1
|
Choi Y, Ha H, Kim J, Seo HG, Choi H, Jeong B, Yoo J, Crumlin EJ, Henkelman G, Kim HY, Jung W. Unveiling Direct Electrochemical Oxidation of Methane at the Ceria/Gas Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403626. [PMID: 39152931 DOI: 10.1002/adma.202403626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/24/2024] [Indexed: 08/19/2024]
Abstract
Solid oxide fuel cells (SOFCs) stand out in sustainable energy systems for their unique ability to efficiently utilize hydrocarbon fuels, particularly those from carbon-neutral sources. CeO2-δ (ceria) based oxides embedded in SOFCs are recognized for their critical role in managing hydrocarbon activation and carbon coking. However, even for the simplest hydrocarbon molecule, CH4, the mechanism of electrochemical oxidation at the ceria/gas interface is not well understood and the capability of ceria to electrochemically oxidize methane remains a topic of debate. This lack of clarity stems from the intricate design of standard metal/oxide composite electrodes and the complex nature of electrode reactions involving multiple chemical and electrochemical steps. This study presents a Sm-doped ceria thin-film model cell that selectively monitors CH4 direct-electro-oxidation on the ceria surface. Using impedance spectroscopy, operando X-ray photoelectron spectroscopy, and density functional theory, it is unveiled that ceria surfaces facilitate C─H bond cleavage and that H2O formation is key in determining the overall reaction rate at the electrode. These insights effectively address the longstanding debate regarding the direct utilization of CH4 in SOFCs. Moreover, these findings pave the way for an optimized electrode design strategy, essential for developing high-performance, environmentally sustainable fuel cells.
Collapse
Affiliation(s)
- Yoonseok Choi
- High Temperature Electrolysis Laboratory, Korea Institute of Energy Research (KIER), Daejeon, 34101, Republic of Korea
| | - Hyunwoo Ha
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Jinwook Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34129, Republic of Korea
| | - Han Gil Seo
- Department of Materials Science and Engineering, Dankook University, Chungnam, 31116, Republic of Korea
| | - Hyuk Choi
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Beomgyun Jeong
- Research Center for Materials Analysis, Korea Basic Science Institute (KBSI), Daejeon, 34133, Republic of Korea
| | - JeongDo Yoo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34129, Republic of Korea
| | - Ethan J Crumlin
- Advanced Light Sources, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, 94720, USA
| | - Graeme Henkelman
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Hyun You Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - WooChul Jung
- Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Jiménez JD, Lustemberg PG, Danielis M, Fernández-Villanueva E, Hwang S, Waluyo I, Hunt A, Wierzbicki D, Zhang J, Qi L, Trovarelli A, Rodriguez JA, Colussi S, Ganduglia-Pirovano MV, Senanayake SD. From Methane to Methanol: Pd-iC-CeO 2 Catalysts Engineered for High Selectivity via Mechanochemical Synthesis. J Am Chem Soc 2024; 146:25986-25999. [PMID: 39145676 PMCID: PMC11440493 DOI: 10.1021/jacs.4c04815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In the pursuit of selective conversion of methane directly to methanol in the liquid-phase, a common challenge is the concurrent formation of undesirable liquid oxygenates or combustion byproducts. However, we demonstrate that monometallic Pd-CeO2 catalysts, modified by carbon, created by a simple mechanochemical synthesis method exhibit 100% selectivity toward methanol at 75 °C, using hydrogen peroxide as oxidizing agent. The solvent free synthesis yields a distinctive Pd-iC-CeO2 interface, where interfacial carbon (iC) modulates metal-oxide interactions and facilitates tandem methane activation and peroxide decomposition, thus resulting in an exclusive methanol selectivity of 100% with a yield of 117 μmol/gcat at 75 °C. Notably, solvent interactions of H2O2 (aq) were found to be critical for methanol selectivity through a density functional theory (DFT)-simulated Eley-Rideal-like mechanism. This mechanism uniquely enables the direct conversion of methane into methanol via a solid-liquid-gas process.
