Photovoltaics. Chem Rev 2022; 122:14180-14274. [PMID: 35929847 DOI: 10.1021/acs.chemrev.1c00955] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic photovoltaics (OPVs) have progressed steadily through three stages of photoactive materials development: (i) use of poly(3-hexylthiophene) and fullerene-based acceptors (FAs) for optimizing bulk heterojunctions; (ii) development of new donors to better match with FAs; (iii) development of non-fullerene acceptors (NFAs). The development and application of NFAs with an A-D-A configuration (where A = acceptor and D = donor) has enabled devices to have efficient charge generation and small energy losses (Eloss < 0.6 eV), resulting in substantially higher power conversion efficiencies (PCEs) than FA-based devices. The discovery of Y6-type acceptors (Y6 = 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]-thiadiazolo[3,4-e]-thieno[2″,3″:4',5']thieno-[2',3':4,5]pyrrolo-[3,2-g]thieno-[2',3':4,5]thieno-[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) with an A-DA' D-A configuration has further propelled the PCEs to go beyond 15% due to smaller Eloss values (∼0.5 eV) and higher external quantum efficiencies. Subsequently, the PCEs of Y6-series single-junction devices have increased to >19% and may soon approach 20%. This review provides an update of recent progress of OPV in the following aspects: developments of novel NFAs and donors, understanding of the structure-property relationships and underlying mechanisms of state-of-the-art OPVs, and tasks underpinning the commercialization of OPVs, such as device stability, module development, potential applications, and high-throughput manufacturing. Finally, an outlook and prospects section summarizes the remaining challenges for the further development of OPV technology.
Collapse
Affiliation(s)
- Guichuan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Francis R Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Feng Qi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Thomas Heumüller
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Andreas Distler
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany
| | - Hans-Joachim Egelhaaf
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Ning Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Philip C Y Chow
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| |
Collapse
|
22
|
Zhang Y, Wei Q, He Z, Wang Y, Shan T, Fu Y, Guo X, Zhong H. Efficient Optoelectronic Devices Enabled by Near-Infrared Organic Semiconductors with a Photoresponse beyond 1050 nm. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31066-31074. [PMID: 35762628 DOI: 10.1021/acsami.2c06277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic optoelectronic devices exhibit distinctive photoresponse to the near-infrared (NIR) light and show great potential in many fields. However, the optoelectronic properties of the existing devices hardly meet the technical requirements of new applications such as energy conversion and health sensing, thus raising the demand to develop high-performance NIR organic semiconductors. To address this issue, a new NIR material, namely, BFIC, is designed and synthesized by inserting fluorothieno[3,4-b]thiophene (FTT) as a π-bridge. Since the introduction of FTT can extend the conjugation, stabilize the quinoid resonant structure, and enhance the intramolecular charge transfer, BFIC displays a broad and intense absorption in the NIR region, ranging from 700 to 1050 nm. As a result, the organic solar cell based on BFIC and a polymer donor PTB7-Th realizes a power conversion efficiency of 10.38%. The semitransparent organic solar cell (OSC) shows a power conversion efficiency of 6.15%, accompanied by an average visible transmittance of 38.79% due to the selective photoresponse in the NIR range. The organic photodetector based on PTB7-Th:BFIC delivers a broad spectral response ranging from 330 to 1030 nm with a specific detectivity over 1013 Jones under the self-powered mode, which is one of the highest detectivities among the broad-band organic photodetectors.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Qingyun Wei
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhilong He
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tong Shan
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanyan Fu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xiaojun Guo
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongliang Zhong
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
23
|
Gao W, Jiang M, Wu Z, Fan B, Jiang W, Cai N, Xie H, Lin FR, Luo J, An Q, Woo HY, Jen AKY. Intramolecular Choloro‐Sulfur Interaction and Asymmetric Side‐Chain Isomerization to Balance Crystallinity and Miscibility in All‐Small‐Molecule Solar Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wei Gao
- City University of Hong Kong Department of Chemistry 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077 Hong Kong CHINA
| | - Mengyun Jiang
- Beijing Institute of Technology School of Chemistry and Chemical Engineering 100081 Beijing CHINA
| | - Ziang Wu
- Korea University Department of Chemistry 136-713 Seoul KOREA, REPUBLIC OF
| | - Baobing Fan
- City University of Hong Kong Department of Materials Science and Engineering 999077 Hong Kong CHINA
| | - Wenlin Jiang
- City University of Hong Kong Department of Materials Science and Engineering 999077 Hong Kong CHINA
| | - Ning Cai
- Guangdong University of Technology School of Chemical Engineering and Light Industry 510006 Guangzhou CHINA
| | - Hua Xie
- Wuhan University School of Water Resources and Hydropower 430072 Wuhan CHINA
| | - Francis R. Lin
- City University of Hong Kong Department of Chemistry 999077 Hong Kong CHINA
| | - Jingdong Luo
- City University of Hong Kong Department of Chemistry 999077 Hong Kong CHINA
| | - Qiaoshi An
- Beijing Institute of Technology School of Chemistry and Chemical Engineering 100081 Beijing CHINA
| | - Han Young Woo
- Korea University Department of Chemistry Seoul KOREA, REPUBLIC OF
| | - Alex K.-Y. Jen
- City University of Hong Kong Chemistry Tat Chee Ave 999077 Kowloon CHINA
| |
Collapse
|
24
|
Cai G, Chen Z, Li M, Li Y, Xue P, Cao Q, Chi W, Liu H, Xia X, An Q, Tang Z, Zhu H, Zhan X, Lu X. Revealing the Sole Impact of Acceptor's Molecular Conformation to Energy Loss and Device Performance of Organic Solar Cells through Positional Isomers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103428. [PMID: 35322593 PMCID: PMC9130893 DOI: 10.1002/advs.202103428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Two new fused-ring electron acceptor (FREA) isomers with nonlinear and linear molecular conformation, m-BAIDIC and p-BAIDIC, are designed and synthesized. Despite the similar light absorption range and energy levels, the two isomers exhibit distinct electron reorganization energies and molecular packing motifs, which are directly related to the molecular conformation. Compared with the nonlinear acceptor, the linear p-BAIDIC shows more ordered molecular packing and higher crystallinity. Furthermore, p-BAIDIC-based devices exhibit reduced nonradiative energy loss and improved charge transport mobilities. It is beneficial to enhance the open-circuit voltage (VOC ) and short-current current density (JSC ) of the devices. Therefore, the linear FREA, p-BAIDIC yields a relatively higher efficiency of 7.71% in the binary device with PM6, in comparison with the nonlinear m-BAIDIC. When p-BAIDIC is incorporated into the binary PM6/BO-4Cl system to form a ternary system, synergistic enhancements in VOC , JSC , fill factor (FF), and ultimately a high efficiency of 17.6% are achieved.
