1
|
Ribeiro JA, Silva AF, Girault HH, Pereira CM. Electroanalytical applications of ITIES - A review. Talanta 2024; 280:126729. [PMID: 39180876 DOI: 10.1016/j.talanta.2024.126729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Over the last decades, the interface between two immiscible electrolyte solutions (ITIES) attracted considerable attention of the scientific community due to their vast applications, such as extraction, catalysis, partition studies and sensing. The aim of this Review is to highlight the potential of electrochemistry at the ITIES for analytical purposes, focusing on ITIES-based sensors for detection and quantification of chemically and biologically relevant (bio)molecules. We start by addressing the evolution of ITIES in terms of number of publications over the years along with an overview of their main applications (Chapter 1). Then, we provide a general historical perspective about pioneer voltammetric studies at water/oil systems (Chapter 2). After that, we discuss the most impacting improvements on ITIES sensing systems from both perspectives, set-up design (interface stabilization and miniaturization, selection of the organic solvent, etc.) and optimization of experimental conditions to improve selectivity and sensitivity (Chapter 3). In Chapter 4, we discuss the analytical applications of ITIES for electrochemical sensing of several types of analytes, including drugs, pesticides, proteins, among others. Finally, we highlight the present achievements of ITIES as analytical tool and provide future challenges and perspectives for this technology (Chapter 5).
Collapse
Affiliation(s)
- José A Ribeiro
- CIQUP/Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal.
| | - A Fernando Silva
- CIQUP/Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal
| | - H H Girault
- Institut des Sciences et Ingénierie Chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland
| | - Carlos M Pereira
- CIQUP/Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal.
| |
Collapse
|
2
|
Huang SH, Parandhaman M, Jyothi Ravi M, Janda DC, Amemiya S. Nanoscale interactions of arginine-containing dipeptide repeats with nuclear pore complexes as measured by transient scanning electrochemical microscopy. Chem Sci 2024; 15:d4sc05063k. [PMID: 39246336 PMCID: PMC11375788 DOI: 10.1039/d4sc05063k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
The nuclear pore complex (NPC) plays imperative biological and biomedical roles as the sole gateway for molecular transport between the cytoplasm and nucleus of eukaryotic cells. The proteinous nanopore, however, can be blocked by arginine-containing polydipeptide repeats (DPRs) of proteins resulting from the disordered C9orf72 gene as a potential cause of serious neurological diseases. Herein, we report the new application of transient scanning electrochemical microscopy (SECM) to quantitatively characterize DPR-NPC interactions for the first time. Twenty repeats of neurotoxic glycine-arginine and proline-arginine in the NPC are quantified to match the number of phenylalanine-glycine (FG) units in hydrophobic transport barriers of the nanopore. The 1 : 1 stoichiometry supports the hypothesis that the guanidinium residue of a DPR molecule engages in cation-π interactions with the aromatic residue of an FG unit. Cation-π interactions, however, are too weak to account for the measured free energy of DPR transfer from water into the NPC. The DPR transfer is thermodynamically as favorable as the transfer of nuclear transport receptors, which is attributed to hydrophobic interactions as hypothesized generally for NPC-mediated macromolecular transport. Kinetically, the DPRs are trapped by FG units for much longer than the physiological receptors, thereby blocking the nanopore. Significantly, the novel mechanism of toxicity implies that the efficient and safe nuclear import of genetic therapeutics requires strong association with and fast dissociation from the NPC. Moreover, this work demonstrates the unexplored power of transient SECM to determine the thermodynamics and kinetics of biological membrane-molecule interactions.
Collapse
Affiliation(s)
- Siao-Han Huang
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Moghitha Parandhaman
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Manu Jyothi Ravi
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Donald C Janda
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
3
|
Chen R, Pathirathna P, Balla RJ, Kim J, Amemiya S. Nanoscale Quantitative Imaging of Single Nuclear Pore Complexes by Scanning Electrochemical Microscopy. Anal Chem 2024; 96:10765-10771. [PMID: 38904303 PMCID: PMC11223102 DOI: 10.1021/acs.analchem.4c01890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
The nuclear pore complex (NPC) is a proteinaceous nanopore that solely and selectively regulates the molecular transport between the cytoplasm and nucleus of a eukaryotic cell. The ∼50 nm-diameter pore of the NPC perforates the double-membrane nuclear envelope to mediate both passive and facilitated molecular transport, thereby playing paramount biological and biomedical roles. Herein, we visualize single NPCs by scanning electrochemical microscopy (SECM). The high spatial resolution is accomplished by employing ∼25 nm-diameter ion-selective nanopipets to monitor the passive transport of tetrabutylammonium at individual NPCs. SECM images are quantitatively analyzed by employing the finite element method to confirm that this work represents the highest-resolution nanoscale SECM imaging of biological samples. Significantly, we apply the powerful imaging technique to address the long-debated origin of the central plug of the NPC. Nanoscale SECM imaging demonstrates that unplugged NPCs are more permeable to the small probe ion than are plugged NPCs. This result supports the hypothesis that the central plug is not an intrinsic transporter, but is an impermeable macromolecule, e.g., a ribonucleoprotein, trapped in the nanopore. Moreover, this result also supports the transport mechanism where the NPC is divided into the central pathway for RNA export and the peripheral pathway for protein import to efficiently mediate the bidirectional traffic.
Collapse
Affiliation(s)
- Ran Chen
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- School
of Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| | - Pavithra Pathirathna
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry and Chemical Engineering, Florida
Institute of Technology, Melbourne, Florida 32901, United States
| | - Ryan J. Balla
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jiyeon Kim
- Department
of Chemistry, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Shigeru Amemiya
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
4
|
Huang SH, Amemiya S. Transient theory for scanning electrochemical microscopy of biological membrane transport: uncovering membrane-permeant interactions. Analyst 2024; 149:3115-3122. [PMID: 38647017 PMCID: PMC11131039 DOI: 10.1039/d4an00411f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Scanning electrochemical microscopy (SECM) has emerged as a powerful method to quantitatively investigate the transport of molecules and ions across various biological membranes as represented by living cells. Advantageously, SECM allows for the in situ and non-destructive imaging and measurement of high membrane permeability under simple steady-state conditions, thereby facilitating quantitative data analysis. The SECM method, however, has not provided any information about the interactions of a transported species, i.e., a permeant, with a membrane through its components, e.g., lipids, channels, and carriers. Herein, we propose theoretically that SECM enables the quantitative investigation of membrane-permeant interactions by employing transient conditions. Specifically, we model the membrane-permeant interactions based on a Langmuir-type isotherm to define the strength and kinetics of the interactions as well as the concentration of interaction sites. Finite element simulation predicts that each of the three parameters uniquely affects the chronoamperometric current response of an SECM tip to a permeant. Significantly, this prediction implies that all three parameters are determinable from an experimental chronoamperometric response of the SECM tip. Complimentarily, the steady-state current response of the SECM tip yields the overall membrane permeability based on the combination of the three parameters. Interestingly, our simulation also reveals the optimum strength of membrane-permeant interactions to maximize the transient flux of the permeant from the membrane to the tip.
Collapse
Affiliation(s)
- Siao-Han Huang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
5
|
Zhang Y, Liu J, Mao X, Fan H, Li F, Wang S, Li J, Li M, Zuo X. Reconstruction of Vesicle Assemblies with DNA Nanorulers for Resolving Heterogeneity of Vesicles in Live Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308344. [PMID: 37921116 DOI: 10.1002/adma.202308344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Nanoscale vesicles such as synaptic vesicles play a pivotal role in efficient interneuronal communications in vivo. However, the coexistence of single vesicle and vesicle clusters in living cells increases the heterogeneity of vesicle populations, which largely complicates the quantitative analysis of the vesicles. The high spatiotemporal monitoring of vesicle assemblies is currently incompletely resolved. Here, this work uses synthetic vesicles and DNA nanorulers to reconstruct in vitro the vesicle assemblies that mimic vesicle clusters in living cells. DNA nanorulers program the lateral distance of vesicle assemblies from 3 to 10 nm. This work uses the carbon fiber nanoelectrode (CFNE) to amperometric monitor artificial vesicle assemblies with sub-10 nm interspaces, and obtain a larger proportion of complex events. This work resolves the heterogeneity of individual vesicle release kinetics in PC12 cells with the temporal resolution down to ≈0.1 ms. This work further analyzes the aggregation state of intracellular vesicles and the exocytosis of living cells with electrochemical vesicle cytometry. The results indicate that the exocytosis of vesicle clusters is critically dependent on the size of clusters. This technology has the potential as a tool to shed light on the heterogeneity analysis of vesicle populations.