Collapse
Affiliation(s)
- Juan D Jiménez
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Pablo G Lustemberg
- CSIC, Instituto de Catálisis y Petroleoquímica, C/Marie Curie 2, 28049 Madrid, Spain
| | - Maila Danielis
- Polytechnic Department, University of Udine and INSTM, Via del Cotonificio 108, 33100 Udine, Italy
| | - Estefanía Fernández-Villanueva
- CSIC, Instituto de Catálisis y Petroleoquímica, C/Marie Curie 2, 28049 Madrid, Spain
- Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Iradwikanari Waluyo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Adrian Hunt
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Dominik Wierzbicki
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jie Zhang
- Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Long Qi
- Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Alessandro Trovarelli
- Polytechnic Department, University of Udine and INSTM, Via del Cotonificio 108, 33100 Udine, Italy
| | - José A Rodriguez
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemistry, State University of New York Stony Brook, Stony Brook, New York 11794, United States
| | - Sara Colussi
- Polytechnic Department, University of Udine and INSTM, Via del Cotonificio 108, 33100 Udine, Italy
| | | | - Sanjaya D Senanayake
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
3
|
Piliai L, Castro-Latorre P, Pchálek F, Oveysipoor S, Kosto Y, Khalakhan I, Skála T, Neyman KM, Alemany P, Vorochta M, Bruix A, Matvija P, Matolínová I. Electronic and Structural Properties of Thin Iron Oxide Films on CeO 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46858-46871. [PMID: 39167683 PMCID: PMC11378155 DOI: 10.1021/acsami.4c05542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Modification of CeO2 (ceria) with 3d transition metals, particularly iron, has been proven to significantly enhance its catalytic efficiency in oxidation or combustion reactions. Although this phenomenon is widely reported, the nature of the iron-ceria interaction responsible for this improvement remains debated. To address this issue, we prepared well-defined model FeOx/CeO2(111) catalytic systems and studied their structure and interfacial electronic properties using photoelectron spectroscopy, scanning tunneling microscopy, and low-energy electron diffraction, coupled with density functional theory (DFT) calculations. Our results show that under ultrahigh vacuum conditions, Fe deposition leads to the formation of small FeOx clusters on the ceria surface. Subsequent annealing results in the growth of large amorphous FeOx particles and a 2D FeOx layer. Annealing in an oxygen-rich atmosphere further oxidizes iron up to the Fe3+ state and improves the crystallinity of both the 2D layer and the 3D particles. Our DFT calculations indicate that the 2D FeOx layer interacts strongly with the ceria surface, exhibiting structural corrugations and transferred electrons between Fe2+/Fe3+ and Ce4+/Ce3+ redox pairs. The novel 2D FeOx/CeO2(111) phase may explain the enhancement of the catalytic properties of CeO2 by iron. Moreover, the corrugated 2D FeOx layer can serve as a template for the ordered nucleation of other catalytically active metals, in which the redox properties of the 2D FeOx/CeO2(111) system are exploited to modulate the charge of the supported metals.
Collapse
Affiliation(s)
- Lesia Piliai
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Pablo Castro-Latorre
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - František Pchálek
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Shiva Oveysipoor
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Yuliia Kosto
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
- Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Zuse-Strasse 1, Cottbus 03046, Germany
| | - Ivan Khalakhan
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Tomáš Skála
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Konstantin M Neyman
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona 08010, Spain
| | - Pere Alemany
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Michael Vorochta
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Albert Bruix
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Peter Matvija
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Iva Matolínová
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| |
Collapse
|
4
|
Nie S, Wu L, Zhang Q, Huang Y, Liu Q, Wang X. High-entropy-perovskite subnanowires for photoelectrocatalytic coupling of methane to acetic acid. Nat Commun 2024; 15:6669. [PMID: 39107324 PMCID: PMC11303686 DOI: 10.1038/s41467-024-50977-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
The incorporation of multiple immiscible metals in high-entropy oxides can create the unconventional coordination environment of catalytic active sites, while the high formation temperature of high-entropy oxides results in bulk materials with low specific surface areas. Here we develop the high-entropy LaMnO3-type perovskite-polyoxometalate subnanowire heterostructures with periodically aligned high-entropy LaMnO3 oxides and polyoxometalate under a significantly reduced temperature of 100 oC, which is much lower than the temperature required by state-of-the-art calcination methods for synthesizing high-entropy oxides. The high-entropy LaMnO3-polyoxometalate subnanowires exhibit excellent catalytic activity for the photoelectrochemical coupling of methane into acetic acid under mild conditions (1 bar, 25 oC), with a high productivity (up to 4.45 mmol g‒1cat h‒1) and selectivity ( > 99%). Due to the electron delocalization at the subnanometer scale, the contiguous active sites of high-entropy LaMnO3 and polyoxometalate in the heterostructure can efficiently activate C - H bonds and stabilize the resulted *COOH intermediates, which benefits the in situ coupling of *CH3 and *COOH into acetic acid.
Collapse
Affiliation(s)
- Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yunwei Huang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Luo Z, Shehzad A. Advances in Naked Metal Clusters for Catalysis. Chemphyschem 2024; 25:e202300715. [PMID: 38450926 DOI: 10.1002/cphc.202300715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/08/2024]
Abstract
The properties of sub-nano metal clusters are governed by quantum confinement and their large surface-to-bulk ratios, atomically precise compositions and geometric/electronic structures. Advances in metal clusters lead to new opportunities in diverse aspects of sciences including chemo-sensing, bio-imaging, photochemistry, and catalysis. Naked metal clusters having synergic multiple active sites and coordinative unsaturation and tunable stability/activity enable researchers to design atomically precise metal catalysts with tailored catalysis for different reactions. Here we summarize the progress of ligand-free naked metal clusters for catalytic applications. It is anticipated that this review helps to better understand the chemistry of small metal clusters and facilitates the design and development of new catalysts for potential applications.
