1
|
Choudhury J, Bhardwaj R, Mandal SK. Hydride Transfer-Based CO 2 Reduction Catalysis: Navigating Metal Hydride to Organic Hydride in the Catalytic Loop. Acc Chem Res 2024; 57:2859-2871. [PMID: 39292623 DOI: 10.1021/acs.accounts.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
ConspectusThe reductive conversion of carbon dioxide (CO2) into value-added products is a process of immense importance. In the context of rising CO2 concentration in the atmosphere and the detrimental effects it is having on the biosphere, use of alternative fuels which can offer a low-carbon or carbon-neutral pathway for storage and utilization of low-carbon energy by maintaining the net atmospheric CO2 concentration might be a prospective solution. Among the wide variety of reduced products that can be obtained from CO2, formic acid and formate salts are particularly important due to their ability to be used as an alternative fuel or a reversible hydrogen storage material. Utilization of molecular catalysts for CO2 conversion offers several advantages such as high selectivity, mechanistic clarity, versatility, and stability, making them attractive for thermochemical and electro/photochemical CO2 reduction processes. The presence of N-heterocyclic carbene (NHC) ligands in transition-metal-based molecular catalysts enhances the stability of the catalysts under harsh reaction conditions, such as high pressure, high temperature, and reductive environments, providing crucial benefits for sustained catalytic activity and longevity. Though the development of metal complex-based catalysts is essential to addressing the challenge of CO2 reduction, the possibility of using purely organic compounds as catalysts for this transformation is lucrative from the aspect of developing a truly sustainable protocol with photosynthesis being its biggest inspiration. We begin this Account by examining our systematic development of molecular metal complexes based on NHC ligands for the chemical upgradation of CO2 to formic acid/formate salt. In such cases, the ability of NHCs to act as strong σ-donor ligands for a greater hydride transfer propensity is discussed and analyzed. The reports range from catalytic ambient- and high-pressure CO2 hydrogenation to CO2 transfer-hydrogenation. Coupling of CO2 capture methodologies with CO2 conversion is also discussed. A case is made for the heterogenization of one of the highly efficient metal-NHC catalysts to develop a self-supported single-site catalyst for practical applications. Finally, our recent success of developing a novel organic catalyst system inspired from the natural NADP+/NADPH-based hydride-transfer redox couple that is active in photosynthetic CO2 reduction has been discussed. This catalyst is designed based on a bis-imidazolium-embedded heterohelicene with a central pyridine ring and is capable of electrocatalytically converting CO2 to HCO2H with TON values 100-1000 times greater than the existing reported values achieved so far by organic catalysts. Overall, we believe that the results of hydride transfer-based CO2 reduction catalysis presented in this Account hold significant implications beyond our work and have the potential for motivating future research toward further development in this important field.
Collapse
Affiliation(s)
- Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Ritu Bhardwaj
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Sanajit Kumar Mandal
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| |
Collapse
|
2
|
Wenzek F, Biallas A, Müller S. Nicotinamide Riboside: What It Takes to Incorporate It into RNA. Molecules 2024; 29:3788. [PMID: 39202867 PMCID: PMC11357040 DOI: 10.3390/molecules29163788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Nicotinamide is an important functional compound and, in the form of nicotinamide adenine dinucleotide (NAD), is used as a co-factor by protein-based enzymes to catalyze redox reactions. In the context of the RNA world hypothesis, it is therefore reasonable to assume that ancestral ribozymes could have used co-factors such as NAD or its simpler analog nicotinamide riboside (NAR) to catalyze redox reactions. The only described example of such an engineered ribozyme uses a nicotinamide moiety bound to the ribozyme through non-covalent interactions. Covalent attachment of NAR to RNA could be advantageous, but the demonstration of such scenarios to date has suffered from the chemical instability of both NAR and its reduced form, NARH, making their use in oligonucleotide synthesis less straightforward. Here, we review the literature describing the chemical properties of the oxidized and reduced species of NAR, their synthesis, and previous attempts to incorporate either species into RNA. We discuss how to overcome the stability problem and succeed in generating RNA structures incorporating NAR.
Collapse
Affiliation(s)
| | | | - Sabine Müller
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany; (F.W.); (A.B.)
| |
Collapse
|
3
|
Shen GB, Gao SH, Jia YW, Zhu XQ, Qian BC. Establishing the Thermodynamic Cards of Dipine Models' Oxidative Metabolism on 21 Potential Elementary Steps. Molecules 2024; 29:3706. [PMID: 39125109 PMCID: PMC11313972 DOI: 10.3390/molecules29153706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Dipines are a type of important antihypertensive drug as L-calcium channel blockers, whose core skeleton is the 1,4-dihydropyridine structure. Since the dihydropyridine ring is a key structural factor for biological activity, the thermodynamics of the aromatization dihydropyridine ring is a significant feature parameter for understanding the mechanism and pathways of dipine metabolism in vivo. Herein, 4-substituted-phenyl-2,6-dimethyl-3,5-diethyl-formate-1,4-dihydropyridines are refined as the structurally closest dipine models to investigate the thermodynamic potential of dipine oxidative metabolism. In this work, the thermodynamic cards of dipine models' aromatization on 21 potential elementary steps in acetonitrile have been established. Based on the thermodynamic cards, the thermodynamic properties of dipine models and related intermediates acting as electrons, hydrides, hydrogen atoms, protons, and two hydrogen ions (atoms) donors are discussed. Moreover, the thermodynamic cards are applied to evaluate the redox properties, and judge or reveal the possible oxidative mechanism of dipine models.
Collapse
Affiliation(s)
- Guang-Bin Shen
- College of Medical Engineering, Jining Medical University, Jining 272000, China; (G.-B.S.); (S.-H.G.); (Y.-W.J.)
| | - Shun-Hang Gao
- College of Medical Engineering, Jining Medical University, Jining 272000, China; (G.-B.S.); (S.-H.G.); (Y.-W.J.)
| | - Yan-Wei Jia
- College of Medical Engineering, Jining Medical University, Jining 272000, China; (G.-B.S.); (S.-H.G.); (Y.-W.J.)
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Bao-Chen Qian
- College of Medical Engineering, Jining Medical University, Jining 272000, China; (G.-B.S.); (S.-H.G.); (Y.-W.J.)
| |
Collapse
|
4
|
Marron DP, Galvin CM, Dressel JM, Waymouth RM. Cobaltocene-Mediated Catalytic Hydride Transfer: Strategies for Electrocatalytic Hydrogenation. J Am Chem Soc 2024; 146:17075-17083. [PMID: 38864712 DOI: 10.1021/jacs.4c02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The selective electrocatalytic hydrogenation of organics with transition metal hydrides is a promising strategy for electrosynthesis and energy storage. We report the electrocatalytic hydrogenation of acetone with a cyclopentadienone-iridium complex in a tandem electrocatalytic cycle with a cobaltocene mediator. The reductive protonation of cobaltocenium with mild acids generates (C5H5)CoI(C5H6) (CpCoI(CpH)), which functions as an electrocatalytic hydride mediator to deliver a hydride to cationic Ir(III) without generating hydrogen. Electrocatalytic hydride transfer by CpCoI(CpH) to a cationic Ir species leads to the efficient (Faradaic efficiency > 90%) electrohydrogenation of acetone, a valuable hydrogenation target as a liquid organic hydrogen carrier (LOHC). Hydride-transfer mediation presents a powerful strategy to generate metal hydrides that are inaccessible by stepwise electron/proton transfer.
Collapse
Affiliation(s)
- Daniel P Marron
- Department of Chemistry, Stanford University, Stanford, California 94306, United States
| | - Conor M Galvin
- Department of Chemistry, Stanford University, Stanford, California 94306, United States
| | - Julia M Dressel
- Department of Chemistry, Stanford University, Stanford, California 94306, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94306, United States
| |
Collapse
|
5
|
Cheng R, He X, Li K, Ran B, Zhang X, Qin Y, He G, Li H, Fu C. Rational Design of Organic Electrocatalysts for Hydrogen and Oxygen Electrocatalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402184. [PMID: 38458150 DOI: 10.1002/adma.202402184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Indexed: 03/10/2024]
Abstract
Efficient electrocatalysts are pivotal for advancing green energy conversion technologies. Organic electrocatalysts, as cost-effective alternatives to noble-metal benchmarks, have garnered attention. However, the understanding of the relationships between their properties and electrocatalytic activities remains ambiguous. Plenty of research articles regarding low-cost organic electrocatalysts started to gain momentum in 2010 and have been flourishing recently though, a review article for both entry-level and experienced researchers in this field is still lacking. This review underscores the urgent need to elucidate the structure-activity relationship and design suitable electrode structures, leveraging the unique features of organic electrocatalysts like controllability and compatibility for real-world applications. Organic electrocatalysts are classified into four groups: small molecules, oligomers, polymers, and frameworks, with specific structural and physicochemical properties serving as activity indicators. To unlock the full potential of organic electrocatalysts, five strategies are discussed: integrated structures, surface property modulation, membrane technologies, electrolyte affinity regulation, and addition of anticorrosion species, all aimed at enhancing charge efficiency, mass transfer, and long-term stability during electrocatalytic reactions. The review offers a comprehensive overview of the current state of organic electrocatalysts and their practical applications, bridging the understanding gap and paving the way for future developments of more efficient green energy conversion technologies.