Collapse
Affiliation(s)
- Guilong Cai
- Department of PhysicsThe Chinese University of Hong KongNew TerritoriesHong Kong999077China
| | - Zeng Chen
- State Key Laboratory of Modern Optical InstrumentationCenter for Chemistry of High‐Performance & Novel MaterialsDepartment of ChemistryZhejiang UniversityHangzhouZhejiang310030China
| | - Mengyang Li
- Center for Advanced Low‐dimension MaterialsState Key Laboratory for Modi cation of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Yuhao Li
- Department of PhysicsThe Chinese University of Hong KongNew TerritoriesHong Kong999077China
| | - Peiyao Xue
- School of Materials Science and EngineeringPeking UniversityBeijing100871China
| | - Qingbin Cao
- School of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Weijie Chi
- Fluorescence Research GroupSingapore University of Technology and DesignSingapore487372Singapore
| | - Heng Liu
- Department of PhysicsThe Chinese University of Hong KongNew TerritoriesHong Kong999077China
| | - Xinxin Xia
- Department of PhysicsThe Chinese University of Hong KongNew TerritoriesHong Kong999077China
| | - Qiaoshi An
- School of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Zheng Tang
- Center for Advanced Low‐dimension MaterialsState Key Laboratory for Modi cation of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical InstrumentationCenter for Chemistry of High‐Performance & Novel MaterialsDepartment of ChemistryZhejiang UniversityHangzhouZhejiang310030China
| | - Xiaowei Zhan
- School of Materials Science and EngineeringPeking UniversityBeijing100871China
| | - Xinhui Lu
- Department of PhysicsThe Chinese University of Hong KongNew TerritoriesHong Kong999077China
| |
Collapse
|
25
|
Lai H, Chen H, Zhu Y, Wang H, Li Y, He F. Aggregation of Small Molecule and Polymer Acceptors with 2D-Fused Backbones in Organic Solar Cells. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hui Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yulin Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hengtao Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
26
|
Huang H, Liu L, Wang J, Zhou Y, Hu H, Ye X, Liu G, Xu Z, Xu H, Yang W, Wang Y, Peng Y, Yang P, Sun J, Yan P, Cao X, Tang BZ. Aggregation caused quenching to aggregation induced emission transformation: a precise tuning based on BN-doped polycyclic aromatic hydrocarbons toward subcellular organelle specific imaging. Chem Sci 2022; 13:3129-3139. [PMID: 35414886 PMCID: PMC8926285 DOI: 10.1039/d2sc00380e] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) with boron–nitrogen (BN) moieties have attracted tremendous interest due to their intriguing electronic and optoelectronic properties. However, most of the BN-fused π-systems reported to date are difficult to modify and exhibit traditional aggregation-caused quenching (ACQ) characteristics. This phenomenon greatly limits their scope of application. Thus, continuing efforts to seek novel, structurally distinct and functionally diverse structures are highly desirable. Herein, we proposed a one-stone-two-birds strategy including simultaneous exploration of reactivity and tuning of the optical and electronic properties for BN-containing π-skeletons through flexible regioselective functionalization engineering. In this way, three novel functionalized BN luminogens (DPA-BN-BFT, MeO-DPA-BN-BFT and DMA-DPA-BN-BFT) with similar structures were obtained. Intriguingly, DPA-BN-BFT, MeO-DPA-BN-BFT and DMA-DPA-BN-BFT exhibit completely different emission behaviors. Fluorogens DPA-BN-BFT and MeO-DPA-BN-BFT exhibit a typical ACQ effect; in sharp contrast, DMA-DPA-BN-BFT possesses a prominent aggregation induced emission (AIE) effect. To the best of our knowledge, this is the first report to integrate ACQ and AIE properties into one BN aromatic backbone with subtle modified structures. Comprehensive analysis of the crystal structure and theoretical calculations reveal that relatively large twisting angles, multiple intermolecular interactions and tight crystal packing modes endow DMA-DPA-BN-BFT with strong AIE behavior. More importantly, cell imaging demonstrated that luminescent materials DPA-BN-BFT and DMA-DPA-BN-BFT can highly selectively and sensitively detect lipid droplets (LDs) in living MCF-7 cells. Overall, this work provides a new viewpoint of the rational design and synthesis of advanced BN–polycyclic aromatics with AIE features and triggers the discovery of new functions and properties of azaborine chemistry. A one-stone-two-birds strategy including simultaneous exploration of reactivity and tuning of the optical and electronic properties for BN-fused polycyclic aromatics through flexible regioselective functionalization engineering is presented.![]()
Collapse
Affiliation(s)
- Huanan Huang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University Hohhot 010021 China
| | - Ying Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Huanan Hu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Xinglin Ye
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Guochang Liu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Zhixiong Xu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Han Xu
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Wen Yang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Yawei Wang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - You Peng
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Pinghua Yang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Jianqi Sun
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Ping Yan
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Xiaohua Cao
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang Key Laboratory of Organosilicon Chemistry and Application, Xinghuo Organosilicon Industry Research Center, Jiujiang University Jiujiang 332005 China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong Shenzhen 518172 China
| |
Collapse
|
27
|
Meng D, Zheng R, Zhao Y, Zhang E, Dou L, Yang Y. Near-Infrared Materials: The Turning Point of Organic Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107330. [PMID: 34710251 DOI: 10.1002/adma.202107330] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Near-infrared (NIR)-absorbing organic semiconductors have opened up many exciting opportunities for organic photovoltaic (OPV) research. For example, new chemistries and synthetical methodologies have been developed; especially, the breakthrough Y-series acceptors, originally invented by our group, specifically Y1, Y3, and Y6, have contributed immensely to boosting single-junction solar cell efficiency to around 19%; novel device architectures such as tandem and transparent organic photovoltaics have been realized. The concept of NIR donors/acceptors thus becomes a turning point in the OPV field. Here, the development of NIR-absorbing materials for OPVs is reviewed. According to the low-energy absorption window, here, NIR photovoltaic materials (p-type (polymers) and n-type (fullerene and nonfullerene)) are classified into four categories: 700-800 nm, 800-900 nm, 900-1000 nm, and greater than 1000 nm. Each subsection covers the design, synthesis, and utilization of various types of donor (D) and acceptor (A) units. The structure-property relationship between various kinds of D, A units and absorption window are constructed to satisfy requirements for different applications. Subsequently, a variety of applications realized by NIR materials, including transparent OPVs, tandem OPVs, photodetectors, are presented. Finally, challenges and future development of novel NIR materials for the next-generation organic photovoltaics and beyond are discussed.