Collapse
Affiliation(s)
- Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aamir Shehzad
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Li B, Mu J, Long G, Song X, Huang E, Liu S, Wei Y, Sun F, Feng S, Yuan Q, Cai Y, Song J, Dong W, Zhang W, Yang X, Yan L, Ding Y. Water-participated mild oxidation of ethane to acetaldehyde. Nat Commun 2024; 15:2555. [PMID: 38519506 PMCID: PMC10959925 DOI: 10.1038/s41467-024-46884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
The direct conversion of low alkane such as ethane into high-value-added chemicals has remained a great challenge since the development of natural gas utilization. Herein, we achieve an efficient one-step conversion of ethane to C2 oxygenates on a Rh1/AC-SNI catalyst under a mild condition, which delivers a turnover frequency as high as 158.5 h-1. 18O isotope-GC-MS shows that the formation of ethanol and acetaldehyde follows two distinct pathways, where oxygen and water directly participate in the formation of ethanol and acetaldehyde, respectively. In situ formed intermediate species of oxygen radicals, hydroxyl radicals, vinyl groups, and ethyl groups are captured by laser desorption ionization/time of flight mass spectrometer. Density functional theory calculation shows that the activation barrier of the rate-determining step for acetaldehyde formation is much lower than that of ethanol, leading to the higher selectivity of acetaldehyde in all the products.
Collapse
Affiliation(s)
- Bin Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiali Mu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guifa Long
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, China
| | - Xiangen Song
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Ende Huang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siyue Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yao Wei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Siquan Feng
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qiao Yuan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yutong Cai
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Song
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenrui Dong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Hefei National Laboratory, Hefei, China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.
| | - Li Yan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yunjie Ding
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
7
|
Cao Y, Huang Z, Han C, Zhou Y. Product Peroxidation Inhibition in Methane Photooxidation into Methanol. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306891. [PMID: 38234232 DOI: 10.1002/advs.202306891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Methane photooxidation into methanol offers a practical approach for the generation of high-value chemicals and the efficient storage of solar energy. However, the propensity for C─H bonds in the desired products to cleave more easily than those in methane molecules results in a continuous dehydrogenation process, inevitably leading to methanol peroxidation. Consequently, inhibiting methanol peroxidation is perceived as one of the most formidable challenges in the field of direct conversion of methane to methanol. This review offers a thorough overview of the typical mechanisms involved radical mechanism and active site mechanism and the regulatory methods employed to inhibit product peroxidation in methane photooxidation. Additionally, several perspectives on the future research direction of this crucial field are proposed.
Collapse
Affiliation(s)
- Yuehan Cao
- National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Zeai Huang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Chunqiu Han
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Ying Zhou
- National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| |
Collapse
|
8
|
Lozano-Reis P, Gamallo P, Sayós R, Illas F. Comprehensive Density Functional and Kinetic Monte Carlo Study of CO 2 Hydrogenation on a Well-Defined Ni/CeO 2 Model Catalyst: Role of Eley-Rideal Reactions. ACS Catal 2024; 14:2284-2299. [PMID: 38384940 PMCID: PMC10877572 DOI: 10.1021/acscatal.3c05336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
A detailed multiscale study of the mechanism of CO2 hydrogenation on a well-defined Ni/CeO2 model catalyst is reported that couples periodic density functional theory (DFT) calculations with kinetic Monte Carlo (kMC) simulations. The study includes an analysis of the role of Eley-Rideal elementary steps for the water formation step, which are usually neglected on the overall picture of the mechanism, catalytic activity, and selectivity. The DFT calculations for the chosen model consisting of a Ni4 cluster supported on CeO2 (111) show large enough adsorption energies along with low energy barriers that suggest this catalyst to be a good option for high selective CO2 methanation. The kMC simulations results show a synergic effect between the two 3-fold hollow sites of the supported Ni4 cluster with some elementary reactions dominant in one site, while other reactions prefer the another, nearly equivalent site. This effect is even more evident for the simulations explicitly including Eley-Rideal steps. The kMC simulations reveal that CO is formed via the dissociative pathway of the reverse water-gas shift reaction, while methane is formed via a CO2 → CO → HCO → CH → CH2 → CH3 → CH4 mechanism. Overall, our results show the importance of including the Eley-Rideal reactions and point to small Ni clusters supported on the CeO2 (111) surface as potential good catalysts for high selective CO2 methanation under mild conditions, while very active and selective toward CO formation at higher temperatures.
Collapse
Affiliation(s)
- Pablo Lozano-Reis
- Departament de Ciència
de Materials i Química Física & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain
| | - Pablo Gamallo
- Departament de Ciència
de Materials i Química Física & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain
| | - Ramón Sayós
- Departament de Ciència
de Materials i Química Física & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain
| | - Francesc Illas
- Departament de Ciència
de Materials i Química Física & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Jiang L, Li K, Porter WN, Wang H, Li G, Chen JG. Role of H 2O in Catalytic Conversion of C 1 Molecules. J Am Chem Soc 2024; 146:2857-2875. [PMID: 38266172 DOI: 10.1021/jacs.3c13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Due to their role in controlling global climate change, the selective conversion of C1 molecules such as CH4, CO, and CO2 has attracted widespread attention. Typically, H2O competes with the reactant molecules to adsorb on the active sites and therefore inhibits the reaction or causes catalyst deactivation. However, H2O can also participate in the catalytic conversion of C1 molecules as a reactant or a promoter. Herein, we provide a perspective on recent progress in the mechanistic studies of H2O-mediated conversion of C1 molecules. We aim to provide an in-depth and systematic understanding of H2O as a promoter, a proton-transfer agent, an oxidant, a direct source of hydrogen or oxygen, and its influence on the catalytic activity, selectivity, and stability. We also summarize strategies for modifying catalysts or catalytic microenvironments by chemical or physical means to optimize the positive effects and minimize the negative effects of H2O on the reactions of C1 molecules. Finally, we discuss challenges and opportunities in catalyst design, characterization techniques, and theoretical modeling of the H2O-mediated catalytic conversion of C1 molecules.