Collapse
Affiliation(s)
- Ruiqi Cheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaoqian He
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kaiqi Li
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Biao Ran
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinlong Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yonghong Qin
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Huanxin Li
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Chaopeng Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
6
|
Duan Y, Guo Z, Zheng T, Lu Y, Xu J, Liu J, Yang F. Iodine-Promoted Reductive Sulfenylation Using Ketones as Hydride Donors. J Org Chem 2024; 89:5851-5856. [PMID: 38587835 DOI: 10.1021/acs.joc.3c02904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Herein, an iodine-promoted reductive sulfenylation reaction of ketones with disulfides has been developed. This method provides an approach for synthesizing unsymmetrical alkyl-alkyl and alkyl-aryl sulfides in a single step. Investigation of the reaction mechanism revealed that ketones play a dual role in this process. They react with disulfides to produce vinyl thioethers and act as effective organic hydride donors, reducing the number of vinyl thioethers that are formed in situ. This study expands the range of applications of ketones in chemical synthesis.
Collapse
Affiliation(s)
- Yiping Duan
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhichao Guo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tiandong Zheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yang Lu
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jie Liu
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Fulai Yang
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
7
|
Chirila A, Hu Y, Linehan JC, Dixon DA, Wiedner ES. Thermodynamic and Kinetic Activity Descriptors for the Catalytic Hydrogenation of Ketones. J Am Chem Soc 2024; 146:6866-6879. [PMID: 38437011 DOI: 10.1021/jacs.3c13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Activity descriptors are a powerful tool for the design of catalysts that can efficiently utilize H2 with minimal energy losses. In this study, we develop the use of hydricity and H- self-exchange rates as thermodynamic and kinetic descriptors for the hydrogenation of ketones by molecular catalysts. Two complexes with known hydricity, HRh(dmpe)2 and HCo(dmpe)2, were investigated for the catalytic hydrogenation of ketones under mild conditions (1.5 atm and 25 °C). The rhodium catalyst proved to be an efficient catalyst for a wide range of ketones, whereas the cobalt catalyst could only hydrogenate electron-deficient ketones. Using a combination of experiment and electronic structure theory, thermodynamic hydricity values were established for 46 alkoxide/ketone pairs in both acetonitrile and tetrahydrofuran solvents. Through comparison of the hydricities of the catalysts and substrates, it was determined that catalysis was observed only for catalyst/ketone pairs with an exergonic H- transfer step. Mechanistic studies revealed that H- transfer was the rate-limiting step for catalysis, allowing for the experimental and computation construction of linear free-energy relationships (LFERs) for H- transfer. Further analysis revealed that the LFERs could be reproduced using Marcus theory, in which the H- self-exchange rates for the HRh/Rh+ and ketone/alkoxide pairs were used to predict the experimentally measured catalytic barriers within 2 kcal mol-1. These studies significantly expand the scope of catalytic reactions that can be analyzed with a thermodynamic hydricity descriptor and firmly establish Marcus theory as a valid approach to develop kinetic descriptors for designing catalysts for H- transfer reactions.
Collapse
Affiliation(s)
- Andrei Chirila
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yiqin Hu
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - John C Linehan
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Eric S Wiedner
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
8
|
K Chandy S, Bowers S, Raghavachari K, Li LS. Structure Dependence of CO 2 Reduction Electrocatalyzed by Metal-Nanographene Complexes: A Computational Study. J Phys Chem A 2023; 127:8566-8573. [PMID: 37796447 DOI: 10.1021/acs.jpca.3c04564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Improving the energy efficiency of electrocatalytic reduction of CO2 requires tuning of redox properties of electrocatalysts to match redox potentials of the substrate. Recently, we introduced nanographenes as ligands for metal complexes for such purposes by taking advantage of size-dependent properties of the conjugated systems. Here, we use computations to investigate the structure dependence of the electrocatalysis at Re(diimine)(CO)3Cl complexes with nanographene ligands that contain a polycyclic aromatic hydrocarbon moiety through a pyrazinyl linkage. We show that the reduction potentials of the complexes depend not only on conjugation size but also on shape and geometry of the ligands, revealing another parameter in tuning the redox properties of the electrocatalysts. In addition, our work reveals a compromise between reduction potentials and activation of this class of electrocatalysts.
Collapse
Affiliation(s)
- Sruthy K Chandy
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Scott Bowers
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Liang-Shi Li
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
9
|
Dang VQ, Teets TS. Reductive photoredox transformations of carbonyl derivatives enabled by strongly reducing photosensitizers. Chem Sci 2023; 14:9526-9532. [PMID: 37712019 PMCID: PMC10498680 DOI: 10.1039/d3sc03000h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Visible-light photoredox catalysis is well-established as a powerful and versatile organic synthesis strategy. However, some substrate classes, despite being attractive precursors, are recalcitrant to single-electron redox chemistry and thus not very amenable to photoredox approaches. Among these are carbonyl derivatives, e.g. ketones, aldehydes, and imines, which in most cases require Lewis or Brønsted acidic additives to activate via photoinduced electron transfer. In this work, we unveil a range of photoredox transformations on ketones and imines, enabled by strongly reducing photosensitizers and operating under simple, general conditions with a single sacrificial reductant and no additives. Specific reactions described here are umpolung C-C bond forming reactions between aromatic ketones or imines and electron-poor alkenes, imino-pinacol homocoupling reactions of challenging alkyl-aryl imine substrates, and γ-lactonization reactions of aromatic ketones with methyl acrylate. The reactions are all initiated by photoinduced electron transfer to form a ketyl or iminyl that is subsequently trapped.
Collapse
Affiliation(s)
- Vinh Q Dang
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Thomas S Teets
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
10
|
Shen GB, Qian BC, Luo GZ, Fu YH, Zhu XQ. Thermodynamic Evaluations of Amines as Hydrides or Two Hydrogen Ions Reductants and Imines as Protons or Two Hydrogen Ions Acceptors, as Well as Their Application in Hydrogenation Reactions. ACS OMEGA 2023; 8:31984-31997. [PMID: 37692224 PMCID: PMC10483529 DOI: 10.1021/acsomega.3c03804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Since the hydrogenation of imines (X) and the dehydrogenation of amines (XH2) generally involve the two hydrogen ions (H- + H+) transfer, the thermodynamic abilities of various amines releasing hydrides or two hydrogen ions as well as various imines accepting protons or two hydrogen ions are important and characteristic physical parameters. In this work, the pKa values of 84 protonated imines (XH+) in acetonitrile were predicted. Combining Gibbs free energy changes of amines releasing hydrides in acetonitrile from our previous work with the pKa(XH+) values, the Gibbs free energy changes of amines releasing two hydrogen ions and imines accepting two hydrogen ions were derived using Hess's law by constructing thermochemical cycles, and the thermodynamic evaluations of amines as hydrides or two hydrogen ions reductants and imines as protons or two hydrogen ions acceptors are well compared and discussed. Eventually, the practical application of thermodynamic data for amines and imines on hydrogenation feasibility, mechanism, and possible elementary steps was shown and discussed in this paper from the point of thermodynamics.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School
of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Bao-Chen Qian
- School
of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Guang-Ze Luo
- School
of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Yan-Hua Fu
- College
of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xiao-Qing Zhu
- The
State Key Laboratory of Elemento-Organic Chemistry, Department of
Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Askins EJ, Zoric MR, Li M, Amine R, Amine K, Curtiss LA, Glusac KD. Triarylmethyl cation redox mediators enhance Li-O 2 battery discharge capacities. Nat Chem 2023; 15:1247-1254. [PMID: 37414882 DOI: 10.1038/s41557-023-01268-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
A major impediment to Li-O2 battery commercialization is the low discharge capacities resulting from electronically insulating Li2O2 film growth on carbon electrodes. Redox mediation offers an effective strategy to drive oxygen chemistry into solution, avoiding surface-mediated Li2O2 film growth and extending discharge lifetimes. As such, the exploration of diverse redox mediator classes can aid the development of molecular design criteria. Here we report a class of triarylmethyl cations that are effective at enhancing discharge capacities up to 35-fold. Surprisingly, we observe that redox mediators with more positive reduction potentials lead to larger discharge capacities because of their improved ability to suppress the surface-mediated reduction pathway. This result provides important structure-property relationships for future improvements in redox-mediated O2/Li2O2 discharge capacities. Furthermore, we applied a chronopotentiometry model to investigate the zones of redox mediator standard reduction potentials and the concentrations needed to achieve efficient redox mediation at a given current density. We expect this analysis to guide future redox mediator exploration.
Collapse
Affiliation(s)
- Erik J Askins
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Marija R Zoric
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Matthew Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Rachid Amine
- Material Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Larry A Curtiss
- Material Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Ksenija D Glusac
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA.
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.
| |
Collapse
|
12
|
Karak P, Mandal SK, Choudhury J. Exploiting the NADP +/NADPH-like Hydride-Transfer Redox Cycle with Bis-Imidazolium-Embedded Heterohelicene for Electrocatalytic Hydrogen Evolution Reaction. J Am Chem Soc 2023; 145:17321-17328. [PMID: 37499097 DOI: 10.1021/jacs.3c04737] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Generation of clean energy in a viable manner demands efficient and sustainable catalysts. One prospective method of clean energy generation is the electrochemical hydrogen evolution reaction (HER). Over the years, various transition metal-based complexes/polymeric organic materials were utilized in HER. However, the use of a redox-active small organic molecule as a catalyst for HER has not been explored well. The requirements of a strongly acidic solution, very high overpotential, and stability under acidic conditions pose several challenges for applying organic electrocatalysts for HER. Considering these challenges, herein, we demonstrated an NADP+-like organic system (NADP+ = nicotinamide adenine dinucleotide phosphate), a bis-imidazolium-fused heterohelicene, which acts as a catalyst for HER with mild acid (acetic acid) as a proton source at moderate overpotential. The unique structural backbone of this dicationic heterohelicene allowed to exploit the NADP+/NADPH-type (NADPH = reduced nicotinamide adenine dinucleotide phosphate) hydride transfer-based redox cycle efficiently under the applied conditions, where the NADPH-like hydride intermediate transfers the hydride to the proton of the mild acid to generate H2. The Faradaic efficiency and turnover number for the present HER were achieved up to 85 ± 5% and 50 ± 3, respectively. In addition, the maximum turnover frequency, TOFmax, value of 410 s-1 was observed, which is around 400 times that obtained for the existing reported NADP+-like organic compounds used as catalysts for HER. Thorough mechanistic studies were conducted experimentally and computationally to establish a plausible catalytic cycle. This advancement could help in designing efficient organic electrocatalysts for HER from a mild proton source.