Collapse
Affiliation(s)
- Yueyue Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiangbo Liu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hongxuan Fan
- Shanghai Soong Ching Ling School, Shanghai, 201700, China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shaopeng Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiang Li
- Institute of Materials Biology, Shanghai University, Shanghai, 200444, China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
6
|
Huang K, Wang Y, Qin Z, Liu H, Zhang H, Wang J, Li X, Liu X, Jiang H, Wang X. Ultrafast Subcellular Biolabeling and Bioresponsive Real-Time Monitoring for Targeting Cancer Theranostics. ACS Sens 2023; 8:3563-3573. [PMID: 37697622 DOI: 10.1021/acssensors.3c01210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Cell heterogeneity poses a formidable challenge for tumor theranostics, requiring high-resolution strategies for intercellular bioanalysis between single cells. Nanoelectrode-based electrochemical analysis has attracted much attention due to its advantages of label-free characteristics, relatively low cost, and ultra-high resolution for single-cell analysis. Here, we have designed and developed a subcellular biolabeling and bioresponsive real-time monitoring strategy for precise bioimaging-guided cancer diagnosis and theranostics. Our observations revealed the apparent intracellular migration of biosynthetic Au nanoclusters (Au NCs) at different subcellular locations, i.e., from the mitochondria to the mitochondrion-free region in the cytoplasm, which may be helpful for controlling over the biosynthesis of Au NCs. Considering the precise biolabeling advantage of the intracellular biosynthetic Au NCs for biomedical imaging of cancers, it is important to realize the biosynthetic Au NC-enabled precise control in real-time theranostics of cancer cells. Therefore, this work raises the possibility to achieve subcellular monitoring of H2O2 for targeting cancer theranostics, thereby providing a new way to explore the underlying mechanism and imaging-guided tumor theranostics.
Collapse
Affiliation(s)
- Ke Huang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yihan Wang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhaojian Qin
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hao Liu
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hao Zhang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jinpeng Wang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xintong Li
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
7
|
Huang SH, Parandhaman M, Farnia S, Kim J, Amemiya S. Nanoelectrochemistry at liquid/liquid interfaces for analytical, biological, and material applications. Chem Commun (Camb) 2023; 59:9575-9590. [PMID: 37458703 PMCID: PMC10416082 DOI: 10.1039/d3cc01982a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Herein, we feature our recent efforts toward the development and application of nanoelectrochemistry at liquid/liquid interfaces, which are also known as interfaces between two immiscible electrolyte solutions (ITIES). Nanopipets, nanopores, and nanoemulsions are developed to create the nanoscale ITIES for the quantitative electrochemical measurement of ion transfer, electron transfer, and molecular transport across the interface. The nanoscale ITIES serves as an electrochemical nanosensor to enable the selective detection of various ions and molecules as well as high-resolution chemical imaging based on scanning electrochemical microscopy. The powerful nanoelectroanalytical methods will be useful for biological and material applications as illustrated by in situ studies of solid-state nanopores, nuclear pore complexes, living bacteria, and advanced nanoemulsions. These studies provide unprecedented insights into the chemical reactivity of important biological and material systems even at the single nanostructure level.
Collapse
Affiliation(s)
- Siao-Han Huang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | | | - Solaleh Farnia
- Department of Chemistry, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Jiyeon Kim
- Department of Chemistry, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
8
|
Two-photon fluorescence imaging and specifically biosensing of norepinephrine on a 100-ms timescale. Nat Commun 2023; 14:1419. [PMID: 36918539 PMCID: PMC10014876 DOI: 10.1038/s41467-023-36869-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Norepinephrine (NE) is a key neurotransmitter in the central nervous system of organisms; however, specifically tracking the transient NE dynamics with high spatiotemporal resolution in living systems remains a great challenge. Herein, we develop a small molecular fluorescent probe that can precisely anchor on neuronal cytomembranes and specifically respond to NE on a 100-ms timescale. A unique dual acceleration mechanism of molecular-folding and water-bridging is disclosed, which boosts the reaction kinetics by ˃105 and ˃103 times, respectively. Benefiting from its excellent spatiotemporal resolution, the probe is applied to monitor NE dynamics at the single-neuron level, thereby, successfully snapshotting the fast fluctuation of NE levels at neuronal cytomembranes within 2 s. Moreover, two-photon fluorescence imaging of acute brain tissue slices reveals a close correlation between downregulated NE levels and Alzheimer's disease pathology as well as antioxidant therapy.
Collapse
|
9
|
Da Y, Luo S, Tian Y. Real-Time Monitoring of Neurotransmitters in the Brain of Living Animals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:138-157. [PMID: 35394736 DOI: 10.1021/acsami.2c02740] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Neurotransmitters, as important chemical small molecules, perform the function of neural signal transmission from cell to cell. Excess concentrations of neurotransmitters are often closely associated with brain diseases, such as Alzheimer's disease, depression, schizophrenia, and Parkinson's disease. On the other hand, the release of neurotransmitters under the induced stimulation indicates the occurrence of reward-related behaviors, including food and drug addiction. Therefore, to understand the physiological and pathological functions of neurotransmitters, especially in complex environments of the living brain, it is urgent to develop effective tools to monitor their dynamics with high sensitivity and specificity. Over the past 30 years, significant advances in electrochemical sensors and optical probes have brought new possibilities for studying neurons and neural circuits by monitoring the changes in neurotransmitters. This Review focuses on the progress in the construction of sensors for in vivo analysis of neurotransmitters in the brain and summarizes current attempts to address key issues in the development of sensors with high selectivity, sensitivity, and stability. Combined with the latest advances in technologies and methods, several strategies for sensor construction are provided for recording chemical signal changes in the complex environment of the brain.
Collapse
Affiliation(s)
- Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
10
|
Wu F, Yu P, Mao L. Multi-Spatiotemporal Probing of Neurochemical Events by Advanced Electrochemical Sensing Methods. Angew Chem Int Ed Engl 2023; 62:e202208872. [PMID: 36284258 DOI: 10.1002/anie.202208872] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/05/2022]
Abstract
Neurochemical events involving biosignals of different time and space dimensionalities constitute the complex basis of neurological functions and diseases. In view of this fact, electrochemical measurements enabling real-time quantification of neurochemicals at multiple levels of spatiotemporal resolution can provide informative clues to decode the molecular networks bridging vesicles and brains. This Minireview focuses on how scientific questions regarding the properties of single vesicles, neurotransmitter release kinetics, interstitial neurochemical dynamics, and multisignal interconnections in vivo have driven the design of electrochemical nano/microsensors, sensing interface engineering, and signal/data processing. An outlook for the future frontline in this realm will also be provided.
Collapse
Affiliation(s)
- Fei Wu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
11
|
Micro- and nano-devices for electrochemical sensing. Mikrochim Acta 2022; 189:459. [DOI: 10.1007/s00604-022-05548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022]
Abstract
AbstractElectrode miniaturization has profoundly revolutionized the field of electrochemical sensing, opening up unprecedented opportunities for probing biological events with a high spatial and temporal resolution, integrating electrochemical systems with microfluidics, and designing arrays for multiplexed sensing. Several technological issues posed by the desire for downsizing have been addressed so far, leading to micrometric and nanometric sensing systems with different degrees of maturity. However, there is still an endless margin for researchers to improve current strategies and cope with demanding sensing fields, such as lab-on-a-chip devices and multi-array sensors, brain chemistry, and cell monitoring. In this review, we present current trends in the design of micro-/nano-electrochemical sensors and cutting-edge applications reported in the last 10 years. Micro- and nanosensors are divided into four categories depending on the transduction mechanism, e.g., amperometric, impedimetric, potentiometric, and transistor-based, to best guide the reader through the different detection strategies and highlight major advancements as well as still unaddressed demands in electrochemical sensing.