Collapse
Affiliation(s)
- Lei Jiang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Kongzhai Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Southwest United Graduate School, Kunming 650000, Yunnan, China
| | - William N Porter
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Hua Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Gengnan Li
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
10
|
Huang E, Liu P. Theoretical Perspective of Promoting Direct Methane-to-Methanol Conversion at Complex Metal Oxide-Metal Interfaces. J Phys Chem Lett 2023; 14:6556-6563. [PMID: 37458591 DOI: 10.1021/acs.jpclett.3c01525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Direct methane conversion to methanol has been considered as an effective and economic way to address greenhouse effects and the current high demand for methanol in industry. However, the process has long been challenging due to lack of viable catalysts to compromise the activation of methane that typically occurs at high temperatures and retaining of produced methanol that requires mild conditions. This Perspective demonstrates an effective strategy to promote direct methane to methanol conversion by engineering the active sites and chemical environments at complex metal oxide - copper oxide - copper interfaces. Such effort strongly depends on extensive theoretical studies by combining density functional theory (DFT) calculations and kinetic Monte Carlo (KMC) simulations to provide in-depth understanding of reaction mechanism and active sites, which build a strong basis to enable the identification of design principles and advance the catalyst optimization for selective CH4-to-CH3OH conversion.
Collapse
Affiliation(s)
- Erwei Huang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ping Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
11
|
van Steen E, Guo J, Hytoolakhan Lal Mahomed N, Leteba GM, Mahlaba SVL. Selective, Aerobic Oxidation of Methane to Formaldehyde over Platinum ‐ a Perspective. ChemCatChem 2023. [DOI: 10.1002/cctc.202201238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
12
|
Zhu C, Guo G, Li W, Wu M, Jiang Y, Wu W, Zhang H. Direct Catalytic Oxidation of Low-Concentration Methane to Methanol in One Step on Ni-Promoted BiOCl Catalysts. ACS OMEGA 2023; 8:11220-11232. [PMID: 37008125 PMCID: PMC10061602 DOI: 10.1021/acsomega.2c08039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
The direct oxidation of low-concentration methane (CH4) to methanol (CH3OH) is often regarded as the "holy grail". However, it still is very difficult and challenging to oxidize methane to methanol in one step. In this work, we present a new approach to directly oxidize CH4 to generate CH3OH in one step by doping non-noble metal Ni sites on bismuth oxychloride (BiOCl) equipped with high oxygen vacancies. Thereinto, the conversion rate of CH3OH can reach 39.07 μmol/(gcat·h) under 420 °C and flow conditions on the basis of O2 and H2O. The crystal morphology structure, physicochemical properties, metal dispersion, and surface adsorption capacity of Ni-BiOCl were explored, and the positive effect on the oxygen vacancy of the catalyst was proved, thus improving the catalytic performance. Furthermore, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was also performed to study the surface adsorption and reaction process of methane to methanol in one step. Results demonstrate that the key to keep good activity lies in the oxygen vacancies of unsaturated Bi atoms, which can adsorb and active CH4 and to produce methyl groups and adsorbing hydroxyl groups in methane oxidation process. This study broadens the application of oxygen-deficient catalysts in the catalytic conversion of CH4 to CH3OH in one step, which provides a new perspective on the role of oxygen vacancies in improving the catalytic performance of methane oxidation.