Collapse
Affiliation(s)
- Pirudhan Karak
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| | - Sanajit Kumar Mandal
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| |
Collapse
|
13
|
Parsons LWT, Berben LA. Metallated dihydropyridinates: prospects in hydride transfer and (electro)catalysis. Chem Sci 2023; 14:8234-8248. [PMID: 37564402 PMCID: PMC10411630 DOI: 10.1039/d3sc02080k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023] Open
Abstract
Hydride transfer (HT) is a fundamental step in a wide range of reaction pathways, including those mediated by dihydropyridinates (DHP-s). Coordination of ions directly to the pyridine ring or functional groups stemming therefrom, provides a powerful approach for influencing the electronic structure and in turn HT chemistry. Much of the work in this area is inspired by the chemistry of bioinorganic systems including NADH. Coordination of metal ions to pyridines lowers the electron density in the pyridine ring and lowers the reduction potential: lower-energy reactions and enhanced selectivity are two outcomes from these modifications. Herein, we discuss approaches for the preparation of DHP-metal complexes and selected examples of their reactivity. We suggest further areas in which these metallated DHP-s could be developed and applied in synthesis and catalysis.
Collapse
Affiliation(s)
- Leo W T Parsons
- Department of Chemistry, University of California Davis CA 95616 USA
| | - Louise A Berben
- Department of Chemistry, University of California Davis CA 95616 USA
| |
Collapse
|
14
|
Karak P, Mandal SK, Choudhury J. Bis-Imidazolium-Embedded Heterohelicene: A Regenerable NADP + Cofactor Analogue for Electrocatalytic CO 2 Reduction. J Am Chem Soc 2023; 145:7230-7241. [PMID: 36944228 DOI: 10.1021/jacs.2c12883] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Biomimetic NAD(P)H-type organic hydride donors have recently been advocated as potential candidates to act as metal-free catalysts for fuel-forming reactions such as the reduction of CO2 to formic acid and methanol, similar to the natural photosynthesis process of fixing CO2 into carbohydrates. Although these artificial synthetic organic hydrides are extensively used in organic reduction chemistry in a stoichiometric manner, translating them into catalysts has been challenging due to problems associated with the regeneration of these hydride species under applied reaction conditions. A recent discovery of the possibility of their regeneration under electrochemical conditions via a proton-coupled electron-transfer pathway triggered intense research to accomplish their catalytic use in electrochemical CO2 reduction reactions (eCO2RR). However, success is yet to be realized to term them as "true" catalysts, as the typical turnover numbers (TONs) of the eCO2RR processes on inert electrodes for the production of formic acid and/or methanol reported so far are still in the order of 10-3-10-2; thus, sub-stoichiometric only! Herein, we report a novel class of structurally engineered heterohelicene-based organic hydride donor with a proof-of-principle demonstration of catalytic electrochemical CO2 reduction reaction showing a significantly improved activity with more than stoichiometric turnover featuring a 100-1000-fold enhancement of the existing TON values. Mechanistic investigations suggested the critical role of the two cationic imidazolium motifs along with the extensive π-conjugation present in the backbone of the heterohelicene molecules in accessing and stabilizing various radical species involved in the generation and transfer of hydride, via multielectron-transfer steps in the electrochemical process.
Collapse
Affiliation(s)
- Pirudhan Karak
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Sanajit Kumar Mandal
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| |
Collapse
|
15
|
Chen Q, Zhu Y, Shi X, Huang R, Jiang C, Zhang K, Liu G. Light-driven redox deracemization of indolines and tetrahydroquinolines using a photocatalyst coupled with chiral phosphoric acid. Chem Sci 2023; 14:1715-1723. [PMID: 36819858 PMCID: PMC9930931 DOI: 10.1039/d2sc06340a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
The integration of oxidation and enantioselective reduction enables a redox deracemization to directly access enantioenriched products from their corresponding racemates. However, the solution of the kinetically microscopic reversibility of substrates used in this oxidation/reduction unidirectional event is a great challenge. To address this issue, we have developed a light-driven strategy to enable an efficient redox deracemization of cyclamines. The method combines a photocatalyst and a chiral phosphoric acid in a toluene/aqueous cyclodextrin emulsion biphasic co-solvent system to drive the cascade out-of-equilibrium. Systemic optimizations achieve a feasible oxidation/reduction cascade sequence, and mechanistic investigations demonstrate a unidirectional process. This single-operation cascade route, which involves initial photocatalyzed oxidation of achiral cyclamines to cyclimines and subsequent chiral phosphoric acid-catalyzed enantioselective reduction of cyclimines to chiral cyclamines, is suitable for constructing optically pure indolines and tetrahydroquinolines.
Collapse
Affiliation(s)
- Qipeng Chen
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Yuanli Zhu
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Xujing Shi
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Renfu Huang
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Chuang Jiang
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Kun Zhang
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Guohua Liu
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| |
Collapse
|
16
|
Johansen CM, Boyd EA, Peters JC. Catalytic transfer hydrogenation of N 2 to NH 3 via a photoredox catalysis strategy. SCIENCE ADVANCES 2022; 8:eade3510. [PMID: 36288295 PMCID: PMC9604530 DOI: 10.1126/sciadv.ade3510] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Inspired by momentum in applications of reductive photoredox catalysis to organic synthesis, photodriven transfer hydrogenations toward deep (>2 e-) reductions of small molecules are attractive compared to using harsh chemical reagents. Noteworthy in this context is the nitrogen reduction reaction (N2RR), where a synthetic photocatalyst system had yet to be developed. Noting that a reduced Hantzsch ester (HEH2) and related organic structures can behave as 2 e-/2 H+ photoreductants, we show here that, when partnered with a suitable catalyst (Mo) under blue light irradiation, HEH2 facilitates delivery of successive H2 equivalents for the 6 e-/6 H+ catalytic reduction of N2 to NH3; this catalysis is enhanced by addition of a photoredox catalyst (Ir). Reductions of additional substrates (nitrate and acetylene) are also described.
Collapse
|
17
|
Yeo C, Nguyen M, Wang LP. Benchmarking Density Functionals, Basis Sets, and Solvent Models in Predicting Thermodynamic Hydricities of Organic Hydrides. J Phys Chem A 2022; 126:7566-7577. [PMID: 36251007 DOI: 10.1021/acs.jpca.2c03072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many renewable energy technologies, such as hydrogen gas synthesis and carbon dioxide reduction, rely on chemical reactions involving hydride anions (H-). When selecting molecules to be used in such applications, an important quantity to consider is the thermodynamic hydricity, which is the free energy required for a species to donate a hydride anion. Theoretical calculations of thermodynamic hydricity depend on several parameters, mainly the density functional, basis set, and solvent model. In order to assess the effects of the above three parameters, we carry out hydricity calculations with different combinations of density functionals, basis sets, and solvent models for a set of organic molecules with known experimental hydricity values. The data are analyzed by comparing the R2 and root-mean-squared error (RMSE) of linear fits with a fixed slope of 1 and using the Akaike Information Criterion to determine statistical significance of the RMSE rank ordering. Based on these results, we quantified the accuracy of theoretical predictions of hydricity and found that the best compromise between accuracy and computational cost was obtained by using the B3LYP-D3 density functional for the geometry optimization and free-energy corrections, either ωB97X-D3 or M06-2X-D3 for single-point energy corrections, combined with a basis set no larger than def-TZVP and the C-PCM ISWIG solvation model. At this level of theory, the RMSEs of hydricity calculations for organic molecules in acetonitrile and dimethyl sulfoxide were found to be <4 and <10 kcal/mol, respectively, for an experimental data set with a dynamic range of 20-150 kcal/mol.
Collapse
Affiliation(s)
- Christina Yeo
- Department of Physics and Astronomy, University of California, Davis. 1 Shields Avenue, Davis, California 95616, United States
| | - Minh Nguyen
- Department of Chemistry, University of California, Davis. 1 Shields Avenue, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis. 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
18
|
Espinosa MR, Ertem MZ, Barakat M, Bruch QJ, Deziel AP, Elsby MR, Hasanayn F, Hazari N, Miller AJM, Pecoraro MV, Smith AM, Smith NE. Correlating Thermodynamic and Kinetic Hydricities of Rhenium Hydrides. J Am Chem Soc 2022; 144:17939-17954. [PMID: 36130605 DOI: 10.1021/jacs.2c07192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetics of hydride transfer from Re(Rbpy)(CO)3H (bpy = 4,4'-R-2,2'-bipyridine; R = OMe, tBu, Me, H, Br, COOMe, CF3) to CO2 and seven different cationic N-heterocycles were determined. Additionally, the thermodynamic hydricities of complexes of the type Re(Rbpy)(CO)3H were established primarily using computational methods. Linear free-energy relationships (LFERs) derived by correlating thermodynamic and kinetic hydricities indicate that, in general, the rate of hydride transfer increases as the thermodynamic driving force for the reaction increases. Kinetic isotope effects range from inverse for hydride transfer reactions with a small driving force to normal for reactions with a large driving force. Hammett analysis indicates that hydride transfer reactions with greater thermodynamic driving force are less sensitive to changes in the electronic properties of the metal hydride, presumably because there is less buildup of charge in the increasingly early transition state. Bronsted α values were obtained for a range of hydride transfer reactions and along with DFT calculations suggest the reactions are concerted, which enables the use of Marcus theory to analyze hydride transfer reactions involving transition metal hydrides. It is notable, however, that even slight perturbations in the steric properties of the Re hydride or the hydride acceptor result in large deviations in the predicted rate of hydride transfer based on thermodynamic driving forces. This indicates that thermodynamic considerations alone cannot be used to predict the rate of hydride transfer, which has implications for catalyst design.