Collapse
Affiliation(s)
- Dong Meng
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ran Zheng
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yepin Zhao
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Elizabeth Zhang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Letian Dou
- Davidson School of Chemical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Yang Yang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
28
|
Zhu E, Fu L, Lu Y, Jiang W, Jee MH, Liu R, Li Z, Che G, Woo HY, Liu C. NIR-Absorbing Electron Acceptor Based on a Selenium-Heterocyclic Core Attaching to Phenylalkyl Side Chains for Polymer Solar Cells with 17.3% Efficiency. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7082-7092. [PMID: 35076207 DOI: 10.1021/acsami.1c20813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Selenium-heterocyclic and side-chain strategies for developing near-infrared (NIR) small fused-ring acceptors (FRAs) to further obtain short-circuit current density (Jsc) have proven advantageous in the top-performing polymer solar cells (PSCs). Herein, a new electron-rich central selenium-containing heterocycle core (BTSe) attaching alkyl side chains with a terminal phenyl group was coupled with a difluorinated and dichlorinated electron-accepting terminal 1,1-dicyanomethylene-3-indanone (IC) to afford two types of new FRAs, BTSe-IC2F and BTSe-IC2Cl. Interestingly, in spite of the weaker intramolecular charge transfer, BTSe-IC2F shows a stronger NIR response because of the smaller bandgap (Egopt) up to 1.26 eV, benefiting from the stronger ordered molecular packing in comparison to BTSe-IC2Cl with an Egopt of 1.30 eV. Additionally, thermal annealing induced an evident red shift by ∼50 nm in the absorption of D18:BTSe-IC2F blend films. Such a phenomenon may be attributed to the synergistic impact of the formation of inward constriction toward the molecular backbone because of the combination of bulky side chains and fluorinated IC as well as the reduced aromaticity of the selenium heterocycle. Consequently, the thermally annealed device based on BTSe-IC2F/D18 achieves a champion power conversion efficiency (PCE) of 17.3% with a high fill factor (FF) of 77.22%, which is among the highest reported PCE values for selenium-heterocyclic FRAs in binary PSCs. The improved Jsc and FF values of the D18:BTSe-IC2F film are simultaneously achieved mainly because of the preferred face-on orientations, the well-balanced electron/hole mobility, and the favorable blend morphology compared to D18:BTSe-IC2Cl. This work suggests that the selenium-heterocyclic fused-ring core (with proper side chains) combined with fluorinated terminal groups is an effective strategy for obtaining highly efficient NIR-responsive FRAs.
Collapse
Affiliation(s)
- Enwei Zhu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, P.R. China
- College of Chemistry, Jilin Normal University, Siping 13600, P.R. China
| | - Liying Fu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, P.R. China
- College of Chemistry, Jilin Normal University, Siping 13600, P.R. China
| | - Ye Lu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, P.R. China
- College of Chemistry, Jilin Normal University, Siping 13600, P.R. China
| | - Wei Jiang
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, P.R. China
- College of Chemistry, Jilin Normal University, Siping 13600, P.R. China
| | - Min Hun Jee
- Department of Chemistry, College of Science, Korea University, Seoul 02841, South Korea
| | - Renming Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, P.R. China
- College of Chemistry, Jilin Normal University, Siping 13600, P.R. China
| | - Zhiyi Li
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, P.R. China
- College of Environment Science and Engineering, Jilin Normal University, Siping 13600, P.R. China
| | - Guangbo Che
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, P.R. China
- College of Environment Science and Engineering, Jilin Normal University, Siping 13600, P.R. China
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul 02841, South Korea
| | - Chunbo Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, P.R. China
- College of Environment Science and Engineering, Jilin Normal University, Siping 13600, P.R. China
| |
Collapse
|
29
|
Borissov A, Maurya YK, Moshniaha L, Wong WS, Żyła-Karwowska M, Stępień M. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chem Rev 2022; 122:565-788. [PMID: 34850633 PMCID: PMC8759089 DOI: 10.1021/acs.chemrev.1c00449] [Citation(s) in RCA: 255] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/21/2022]
Abstract
This review surveys recent progress in the chemistry of polycyclic heteroaromatic molecules with a focus on structural diversity and synthetic methodology. The article covers literature published during the period of 2016-2020, providing an update to our first review of this topic (Chem. Rev. 2017, 117 (4), 3479-3716).
Collapse
Affiliation(s)
| | | | | | | | | | - Marcin Stępień
- Wydział Chemii, Uniwersytet
Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
30
|
Qi F, Jones LO, Jiang K, Jang SH, Kaminsky W, Oh J, Zhang H, Cai Z, Yang C, Kohlstedt KL, Schatz GC, Lin FR, Marks TJ, Jen AKY. Regiospecific N-alkyl substitution tunes the molecular packing of high-performance non-fullerene acceptors. MATERIALS HORIZONS 2022; 9:403-410. [PMID: 34666341 DOI: 10.1039/d1mh01127h] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The rapid development of non-fullerene acceptors (NFAs) with strong near-infrared absorption has led to remarkably enhanced short-circuit current density (Jsc) values in organic solar cells (OSCs). NFAs based on the benzotriazole (Bz) fused-ring π-core have great potential in delivering both high Jsc and decent open-circuit voltage values due to their strong intramolecular charge transfer with reasonably low energy loss. In this work, we have designed and synthesized a series of Bz-based NFAs, PN6SBO-4F, AN6SBO-4F and EHN6SEH-4F, via regiospecific N-alkyl engineering based on the high-performance NFA mBzS-4F that was reported previously. The molecular packing of mBzS-4F, AN6SBO-4F, and EHN6SEH-4F single crystals was analyzed using X-ray crystallography in order to provide a comprehensive understanding of the correlation between the molecular structure, the charge-transporting properties, and the solar cell performance. Compared with the typical honeycomb single-crystal structure of Y6 derivatives, these NFAs exhibit distinctly different molecular packing patterns. The strong interactions of terminal indanone groups in mBzS-4F and the J-aggregate-like packing in EHN6SEH-4F lead to the formation of ordered 3D networks in single-crystals with channels for efficient charge transport. Consequently, OSCs based on mBzS-4F and EHN6SEH-4F show efficient photon-to-current conversions, achieving the highest power conversion efficiency of 17.48% with a Jsc of 28.83 mA cm-2.