Collapse
Affiliation(s)
- Chen Zhu
- Laboratory
of Basic Research in Biomass Conversion and Utilization, Department
of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ge Guo
- Laboratory
of Basic Research in Biomass Conversion and Utilization, Department
of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wenzhi Li
- Laboratory
of Basic Research in Biomass Conversion and Utilization, Department
of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China
- Institute
of Energy, Hefei Comprehensive National
Science Center, Hefei 230031, China
| | - Mingwei Wu
- Laboratory
of Basic Research in Biomass Conversion and Utilization, Department
of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yihang Jiang
- Laboratory
of Basic Research in Biomass Conversion and Utilization, Department
of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wenjian Wu
- Laboratory
of Basic Research in Biomass Conversion and Utilization, Department
of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hao Zhang
- Laboratory
of Basic Research in Biomass Conversion and Utilization, Department
of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
13
|
Yuan L, Xu C, Zhang S, Yu M, Wang X, Chen Y, Dai L. Role of oxygen vacancy in spinel (FeCoNiCrMn) 3O 4 high entropy oxides prepared via two different methods for the selective CH bond oxidation of p-chlorotoluene. J Colloid Interface Sci 2023; 640:359-371. [PMID: 36867932 DOI: 10.1016/j.jcis.2023.02.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
The selective CH bond oxidation of aromatic hydrocarbon is an interesting but challenging task, it is desirable to develop efficient heterogeneous non-noble metal catalyst for this reaction. Herein, two kinds of spinel (FeCoNiCrMn)3O4 high entropy oxides were fabricated via two different methods (i.e., c-FeCoNiCrMn, prepared by a co-precipitation method, and m-FeCoNiCrMn, prepared by physically mixing method). Different from traditional environmentally-unfriendly Co/Mn/Br system, the prepared catalysts were employed for the selective CH bond oxidation of p-chlorotoluene to p-chlorobenzaldehyde in a green approach. Compared to m-FeCoNiCrMn, c-FeCoNiCrMn have smaller particles size and larger specific surface area, which were related to the enhanced catalytic activity. More importantly, characterization results disclosed that abundant oxygen vacancies were formed over c-FeCoNiCrMn. Such a result facilitated the adsorption of p-chlorotoluene on the catalyst surface and promoted the formation of *ClPhCH2O intermediate as well as the desired p-chlorobenzaldehyde, as revealed by DFT (Density functional theory) calculations. Besides, scavenger tests and EPR (Electron paramagnetic resonance) results indicated that hydroxyl radical derived from H2O2 homolysis was the main active oxidative species for this reaction. This work revealed the role of oxygen vacancy in spinel high entropy oxide and also demonstrated its promising application for the selective CH bond oxidation in an environmentally-benign approach.
Collapse
Affiliation(s)
- Lei Yuan
- Institute of Zhejiang University - Quzhou, Quzhou 324000, PR China; Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Cai Xu
- Institute of Zhejiang University - Quzhou, Quzhou 324000, PR China; Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Shaoyong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Mincheng Yu
- Institute of Zhejiang University - Quzhou, Quzhou 324000, PR China; Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Xiaozhong Wang
- Institute of Zhejiang University - Quzhou, Quzhou 324000, PR China; Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Yingqi Chen
- Institute of Zhejiang University - Quzhou, Quzhou 324000, PR China; Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Liyan Dai
- Institute of Zhejiang University - Quzhou, Quzhou 324000, PR China; Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
14
|
Mild Oxidation of Methane to Oxygenates with O2 and CO on Fluorine Modified TS-1 Supported Rh Single-Atom Catalyst in a Flow Reactor. Catal Letters 2023. [DOI: 10.1007/s10562-023-04298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
15
|
Ma J, Low J, Wu D, Gong W, Liu H, Liu D, Long R, Xiong Y. Cu and Si co-doping on TiO 2 nanosheets to modulate reactive oxygen species for efficient photocatalytic methane conversion. NANOSCALE HORIZONS 2022; 8:63-68. [PMID: 36385645 DOI: 10.1039/d2nh00457g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, we successfully construct Cu and Si co-doped ultrathin TiO2 nanosheets. As confirmed by comprehensive characterizations, Cu and Si co-doping can rationally tailor the electronic structure of TiO2 to maneuver reactive oxygen species for effective photocatalytic methane conversion. In addition, this co-doping greatly enhances the utilization efficiency of photogenerated charges. Furthermore, it is revealed that Cu and Si co-doping can significantly boost the adsorption and activation of methane on TiO2 nanosheets. As a result, the optimized catalyst achieves a C2H6 production rate of 33.8 μmol g-1 h-1 with a selectivity of 88.4%. This work provides insights into nanocatalyst design toward efficient photocatalytic methane conversion into value-added compounds.
Collapse
Affiliation(s)
- Jun Ma
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Jingxiang Low
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Di Wu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Wanbing Gong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Hengjie Liu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Dong Liu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Ran Long
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
16
|
Alvarez-Galvan C, Lustemberg PG, Oropeza FE, Bachiller-Baeza B, Dapena Ospina M, Herranz M, Cebollada J, Collado L, Campos-Martin JM, de la Peña-O’Shea V, Alonso JA, Ganduglia-Pirovano MV. Highly Active and Stable Ni/La-Doped Ceria Material for Catalytic CO 2 Reduction by Reverse Water-Gas Shift Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50739-50750. [PMID: 36321841 PMCID: PMC9673058 DOI: 10.1021/acsami.2c11248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The design of an active, effective, and economically viable catalyst for CO2 conversion into value-added products is crucial in the fight against global warming and energy demand. We have developed very efficient catalysts for reverse water-gas shift (rWGS) reaction. Specific conditions of the synthesis by combustion allow the obtention of macroporous materials based on nanosized Ni particles supported on a mixed oxide of high purity and crystallinity. Here, we show that Ni/La-doped CeO2 catalysts─with the "right" Ni and La proportions─have an unprecedented catalytic performance per unit mass of catalyst for the rWGS reaction as the first step toward CO2 valorization. Correlations between physicochemical properties and catalytic activity, obtained using a combination of different techniques such as X-ray and neutron powder diffraction, Raman spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, electron microscopy, and catalytic testing, point out to optimum values for the Ni loading and the La proportion. Density functional theory calculations of elementary steps of the reaction on model Ni/ceria catalysts aid toward the microscopic understanding of the nature of the active sites. This finding offers a fundamental basis for developing economical catalysts that can be effectively used for CO2 reduction with hydrogen. A catalyst based on Ni0.07/(Ce0.9La0.1Ox)0.93 shows a CO production of 58 × 10-5 molCO·gcat-1·s-1 (700 °C, H2/CO2 = 2; selectivity to CO > 99.5), being stable for 100 h under continuous reaction.