Collapse
Affiliation(s)
- Matthew R Espinosa
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Mehmed Z Ertem
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Mariam Barakat
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Quinton J Bruch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Anthony P Deziel
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Matthew R Elsby
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Faraj Hasanayn
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew V Pecoraro
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Allison M Smith
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nicholas E Smith
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| |
Collapse
|
19
|
Ostojić BD, Stanković B, Đorđević DS, Schwerdtfeger P. Light-driven reduction of CO 2: thermodynamics and kinetics of hydride transfer reactions in benzimidazoline derivatives. Phys Chem Chem Phys 2022; 24:20357-20370. [PMID: 35980288 DOI: 10.1039/d2cp02867k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CO2 capture, conversion and storage belong to the holy grail of environmental science. We therefore explore an important photochemical hydride transfer reaction of benzimidazoline derivatives with CO2 in a polar solvent (dimethylsulfoxide) by quantum-chemical methods. While the excited electronic state undergoing hydride transfer to formate (HCOO-) shows a higher reaction path barrier compared to the ground state, a charge-transfer can occur in the near-UV region with nearly barrierless access to the products involving a conical intersection between both electronic states. Such radiationless decay through the hydride transfer reaction and formation of HCCO-via excited electronic states in suitable organic compounds opens the way for future photochemical CO2 reduction. We provide a detailed analysis for the chemical CO2 reduction to the formate anion for 15 different benzimidazoline derivatives in terms of thermodynamic hydricities (ΔGH-), activation free energies (ΔG‡HT), and reaction free energies (ΔGrxn) for the chosen solvent dimethylsulfoxide at the level of density functional theory. The calculated hydricities are in the range from 35.0 to 42.0 kcal mol-1i.e. the species possess strong hydride donor abilities required for the CO2 reduction to formate, characterized by relatively low activation free energies between 18.5 and 22.2 kcal mol-1. The regeneration of the benzimidazoline can be achieved electrochemically.
Collapse
Affiliation(s)
- Bojana D Ostojić
- Center of Excellence in Environmental Chemistry and Engineering, Institute for Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, Belgrade 11000, Serbia.
| | - Branislav Stanković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dragana S Đorđević
- Center of Excellence in Environmental Chemistry and Engineering, Institute for Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, Belgrade 11000, Serbia.
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics (CTCP), The New Zealand Institute for Advanced Study (NZIAS), Massey University, Auckland Campus, Private Bag 102904, North Shore City, 0745 Auckland, New Zealand
| |
Collapse
|
20
|
Shen GB, Qian BC, Fu YH, Zhu XQ. Discovering and Evaluating the Reducing Abilities of Polar Alkanes and Related Family Members as Organic Reductants Using Thermodynamics. J Org Chem 2022; 87:9357-9374. [PMID: 35786938 DOI: 10.1021/acs.joc.2c01149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, the pKa values of 69 polar alkanes (YH2) in acetonitrile were computed using the method developed by Luo and Zhang in 2020, and representative 69 thermodynamic network cards on 22 elementary steps of YH2 and related polar alkenes (Y) releasing or accepting H2 were naturally established. Potential electron reductants (YH-), hydride reductants (YH-), antioxidants (YH2 and YH-), and hydrogen molecule reductants (YH2) are unexpectedly discovered according to thermodynamic network cards. It is also found that there are great differences between YH2 and common hydrogen molecule reductants (XH2), such as Hantzsch ester (HEH2), benzothiazoline (BTH2), and dihydro-phenanthridine (PH2), releasing two hydrogen ions to unsaturated compounds. During the hydrogenation process, XH2 release hydrides first, then the oxidation state XH+ release protons. However, in the case of YH2, YH2 release protons first, then YH- release hydrides. It is the differences on acidic properties of YH2 and XH2 that result in the behavioral and thermodynamic differences on YH2 and XH2 releasing two hydrogen ions (H--H+). The redox mechanisms and behaviors of Y, YH-, and YH2 as electron, hydrogen atom, hydride, and hydrogen molecule donors or acceptors in the chemical reaction are reasonably investigated and discussed in this paper using thermodynamics.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Bao-Chen Qian
- School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Henriques Pereira DP, Leethaus J, Beyazay T, do Nascimento Vieira A, Kleinermanns K, Tüysüz H, Martin WF, Preiner M. Role of geochemical protoenzymes (geozymes) in primordial metabolism: specific abiotic hydride transfer by metals to the biological redox cofactor NAD . FEBS J 2022; 289:3148-3162. [PMID: 34923745 PMCID: PMC9306933 DOI: 10.1111/febs.16329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022]
Abstract
Hydrogen gas, H2 , is generated in serpentinizing hydrothermal systems, where it has supplied electrons and energy for microbial communities since there was liquid water on Earth. In modern metabolism, H2 is converted by hydrogenases into organically bound hydrides (H- ), for example, the cofactor NADH. It transfers hydrides among molecules, serving as an activated and biologically harnessed form of H2 . In serpentinizing systems, minerals can also bind hydrides and could, in principle, have acted as inorganic hydride donors-possibly as a geochemical protoenzyme, a 'geozyme'- at the origin of metabolism. To test this idea, we investigated the ability of H2 to reduce NAD+ in the presence of iron (Fe), cobalt (Co) and nickel (Ni), metals that occur in serpentinizing systems. In the presence of H2 , all three metals specifically reduce NAD+ to the biologically relevant form, 1,4-NADH, with up to 100% conversion rates within a few hours under alkaline aqueous conditions at 40 °C. Using Henry's law, the partial pressure of H2 in our reactions corresponds to 3.6 mm, a concentration observed in many modern serpentinizing systems. While the reduction of NAD+ by Ni is strictly H2 -dependent, experiments in heavy water (2 H2 O) indicate that native Fe can reduce NAD+ both with and without H2 . The results establish a mechanistic connection between abiotic and biotic hydride donors, indicating that geochemically catalysed, H2 -dependent NAD+ reduction could have preceded the hydrogenase-dependent reaction in evolution.
Collapse
Affiliation(s)
| | - Jana Leethaus
- Institute for Molecular EvolutionHeinrich Heine UniversityDüsseldorfGermany
| | - Tugce Beyazay
- Max‐Planck‐Institut für KohlenforschungMülheim an der RuhrGermany
| | | | - Karl Kleinermanns
- Institute for Physical ChemistryHeinrich Heine UniversityDüsseldorfGermany
| | - Harun Tüysüz
- Max‐Planck‐Institut für KohlenforschungMülheim an der RuhrGermany
| | - William F. Martin
- Institute for Molecular EvolutionHeinrich Heine UniversityDüsseldorfGermany
| | - Martina Preiner
- Department of Ocean SystemsRoyal Netherlands Institute for Sea ResearchDen BurgThe Netherlands
- Department of Earth SciencesUtrecht UniversityThe Netherlands
| |
Collapse
|
22
|
Ilic S, Gesiorski JL, Weerasooriya RB, Glusac KD. Biomimetic Metal-Free Hydride Donor Catalysts for CO 2 Reduction. Acc Chem Res 2022; 55:844-856. [PMID: 35201767 DOI: 10.1021/acs.accounts.1c00708] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic reduction of carbon dioxide to fuels and value-added chemicals is of significance for the development of carbon recycling technologies. One of the main challenges associated with catalytic CO2 reduction is product selectivity: the formation of carbon monoxide, molecular hydrogen, formate, methanol, and other products occurs with similar thermodynamic driving forces, making it difficult to selectively reduce CO2 to the target product. Significant scientific effort has been aimed at the development of catalysts that can suppress the undesired hydrogen evolution reaction and direct the reaction toward the selective formation of the desired products, which are easy to handle and store. Inspired by natural photosynthesis, where the CO2 reduction is achieved using NADPH cofactors in the Calvin cycle, we explore biomimetic metal-free hydride donors as catalysts for the selective reduction of CO2 to formate. Here, we outline our recent findings on the thermodynamic and kinetic parameters that control the hydride transfer from metal-free hydrides to CO2. By experimentally measuring and theoretically calculating the thermodynamic hydricities of a range of metal-free hydride donors, we derive structural and electronic factors that affect their hydride-donating abilities. Two dominant factors that contribute to the stronger hydride donors are identified to be (i) the stabilization of the positive charge formed upon HT via aromatization or by the presence of electron-donating groups and (ii) the destabilization of hydride donors through the anomeric effect or in the presence of significant structural constrains in the hydride molecule. Hydride donors with appropriate thermodynamic hydricities were reacted with CO2, and the formation of the formate ion (the first reduction step in CO2 reduction to methanol) was confirmed experimentally, providing an important proof of principle that organocatalytic CO2 reduction is feasible. The kinetics of hydride transfer to CO2 were found to be slow, and the sluggish kinetics were assigned in part to the large self-exchange reorganization energy associated with the organic hydrides in the DMSO solvent. Finally, we outline our approaches to the closure of the catalytic cycle via the electrochemical and photochemical regeneration of the hydride (R-H) from the conjugate hydride acceptors (R+). We illustrate how proton-coupled electron transfer can be efficiently utilized not only to lower the electrochemical potential at which the hydride regeneration takes place but also to suppress the unwanted dimerization that neutral radical intermediates tend to undergo. Overall, this account provides a summary of important milestones achieved in organocatalytic CO2 reduction and provides insights into the future research directions needed for the discovery of inexpensive catalysts for carbon recycling.