Collapse
Affiliation(s)
- Feng Qi
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong.
| | - Leighton O Jones
- Department of Chemistry and the Materials Research Center (MRC), Northwestern University, Evanston, Illinois 60208, USA.
| | - Kui Jiang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Sei-Hum Jang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120, USA
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195-2120, USA
| | - Jiyeon Oh
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Hongna Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Kevin L Kohlstedt
- Department of Chemistry and the Materials Research Center (MRC), Northwestern University, Evanston, Illinois 60208, USA.
| | - George C Schatz
- Department of Chemistry and the Materials Research Center (MRC), Northwestern University, Evanston, Illinois 60208, USA.
| | - Francis R Lin
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong.
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center (MRC), Northwestern University, Evanston, Illinois 60208, USA.
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong.
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120, USA
- Department of Chemistry, University of Washington, Seattle, Washington 98195-2120, USA
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
31
|
Keshtov ML, Konstantinov IO, Kuklin SA, Zou Y, Agrawal A, Chen FC, Sharma GD. Binary and Ternary Polymer Solar Cells Based on a Wide Bandgap D-A Copolymer Donor and Two Nonfullerene Acceptors with Complementary Absorption Spectral. CHEMSUSCHEM 2021; 14:4731-4740. [PMID: 34411457 DOI: 10.1002/cssc.202101407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/10/2021] [Indexed: 06/13/2023]
Abstract
A new wide-bandgap conjugated D-A polymer denoted as P106 with a medium acceptor dithieno [2,3-e;3'2'-g]isoindole-7,9 (8H) (DTID) unit and strong 2-dodecylbenzo[1,2-b:3,4-b':6,5-b"]trithiophene (3TB) donor units shows an optical bandgap of 2.04 and highest occupied molecular orbital energy level of -5.56 eV. P106 is used as the donor and two nonfullerene acceptors-medium bandgap DBTBT-IC and narrow band Y18-DMO-are used as acceptors for the construction of binary and ternary bulk heterojunction polymer solar cells. The optimized polymer solar cells based on P106 : DBTBT-IC and P106 : Y18-DMO exhibit power conversion efficiencies of 11.76 % and 14.07 %, respectively. The short-circuit current density (22.78 mA cm-2 ) for the P106 : Y18-DMO device is higher than that for P106 : DBTBT-IC (18.56 mA cm-2 ) one, which could be attributed to the more photon harvesting efficiency of the P106 : Y18-DMO active layer. In light of the high short-circuit current densities and fill factors for the Y18-DMO based device and the high value of open circuit voltage of the DBTBT-IC based device, ternary polymer solar cells are fabricated by using ternary active layer (P106 : DBTBT-IC : Y18-DMO) and achieve a power conversion efficiency of 16.49 % with low energy loss of 0.47 eV.
Collapse
Affiliation(s)
- Mukhamed L Keshtov
- A. N. Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St., 28, 119991, Moscow, Russian Federation
| | - Igor O Konstantinov
- A. N. Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St., 28, 119991, Moscow, Russian Federation
| | - Sergei A Kuklin
- A. N. Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St., 28, 119991, Moscow, Russian Federation
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Anupam Agrawal
- Department of Physics, The LNM Institute for Information Technology Jamdoli, Jaipur (Raj), 302031, India
| | - Fang C Chen
- Department of Photonics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Ganesh D Sharma
- Department of Physics, The LNM Institute for Information Technology Jamdoli, Jaipur (Raj), 302031, India
| |
Collapse
|
32
|
Zhang Y, Wang Y, Shan T, Wei Q, Xu YX, Zhong H. Non-Fullerene Acceptors with an Optical Response over 1000 nm toward Efficient Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51279-51288. [PMID: 34672513 DOI: 10.1021/acsami.1c13404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Non-fullerene acceptors (NFAs) with near-infrared (NIR) absorption show promising advantages in organic solar cells (OSCs). However, only a few NFAs can extend the absorption spectra over 1000 nm, and their photovoltaic performance has been unsatisfactory so far. To address this issue, three new NFAs, namely, 6-IFIC, 6-IF2F, and 6-IF4F, were synthesized by simultaneously introducing π-bridge units and different end groups. The π-bridge unit enlarges the conjugation and planarizes the molecular geometry, leading to intense absorption in the NIR range. The asymmetric configuration provides a large dipole moment, enhances the intermolecular interaction, and tunes the miscibility, consequently being beneficial for achieving a favorable morphology in OSCs. When blended with a donor polymer PTB7-Th, the 6-IF2F-based OSC yields the best power conversion efficiency (PCE) of 11.20%, which is among the highest PCEs based on NFAs with absorption over 1000 nm. More importantly, the absorption of the blend film provides a transparency window in the visible range from 400 and 650 nm. Therefore, the semitransparent OSCs based on these three NFAs can achieve over 28% average visible transmittance.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tong Shan
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingyun Wei
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yun Xiang Xu
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hongliang Zhong
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
33
|
Li Y, Fu H, Wu Z, Wu X, Wang M, Qin H, Lin F, Woo HY, Jen AKY. Regulating the Aggregation of Unfused Non-Fullerene Acceptors via Molecular Engineering towards Efficient Polymer Solar Cells. CHEMSUSCHEM 2021; 14:3579-3589. [PMID: 34037333 DOI: 10.1002/cssc.202100746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Tuning molecular aggregation via structure design to manipulate the film morphology still remains as a challenge for polymer solar cells based on unfused non-fullerene acceptors (UF-NFAs). Herein, a strategy was developed to modulate the aggregation patterns of UF-NFAs by systematically varying the π-bridge (D) unit and central core (A') unit in A-D-A'-D-A framework (A and D refer to electron-withdrawing and electron-donating moieties, respectively). Specifically, the quantified contents of H- or J-aggregation and crystallite disorder of three UF-NFAs (BDIC2F, BCIC2F, and TCIC2F) were analyzed via UV/Vis spectrometry and grazing incidence X-ray scattering. The results showed that the H-aggregate-dominated BCIC2F with less crystallite disorder exhibited a more favorable blend morphology with polymer donor PBDB-T (poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene)-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c']dithiophene-4,8-dione)]) relative the other two UF-NFAs, resulting in improved exciton dissociation and charge tranport. Consequently, photovoltaic devices based on BCIC2F delivered a promising power conversion efficiency of 12.4 % with an exceptionally high short-circuit current density of 22.1 mA cm-2 .