Collapse
Affiliation(s)
| | - Pablo G. Lustemberg
- Instituto
de Catálisis y Petroleoquímica (CSIC), Cantoblanco, Madrid28049, Spain
- Instituto
de Física Rosario (IFIR), CONICET-UNR, Rosario, Santa Fe2000EZP, Argentina
| | - Freddy E. Oropeza
- Photoactivated
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, Móstoles, Madrid28935, Spain
| | | | - Martin Dapena Ospina
- Instituto
de Catálisis y Petroleoquímica (CSIC), Cantoblanco, Madrid28049, Spain
| | - María Herranz
- Instituto
de Catálisis y Petroleoquímica (CSIC), Cantoblanco, Madrid28049, Spain
| | - Jesús Cebollada
- Instituto
de Catálisis y Petroleoquímica (CSIC), Cantoblanco, Madrid28049, Spain
| | - Laura Collado
- Photoactivated
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, Móstoles, Madrid28935, Spain
| | | | - Víctor
A. de la Peña-O’Shea
- Photoactivated
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, Móstoles, Madrid28935, Spain
| | - José A. Alonso
- Instituto
de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid28049, Spain
| | | |
Collapse
|
17
|
Zhao Z, Li Z, Zhang X, Li T, Li Y, Chen X, Wang K. Catalytic hydrogenolysis of plastic to liquid hydrocarbons over a nickel-based catalyst. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120154. [PMID: 36096264 DOI: 10.1016/j.envpol.2022.120154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The catalytic hydrogenolysis of a typical model compound of mulching film waste, polyethylene, was investigated as a potential way to improve economic efficiency of mulching film recycling. Nickel-based heterogeneous catalysts are proposed for polyethylene hydrogenolysis to produce liquid hydrocarbons. Among catalysts supported on various carriers, Ni/SiO2 catalyst shows the highest activity which may due to the interactions between nickel and silica with the formation of nickel phyllosilicate. As high as 81.18% total gasoline and diesel range hydrocarbon was obtained from the polyethylene hydrogenolysis at relatively mild condition of 280 °C, and 3 MPa cold hydrogen pressure. The result is comparable to what have been reported in previous studies using noble metal catalysts. The gasoline and diesel range hydrocarbon are n-alkanes with a distribution at a range of C4-C22. The gas products are primarily CH4 along with a small amount of C2H6 and C3H8. High yield of CH4 as much as 9.68% was observed for the cleavage of molecule occurs along the alkane chain.
Collapse
Affiliation(s)
- Zhigang Zhao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, NO.38 Zheda Road, Hangzhou, 310027, China
| | - Zheng Li
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, China
| | - Xiangkun Zhang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, NO.38 Zheda Road, Hangzhou, 310027, China
| | - Tan Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, NO.38 Zheda Road, Hangzhou, 310027, China
| | - Yuqing Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, NO.38 Zheda Road, Hangzhou, 310027, China
| | - Xingkun Chen
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, China
| | - Kaige Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, NO.38 Zheda Road, Hangzhou, 310027, China.
| |
Collapse
|
18
|
Liu Y, Wang R, Russell CK, Jia P, Yao Y, Huang W, Radosz M, Gasem KA, Adidharma H, Fan M. Mechanisms for direct methane conversion to oxygenates at low temperature. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Recent Insights into Cu-Based Catalytic Sites for the Direct Conversion of Methane to Methanol. Molecules 2022; 27:molecules27217146. [DOI: 10.3390/molecules27217146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Direct conversion of methane to methanol is an effective and practical process to improve the efficiency of natural gas utilization. Copper (Cu)-based catalysts have attracted great research attention, due to their unique ability to selectively catalyze the partial oxidation of methane to methanol at relatively low temperatures. In recent decades, many different catalysts have been studied to achieve a high conversion of methane to methanol, including the Cu-based enzymes, Cu-zeolites, Cu-MOFs (metal-organic frameworks) and Cu-oxides. In this mini review, we will detail the obtained evidence on the exact state of the active Cu sites on these various catalysts, which have arisen from the most recently developed techniques and the results of DFT calculations. We aim to establish the structure–performance relationship in terms of the properties of these materials and their catalytic functionalities, and also discuss the unresolved questions in the direct conversion of methane to methanol reactions. Finally, we hope to offer some suggestions and strategies for guiding the practical applications regarding the catalyst design and engineering for a high methanol yield in the methane oxidation reaction.