Graphical Abstract
Collapse
|
12
|
Zhang J, Liu Y, Li Y, Zhu T, Qiu J, Xu F, Zhang H, Li F. In Situ and Quantitatively Imaging of Heat-Induced Oxidative State and Oxidative Damage of Living Neurons Using Scanning Electrochemical Microscopy. SMALL METHODS 2022; 6:e2200689. [PMID: 36373714 DOI: 10.1002/smtd.202200689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Central nervous system is sensitive and vulnerable to heat. Oxidative state and oxidative damage of neurons under heat stress are vital for understanding early consequences and mechanisms of heat-related neuronal injury, which remains elusive partly due to the technical challenge of in situ and quantitative monitoring methods. Herein, a temperature-controlled scanning electrochemical microscopy (SECM) platform with programmable pulse potential and depth scan modes is developed for in situ and quantitatively monitoring of oxygen consumption, extracellular hydrogen peroxide level, and cell membrane permeability of neurons under thermal microenvironment of 37-42 °C. The SECM results show that neuronal oxygen consumption reaches a maximum at 40 °C and then decreases, extracellular H2 O2 level increases from 39 °C, and membrane permeability increases from 2.0 ± 0.6 × 10-5 to 7.2 ± 0.8 × 10-5 m s-1 from 39 to 42 °C. The therapeutic effect on oxidative damage of neurons under hyperthermia conditions (40-42 °C) is further evaluated by SECM and fluorescence methods, which can be partially alleviated by the potent antioxidant edaravone. This work realizes in situ and quantitatively observing the heat-induced oxidative state and oxidative damage of living neurons using SECM for the first time, which results can contribute to a better understanding of the heat-related cellular injury mechanism.
Collapse
Affiliation(s)
- Junjie Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yulin Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yabei Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tong Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Department of Cardiovasology, Xidian Group Hospital, Xi'an, 710077, P. R. China
| | - Jinbin Qiu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hua Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
13
|
Sciurti E, Biscaglia F, Prontera C, Giampetruzzi L, Blasi L, Francioso L. Nanoelectrodes for Intracellular and Intercellular electrochemical detection: working principles, fabrication techniques and applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Jetmore HD, Anupriya ES, Cress TJ, Shen M. Interface between Two Immiscible Electrolyte Solutions Electrodes for Chemical Analysis. Anal Chem 2022; 94:16519-16527. [DOI: 10.1021/acs.analchem.2c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Henry David Jetmore
- University of Illinois at Urbana−Champaign, Urbana, Illinois61801, United States
| | | | - Tanner Joe Cress
- University of Illinois at Urbana−Champaign, Urbana, Illinois61801, United States
| | - Mei Shen
- University of Illinois at Urbana−Champaign, Urbana, Illinois61801, United States
| |
Collapse
|
15
|
Gwon HJ, Lim D, Nam Y, Ahn HS. Quadruple nanoelectrode assembly for simultaneous analysis of multiple redox species and its application to multi-channel scanning electrochemical microscopy. Anal Chim Acta 2022; 1226:340287. [DOI: 10.1016/j.aca.2022.340287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022]
|
16
|
Shao Z, Chang Y, Venton BJ. Carbon microelectrodes with customized shapes for neurotransmitter detection: A review. Anal Chim Acta 2022; 1223:340165. [PMID: 35998998 PMCID: PMC9867599 DOI: 10.1016/j.aca.2022.340165] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 01/26/2023]
Abstract
Carbon is a popular electrode material for neurotransmitter detection due to its good electrochemical properties, high biocompatibility, and inert chemistry. Traditional carbon electrodes, such as carbon fibers, have smooth surfaces and fixed shapes. However, newer studies customize the shape and nanostructure the surface to enhance electrochemistry for different applications. In this review, we show how changing the structure of carbon electrodes with methods such as chemical vapor deposition (CVD), wet-etching, direct laser writing (DLW), and 3D printing leads to different electrochemical properties. The customized shapes include nanotips, complex 3D structures, porous structures, arrays, and flexible sensors with patterns. Nanostructuring enhances sensitivity and selectivity, depending on the carbon nanomaterial used. Carbon nanoparticle modifications enhance electron transfer kinetics and prevent fouling for neurochemicals that are easily polymerized. Porous electrodes trap analyte momentarily on the scale of an electrochemistry experiment, leading to thin layer electrochemical behavior that enhances secondary peaks from chemical reactions. Similar thin layer cell behavior is observed at cavity carbon nanopipette electrodes. Nanotip electrodes facilitate implantation closer to the synapse with reduced tissue damage. Carbon electrode arrays are used to measure from multiple neurotransmitter release sites simultaneously. Custom-shaped carbon electrodes are enabling new applications in neuroscience, such as distinguishing different catecholamines by secondary peaks, detection of vesicular release in single cells, and multi-region measurements in vivo.
Collapse
Affiliation(s)
- Zijun Shao
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA
| | - Yuanyu Chang
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA
| | - B Jill Venton
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA.
| |
Collapse
|
17
|
Olejnik A, Ficek M, Szkodo M, Stanisławska A, Karczewski J, Ryl J, Dołęga A, Siuzdak K, Bogdanowicz R. Tailoring Diffusional Fields in Zwitterion/Dopamine Copolymer Electropolymerized at Carbon Nanowalls for Sensitive Recognition of Neurotransmitters. ACS NANO 2022; 16:13183-13198. [PMID: 35868019 PMCID: PMC9413423 DOI: 10.1021/acsnano.2c06406] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The importance of neurotransmitter sensing in the diagnosis and treatment of many psychological illnesses and neurodegenerative diseases is non-negotiable. For electrochemical sensors to become widespread and accurate, a long journey must be undertaken for each device, from understanding the materials at the molecular level to real applications in biological fluids. We report a modification of diamondized boron-doped carbon nanowalls (BCNWs) with an electropolymerized polydopamine/polyzwitterion (PDA|PZ) coating revealing tunable mechanical and electrochemical properties. Zwitterions are codeposited with PDA and noncovalently incorporated into a structure. This approach causes a specific separation of the diffusion fields generated by each nanowall during electrochemical reactions, thus increasing the contribution of the steady-state currents in the amperometric response. This phenomenon has a profound effect on the sensing properties, leading to a 4-fold enhancement of the sensitivity (3.1 to 14.3 μA cm-2 μM-1) and a 5-fold decrease of the limit of detection (505 to 89 nM) in comparison to the pristine BCNWs. Moreover, as a result of the antifouling capabilities of the incorporated zwitterions, this enhancement is preserved in bovine serum albumin (BSA) with a high protein concentration. The presence of zwitterion facilitates the transport of dopamine in the direction of the electrode by intermolecular interactions such as cation-π and hydrogen bonds. On the other hand, polydopamine units attached to the surface form molecular pockets driven by hydrogen bonds and π-π interactions. As a result, the intermediate state of dopamine-analyte oxidation is stabilized, leading to the enhancement of the sensing properties.