Collapse
Affiliation(s)
- Stefan Ilic
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| | - Jonathan L. Gesiorski
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Ravindra B. Weerasooriya
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| | - Ksenija D. Glusac
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
23
|
Erdmann P, Greb L. What Distinguishes the Strength and the Effect of a Lewis Acid: Analysis of the Gutmann-Beckett Method. Angew Chem Int Ed Engl 2022; 61:e202114550. [PMID: 34757692 PMCID: PMC9299668 DOI: 10.1002/anie.202114550] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 01/03/2023]
Abstract
IUPAC defines Lewis acidity as the thermodynamic tendency for Lewis pair formation. This strength property was recently specified as global Lewis acidity (gLA), and is gauged for example by the fluoride ion affinity. Experimentally, Lewis acidity is usually evaluated by the effect on a bound molecule, such as the induced 31 P NMR shift of triethylphosphine oxide in the Gutmann-Beckett (GB) method. This type of scaling was called effective Lewis acidity (eLA). Unfortunately, gLA and eLA often correlate poorly, but a reason for this is unknown. Hence, the strength and the effect of a Lewis acid are two distinct properties, but they are often granted interchangeably. The present work analyzes thermodynamic, NMR specific, and London dispersion effects on GB numbers for 130 Lewis acids by theory and experiment. The deformation energy of a Lewis acid is identified as the prime cause for the critical deviation between gLA and eLA but its correction allows a unification for the first time.
Collapse
Affiliation(s)
- Philipp Erdmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lutz Greb
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Department of Chemistry and Biochemistry—Inorganic ChemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| |
Collapse
|
24
|
Erdmann P, Greb L. What Distinguishes the Strength and the Effect of a Lewis Acid: Analysis of the Gutmann–Beckett Method. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114550] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Philipp Erdmann
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Department of Chemistry and Biochemistry—Inorganic Chemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| |
Collapse
|
25
|
Krajewski AE, Lee JK. Nucleophilicity and Electrophilicity in the Gas Phase: Silane Hydricity. J Org Chem 2022; 87:1840-1849. [PMID: 35044778 DOI: 10.1021/acs.joc.1c02763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydricity is of great import as hydride transfer reactions are prominent in many processes, including organic synthesis, photoelectrocatalysis, and hydrogen activation. Herein, the kinetic hydricity of a series of silanes is examined in the gas phase. Most of these reactions have not heretofore been studied in vacuo and provide valuable data that can be compared to condensed-phase hydricity, to reveal the effects of solvent. Both experiments and computations are used to gain insight into mechanism and reactivity. In a broader sense, these studies also represent a first step toward systematically understanding nucleophilicity and electrophilicity in the absence of a solvent.
Collapse
Affiliation(s)
- Allison E Krajewski
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Jeehiun K Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
26
|
Shen GB, Qian BC, Fu YH, Zhu XQ. Thermodynamics of the elementary steps of organic hydride chemistry determined in acetonitrile and their applications. Org Chem Front 2022. [DOI: 10.1039/d2qo01310j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review focuses on the thermodynamics of the elementary step of 421 organic hydrides and unsaturated compounds releasing or accepting hydride or hydrogen determined in acetonitrile as well as their potential applications.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Bao-Chen Qian
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
27
|
Axelsson M, Marchiori CFN, Huang P, Araujo CM, Tian H. Small Organic Molecule Based on Benzothiadiazole for Electrocatalytic Hydrogen Production. J Am Chem Soc 2021; 143:21229-21233. [PMID: 34855386 PMCID: PMC8704194 DOI: 10.1021/jacs.1c10600] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A small organic molecule
2,1,3-benzothiadiazole-4, 7-dicarbonitrile
(BTDN) is assessed for electrocatalytic hydrogen evolution on glassy
carbon electrode and shows a hydrogen production Faradaic efficiency
of 82% in the presence of salicylic acid. The key catalytic intermediates
of reduced species BTDN–• and protonated
intermediates are characterized or hypothesized by using various spectroscopic
methods and density functional theory (DFT)-based calculations. With
the experimental and theoretical results, a catalytic mechanism of
BTDN for electrocatalytic H2 evolution is proposed.
Collapse
Affiliation(s)
- Martin Axelsson
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala SE 751 20, Sweden
| | - Cleber F N Marchiori
- Department of Engineering and Physics, Karlstad University, Karlstad 65188, Sweden
| | - Ping Huang
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala SE 751 20, Sweden
| | - C Moyses Araujo
- Department of Engineering and Physics, Karlstad University, Karlstad 65188, Sweden.,Department of Physics and Astronomy, Ångström Laboratory, Uppsala University, Uppsala 751 20, Sweden
| | - Haining Tian
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala SE 751 20, Sweden
| |
Collapse
|
28
|
Jensen JD, Bisballe N, Kacenauskaite L, Thomsen MS, Chen J, Hammerich O, Laursen BW. Utilizing Selective Chlorination to Synthesize New Triangulenium Dyes. J Org Chem 2021; 86:17002-17010. [PMID: 34791879 DOI: 10.1021/acs.joc.1c02148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functionalization of new sites on the triangulenium structure has been achieved by early-stage chlorination with N-chlorosuccinimide (NCS), giving rise to two new triangulenium dyes (1 and 3). By introducing the chlorine functionalities in the acridinium precursor, positions complementary to those previously obtained by electrophilic aromatic substitution on the final dyes are accessed. The chlorination is selective, giving only one regioisomer for both mono- and dichlorination products. For the monochlorinated acridinium compound, a highly selective ring-closing reaction was discovered, generating a single regioisomer of the cationic [4]helicene product. Further investigations into the mechanism of the [4]helicene formation lead to the first isolation of the previously proposed intermediate of the two-step SNAr reaction, key to all aza-bridged triangulenium and helicenium systems. Late-stage functionalization of DAOTA+ with NCS gave rise to a different dichlorinated compound (2). The fully ring closed chlorinated triangulenium dyes 1, 2, and 3 show a redshift in absorption and emission, while maintaining relatively high fluorescence quantum yields of 36%, 26%, and 41% and long fluorescence lifetimes of 15, 12.5, and 16 ns, respectively. Cyclic voltammetry shows that chlorination of the triangulenium dyes significantly lowers reduction potentials and thus allows for efficient tuning of redox and photoredox properties.
Collapse
Affiliation(s)
- Jesper Dahl Jensen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Niels Bisballe
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Laura Kacenauskaite
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Maria Storm Thomsen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Junsheng Chen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Ole Hammerich
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Bo W Laursen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
29
|
Golub IE, Filippov OA, Belkova NV, Epstein LM, Shubina ES. The Mechanism of Halogenation of Decahydro-closo-Decaborate Dianion by Hydrogen Chloride. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621110073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Zhang J, Yang JD, Cheng JP. Recent progress in reactivity study and synthetic application of N-heterocyclic phosphorus hydrides. Natl Sci Rev 2021; 8:nwaa253. [PMID: 34691616 PMCID: PMC8288402 DOI: 10.1093/nsr/nwaa253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
N-heterocyclic phosphines (NHPs) have recently emerged as a new group of promising catalysts for metal-free reductions, owing to their unique hydridic reactivity. The excellent hydricity of NHPs, which rivals or even exceeds those of many metal-based hydrides, is the result of hyperconjugative interactions between the lone-pair electrons on N atoms and the adjacent σ*(P–H) orbital. Compared with the conventional protic reactivity of phosphines, this umpolung P–H reactivity leads to hydridic selectivity in NHP-mediated reductions. This reactivity has therefore found many applications in the catalytic reduction of polar unsaturated bonds and in the hydroboration of pyridines. This review summarizes recent progress in studies of the reactivity and synthetic applications of these phosphorus-based hydrides, with the aim of providing practical information to enable exploitation of their synthetically useful chemistry.
Collapse
Affiliation(s)
- Jingjing Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Dong Yang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Pei Cheng
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Shi NN, Yin XM, Gao WS, Wang JM, Zhang SF, Fan YH, Wang M. Competition between electrocatalytic CO2 reduction and H+ reduction by Cu(II), Co(II) complexes containing redox-active ligand. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Alkhater MF, Alherz AW, Musgrave CB. Diazaphospholenes as reducing agents: a thermodynamic and electrochemical DFT study. Phys Chem Chem Phys 2021; 23:17794-17802. [PMID: 34382635 DOI: 10.1039/d1cp02193a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diazaphospholenes have emerged as a promising class of metal-free hydride donors and have been implemented as molecular catalysts in several reduction reactions. Recent studies have also verified their radical reactivity as hydrogen atom donors. Experimental quantification of the hydricities and electrochemical properties of this unique class of hydrides has been limited by their sensitivity towards oxidation in open air and moist environments. Here, we implement quantum chemical density functional theory calculations to analyze the electrochemical catalytic cycle of diazaphospholenes in acetonitrile. We report computed hydricities, reduction potentials, pKa values, and bond dissociation free energies (BDFEs) for 64 P-based hydridic catalysts generated by functionalizing 8 main structures with 8 different electron donating/withdrawing groups. Our results demonstrate that a wide range of hydricities (29-66 kcal mol-1) and BDFEs (58-81 kcal mol-1) are attainable by functionalizing diazaphospholenes. Compared to the more common carbon-based hydrides, diazaphospholenes are predicted to require less negative reduction potentials to electrochemically regenerate hydrides with an equivalent hydridic strength, indicating their higher energy efficiency in the tradeoff between thermodynamic ability and reduction potential. We show that the tradeoff between the reducing ability and the energetic cost of regeneration can be optimized by varying the BDFE and the reorganization energy associated with hydride transfer (λHT), where lower BDFE and λHT correspond to more efficient catalysts. Aromatic phosphorus hydrides with predicted BDFEs of ∼62 kcal mol-1 and λHT's of ∼20 kcal mol-1 are found to require less negative reduction potentials than dihydropyridines and benzimidazoles with predicted BDFEs of ∼68 and ∼84 kcal mol-1 and λHT's of ∼40 and ∼50 kcal mol-1, respectively.