Collapse
|
20
|
Mahlaba SVL, Hytoolakhan Lal Mahomed N, Govender A, Guo J, Leteba GM, Cilliers PL, van Steen E. Platinum-Catalysed Selective Aerobic Oxidation of Methane to Formaldehyde in the Presence of Liquid Water. Angew Chem Int Ed Engl 2022; 61:e202206841. [PMID: 35894112 PMCID: PMC9541881 DOI: 10.1002/anie.202206841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/06/2022]
Abstract
The aerobic, selective oxidation of methane to C1 -oxygenates remains a challenge, due to the more facile, consecutive oxidation of formed products to CO2 . Here, we report on the aerobic selective oxidation of methane under continuous flow conditions, over platinum-based catalysts yielding formaldehyde with a high selectivity (reaching 90 % for Pt/TiO2 and 65 % over Pt/Al2 O3 ) upon co-feeding water. The presence of liquid water under reaction conditions increases the activity strongly attaining a methane conversion of 1-3 % over Pt/TiO2 . Density-functional theory (DFT) calculations show that the preferential formation of formaldehyde is linked to the stability of the di-σ-hydroxy-methoxy species on platinum, the preferred carbon-containing species on Pt(111) at a high chemical potential of water. Our findings provide novel insights into the reaction pathway for the Pt-catalysed, aerobic selective oxidation of CH4 .
Collapse
Affiliation(s)
- Sinqobile V. L. Mahlaba
- Catalysis InstituteDepartment of Chemical EngineeringUniversity of Cape TownPrivate Bag X3Rondebosch7701South Africa
| | | | - Alisa Govender
- Group TechnologySasol South Africa (Pty) Ltd.P.O. Box 1Sasolburg1947South Africa
| | - Junfeng Guo
- Catalysis InstituteDepartment of Chemical EngineeringUniversity of Cape TownPrivate Bag X3Rondebosch7701South Africa
| | - Gerard M. Leteba
- Catalysis InstituteDepartment of Chemical EngineeringUniversity of Cape TownPrivate Bag X3Rondebosch7701South Africa
| | - Pierre L. Cilliers
- Catalysis InstituteDepartment of Chemical EngineeringUniversity of Cape TownPrivate Bag X3Rondebosch7701South Africa
| | - Eric van Steen
- Catalysis InstituteDepartment of Chemical EngineeringUniversity of Cape TownPrivate Bag X3Rondebosch7701South Africa
| |
Collapse
|
21
|
Huang E, Rui N, Rosales R, Kang J, Nemšák S, Senanayake SD, Rodriguez JA, Liu P. Highly Selective Methane to Methanol Conversion on Inverse SnO 2/Cu 2O/Cu(111) Catalysts: Unique Properties of SnO 2 Nanostructures and the Inhibition of the Direct Oxidative Combustion of Methane. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Erwei Huang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Ning Rui
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Rina Rosales
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jindong Kang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Slavomir Nemšák
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sanjaya D. Senanayake
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - José A. Rodriguez
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ping Liu
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
22
|
Mahlaba SV, Lal Hytoolakhan Mahomed N, Govender A, Guo J, Leteba GM, Cilliers PL, van Steen E. Platinum‐Catalysed Selective Aerobic Oxidation of Methane to Formaldehyde in the Presence of Liquid Water. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sinqobile V.L. Mahlaba
- University of Cape Town Department of Chemical Engineering cnr South Lane/Madiba Circle 7700 Rondebosch SOUTH AFRICA
| | | | - Alisa Govender
- Sasol Group Technology Group Technology P.O. Box 1 1947 Sasolburg SOUTH AFRICA
| | - Junfeng Guo
- University of Cape Town Department of Chemical Engineering cnr South Lane/Madiba Circle 7700 Rondebosch SOUTH AFRICA
| | - Gerard M. Leteba
- University of Cape Town Department of Chemical Engineering cnr South Lane/Madiba Circle 7700 Rondebosch SOUTH AFRICA
| | - Pierre L. Cilliers
- University of Cape Town Department of Chemical Engineering 7700 Rondebosch SOUTH AFRICA
| | - Eric van Steen
- University of Cape Town Department of Chemical Engineering Centre for Catalysis Research Private Bag 7701 Rondebosch SOUTH AFRICA
| |
Collapse
|
23
|
Kumar P, Al-Attas TA, Hu J, Kibria MG. Single Atom Catalysts for Selective Methane Oxidation to Oxygenates. ACS NANO 2022; 16:8557-8618. [PMID: 35638813 DOI: 10.1021/acsnano.2c02464] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Direct conversion of methane (CH4) to C1-2 liquid oxygenates is a captivating approach to lock carbons in transportable value-added chemicals, while reducing global warming. Existing approaches utilizing the transformation of CH4 to liquid fuel via tandemized steam methane reforming and the Fischer-Tropsch synthesis are energy and capital intensive. Chemocatalytic partial oxidation of methane remains challenging due to the negligible electron affinity, poor C-H bond polarizability, and high activation energy barrier. Transition-metal and stoichiometric catalysts utilizing harsh oxidants and reaction conditions perform poorly with randomized product distribution. Paradoxically, the catalysts which are active enough to break C-H also promote overoxidation, resulting in CO2 generation and reduced carbon balance. Developing catalysts which can break C-H bonds of methane to selectively make useful chemicals at mild