Collapse
Affiliation(s)
- Adrian Olejnik
- Department
of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications
and Informatics, Gdańsk University
of Technology, Narutowicza
11/12 St., 80-233 Gdańsk, Poland
- Centre
for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow
Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland
| | - Mateusz Ficek
- Department
of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications
and Informatics, Gdańsk University
of Technology, Narutowicza
11/12 St., 80-233 Gdańsk, Poland
| | - Marek Szkodo
- Institute
of Manufacturing and Materials Technology, Faculty of Mechanical Engineering
and Ship Technology, Gdańsk University
of Technology, Narutowicza
11/12 St., 80-233 Gdańsk, Poland
| | - Alicja Stanisławska
- Institute
of Manufacturing and Materials Technology, Faculty of Mechanical Engineering
and Ship Technology, Gdańsk University
of Technology, Narutowicza
11/12 St., 80-233 Gdańsk, Poland
| | - Jakub Karczewski
- Institute
of Nanotechnology and Materials Engineering and Advanced Materials
Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Jacek Ryl
- Institute
of Nanotechnology and Materials Engineering and Advanced Materials
Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Anna Dołęga
- Department
of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland
| | - Katarzyna Siuzdak
- Centre
for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow
Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland
| | - Robert Bogdanowicz
- Department
of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications
and Informatics, Gdańsk University
of Technology, Narutowicza
11/12 St., 80-233 Gdańsk, Poland
| |
Collapse
|
18
|
Zhang Y, Liu J, Jing X, Li F, Mao X, Li M. Monitoring of Intracellular Vesicles in Cultured Neurons at Different Growth Stages Using Intracellular Vesicle Electrochemical Cytometry. ELECTROANAL 2022. [DOI: 10.1002/elan.202100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yueyue Zhang
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Jiangbo Liu
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Xinxin Jing
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Fan Li
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Xiuhai Mao
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Min Li
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
19
|
Hesari M, Jia R, Mirkin MV. Metal Organic Framework (MOF) Based Electrochemical Nanosensor for Hydrogen Peroxide. ChemElectroChem 2022. [DOI: 10.1002/celc.202200373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mahdi Hesari
- CUNY Queens College: Queens College Chemistry & Biochemistry UNITED STATES
| | - Rui Jia
- CUNY Queens College: Queens College Chemistry & Biochemistry UNITED STATES
| | - Michael V. Mirkin
- Queens College Department of Chemistry and Biochemistry 65-30 Kissena Blvd 11367 Flushing UNITED STATES
| |
Collapse
|
20
|
Liu YL, Zhao YX, Li YB, Ye ZY, Zhang JJ, Zhou Y, Gao TY, Li F. Recent Advances of Nanoelectrodes for Single-Cell Electroanalysis: From Extracellular, Intercellular to Intracellular. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00223-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Lork AA, Vo KLL, Phan NTN. Chemical Imaging and Analysis of Single Nerve Cells by Secondary Ion Mass Spectrometry Imaging and Cellular Electrochemistry. Front Synaptic Neurosci 2022; 14:854957. [PMID: 35651734 PMCID: PMC9149580 DOI: 10.3389/fnsyn.2022.854957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
A nerve cell is a unit of neuronal communication in the nervous system and is a heterogeneous molecular structure, which is highly mediated to accommodate cellular functions. Understanding the complex regulatory mechanisms of neural communication at the single cell level requires analytical techniques with high sensitivity, specificity, and spatial resolution. Challenging technologies for chemical imaging and analysis of nerve cells will be described in this review. Secondary ion mass spectrometry (SIMS) allows for non-targeted and targeted molecular imaging of nerve cells and synapses at subcellular resolution. Cellular electrochemistry is well-suited for quantifying the amount of reactive chemicals released from living nerve cells. These techniques will also be discussed regarding multimodal imaging approaches that have recently been shown to be advantageous for the understanding of structural and functional relationships in the nervous system. This review aims to provide an insight into the strengths, limitations, and potentials of these technologies for synaptic and neuronal analyses.
Collapse
Affiliation(s)
| | | | - Nhu T. N. Phan
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Xu P, Muhamad Rapidi HI, Ahmed S, Abel DK, Garcia KJ, Chen R, Iwai NT, Shen M. PEDOT/PVC-modified amperometric carbon electrodes for acetylcholine detection. Chem Commun (Camb) 2022; 58:13218-13221. [DOI: 10.1039/d2cc03946j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Selective detection of acetylcholine (ACh) with PEDOT/PVC-modified amperometric carbon electrodes.
Collapse
Affiliation(s)
- Peibo Xu
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hazirah Ismah Muhamad Rapidi
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sidrah Ahmed
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Daniel Kenneth Abel
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kiersten Jade Garcia
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ran Chen
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicholas Toshio Iwai
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mei Shen
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
23
|
Jetmore HD, Milton CB, Anupriya ES, Chen R, Xu K, Shen M. Detection of Acetylcholine at Nanoscale NPOE/Water Liquid/Liquid Interface Electrodes. Anal Chem 2021; 93:16535-16542. [PMID: 34846864 DOI: 10.1021/acs.analchem.1c03711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interface between two immiscible electrolyte solutions (ITIES) has become a very powerful analytical platform for sensing a diverse range of chemicals (e.g., metal ions and neurotransmitters) with the advantage of being able to detect non-redox electroactive species. The ITIES is formed between organic and aqueous phases. Organic solvent identity is crucial to the detection characteristics of the ITIES [half-wave transfer potential (E1/2), potential window range, limit of detection, transfer coefficient (α), standard heterogeneous ion-transfer rate constant (k0), etc.]. Here, we demonstrated, for the first time at the nanoscale, the detection characteristics of the NPOE/water ITIES. Linear detection of the diffusion-limited current at different concentrations of acetylcholine (ACh) was demonstrated with cyclic voltammetry (CV) and i-t amperometry. The E1/2 of ACh transfer at the NPOE/water nanoITIES was -0.342 ± 0.009 V versus the E1/2 of tetrabutylammonium (TBA+). The limit of detection of ACh at the NPOE/water nanoITIES was 37.1 ± 1.5 μM for an electrode with a radius of ∼127 nm. We also determined the ion-transfer kinetics parameters, α and k0, of TBA+ at the NPOE/water nanoITIES by fitting theoretical cyclic voltammograms to experimental voltammograms. This work lays the basis for future cellular studies using ACh detection at the nanoscale and for studies to detect other analytes. The NPOE/water ITIES offers a potential window distinct from that of the 1,2-dichloroethane (DCE)/water ITIES. This unique potential window would offer the ability to detect analytes that are not easily detected at the DCE/water ITIES.
Collapse
Affiliation(s)
- Henry D Jetmore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Conrad B Milton
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | | - Ran Chen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kerui Xu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mei Shen
- The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
24
|
Wu T, Xiong Q, Song R, Wang Q, Zhang F, He P. In situ monitoring of the effect of Cu 2+ on the membrane permeability of a single living cell with a dual-electrode tip of a scanning electrochemical microscope. Analyst 2021; 146:7257-7264. [PMID: 34734932 DOI: 10.1039/d1an01656c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here, an Au-Cu dual-electrode tip was designed to monitor the effect of Cu2+ on the membrane permeability of a single living cell in situ using scanning electrochemical microscopy. The probe approach curves (PACs) were obtained using potassium ferricyanide as a redox mediator. Meanwhile, according to the simulation, theoretical PACs could be acquired. Thus, the cell membrane permeability coefficient (Pm) values were obtained by overlapping the experimental PACs with the theoretical values. Cu2+ was directly generated by electrolyzing the Cu electrode of the dual-electrode tip to investigate its effect on the cell membrane permeability in situ. This work has potential value to improve the understanding of the mechanism of acute heavy metal damage on the cell membrane and will also help clarify the role of heavy metal ions in physiological or pathological processes.
Collapse
Affiliation(s)
- Tao Wu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China.
| | - Qiang Xiong
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China.
| | - Ranran Song
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China.
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China.