Collapse
Affiliation(s)
- Mohammed F Alkhater
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | | | | |
Collapse
|
33
|
Pattanayak S, Berben LA. Cobalt Carbonyl Clusters Enable Independent Control of Two Proton Transfer Rates in the Mechanism for Hydrogen Evolution. ChemElectroChem 2021. [DOI: 10.1002/celc.202100402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Askins EJ, Zoric MR, Li M, Luo Z, Amine K, Glusac KD. Toward a mechanistic understanding of electrocatalytic nanocarbon. Nat Commun 2021; 12:3288. [PMID: 34078884 PMCID: PMC8172927 DOI: 10.1038/s41467-021-23486-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 04/28/2021] [Indexed: 02/04/2023] Open
Abstract
Electrocatalytic nanocarbon (EN) is a class of material receiving intense interest as a potential replacement for expensive, metal-based electrocatalysts for energy conversion and chemical production applications. The further development of EN will require an intricate knowledge of its catalytic behaviors, however, the true nature of their electrocatalytic activity remains elusive. This review highlights work that contributed valuable knowledge in the elucidation of EN catalytic mechanisms. Experimental evidence from spectroscopic studies and well-defined molecular models, along with the survey of computational studies, is summarized to document our current mechanistic understanding of EN-catalyzed oxygen, carbon dioxide and nitrogen electrochemistry. We hope this review will inspire future development of synthetic methods and in situ spectroscopic tools to make and study well-defined EN structures.
Collapse
Affiliation(s)
- Erik J. Askins
- grid.185648.60000 0001 2175 0319Department of Chemistry, University of Illinois at Chicago, Chicago, IL USA ,grid.187073.a0000 0001 1939 4845Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL USA
| | - Marija R. Zoric
- grid.185648.60000 0001 2175 0319Department of Chemistry, University of Illinois at Chicago, Chicago, IL USA ,grid.187073.a0000 0001 1939 4845Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL USA
| | - Matthew Li
- grid.187073.a0000 0001 1939 4845Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL USA ,grid.46078.3d0000 0000 8644 1405Chemical Engineering Department, University of Waterloo, Waterloo, ON Canada
| | - Zhengtang Luo
- grid.24515.370000 0004 1937 1450Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, Hong Kong
| | - Khalil Amine
- grid.187073.a0000 0001 1939 4845Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL USA ,grid.168010.e0000000419368956Department of Material Science and Engineering, Stanford University, Stanford, CA USA ,grid.411975.f0000 0004 0607 035XInstitute for Research and Medical Consultants (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Al Safa, Dammam, Saudi Arabia
| | - Ksenija D. Glusac
- grid.185648.60000 0001 2175 0319Department of Chemistry, University of Illinois at Chicago, Chicago, IL USA ,grid.187073.a0000 0001 1939 4845Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL USA
| |
Collapse
|
35
|
Erdmann P, Greb L. Multidimensional Lewis Acidity: A Consistent Data Set of Chloride, Hydride, Methide, Water and Ammonia Affinities for 183 p-Block Element Lewis Acids. Chemphyschem 2021; 22:935-943. [PMID: 33755288 PMCID: PMC8252043 DOI: 10.1002/cphc.202100150] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Indexed: 11/17/2022]
Abstract
The computed fluoride ion affinity (FIA) is a widely applied descriptor to gauge Lewis acidity. Like every other single-parameter Lewis acidity scale, the FIA metric suffers from the one-dimensionality, that prohibits addressing Lewis acidity by the multidimensionality it inherently requires (i. e., reference Lewis base dependency). However, a systematic screening of computed affinities other than the FIA is much less developed. Herein, we extended our CCSD(T)/CBS benchmark of different density functionals and the DLPNO-CCSD(T) method for chloride (CIA), methide (MIA), hydride (HIA), water (WA), and ammonia (AA) affinities. The best performing methods are subsequently applied to yield nearly 800 affinities for 183 p-block element compounds of group 13-16 with an estimated accuracy of <10 kJ mol-1 . The study's output serves as a consistent library for qualitative analyses and a training set for future statistical approaches. A first holistic correlation analysis underscores the need for a multidimensional description of Lewis acidity.
Collapse
Affiliation(s)
- Philipp Erdmann
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120Heidelberg
| | - Lutz Greb
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120Heidelberg
| |
Collapse
|
36
|
Hua SA, Paul LA, Oelschlegel M, Dechert S, Meyer F, Siewert I. A Bioinspired Disulfide/Dithiol Redox Switch in a Rhenium Complex as Proton, H Atom, and Hydride Transfer Reagent. J Am Chem Soc 2021; 143:6238-6247. [PMID: 33861085 DOI: 10.1021/jacs.1c01763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transfer of multiple electrons and protons is of crucial importance in many reactions relevant in biology and chemistry. Natural redox-active cofactors are capable of storing and releasing electrons and protons under relatively mild conditions and thus serve as blueprints for synthetic proton-coupled electron transfer (PCET) reagents. Inspired by the prominence of the 2e-/2H+ disulfide/dithiol couple in biology, we investigate herein the diverse PCET reactivity of a Re complex equipped with a bipyridine ligand featuring a unique SH···-S moiety in the backbone. The disulfide bond in fac-[Re(S-Sbpy)(CO)3Cl] (1, S-Sbpy = [1,2]dithiino[4,3-b:5,6-b']dipyridine) undergoes two successive reductions at equal potentials of -1.16 V vs Fc+|0 at room temperature forming [Re(S2bpy)(CO)3Cl]2- (12-, S2bpy = [2,2'-bipyridine]-3,3'-bis(thiolate)). 12- has two adjacent thiolate functions at the bpy periphery, which can be protonated forming the S-H···-S unit, 1H-. The disulfide/dithiol switch exhibits a rich PCET reactivity and can release a proton (ΔG°H+ = 34 kcal mol-1, pKa = 24.7), an H atom (ΔG°H• = 59 kcal mol-1), or a hydride ion (ΔG°H- = 60 kcal mol-1) as demonstrated in the reactivity with various organic test substrates.
Collapse
Affiliation(s)
- Shao-An Hua
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Lucas A Paul
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Manuel Oelschlegel
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany.,Universität Göttingen, International Center for Advanced Studies of Energy Conversion (ICASEC), Tammannstraße 6, D-37077 Göttingen, Germany
| | - Inke Siewert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, D-37077 Göttingen, Germany.,Universität Göttingen, International Center for Advanced Studies of Energy Conversion (ICASEC), Tammannstraße 6, D-37077 Göttingen, Germany
| |
Collapse
|
37
|
Thompson BL, Heiden ZM. Tuning the reduction potentials of benzoquinone through the coordination to Lewis acids. Phys Chem Chem Phys 2021; 23:9822-9831. [PMID: 33908513 DOI: 10.1039/d1cp01266e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Electron transfer promoted by the coordination of a substrate molecule to a Lewis acid or hydrogen bonding group is a critical step in many biological and catalytic transformations. This computational study investigates the nature of the interaction between benzoquinone and one and two Lewis acids by examining the influence of Lewis acid strength on the ability to alter the two reduction potentials of the coordinated benzoquinone molecule. To investigate this interaction, the coordination of the neutral (Q), singly reduced ([Q]˙-), and doubly reduced benzoquinone ([Q]2-) molecule to eight Lewis acids was analyzed. Coordination of benzoquinone to a Lewis acid became more favorable by 25 kcal mol-1 with each reduction of the benzoquinone fragment. Coordination of benzoquinone to a Lewis acid also shifted each of the reduction potentials of the coordinated benzoquinone anodically by 0.50 to 1.5 V, depending on the strength of the Lewis acid, with stronger Lewis acids exhibiting a larger effect on the reduction potential. Coordination of a second Lewis acid further altered each of the reduction potentials by an additional 0.70 to 1.6 V. Replacing one of the Lewis acids with a proton resulted in the ability to modify the pKa of the protonated Lewis acid-Q/[Q]˙-/[Q]2- adducts by about 10 pKa units, in addition to being able to alter the ability to transfer a hydrogen atom by 10 kcal mol-1, and the capacity to transfer a hydride by about 30 kcal mol-1.