Collapse
Affiliation(s)
- Yuxiang Li
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong, P. R. China
| | - Huiting Fu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, P. R. China
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, Seoul, 136-713 (Republic of, Korea
| | - Xin Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong, P. R. China
| | - Mei Wang
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Hongmei Qin
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Francis Lin
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong, P. R. China
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul, 136-713 (Republic of, Korea
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong, P. R. China
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, 98195-2120, USA
| |
Collapse
|
34
|
Polymerized small-molecule acceptors based on vinylene as π-bridge for efficient all-polymer solar cells. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Chen H, Zhao T, Li L, Tan P, Lai H, Zhu Y, Lai X, Han L, Zheng N, Guo L, He F. 17.6%-Efficient Quasiplanar Heterojunction Organic Solar Cells from a Chlorinated 3D Network Acceptor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102778. [PMID: 34318541 DOI: 10.1002/adma.202102778] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Bulk heterojunction (BHJ) organic solar cells (OSCs) have achieved great success because they overcome the shortcomings of short exciton diffusion distances. With the progress in material innovation and device technology, the efficiency of BHJ devices is continually being improved. For some special photovoltaic material systems, it is difficult to manipulate the miscibility and morphology of blend films, and this results in moderate, even poor device performance. Quasiplanar heterojunction (Q-PHJ) OSCs have been proposed to exploit the excellent photovoltaic properties of these materials. An OSC with BTIC-BO-4Cl has a 3D interpenetrating network structure with multiple channels that can facilitate the exciton diffusion and charge transport, and BTIC-BO-4Cl is therefore a good candidate for Q-PHJ OSCs. In this work, a D18:BTIC-BO-4Cl-based Q-PHJ device is fabricated. The exciton diffusion lengths of D18 and BTIC-BO-4Cl are in accord with the requirements of the Q-PHJ device and the efficiency of Q-PHJ device is as high as 17.60%. This study indicates that the Q-PHJ architecture can replace the BHJ architecture to produce excellent OSCs for certain unique donors and acceptors, providing an alternative approach to photovoltaic material design and device fabrication.
Collapse
Affiliation(s)
- Hui Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tingxing Zhao
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Long Li
- Department of Mechanical and Energy Engineering, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pu Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yulin Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xue Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liang Han
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Nan Zheng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Liang Guo
- Department of Mechanical and Energy Engineering, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
36
|
Chen L, Cao C, Lai H, Zhu Y, Pu M, Zheng N, He F. End-Group Modifications with Bromine and Methyl in Nonfullerene Acceptors: The Effect of Isomerism. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29737-29745. [PMID: 34129322 DOI: 10.1021/acsami.1c08060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of isomeric molecules has been widely exploited in molecular structures associated with organic solar cells (OSC) and is an effective pathway to finely tune the photoelectric properties and device performance. The molecular properties of nonfullerene acceptors and the morphology of blend films can be effectively controlled by manipulating isomeric substituent positions on benzene-fused end-capping groups (EG) in acceptors. Here, three isomeric EGs were designed and synthesized which simultaneously possess an electron-withdrawing bromine and an electron-donating methyl substituent. By linking three isomeric EGs, (Br,Me), (Br,Me)-1, and (Br,Me)-2 each with the BTP-CHO core, three isomeric small-molecule acceptors (SMA) were obtained. The power conversion efficiency (PCE) of PM6:BTP-(Br,Me)-1-based OSCs is 13.43%, is much higher than that of PM6:BTP-(Br,Me)- (11.92%) and PM6:BTP-(Br,Me)-2- (11.08%) based devices. Our results show that isomeric EGs can provide strategies to tune the absorption spectra of SMAs, intramolecular charge transfer (ICT) and electron mobility of organic semiconductor device, and ultimately increase the performance of nonfullerene acceptors.
Collapse
Affiliation(s)
- Lin Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Congcong Cao
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yulin Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingrui Pu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Nan Zheng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
37
|
Pan J, Shi Y, Yu J, Zhang H, Liu Y, Zhang J, Gao F, Yu X, Lu K, Wei Z. π-Extended Nonfullerene Acceptors for Efficient Organic Solar Cells with a High Open-Circuit Voltage of 0.94 V and a Low Energy Loss of 0.49 eV. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22531-22539. [PMID: 33955726 DOI: 10.1021/acsami.1c04273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A combination of high open-circuit voltage (Voc) and short-circuit current density (Jsc) typically creates effective organic solar cells (OSCs). Y5, a member of the Y-series acceptors, can achieve high Voc of 0.94 V with PM6 but low Jsc of 12.8 mA cm-2. To maintain the high Voc while increasing the Jsc of devices, we developed a new nonfullerene acceptor, namely, BTP-C2C4-N, by extending the conjugation of a Y5 molecule with a naphthalene-based end acceptor. In comparison with Y5-based devices, PM6:BTP-C2C4-N-based devices exhibited significantly higher Jsc of 18.2 mA cm-2 followed by a high Voc. To further increase the photovoltaic properties of BTP-C2C4-N analogues, BTP-C4C6-N and BTP-C6C8-N molecules with better processability and film morphology are obtained by adjusting the alkyl branched chain length. The optimized OSCs based on BTP-C4C6-N with a moderate alkyl branched chain length exhibited the best PCE of 12.4% with a high Voc of 0.94 V and Jsc of 20.7 mA cm-2. Notably, the devices achieved a low energy loss of 0.49 eV (0.51 eV for Y5 system) accompanied by a small nonradiative energy loss. The results indicate that nonfullerene acceptors with extended terminal motifs and optimized branched chain lengths can effectively enhance the performance of OSCs and reduce energy loss.