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China.
| | - Pingang He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China.
| |
Collapse
|
25
|
Zhang B, Pan N, Fan X, Lu L, Wang X. Real-time effects of Cd(II) on the cellular membrane permeability. Analyst 2021; 146:5973-5979. [PMID: 34499067 DOI: 10.1039/d1an00827g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cell membrane permeability is one of the main indicators of cytotoxicity and related to many critical biological pathways. Here, we determined the Cd2+-induced membrane permeability of human MCF-7 cells using ferrocene methanol molecular probes based on scanning electrochemical microscopy (SECM). The cell height and topography were examined with an impermeable Ru(NH3)6Cl3 probe. The membrane permeability exhibited no significant changes when the Cd2+ incubation time was less than 2 h and its concentration was less than 40 μM. The permeability increased when the Cd2+ concentration was greater than 60 μM, or when the incubation time was longer than 3 h. From the combined 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and cytoskeleton imaging experiments, it was found that the changes occurred because the cells exhibited a defensive mode and their membranes contracted when treated with a low concentration of Cd2+ for a short time. However, the cell membranes were irreversibly damaged when the cytoskeleton structures were destroyed, and the cell activities decreased at high concentrations over long periods. Interestingly, through the comparison with an x-scan study, it was found that DPV technology shows a higher performance in the detection of changes in the membrane permeability. Using a combination of cytoskeleton fluorescence imaging and cell-viability tests, the effect of the cadmium metal on the cell membrane permeability can be explored deeper and more comprehensively. This study provides a new idea for exploring the changes in the cell membrane permeability and may be helpful for rapid evaluation of cytotoxicity.
Collapse
Affiliation(s)
- Biao Zhang
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China.
| | - Na Pan
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China.
| | - Xiaoyin Fan
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China.
| | - Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China. .,Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
26
|
Shi M, Wang L, Xie Z, Zhao L, Zhang X, Zhang M. High-Content Label-Free Single-Cell Analysis with a Microfluidic Device Using Programmable Scanning Electrochemical Microscopy. Anal Chem 2021; 93:12417-12425. [PMID: 34464090 DOI: 10.1021/acs.analchem.1c02507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cellular heterogeneity and plasticity are often overlooked due to the averaged bulk assay in conventional methods. Optical imaging-based single-cell analysis usually requires specific labeling of target molecules inside or on the surface of the cell membrane, interfering with the physiological homeostasis of the cell. Scanning electrochemical microscopy (SECM), as an alternative approach, enables label-free imaging of single cells, which still confronts the challenge that the long-time scanning process is not feasible for large-scale analysis at the single-cell level. Herein, we developed a methodology combining a programmable SECM (P-SECM) with an addressable microwell array, which dramatically shortened the time consumption for the topography detection of the micropits array occupied by the polystyrene beads as well as the evaluation of alkaline phosphatase (ALP) activity of the 82 single cells compared with the traditional SECM imaging. This new arithmetic was based on the line scanning approach, enabling analysis of over 900 microwells within 1.2 h, which is 10 times faster than conventional SECM imaging. By implementing this configuration with the dual-mediator-based voltage-switching (VSM) mode, we investigated the activity of ALP, a promising marker for cancer stem cells, in hundreds of tumor and stromal cells on a single microwell device. The results discovered that not only a higher ALP activity is presented in cancer cells but also the heterogeneous distribution of kinetic constant (kf value) of ALP activity can be obtained at the single-cell level. By directly relating large numbers of addressed cells on the scalable microfluidic device to the deterministic routing of the above SECM tip, our platform holds potential as a high-content screening tool for label-free single-cell analysis.
Collapse
Affiliation(s)
- Mi Shi
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lin Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhenda Xie
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
| | - Liang Zhao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.,Centre of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.,School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Meiqin Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
27
|
Gwon HJ, Lim D, Ahn HS. Bioanalytical chemistry with scanning electrochemical microscopy. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Hyo Jin Gwon
- Department of Chemistry Institution: Yonsei University Seoul South Korea
| | - Donghoon Lim
- Department of Chemistry Institution: Yonsei University Seoul South Korea
| | - Hyun S. Ahn
- Department of Chemistry Institution: Yonsei University Seoul South Korea
| |
Collapse
|
28
|
Wang X, Xu T, Zhang Y, Gao N, Feng T, Wang S, Zhang M. In Vivo Detection of Redox-Inactive Neurochemicals in the Rat Brain with an Ion Transfer Microsensor. ACS Sens 2021; 6:2757-2762. [PMID: 34191484 DOI: 10.1021/acssensors.1c00978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electrochemical tracking of redox-inactive neurochemicals remain a challenge due to chemical inertness, almost no Faraday electron transfer for these species, and the complex brain atmosphere. In this work, we demonstrate a low-cost, simple-making liquid/liquid interface microsensor (LLIM) to monitor redox-inactive neurochemicals in the rat brain. Taking choline (Ch) as an example, based on the difference in solvation energies of Ch in cerebrospinal fluid (aqueous phase) and 1,2-dichloroethane (1,2-DCE; organic phase), Ch is recognized in the specific ion-transfer potential and distinctive ion-transfer current signals. The LLIM has an excellent response to Ch with good linearity and selectivity, and the detection limit is 0.37 μM. The LLIM can monitor the dynamics of Ch in the cortex of the rat brain by both local microinfusion and intraperitoneal injection of Ch. This work first demonstrates that the LLIM can be successfully applied in the brain and obtain electrochemical signals in such a sophisticated system, allowing one new perspective of sensing at the liquid/liquid interface for nonelectrically active substances in vivo to understand the physiological function of the brain.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Tianci Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yue Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Nan Gao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Taotao Feng
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Shujun Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
29
|
Huang L, Zhang J, Xiang Z, Wu D, Huang X, Huang X, Liang Z, Tang ZY, Deng H. Faradaic Counter for Liposomes Loaded with Potassium, Sodium Ions, or Protonated Dopamine. Anal Chem 2021; 93:9495-9504. [PMID: 34196181 DOI: 10.1021/acs.analchem.1c01336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Collisional electrochemistry between single particles and a biomimetic polarized micro-liquid/liquid interface has emerged as a novel and powerful analytical method for measurements of single particles. Using this platform, rapid detection of liposomes at the single particle level is reported herein. Individual potassium, sodium, or protonated dopamine-encapsulated (pristine or protein-decorated) liposomes collide and fuse with the polarized micro-liquid/liquid interface accompanying the release of ions, which are recorded as spike-like current transients of stochastic nature. The sizing and concentration of the liposomes can be readily estimated by quantifying the amount of encapsulated ions in individual liposomes via integrating each current spike versus time and the spike frequency, respectively. We call this type of nanosensing technology "Faradaic counter". The estimated liposome size distribution by this method is in line with the dynamic light scattering (DLS) measurements, implying that the quantized current spikes are indeed caused by the collisions of individual liposomes. The reported electrochemical sensing technology may become a viable alternative to DLS and other commercial nanoparticle analysis systems, for example, nanoparticle tracking analysis.
Collapse
Affiliation(s)
- Linhan Huang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jingcheng Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhipeng Xiang
- Key Laboratory on Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Di Wu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Xinjian Huang
- Institute of Intelligent Perception, Midea Corporate Research Center, Foshan 528311, China
| | - Xizhe Huang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhenxing Liang
- Key Laboratory on Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhen-Yu Tang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Haiqiang Deng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
30
|
Zhao H, Ma J, Zuo X, Li F. Electrochemical Analysis for Multiscale Single Entities on the Confined Interface
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Haipei Zhao
- School of Chemistry and Chemical Engineering, and Institute of Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Jinliang Ma
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Xiaolei Zuo
- School of Chemistry and Chemical Engineering, and Institute of Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
31
|
Xia J, Yang H, Mu M, Micovic N, Poskanzer KE, Monaghan JR, Clark HA. Imaging in vivo acetylcholine release in the peripheral nervous system with a fluorescent nanosensor. Proc Natl Acad Sci U S A 2021; 118:e2023807118. [PMID: 33795516 PMCID: PMC8040656 DOI: 10.1073/pnas.2023807118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The ability to monitor the release of neurotransmitters during synaptic transmission would significantly impact the diagnosis and treatment of neurological diseases. Here, we present a DNA-based enzymatic nanosensor for quantitative detection of acetylcholine (ACh) in the peripheral nervous system of living mice. ACh nanosensors consist of DNA as a scaffold, acetylcholinesterase as a recognition component, pH-sensitive fluorophores as signal generators, and α-bungarotoxin as a targeting moiety. We demonstrate the utility of the nanosensors in the submandibular ganglia of living mice to sensitively detect ACh ranging from 0.228 to 358 μM. In addition, the sensor response upon electrical stimulation of the efferent nerve is dose dependent, reversible, and we observe a reduction of ∼76% in sensor signal upon pharmacological inhibition of ACh release. Equipped with an advanced imaging processing tool, we further spatially resolve ACh signal propagation on the tissue level. Our platform enables sensitive measurement and mapping of ACh transmission in the peripheral nervous system.