Collapse
Affiliation(s)
- Brena L Thompson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA.
| | | |
Collapse
|
38
|
Weerasooriya RB, Gesiorski JL, Alherz A, Ilic S, Hargenrader GN, Musgrave CB, Glusac KD. Kinetics of Hydride Transfer from Catalytic Metal-Free Hydride Donors to CO 2. J Phys Chem Lett 2021; 12:2306-2311. [PMID: 33651629 DOI: 10.1021/acs.jpclett.0c03662] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Selective reduction of CO2 to formate represents an ongoing challenge in photoelectrocatalysis. To provide mechanistic insights, we investigate the kinetics of hydride transfer (HT) from a series of metal-free hydride donors to CO2. The observed dependence of experimental and calculated HT barriers on the thermodynamic driving force was modeled by using the Marcus hydride transfer formalism to obtain the insights into the effect of reorganization energies on the reaction kinetics. Our results indicate that even if the most ideal hydride donor were discovered, the HT to CO2 would exhibit sluggish kinetics (<100 turnovers per second at -0.1 eV driving force), indicating that the conventional HT may not be an appropriate mechanism for solar conversion of CO2 to formate. We propose that the conventional HT mechanism should not be considered for CO2 reduction catalysis and argue that the orthogonal HT mechanism, previously proposed to address thermodynamic limitations of this reaction, may also lead to lower kinetic barriers for CO2 reduction to formate.
Collapse
Affiliation(s)
- Ravindra B Weerasooriya
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Ave., Lemont, Illinois 60439, United States
| | - Jonathan L Gesiorski
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Ave., Lemont, Illinois 60439, United States
| | - Abdulaziz Alherz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Stefan Ilic
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - George N Hargenrader
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Ave., Lemont, Illinois 60439, United States
| | - Charles B Musgrave
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Ksenija D Glusac
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Ave., Lemont, Illinois 60439, United States
| |
Collapse
|
39
|
Hasegawa E, Nakamura S, Oomori K, Tanaka T, Iwamoto H, Wakamatsu K. Competitive Desulfonylative Reduction and Oxidation of α-Sulfonylketones Promoted by Photoinduced Electron Transfer with 2-Hydroxyaryl-1,3-dimethylbenzimidazolines under Air. J Org Chem 2021; 86:2556-2569. [PMID: 33492136 DOI: 10.1021/acs.joc.0c02666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Desulfonylation reactions of α-sulfonylketones promoted by photoinduced electron transfer with 2-hydroxyarylbenzimidazolines (BIH-ArOH) were investigated. Under aerobic conditions, photoexcited 2-hydroxynaphthylbenzimidazoline (BIH-NapOH) promotes competitive reduction (forming alkylketones) and oxidation (producing α-hydroxyketones) of sulfonylketones through pathways involving the intermediacy of α-ketoalkyl radicals. The results of an examination of the effects of solvents, radical trapping reagents, substituents of sulfonylketones, and a variety of hydroxyaryl- and aryl-benzimidazolines (BIH-ArOH and BIH-Ar) suggest that the oxidation products are produced by dissociation of α-ketoalkyl radicals from the initially formed solvent-caged radical ion pairs followed by reaction with molecular oxygen. In addition, the observations indicate that the reduction products are generated by proton or hydrogen atom transfer in solvent-caged radical ion pairs derived from benzimidazolines and sulfonylketones. The results also suggest that arylsulfinate anions arising by carbon-sulfur bond cleavage of sulfonylketone radical anions act as reductants in the oxidation pathway to convert initially formed α-hydroperoxyketones to α-hydroxyketones. Finally, density functional theory calculations were performed to explore the structures and properties of radical ions of sulfonylketones as well as BIH-NapOH.
Collapse
Affiliation(s)
- Eietsu Hasegawa
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Shyota Nakamura
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kazuki Oomori
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tsukasa Tanaka
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
40
|
Shon JH, Kim D, Rathnayake MD, Sittel S, Weaver J, Teets TS. Photoredox catalysis on unactivated substrates with strongly reducing iridium photosensitizers. Chem Sci 2021; 12:4069-4078. [PMID: 34163678 PMCID: PMC8179447 DOI: 10.1039/d0sc06306a] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Photoredox catalysis has emerged as a powerful strategy in synthetic organic chemistry, but substrates that are difficult to reduce either require complex reaction conditions or are not amenable at all to photoredox transformations. In this work, we show that strong bis-cyclometalated iridium photoreductants with electron-rich β-diketiminate (NacNac) ancillary ligands enable high-yielding photoredox transformations of challenging substrates with very simple reaction conditions that require only a single sacrificial reagent. Using blue or green visible-light activation we demonstrate a variety of reactions, which include hydrodehalogenation, cyclization, intramolecular radical addition, and prenylation via radical-mediated pathways, with optimized conditions that only require the photocatalyst and a sacrificial reductant/hydrogen atom donor. Many of these reactions involve organobromide and organochloride substrates which in the past have had limited utility in photoredox catalysis. This work paves the way for the continued expansion of the substrate scope in photoredox catalysis.
Collapse
Affiliation(s)
- Jong-Hwa Shon
- Department of Chemistry, University of Houston 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| | - Dooyoung Kim
- Department of Chemistry, University of Houston 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| | - Manjula D Rathnayake
- Department of Chemistry, Oklahoma State University 107, Physical Science Stillwater OK 74078 USA
| | - Steven Sittel
- Department of Chemistry, University of Houston 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| | - Jimmie Weaver
- Department of Chemistry, Oklahoma State University 107, Physical Science Stillwater OK 74078 USA
| | - Thomas S Teets
- Department of Chemistry, University of Houston 3585 Cullen Blvd., Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
41
|
Wen J, Wang F, Zhang X. Asymmetric hydrogenation catalyzed by first-row transition metal complexes. Chem Soc Rev 2021; 50:3211-3237. [DOI: 10.1039/d0cs00082e] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on asymmetric direct and transfer hydrogenation with first-row transition metal complexes. The reaction mechanisms and the models of enantiomeric induction were summarized and emphasized.
Collapse
Affiliation(s)
- Jialin Wen
- Department of Chemistry
- Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
- China
| | - Fangyuan Wang
- Department of Chemistry
- Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
- China
| | - Xumu Zhang
- Department of Chemistry
- Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
- China
| |
Collapse
|
42
|
Li Z, Yang JD, Cheng JP. Thermodynamic and kinetic studies of hydride transfer from Hantzsch ester under the promotion of organic bases. Org Chem Front 2021. [DOI: 10.1039/d0qo01478h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Thermodynamics and kinetics for base-promoted hydride transfer (BPHyT) were investigated with Hantzsch ester and acridinium derivatives as model compounds.
Collapse
Affiliation(s)
- Zhen Li
- Center of Basic Molecular Science
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Jin-Dong Yang
- Center of Basic Molecular Science
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Jin-Pei Cheng
- Center of Basic Molecular Science
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
43
|
Sherbow TJ, Parsons LWT, Phan NA, Fettinger JC, Berben LA. Ligand Conjugation Directs the Formation of a 1,3-Dihydropyridinate Regioisomer. Inorg Chem 2020; 59:17614-17619. [PMID: 33215919 DOI: 10.1021/acs.inorgchem.0c02847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The selective formation of the 1,4-dihydropyridine isomer of NAD(P)H is mirrored by the selective formation of 1,4-dihydropyridinate ligand-metal complexes in synthetic systems. Here we demonstrate that ligand conjugation can be used to promote selective 1,3-dihydropyridinate formation. This represents an advance toward controlling and tuning the selectivity in dihydropyridinate formation chemistry. The reaction of (I2P2-)Al(THF)Cl [1; I2P = bis(imino)pyridine; THF = tetrahydrofuran] with the one-electron oxidant (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) afforded (I2P-)Al(TEMPO)Cl (2), which can be reduced with sodium to the twice-reduced ligand complex (I2P2-)Al(TEMPO) (3). Compounds 2 and 3 serve as precursors for high-yielding and selective routes to an aluminum-supported 1,3-dihydropyridinate complex via the reaction of 2 with 3 equiv of potassium metal or the reaction of 3 with KH.
Collapse
Affiliation(s)
- Tobias J Sherbow
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Leo W T Parsons
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Nathan A Phan
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - James C Fettinger
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Louise A Berben
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
44
|
Schild DJ, Drover MW, Oyala PH, Peters JC. Generating Potent C-H PCET Donors: Ligand-Induced Fe-to-Ring Proton Migration from a Cp*Fe III-H Complex Demonstrates a Promising Strategy. J Am Chem Soc 2020; 142:18963-18970. [PMID: 33103877 DOI: 10.1021/jacs.0c09363] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Highly reactive organometallic species that mediate reductive proton-coupled electron transfer (PCET) reactions are an exciting area for development in catalysis, where a key objective focuses on tuning the reactivity of such species. This work pursues ligand-induced activation of a stable organometallic complex toward PCET reactivity. This is studied via the conversion of a prototypical Cp*FeIII-H species, [FeIII(η5-Cp*)(dppe)H]+ (Cp* = C5Me5-, dppe = 1,2-bis(diphenylphosphino)ethane), to a highly reactive, S = 1/2 ring-protonated endo-Cp*H-Fe relative, triggered by the addition of CO. Our assignment of the latter ring-protonated species contrasts with its previous reported formulation, which instead assigned it as a hypervalent 19-electron hydride, [FeIII(η5-Cp*)(dppe)(CO)H]+. Herein, pulse EPR spectroscopy (1,2H HYSCORE, ENDOR) and X-ray crystallography, with corresponding DFT studies, cement its assignment as the ring-protonated isomer, [FeI(endo-η4-Cp*H)(dppe)(CO)]+. A less sterically shielded and hence more reactive exo-isomer can be generated through oxidation of a stable Fe0(exo-η4-Cp*H)(dppe)(CO) precursor. Both endo- and exo-ring-protonated isomers are calculated to have an exceptionally low bond dissociation free energy (BDFEC-H ≈ 29 kcal mol-1 and 25 kcal mol-1, respectively) cf. BDFEFe-H of 56 kcal mol-1 for [FeIII(η5-Cp*)(dppe)H]+. These weak C-H bonds are shown to undergo proton-coupled electron transfer (PCET) to azobenzene to generate diphenylhydrazine and the corresponding closed-shell [FeII(η5-Cp*)(dppe)CO]+ byproduct.