Collapse
Affiliation(s)
- Junxiu Pan
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Nano System and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yanan Shi
- Chinese Academy of Sciences (CAS) Key Laboratory of Nano System and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jianwei Yu
- Department of Physics Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden
| | - Hao Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Nano System and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yanan Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Nano System and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jianqi Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Nano System and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Feng Gao
- Department of Physics Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden
| | - Xi Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Kun Lu
- Chinese Academy of Sciences (CAS) Key Laboratory of Nano System and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhixiang Wei
- Chinese Academy of Sciences (CAS) Key Laboratory of Nano System and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
38
|
Lu B, Wang J, Zhang Z, Wang J, Yuan X, Ding Y, Wang Y, Yao Y. Recent progress of Y‐series electron acceptors for organic solar cells. NANO SELECT 2021. [DOI: 10.1002/nano.202100036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Bing Lu
- School of Chemistry and Chemical Engineer Nantong University Nantong Jiangsu 226019 P. R. China
| | - Jian Wang
- School of Chemistry and Chemical Engineer Nantong University Nantong Jiangsu 226019 P. R. China
| | - Zhecheng Zhang
- School of Chemistry and Chemical Engineer Nantong University Nantong Jiangsu 226019 P. R. China
| | - Jin Wang
- School of Chemistry and Chemical Engineer Nantong University Nantong Jiangsu 226019 P. R. China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineer Nantong University Nantong Jiangsu 226019 P. R. China
| | - Yue Ding
- School of Chemistry and Chemical Engineer Nantong University Nantong Jiangsu 226019 P. R. China
| | - Yang Wang
- School of Chemistry and Chemical Engineer Nantong University Nantong Jiangsu 226019 P. R. China
| | - Yong Yao
- School of Chemistry and Chemical Engineer Nantong University Nantong Jiangsu 226019 P. R. China
| |
Collapse
|
39
|
Chen T, Karapala VK, Chen J, Hsu C. Recent advances of carbazole‐based
nonfullerene
acceptors: Molecular design, optoelectronic properties, and photovoltaic performance in organic solar cells. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tsung‐Wei Chen
- Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu Taiwan
- Department of Applied Chemistry National Chiao Tung University Hsinchu Taiwan
- Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu Taiwan
| | - Vamsi Krishna Karapala
- Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu Taiwan
- Department of Applied Chemistry National Chiao Tung University Hsinchu Taiwan
- Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu Taiwan
| | - Jiun‐Tai Chen
- Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu Taiwan
- Department of Applied Chemistry National Chiao Tung University Hsinchu Taiwan
- Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu Taiwan
| | - Chain‐Shu Hsu
- Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu Taiwan
- Department of Applied Chemistry National Chiao Tung University Hsinchu Taiwan
- Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu Taiwan
| |
Collapse
|
40
|
Zhou Z, Xu S, Zhu X. Molecular Electron Acceptor Designed by Modulating Quinoidal-Resonance Effect for Organic Solar Cell Application. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zichun Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengjie Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
41
|
Chen Y, Zheng Y, Jiang Y, Fan H, Zhu X. Carbon-Bridged 1,2-Bis(2-thienyl)ethylene: An Extremely Electron Rich Dithiophene Building Block Enabling Electron Acceptors with Absorption above 1000 nm for Highly Sensitive NIR Photodetectors. J Am Chem Soc 2021; 143:4281-4289. [DOI: 10.1021/jacs.0c12818] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yongjie Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yingqi Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yuanyuan Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Haijun Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
42
|
Kini GP, Lee EJ, Jeon SJ, Moon DK. Understanding the Critical Role of Sequential Fluorination of Phenylene Units on the Properties of Dicarboxylate Bithiophene-Based Wide-Bandgap Polymer Donors for Non-Fullerene Organic Solar Cells. Macromol Rapid Commun 2021; 42:e2000743. [PMID: 33644922 DOI: 10.1002/marc.202000743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Indexed: 11/06/2022]
Abstract
Design and development of wide bandgap (WBG) polymer donors with low-lying highest occupied molecular orbitals (HOMOs) are increasingly gaining attention in non-fullerene organic photovoltaics since such donors can synergistically enhance power conversion efficiency (PCE) by simultaneously minimizing photon energy loss (Eloss ) and enhancing the spectral response. In this contribution, three new WBG polymer donors, P1, P2, and P3, are prepared by adding phenylene cores with a different number of fluorine (F) substituents (n = 0, 2, and 4, respectively) to dicarboxylate bithiophene-based acceptor units. As predicted, fluorination effectively aides in the lowering of HOMO energy levels, tailoring of the coplanarity and molecular ordering in the polymers. Thus, fluorinated P2 and P3 polymers show higher coplanarity and more intense interchain aggregation than P1, leading to higher charge carrier mobilities and superior phase-separated morphology in the optimized blend films with IT-4F. As a result, both P2:IT-4F and P3:IT-4F realize the best PCEs of 6.89% and 7.03% (vs 0.16% for P1:IT-4F) with lower Eloss values of 0.65 and 0.55 eV, respectively. These results signify the importance of using phenylene units with sequential fluorination in polymer backbone for modifying the optoelectronic properties and realizing low Eloss values by synergistically lowering the HOMO energy levels.
Collapse
Affiliation(s)
- Gururaj P Kini
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul, 05029, Republic of Korea
| | - Eui Jin Lee
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul, 05029, Republic of Korea
| | - Sung Jae Jeon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul, 05029, Republic of Korea
| | - Doo Kyung Moon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul, 05029, Republic of Korea
| |
Collapse
|
43
|
He Y, Liao H, Lyu S, Xu XQ, Li Z, McCulloch I, Yue W, Wang Y. Coupling molecular rigidity and flexibility on fused backbones for NIR-II photothermal conversion. Chem Sci 2021; 12:5177-5184. [PMID: 34163755 PMCID: PMC8179590 DOI: 10.1039/d1sc00060h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
Great attention is being increasingly paid to photothermal conversion in the near-infrared (NIR)-II window (1000-1350 nm), where deeper tissue penetration is favored. To date, only a limited number of organic photothermal polymers and relevant theory have been exploited to direct the molecular design of polymers with highly efficient photothermal conversion, specifically in the NIR-II window. This work proposes a fused backbone structure locked via an intramolecular hydrogen bonding interaction and double bond, which favors molecular planarity and rigidity in the ground state and molecular flexibility in the excited state. Following this proposal, a particular class of NIR-II photothermal polymers are prepared. Their remarkable photothermal conversion efficiency is in good agreement with our strategy of coupling polymeric rigidity and flexibility, which accounts for the improved light absorption on going from the ground state to the excited state and nonradiative emission on going from the excited state to the ground state. It is envisioned that such a concept of coupling polymeric rigidity and flexibility will offer great inspiration for developing NIR-II photothermal polymers with the use of other chromophores.