Collapse
Affiliation(s)
- Junfei Xia
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA 02115
| | - Hongrong Yang
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA 02115
| | - Michelle Mu
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA 02115
| | - Nicholas Micovic
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA 02115
| | - Kira E Poskanzer
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
- Kavli Insititute for Fundamental Neuroscience, San Francisco, CA 94143
| | - James R Monaghan
- Department of Biology, College of Science, Northeastern University, Boston, MA 02115
| | - Heather A Clark
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA 02115;
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA 02115
| |
Collapse
|
32
|
Affiliation(s)
- Keke Hu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Tho D. K. Nguyen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Stefania Rabasco
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Pieter E. Oomen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
- ParaMedir B.V., 1e Energieweg 13, 9301 LK Roden, The Netherlands
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| |
Collapse
|
33
|
Liu Y, Du J, Wang M, Zhang J, Liu C, Li X. Recent Progress in Quantitatively Monitoring Vesicular Neurotransmitter Release and Storage With Micro/Nanoelectrodes. Front Chem 2021; 8:591311. [PMID: 33505953 PMCID: PMC7831278 DOI: 10.3389/fchem.2020.591311] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/20/2020] [Indexed: 01/31/2023] Open
Abstract
Exocytosis is one of the essential steps for chemical signal transmission between neurons. In this process, vesicles dock and fuse with the plasma membrane and release the stored neurotransmitters through fusion pores into the extracellular space, and all of these steps are governed with various molecules, such as proteins, ions, and even lipids. Quantitatively monitoring vesicular neurotransmitter release in exocytosis and initial neurotransmitter storage in individual vesicles is significant for the study of chemical signal transmission of the central nervous system (CNS) and neurological diseases. Electrochemistry with micro/nanoelectrodes exhibits great spatial-temporal resolution and high sensitivity. It can be used to examine the exocytotic kinetics from the aspect of neurotransmitters and quantify the neurotransmitter storage in individual vesicles. In this review, we first introduce the recent advances of single-cell amperometry (SCA) and the nanoscale interface between two immiscible electrolyte solutions (nanoITIES), which can monitor the quantity and release the kinetics of electrochemically and non-electrochemically active neurotransmitters, respectively. Then, the development and application of the vesicle impact electrochemical cytometry (VIEC) and intracellular vesicle impact electrochemical cytometry (IVIEC) and their combination with other advanced techniques can further explain the mechanism of neurotransmitter storage in vesicles before exocytosis. It has been proved that these electrochemical techniques have great potential in the field of neuroscience.
Collapse
Affiliation(s)
| | | | | | | | - Chunlan Liu
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xianchan Li
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
34
|
Fernandes DC, Reis RL, Oliveira JM. Advances in 3D neural, vascular and neurovascular models for drug testing and regenerative medicine. Drug Discov Today 2020; 26:754-768. [PMID: 33202252 DOI: 10.1016/j.drudis.2020.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/22/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Clinical trials continue to fall short regarding drugs to effectively treat brain-affecting diseases. Although there are many causes of these shortcomings, the most relevant are the inability of most therapeutic agents to cross the blood-brain barrier (BBB) and the failure to translate effects from animal models to patients. In this review, we analyze the most recent developments in BBB, neural, and neurovascular models, analyzing their impact on the drug development process by considering their quantitative and phenotypical characterization. We offer a perspective of the state-of-the-art of the models that could revolutionize the pharmaceutical industry.
Collapse
Affiliation(s)
- Diogo C Fernandes
- 3Bs Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3B's - Portuguese Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Rui L Reis
- 3Bs Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3B's - Portuguese Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3Bs Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; ICVS/3B's - Portuguese Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
| |
Collapse
|
35
|
Chen R, Xu K, Shen M. Avocado oil, coconut oil, walnut oil as true oil phase for ion transfer at nanoscale liquid/liquid interfaces. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136788] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
McCormick HK, Dick JE. Nanoelectrochemical quantification of single-cell metabolism. Anal Bioanal Chem 2020; 413:17-24. [PMID: 32915282 DOI: 10.1007/s00216-020-02899-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
At the most fundamental level, the behavior of tissue is governed by the activity of its single cells. A detailed examination of single-cell biology is necessary in order to gain a deeper understanding of disease progression. While single-cell genomics and transcriptomics are mature due to robust amplification strategies, the metabolome is difficult to quantify. Nanoelectrochemical techniques stand poised to quantify single-cell metabolism as a result of the fabrication of nanoelectrodes, which allow one to make intracellular electrochemical measurements. This article is concerned with intracellular nanoelectrochemistry, focusing on the sensitive and selective quantification of various metabolites within a single, living cell. We will review the strong literature behind this field, discuss the potential deleterious effects of passing charge inside cells, and provide future outlooks for this promising avenue of inquiry. We also present a mathematical relationship based on Faraday's Law and bulk electrolysis theory to examine the consumption of analyte within a cell due to passing charge at the nanotip.Graphical abstract.
Collapse
Affiliation(s)
- Hadley K McCormick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeffrey E Dick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
37
|
Cao Q, Shin M, Lavrik NV, Venton BJ. 3D-Printed Carbon Nanoelectrodes for In Vivo Neurotransmitter Sensing. NANO LETTERS 2020; 20:6831-6836. [PMID: 32813535 PMCID: PMC7484348 DOI: 10.1021/acs.nanolett.0c02844] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Direct laser writing, a nano 3D-printing approach, has enabled fabrication of customized carbon microelectrode sensors for neurochemical detection. However, to detect neurotransmitters in tiny biological organisms or synapses, submicrometer nanoelectrodes are required. In this work, we used 3D printing to fabricate carbon nanoelectrode sensors. Customized structures were 3D printed and then pyrolyzed, resulting in free-standing carbon electrodes with nanotips. The nanoelectrodes were insulated with atomic layer deposition of Al2O3 and the nanotips were polished by a focused ion beam to form 600 nm disks. Using fast-scan cyclic voltammetry, the electrodes successfully detected stimulated dopamine in the adult fly brain, demonstrating that they are robust and sensitive enough to use in tiny biological systems. This work is the first demonstration of 3D printing to fabricate free-standing carbon nanoelectrode sensors and will enable batch fabrication of customized nanoelectrode sensors with precise control and excellent reproducibility.
Collapse
Affiliation(s)
- Qun Cao
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Mimi Shin
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Nickolay V. Lavrik
- Center for Nanophase Material Science, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
38
|
Jia R, Mirkin MV. The double life of conductive nanopipette: a nanopore and an electrochemical nanosensor. Chem Sci 2020; 11:9056-9066. [PMID: 34123158 PMCID: PMC8163349 DOI: 10.1039/d0sc02807j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/05/2020] [Indexed: 12/29/2022] Open
Abstract
The continuing interest in nanoscale research has spurred the development of nanosensors for liquid phase measurements. These include nanopore-based sensors typically employed for detecting nanoscale objects, such as nanoparticles, vesicles and biomolecules, and electrochemical nanosensors suitable for identification and quantitative analysis of redox active molecules. In this Perspective, we discuss conductive nanopipettes (CNP) that can combine the advantages of single entity sensitivity of nanopore detection with high selectivity and capacity for quantitative analysis offered by electrochemical sensors. Additionally, the small physical size and needle-like shape of a CNP enables its use as a tip in the scanning electrochemical microscope (SECM), thus, facilitating precise positioning and localized measurements in biological systems.