Collapse
Affiliation(s)
- Dirk J Schild
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Marcus W Drover
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
45
|
Kerns SA, Rose MJ. Scaffold-Based Functional Models of [Fe]-Hydrogenase (Hmd): Building the Bridge between Biological Structure and Molecular Function. Acc Chem Res 2020; 53:1637-1647. [PMID: 32786339 DOI: 10.1021/acs.accounts.0c00315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The well-known dinuclear [FeFe] and [NiFe] hydrogenase enzymes are redox-based proton reduction and H2 oxidation catalysts. In comparison, the structural and functional aspects of the mononuclear nonredox hydrogenase, known as [Fe]-hydrogenase or Hmd, have been less explored because of the relatively recent crystallographic elucidation of the enzyme active site. Additionally, the synthetic challenges posed by the highly substituted and asymmetric coordination environment of the iron guanylylpyridinol (FeGP) cofactor have hampered functional biomimetic modeling studies to a large extent. The active site contains an octahedral low-spin Fe(II) center with the following coordination motifs: a bidentate acyl-pyridone moiety (C,N) and cysteinyl-S in a facial arrangement; two cis carbonyl ligands; and a H2O/H2 binding site. In [Fe]-hydrogenase, heterolytic H2 activation putatively by the pendant pyridone/pyridonate-O base serving as a proton acceptor. Following H2 cleavage, an intermediate Fe-H species is thought to stereoselectively transfer a hydride to the substrate methenyl-H4MPT+, thus forming methylene-H4MPT. In the past decade, chemists, inspired by the elegant organometallic chemistry inherent to the FeGP cofactor, have synthesized a number of faithful structural models. However, functional systems are still relatively limited and often rely on abiological ligands or metal centers that obfuscate a direct correlation to nature's design.Our group has developed a bioinspired suite of synthetic analogues of Hmd to better understand the effects of structure on the stability and functionality of the Hmd active site, with a special emphasis on using a scaffold-based ligand design. This systematic approach has contributed to a deeper understanding of the unique ligand array of [Fe]-hydrogenase in nature and has ultimately resulted in the first functional synthetic models without the aid of abiological ligands. This Account reviews the reactivity of the functional anthracene-scaffolded synthetic models developed by our group in the context of current mechanistic understanding drawn from both protein crystallography and computational studies. Furthermore, we introduce a novel thermodynamic framework to place the reactivity of our model systems in context and provide an outlook on the future study of [Fe]-hydrogenase synthetic models through both a structural and functional lens.
Collapse
Affiliation(s)
- Spencer A. Kerns
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael J. Rose
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
46
|
Hasegawa E, Yoshioka N, Tanaka T, Nakaminato T, Oomori K, Ikoma T, Iwamoto H, Wakamatsu K. Sterically Regulated α-Oxygenation of α-Bromocarbonyl Compounds Promoted Using 2-Aryl-1,3-dimethylbenzimidazolines and Air. ACS OMEGA 2020; 5:7651-7665. [PMID: 32280909 PMCID: PMC7144160 DOI: 10.1021/acsomega.0c00509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/05/2020] [Indexed: 05/08/2023]
Abstract
A debrominative oxygenation protocol has been developed for the conversion of α-bromo-α,α-dialkyl-substituted carbonyl compounds to their corresponding α-hydroxy analogues. For example, stirring a solution of α-bromoisobutyrophenone and 2-aryl-1,3-dimethylbenzimidazoline (BIH-Ar) at room temperature under an air atmosphere leads to the efficient formation of α-hydroperoxyisobutyrophenone, which can be converted to α-hydroxyisobutyrophenone using Me2S reduction. In contrast, reaction of α-bromoacetophenone under the same conditions produces the α-hydrogenated product acetophenone. α-Keto-alkyl and benzimidazolyl radicals (BI•-Ar), generated via dissociative electron transfer from BIH-Ar to α-bromoketone substrates, serve as key intermediates in the oxidation and reduction processes. The dramatic switch from hydrogenation to oxygenation is attributed to a steric effect of α-alkyl substituents, which causes hydrogen atom abstraction from sterically crowded BIH-Ar to α-keto-alkyl radicals to be slow and enable preferential reaction with molecular oxygen. Generation of the α-keto-alkyl radical and BI•-Ar intermediates in these process and their sterically governed hydrogen atom transfer reactions are supported by results arising from DFT calculations. Moreover, an electron spin resonance study showed that visible light irradiation of phenyl benzimidazoline (BIH-Ph) in the presence of molecular oxygen produces the benzimidazolyl radical (BI•-Ph). The addition of thiophenol into the reaction of α-bromoisobutyrophenone and BIH-Ph predominantly produced α-phenylthiolated isobutyrophenone even if a high concentration of molecular oxygen exists. Furthermore, the developed protocol was applied to other α-bromo-α,α-dialkylated carbonyl compounds.
Collapse
Affiliation(s)
- Eietsu Hasegawa
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
- E-mail:
| | - Naoki Yoshioka
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tsukasa Tanaka
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Taisei Nakaminato
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kazuki Oomori
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tadaaki Ikoma
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kan Wakamatsu
- Department
of Chemistry, Faculty of Science, Okayama
University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
47
|
Hasegawa E, Tanaka T, Izumiya N, Kiuchi T, Ooe Y, Iwamoto H, Takizawa SY, Murata S. Protocol for Visible-Light-Promoted Desulfonylation Reactions Utilizing Catalytic Benzimidazolium Aryloxide Betaines and Stoichiometric Hydride Donor Reagents. J Org Chem 2020; 85:4344-4353. [PMID: 32073264 DOI: 10.1021/acs.joc.0c00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An unprecedented photocatalytic system consisting of benzimidazolium aryloxide betaines (BI+-ArO-) and stoichiometric hydride reducing reagents was developed for carrying out desulfonylation reactions of N-sulfonyl-indoles, -amides, and -amines, and α-sulfonyl ketones. Measurements of absorption spectra and cyclic voltammograms as well as density functional theory (DFT) calculations were carried out to gain mechanistic information. In the catalytic system, visible-light-activated benzimidazoline aryloxides (BIH-ArO-), generated in situ by hydride reduction of the corresponding betaines BI+-ArO-, donate both an electron and a hydrogen atom to the substrates. A modified protocol was also developed so that a catalytic quantity of more easily prepared hydroxyaryl benzimidazolines (BIH-ArOH) is used along with a stoichiometric hydride donor to promote the photochemical desulfonylation reactions.
Collapse
Affiliation(s)
- Eietsu Hasegawa
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tsukasa Tanaka
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Norihiro Izumiya
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Takehiro Kiuchi
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Yuuki Ooe
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Shigeru Murata
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
48
|
Zhang J, Yang JD, Cheng JP. Diazaphosphinanes as hydride, hydrogen atom, proton or electron donors under transition-metal-free conditions: thermodynamics, kinetics, and synthetic applications. Chem Sci 2020; 11:3672-3679. [PMID: 34094055 PMCID: PMC8152589 DOI: 10.1039/c9sc05883d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Exploration of new hydrogen donors is in large demand in hydrogenation chemistry. Herein, we developed a new 1,3,2-diazaphosphinane 1a, which can serve as a hydride, hydrogen atom or proton donor without transition-metal mediation. The thermodynamics and kinetics of these three pathways of 1a, together with those of its analog 1b, were investigated in acetonitrile. It is noteworthy that, the reduction potentials (Ered) of the phosphenium cations 1a-[P]+ and 1b-[P]+ are extremely low, being −1.94 and −2.39 V (vs. Fc+/0), respectively, enabling corresponding phosphinyl radicals to function as neutral super-electron-donors. Kinetic studies revealed an extraordinarily large kinetic isotope effect KIE(1a) of 31.3 for the hydrogen atom transfer from 1a to the 2,4,6-tri-(tert-butyl)-phenoxyl radical, implying a tunneling effect. Furthermore, successful applications of these diverse P–H bond energetic parameters in organic syntheses were exemplified, shedding light on more exploitations of these versatile and powerful diazaphosphinane reagents in organic chemistry. A new 1,3,2-diazaphosphinane, serving as a formal hydride, hydrogen-atom or proton donor without transition-metal mediation was exploited thermodynamically and kinetically. And, its promising potentials in versatile syntheses have been demonstrated.![]()
Collapse
Affiliation(s)
- Jingjing Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Jin-Dong Yang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Jin-Pei Cheng
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University Beijing 100084 China .,State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
49
|
Sampaio RN, Grills DC, Polyansky DE, Szalda DJ, Fujita E. Unexpected Roles of Triethanolamine in the Photochemical Reduction of CO2 to Formate by Ruthenium Complexes. J Am Chem Soc 2019; 142:2413-2428. [DOI: 10.1021/jacs.9b11897] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Renato N. Sampaio
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - David C. Grills
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Dmitry E. Polyansky
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - David J. Szalda
- Department of Natural Science, Baruch College, The City University of New York (CUNY), New York, New York 10010, United States
| | - Etsuko Fujita
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
50
|
Drover MW, Schild DJ, Oyala PH, Peters JC. Snapshots of a Migrating H‐Atom: Characterization of a Reactive Iron(III) Indenide Hydride and its Nearly Isoenergetic Ring‐Protonated Iron(I) Isomer. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Marcus W. Drover
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Dirk J. Schild
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Paul H. Oyala
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Jonas C. Peters
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| |
Collapse
|