Collapse
Affiliation(s)
- Yonglin He
- Department of Chemistry, Renmin University of China Beijing 100872 China
| | - Hailiang Liao
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-Sen University Guangzhou 510275 China
| | - Shanzhi Lyu
- Department of Chemistry, Renmin University of China Beijing 100872 China
| | - Xiao-Qi Xu
- Department of Chemistry, Renmin University of China Beijing 100872 China
| | - Zhengke Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-Sen University Guangzhou 510275 China
| | - Iain McCulloch
- Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Wan Yue
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-Sen University Guangzhou 510275 China
| | - Yapei Wang
- Department of Chemistry, Renmin University of China Beijing 100872 China
| |
Collapse
|
44
|
Fu H, Li Y, Yu J, Wu Z, Fan Q, Lin F, Woo HY, Gao F, Zhu Z, Jen AKY. High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer Acceptor. J Am Chem Soc 2021; 143:2665-2670. [DOI: 10.1021/jacs.0c12527] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Huiting Fu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Yuxiang Li
- School of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, P.R. China
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Jianwei Yu
- Department of Physics Chemistry and Biology (IFM), Linköping University, Linköping SE-58183, Sweden
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, Seoul 136-713, Republic of Korea
| | - Qunping Fan
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Francis Lin
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul 136-713, Republic of Korea
| | - Feng Gao
- Department of Physics Chemistry and Biology (IFM), Linköping University, Linköping SE-58183, Sweden
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Alex K.-Y. Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120, United States
| |
Collapse
|
45
|
Zhang Z, Liang L, Deng L, Ren L, Zhao N, Huang J, Yu Y, Gao P. Fused Dithienopicenocarbazole Enabling High Mobility Dopant-Free Hole-Transporting Polymers for Efficient and Stable Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6688-6698. [PMID: 33513011 DOI: 10.1021/acsami.0c21729] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a critical component in perovskite solar cells (PSCs), hole-transporting materials (HTMs) have been extensively explored. To develop efficient dopant-free HTMs for PSCs, a decent hole mobility (>10-3 cm2 V-1 s-1) is critically essential, which is, however, seldom reported. In this work, we introduce two novel donor-acceptor (D-A) type conjugated polymers (PDTPC-1 and PDTPC-2) with narrow bandgap unit, i.e., fused dithienopicenocarbazole (DTPC), as the donor building block and benzo[c][1,2,5]thiadiazole derivatives as the acceptors. The highly planar and strong electron-donating DTPC endows the polymers with superior hole mobility up to ∼4 × 10-3 cm2 V-1 s-1. Because of the better energy alignment with perovskite and excellent film-forming property, PSCs with PDTPC-1 as HTM show an appreciably enhanced PCE of ∼17% in dopant-free PSCs along with improved device stability as opposed to PDTPC-2. Our work revealed for the first time that the introduction of narrow bandgap DTPC in D-A polymers could achieve remarkably high hole mobility in the pristine form, favoring the application in dopant-free PSCs.
Collapse
Affiliation(s)
- Zilong Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lusheng Liang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Longhui Deng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- Jiangxi University of Science and Technology, Jiangxi 341000, China
| | - Lu Ren
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Nan Zhao
- College of Materials Science and Engineering, Huaqiao University, 361021 Xiamen, China
| | - Jianhua Huang
- College of Materials Science and Engineering, Huaqiao University, 361021 Xiamen, China
| | - Yaming Yu
- College of Materials Science and Engineering, Huaqiao University, 361021 Xiamen, China
| | - Peng Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Science, Beijing 100049, China
| |
Collapse
|
46
|
Jiang K, Zhang J, Peng Z, Lin F, Wu S, Li Z, Chen Y, Yan H, Ade H, Zhu Z, Jen AKY. Pseudo-bilayer architecture enables high-performance organic solar cells with enhanced exciton diffusion length. Nat Commun 2021; 12:468. [PMID: 33473135 PMCID: PMC7817662 DOI: 10.1038/s41467-020-20791-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/17/2020] [Indexed: 11/09/2022] Open
Abstract
Solution-processed organic solar cells (OSCs) are a promising candidate for next-generation photovoltaic technologies. However, the short exciton diffusion length of the bulk heterojunction active layer in OSCs strongly hampers the full potential to be realized in these bulk heterojunction OSCs. Herein, we report high-performance OSCs with a pseudo-bilayer architecture, which possesses longer exciton diffusion length benefited from higher film crystallinity. This feature ensures the synergistic advantages of efficient exciton dissociation and charge transport in OSCs with pseudo-bilayer architecture, enabling a higher power conversion efficiency (17.42%) to be achieved compared to those with bulk heterojunction architecture (16.44%) due to higher short-circuit current density and fill factor. A certified efficiency of 16.31% is also achieved for the ternary OSC with a pseudo-bilayer active layer. Our results demonstrate the excellent potential for pseudo-bilayer architecture to be used for future OSC applications.
Collapse
Affiliation(s)
- Kui Jiang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, 999077, Kowloon, Hong Kong
| | - Jie Zhang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, 999077, Kowloon, Hong Kong
| | - Zhengxing Peng
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Francis Lin
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, 999077, Kowloon, Hong Kong
| | - Shengfan Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, 999077, Kowloon, Hong Kong
| | - Zhen Li
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, 999077, Kowloon, Hong Kong
| | - Yuzhong Chen
- Department of Chemistry and Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Kowloon, Hong Kong
| | - He Yan
- Department of Chemistry and Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Kowloon, Hong Kong.
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA.
| | - Zonglong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, 999077, Kowloon, Hong Kong. .,Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, 999077, Kowloon, Hong Kong.