Collapse
Affiliation(s)
- Rui Jia
- Department of Chemistry and Biochemistry, Queens College-CUNY Flushing NY 11367 USA
- The Graduate Center of CUNY New York NY 10016 USA
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College-CUNY Flushing NY 11367 USA
- The Graduate Center of CUNY New York NY 10016 USA
| |
Collapse
|
39
|
Suárez-Herrera MF, Scanlon MD. Quantitative Analysis of Redox-Inactive Ions by AC Voltammetry at a Polarized Interface between Two Immiscible Electrolyte Solutions. Anal Chem 2020; 92:10521-10530. [PMID: 32608226 DOI: 10.1021/acs.analchem.0c01340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The interface between two immiscible electrolyte solutions (ITIES) is ideally suited to detect redox-inactive ions by their ion transfer. Such electroanalysis, based on the Nernst-Donnan equation, has been predominantly performed using amperometry, cyclic voltammetry, or differential pulse voltammetry. Here, we introduce a new electroanalytical method based on alternating-current (AC) voltammetry with inherent advantages over traditional approaches such as avoidance of positive feedback iR compensation, a major issue for liquid|liquid electrochemical cells containing resistive organic media and interfacial areas in the cm2 and mm2 range. A theoretical background outlining the generation of the analytical signal is provided and based on extracting the component that depends on the Warburg impedance from the total impedance. The quantitative detection of a series of model redox-inactive tetraalkylammonium cations is demonstrated, with evidence provided of the transient adsorption of these cations at the interface during the course of ion transfer. Since ion transfer is diffusion-limited, by changing the voltage excitation frequency during AC voltammetry, the intensity of the Faradaic response can be enhanced at low frequencies (1 Hz) or made to disappear completely at higher frequencies (99 Hz). The latter produces an AC voltammogram equivalent to a "blank" measurement in the absence of analyte and is ideal for background subtraction. Therefore, major opportunities exist for the sensitive detection of ionic analyte when a "blank" measurement in the absence of analyte is impossible. This approach is particularly useful to deconvolute signals related to reversible electrochemical reactions from those due to irreversible processes, which do not give AC signals.
Collapse
Affiliation(s)
- Marco F Suárez-Herrera
- Departamento De Química, Facultad De Ciencias, Universidad Nacional De Colombia, Cra 30 # 45-03, Edificio 451, Bogotá, Colombia
| | - Micheál D Scanlon
- The Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| |
Collapse
|
40
|
Gorman BL, Brunet MA, Pham SN, Kraft ML. Measurement of Absolute Concentration at the Subcellular Scale. ACS NANO 2020; 14:6414-6419. [PMID: 32510923 DOI: 10.1021/acsnano.0c04285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The concentration of a pharmaceutical drug or bioactive metabolite within the target organelle influences the effects elicited by the drug or metabolite. Although the relative concentrations of many compounds of interest within subcellular compartments have been measured, measurements of absolute concentrations in the organelle remain elusive. In this Perspective, we discuss a significant advance in using nano secondary ion mass spectrometry (nanoSIMS) to measure the absolute concentration of a 13C-labeled metabolite within secretory vesicles, as reported by Thomen et al. in the April issue of ACS Nano.
Collapse
|
41
|
Chen R, Alanis K, Welle TM, Shen M. Nanoelectrochemistry in the study of single-cell signaling. Anal Bioanal Chem 2020; 412:6121-6132. [PMID: 32424795 DOI: 10.1007/s00216-020-02655-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/28/2022]
Abstract
Label-free biosensing has been the dream of scientists and biotechnologists as reported by Vollmer and Arnold (Nat Methods 5:591-596, 2008). The ability of examining living cells is crucial to cell biology as noted by Fang (Int J Electrochem 2011:460850, 2011). Chemical measurement with electrodes is label-free and has demonstrated capability of studying living cells. In recent years, nanoelectrodes of different functionality have been developed. These nanometer-sized electrodes, coupled with scanning electrochemical microscopy (SECM), have further enabled nanometer spatial resolution study in aqueous environments. Developments in the field of nanoelectrochemistry have allowed measurement of signaling species at single cells, contributing to better understanding of cell biology. Leading studies using nanoelectrochemistry of a variety of cellular signaling molecules, including redox-active neurotransmitter (e.g., dopamine), non-redox-active neurotransmitter (e.g., acetylcholine), reactive oxygen species (ROS), and reactive nitrogen species (RNS), are reviewed here.
Collapse
Affiliation(s)
- Ran Chen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Kristen Alanis
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Theresa M Welle
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Mei Shen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
42
|
Zhang XW, Hatamie A, Ewing AG. Simultaneous Quantification of Vesicle Size and Catecholamine Content by Resistive Pulses in Nanopores and Vesicle Impact Electrochemical Cytometry. J Am Chem Soc 2020; 142:4093-4097. [PMID: 32069039 PMCID: PMC7108759 DOI: 10.1021/jacs.9b13221] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We have developed the means to simultaneously
measure the physical
size and count catecholamine molecules in individual nanometer transmitter
vesicles. This is done by combining resistive pulse (RP) measurements
in a nanopore pipet and vesicle impact electrochemical cytometry (VIEC)
at an electrode as the vesicle exits the nanopore. Analysis of freshly
isolated bovine adrenal vesicles shows that the size and internal
catecholamine concentration of vesicles varies with the occurrence
of a dense core inside the vesicles. These results might benefit the
understanding about the vesicles maturation, especially involving
the “sorting by retention” process and concentration
increase of intravesicular catecholamine. The methodology is applicable
to understanding soft nanoparticle collisions on electrodes, vesicles
in exocytosis and phagocytosis, intracellular vesicle transport, and
analysis of electroactive drugs in exosomes.
Collapse
Affiliation(s)
- Xin-Wei Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Amir Hatamie
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
43
|
Abstract
Fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes (CFMEs) is a versatile electrochemical technique to probe neurochemical dynamics in vivo. Progress in FSCV methodology continues to address analytical challenges arising from biological needs to measure low concentrations of neurotransmitters at specific sites. This review summarizes recent advances in FSCV method development in three areas: (1) waveform optimization, (2) electrode development, and (3) data analysis. First, FSCV waveform parameters such as holding potential, switching potential, and scan rate have been optimized to monitor new neurochemicals. The new waveform shapes introduce better selectivity toward specific molecules such as serotonin, histamine, hydrogen peroxide, octopamine, adenosine, guanosine, and neuropeptides. Second, CFMEs have been modified with nanomaterials such as carbon nanotubes or replaced with conducting polymers to enhance sensitivity, selectivity, and antifouling properties. Different geometries can be obtained by 3D-printing, manufacturing arrays, or fabricating carbon nanopipettes. Third, data analysis is important to sort through the thousands of CVs obtained. Recent developments in data analysis include preprocessing by digital filtering, principal components analysis for distinguishing analytes, and developing automated algorithms to detect peaks. Future challenges include multisite measurements, machine learning, and integration with other techniques. Advances in FSCV will accelerate research in neurochemistry to answer new biological questions about dynamics of signaling in the brain.