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, 999077, Kowloon, Hong Kong. .,Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, 999077, Kowloon, Hong Kong.
| |
Collapse
|
47
|
Khan MU, Hussain R, Mehboob MY, Khalid M, Ehsan MA, Rehman A, Janjua MRSA. First theoretical framework of Z-shaped acceptor materials with fused-chrysene core for high performance organic solar cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118938. [PMID: 32971344 DOI: 10.1016/j.saa.2020.118938] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 05/24/2023]
Abstract
Chrysene core containing fused ring acceptor materials have remarkable efficiency for high performance organic solar cells. Therefore, present study has been carried out with the aim to design chrysene based novel Z-shaped electron acceptor molecules (Z1-Z6) from famous Z-shaped photovoltaic material FCIC (R) for organic photovoltaic applications. End-capped engineering at two electron-accepting end groups 1,1-dicyanomethylene-3-indanone of FCIC is made with highly efficient end-capped acceptor moieties and impact of end-capped modifications on structure-property relationship, photovoltaic and electronic properties of newly designed molecules (Z1-Z6) has been studied in detail through DFT and TDDFT calculations. The efficiencies of the designed molecules are evaluated through energy gaps, exciton binding energy along with transition density matrix (TDM) analysis, reorganizational energy of electron and hole, absorption maxima and open circuit voltage of investigated molecules. The designed molecules exhibit red-shift and intense absorption in near-infrared region (683-749 nm) of UV-Vis-NIR absorption spectrum with narrowing of HOMO-LUMO energy gap from 2.31 eV in R to 1.95 in eV in Z5. Moreover, reduction in reorganization energy of electron from 0.0071 (R) to 0.0049 (Z5), and enhancement in open circuit voltage from 1.08 V in R to 1.20 V in Z5 are also observed. Twisted Z-shape of designed molecules prevents self-aggregation that facilitates miscibility of donor and acceptor. Low values of binding energy, excitation energy, and reorganizational energy (electron and hole) suggest that novel designed molecules offer high charge mobilities as compared to FCIC. Our findings indicate that these novel designed molecules can display better photovoltaic parameters and are suitable candidates if used in organic solar cells.
Collapse
Affiliation(s)
- Muhammad Usman Khan
- Department of Chemistry, University of Okara, Okara 56300, Pakistan; Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara 56300, Pakistan.
| | | | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Ali Ehsan
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Abdul Rehman
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | | |
Collapse
|
48
|
Feng J, Wang H, Rujisamphan N, Li Y. Theoretical Design of Dithienopicenocarbazole-Based Molecules by Molecular Engineering of Terminal Units Toward Promising Non-fullerene Acceptors. Front Chem 2020; 8:580252. [PMID: 33251182 PMCID: PMC7674677 DOI: 10.3389/fchem.2020.580252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Dithienopicenocarbazole (DTPC), as the kernel module in A-D-A non-fullerene acceptors (NFA), has been reported for its ultra-narrow bandgap, high power conversion efficiency, and extremely low energy loss. To further improve the photovoltaic performance of DTPC-based acceptors, molecular engineering of end-capped groups could be an effective method according to previous research. In this article, a class of acceptors were designed via bringing terminal units with an enhanced electron-withdrawing ability to the DTPC central core. Their geometrical structures, frontier molecular orbitals, absorption spectrum, and intramolecular charge transfer and energy loss have been systematically investigated on the basis of density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. Surprisingly, NFA 4 highlights the dominance for its increased open circuit voltages while NFA 2, 7, and 8 exhibit great potential for their enhanced charge transfer and lower energy loss, corresponding to a higher short-circuit current density. Our results also manifest that proper modifications of the terminal acceptor with extensions of π-conjugation might bring improved outcomes for overall properties. Such a measure could become a feasible strategy for the synthesis of new acceptors, thereby facilitating the advancement of organic solar cells.
Collapse
Affiliation(s)
- Jie Feng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | - Hongshuai Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
| | | | - Youyong Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, China
| |
Collapse
|
49
|
Saito M, Tamai Y, Ichikawa H, Yoshida H, Yokoyama D, Ohkita H, Osaka I. Significantly Sensitized Ternary Blend Polymer Solar Cells with a Very Small Content of the Narrow-Band Gap Third Component That Utilizes Optical Interference. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01787] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masahiko Saito
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Yasunari Tamai
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Hiroyuki Ichikawa
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho,
Inage-ku, Chiba 263-8522, Japan
| | - Hiroyuki Yoshida
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho,
Inage-ku, Chiba 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho,
Inage-ku, Chiba 263-8522, Japan
| | - Daisuke Yokoyama
- Department of Organic Materials Science and Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hideo Ohkita
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Itaru Osaka
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
50
|
Cai G, Li Y, Zhou J, Xue P, Liu K, Wang J, Xie Z, Li G, Zhan X, Lu X. Enhancing Open-Circuit Voltage of High-Efficiency Nonfullerene Ternary Solar Cells with a Star-Shaped Acceptor. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50660-50667. [PMID: 33112591 DOI: 10.1021/acsami.0c14612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ternary strategy has been widely used in high-efficiency organic solar cells (OSCs). Herein, we successfully incorporated a mid-band-gap star-shaped acceptor, FBTIC, as the third component into the PM6/Y6 binary blend film, which not only achieved a panchromatic absorption but also significantly improved the open-circuit voltage (VOC) of the devices due to the high-lying lowest unoccupied molecular orbital (LUMO) of the FBTIC. Morphology characterizations show that star-shaped FBTIC molecules are amorphously distributed in the ternary system, and the finely tuned ternary film morphology facilitates the exciton dissociation and charge collection in ternary devices. As a result, the best PM6/Y6/FBTIC-based ternary OSCs achieved a power conversion efficiency (PCE) of 16.7% at a weight ratio of 1.0:1.0:0.2.
Collapse
Affiliation(s)
- Guilong Cai
- Department of Physics, The Chinese University of Hong Kong, New Territories 999077, Hong Kong, China
| | - Yuhao Li
- Department of Physics, The Chinese University of Hong Kong, New Territories 999077, Hong Kong, China
| | - Jiadong Zhou
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Peiyao Xue
- Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Kuan Liu
- The Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Jiayu Wang
- Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Zengqi Xie
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Gang Li
- The Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Xiaowei Zhan
- Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories 999077, Hong Kong, China
| |
Collapse
|