Collapse
Affiliation(s)
- Pumidech Puthongkham
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
44
|
Chen R, Yang A, Chang A, Oweimrin PF, Romero J, Vichitcharoenpaisarn P, Tapia S, Ha K, Villaflor C, Shen M. A Newly Synthesized Tris(crown ether) Ionophore for Assisted Ion Transfer at NanoITIES Electrodes. ChemElectroChem 2020. [DOI: 10.1002/celc.201901997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ran Chen
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801
| | - Anna Yang
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801
| | - Albert Chang
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801
| | - Philip F. Oweimrin
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801
| | - Julian Romero
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801
| | | | - Stephanie Tapia
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801
| | - Kevin Ha
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801
| | - Christopher Villaflor
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801
| | - Mei Shen
- Department of Chemistry University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801
| |
Collapse
|
45
|
Abstract
In vivo electrochemical sensing based on implantable microelectrodes is a strong driving force of analytical neurochemistry in brain. The complex and dynamic neurochemical network sets stringent standards of in vivo electrochemical sensors including high spatiotemporal resolution, selectivity, sensitivity, and minimized disturbance on brain function. Although advanced materials and novel technologies have promoted the development of in vivo electrochemical sensors drastically, gaps with the goals still exist. This Review mainly focuses on recent attempts on the key issues of in vivo electrochemical sensors including selectivity, tissue response and sensing reliability, and compatibility with electrophysiological techniques. In vivo electrochemical methods with bare carbon fiber electrodes, of which the selectivity is achieved either with electrochemical techniques such as fast-scan cyclic voltammetry and differential pulse voltammetry or based on the physiological nature will not be reviewed. Following the elaboration of each issue involved in in vivo electrochemical sensors, possible solutions supported by the latest methodological progress will be discussed, aiming to provide inspiring and practical instructions for future research.
Collapse
Affiliation(s)
- Cong Xu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Tang Y, Yang XK, Zhang XW, Wu WT, Zhang FL, Jiang H, Liu YL, Amatore C, Huang WH. Harpagide, a natural product, promotes synaptic vesicle release as measured by nanoelectrode amperometry. Chem Sci 2019; 11:778-785. [PMID: 34123052 PMCID: PMC8146302 DOI: 10.1039/c9sc05538j] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DAergic) neurons and low level of dopamine (DA) in the midbrain. Recent studies suggested that some natural products can protect neurons against injury, but their role on neurotransmitter release and the underlying mechanisms remained unknown. In this work, nanoelectrode electrochemistry was used for the first time to quantify DA release inside single DAergic synapses. Our results unambiguously demonstrated that harpagide, a natural product, effectively enhances synaptic DA release and restores DA release at normal levels from injured neurons in PD model. These important protective and curative effects are shown to result from the fact that harpagide efficiently inhibits the phosphorylation and aggregation of α-synuclein by alleviating the intracellular reactive oxygen level, being beneficial for vesicle loading and recycling. This establishes that harpagide offers promising avenues for preventive or therapeutic interventions against PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yun Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Xiao-Ke Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Xin-Wei Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Wen-Tao Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Fu-Li Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Hong Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Yan-Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- PASTEUR, Departement de Chimie, Pcole Normale Superieure, PSL Research University, Sorbonne Universites, UPMC Univ. Paris 06, CNRS 24 rue Lhomond 75005 Paris France
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
47
|
Abdalla A, West A, Jin Y, Saylor RA, Qiang B, Peña E, Linden DJ, Nijhout HF, Reed MC, Best J, Hashemi P. Fast serotonin voltammetry as a versatile tool for mapping dynamic tissue architecture: I. Responses at carbon fibers describe local tissue physiology. J Neurochem 2019; 153:33-50. [PMID: 31419307 DOI: 10.1111/jnc.14854] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/27/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022]
Abstract
It is important to monitor serotonin neurochemistry in the context of brain disorders. Specifically, a better understanding of biophysical alterations and associated biochemical functionality within subregions of the brain will enable better of understanding of diseases such as depression. Fast voltammetric tools at carbon fiber microelectrodes provide an opportunity to make direct evoked and ambient serotonin measurements in vivo in mice. In this study, we characterize novel stimulation and measurement circuitries for serotonin analyses in brain regions relevant to psychiatric disease. Evoked and ambient serotonin in these brain areas, the CA2 region of the hippocampus and the medial prefrontal cortex, are compared to ambient and evoked serotonin in the substantia nigra pars reticulata, an area well established previously for serotonin measurements with fast voltammetry. Stimulation of a common axonal location evoked serotonin in all three brain regions. Differences are observed in the serotonin release and reuptake profiles between these three brain areas which we hypothesize to arise from tissue physiology heterogeneity around the carbon fiber microelectrodes. We validate this hypothesis mathematically and via confocal imaging. We thereby show that fast voltammetric methods can provide accurate information about local physiology and highlight implications for chemical mapping. Cover Image for this issue: doi: 10.1111/jnc.14739.
Collapse
Affiliation(s)
- Aya Abdalla
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Alyssa West
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Yunju Jin
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rachel A Saylor
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Beidi Qiang
- Department of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Edsel Peña
- Department of Statistics, University of South Carolina, Columbia, South Carolina, USA
| | - David J Linden
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Michael C Reed
- Department of Mathematics, Duke University, Durham, North Carolina, USA
| | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, Ohio, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
48
|
Shin M, Wang Y, Borgus JR, Venton BJ. Electrochemistry at the Synapse. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:297-321. [PMID: 30707593 PMCID: PMC6989097 DOI: 10.1146/annurev-anchem-061318-115434] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Electrochemical measurements of neurotransmitters provide insight into the dynamics of neurotransmission. In this review, we describe the development of electrochemical measurements of neurotransmitters and how they started with extrasynaptic measurements but now are pushing toward synaptic measurements. Traditionally, biosensors or fast-scan cyclic voltammetry have monitored extrasynaptic levels of neurotransmitters, such as dopamine, serotonin, adenosine, glutamate, and acetylcholine. Amperometry and electrochemical cytometry techniques have revealed mechanisms of exocytosis, suggesting partial release. Advances in nanoelectrodes now allow spatially resolved, electrochemical measurements in a synapse, which is only 20-100 nm wide. Synaptic measurements of dopamine and acetylcholine have been made. In this article, electrochemical measurements are also compared to optical imaging and mass spectrometry measurements, and while these other techniques provide enhanced spatial or chemical information, electrochemistry is best at monitoring real-time neurotransmission. Future challenges include combining electrochemistry with these other techniques in order to facilitate multisite and multianalyte monitoring.
Collapse
Affiliation(s)
| | | | - Jason R Borgus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA;
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA;
| |
Collapse
|
49
|
Ou Y, Buchanan AM, Witt CE, Hashemi P. Frontiers in Electrochemical Sensors for Neurotransmitter Detection: Towards Measuring Neurotransmitters as Chemical Diagnostics for Brain Disorders. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:2738-2755. [PMID: 32724337 PMCID: PMC7386554 DOI: 10.1039/c9ay00055k] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
It is extremely challenging to chemically diagnose disorders of the brain. There is hence great interest in designing and optimizing tools for direct detection of chemical biomarkers implicated in neurological disorders to improve diagnosis and treatment. Tools that are capable of monitoring brain chemicals, neurotransmitters in particular, need to be biocompatible, perform with high spatiotemporal resolution, and ensure high selectivity and sensitivity. Recent advances in electrochemical methods are addressing these criteria; the resulting devices demonstrate great promise for in vivo neurotransmitter detection. None of these devices are currently used for diagnostic purposes, however these cutting-edge technologies are promising more sensitive, selective, faster, and less invasive measurements. Via this review we highlight significant technical advances and in vivo studies, performed in the last 5 years, that we believe will facilitate the development of diagnostic tools for brain disorders.
Collapse
Affiliation(s)
- Yangguang Ou
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC
| | - Colby E. Witt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC
| |
Collapse
|
50
|
Long A, Fantozzi N, Pinet S, Genin E, Pétuya R, Bégué D, Robert V, Dutasta JP, Gosse I, Martinez A. Selective recognition of acetylcholine over choline by a fluorescent cage. Org Biomol Chem 2019; 17:5253-5257. [PMID: 31106320 DOI: 10.1039/c9ob00931k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A fluorescent hemicryptophane has been synthesized and can be used as a turn on receptor of acetylcholine. A binding constant of 2.4 × 104 M-1 was measured for this neurotransmitter, and its selective and sensitive detection over choline and choline phosphate was achieved. NMR and DFT calculations provide insight into the interactions involved in this selective recognition process.
Collapse
Affiliation(s)
- Augustin Long
- Aix Marseille Université, Centrale Marseille, CNRS, ISM2 UMR 7313, 13397, Marseille, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|