conditions is vital to commercialization. Single atom catalysts (SACs) with specifically coordinated metal centers on active support have displayed intrigued reactivity and selectivity for methane oxidation. SACs can significantly reduce the activation energy due to induced electrostatic polarization of the C-H bond to facilitate the accelerated reaction rate at the low reaction temperature. The distinct metal-support interaction can stabilize the intermediate and prevent the overoxidation of the reaction products. The present review accounts for recent progress in the field of SACs for the selective oxidation of CH4 to C1-2 oxygenates. The chemical nature of catalytic sites, effects of metal-support interaction, and stabilization of intermediate species on catalysts to minimize overoxidation are thoroughly discussed with a forward-looking perspective to improve the catalytic performance.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Tareq A Al-Attas
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
24
|
Lustemberg PG, Senanayake SD, Rodriguez JA, Ganduglia-Pirovano MV. Tuning Selectivity in the Direct Conversion of Methane to Methanol: Bimetallic Synergistic Effects on the Cleavage of C-H and O-H Bonds over NiCu/CeO 2 Catalysts. J Phys Chem Lett 2022; 13:5589-5596. [PMID: 35699247 PMCID: PMC9234976 DOI: 10.1021/acs.jpclett.2c00885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The efficient activation of methane and the simultaneous water dissociation are crucial in many catalytic reactions on oxide-supported transition metal catalysts. On very low-loaded Ni/CeO2 surfaces, methane easily fully decomposes, CH4 → C + 4H, and water dissociates, H2O→ OH + H. However, in important reactions such as the direct oxidation of methane to methanol (MTM), where complex interplay exists between reactants (CH4, O2), it is desirable to avoid the complete dehydrogenation of methane to carbon. Remarkably, the barrier for the activation of C-H bonds in CHx (x = 1-3) species on Ni/CeO2 surfaces can be manipulated by adding Cu, forming bimetallic NiCu clusters, whereas the ease for cleavage of O-H bonds in water is not affected by ensemble effects, as obtained from density functional theory-based calculations. CH4 activation occurs only on Ni sites, and H2O activation occurs on both Ni and Cu sites. The MTM reaction pathway for the example of the Ni3Cu1/CeO2 model catalyst predicts a higher selectivity and a lower activation barrier for methanol production, compared with that for Ni4/CeO2. These findings point toward a possible strategy to design active and stable catalysts which can be employed for methane activation and conversions.
Collapse
Affiliation(s)
- Pablo G. Lustemberg
- Instituto
de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain
- Instituto
de Fisica Rosario (IFIR), CONICET-UNR, Bv. 27 de Febrero 210bis, 2000EZP Rosario, Santa Fe, Argentina
| | - Sanjaya D. Senanayake
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - José A. Rodriguez
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | | |
Collapse
|
25
|
Cao X, Han YF, Peng C, Zhu M. A Review on the Water‐Gas Shift Reaction over Nickel‐Based Catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xinyu Cao
- East China University of Science and Technology School of Chemical Engineering CHINA
| | - Yi-Fan Han
- East China University of Science and Technology School of Chemical Engineering CHINA
| | - Chong Peng
- Sinopec: China Petrochemical Corporation School of Chemical Engineering CHINA
| | - Minghui Zhu
- East China University of Science and Technology Department of Chemical Engineering 130 Meilong Road 200237 Shanghai CHINA
| |
Collapse
|
26
|
A theoretical catalytic mechanism for methanol reforming in CeO2 vs Ni/CeO2 by energy transition states profiles. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Zhang W, Fu C, Low J, Duan D, Ma J, Jiang W, Chen Y, Liu H, Qi Z, Long R, Yao Y, Li X, Zhang H, Liu Z, Yang J, Zou Z, Xiong Y. High-performance photocatalytic nonoxidative conversion of methane to ethane and hydrogen by heteroatoms-engineered TiO 2. Nat Commun 2022; 13:2806. [PMID: 35589743 PMCID: PMC9119979 DOI: 10.1038/s41467-022-30532-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/02/2022] [Indexed: 11/08/2022] Open
Abstract
Nonoxidative coupling of methane (NOCM) is a highly important process to simultaneously produce multicarbons and hydrogen. Although oxide-based photocatalysis opens opportunities for NOCM at mild condition, it suffers from unsatisfying selectivity and durability, due to overoxidation of CH4 with lattice oxygen. Here, we propose a heteroatom engineering strategy for highly active, selective and durable photocatalytic NOCM. Demonstrated by commonly used TiO2 photocatalyst, construction of Pd-O4 in surface reduces contribution of O sites to valence band, overcoming the limitations. In contrast to state of the art, 94.3% selectivity is achieved for C2H6 production at 0.91 mmol g-1 h-1 along with stoichiometric H2 production, approaching the level of thermocatalysis at relatively mild condition. As a benchmark, apparent quantum efficiency reaches 3.05% at 350 nm. Further elemental doping can elevate durability over 24 h by stabilizing lattice oxygen. This work provides new insights for high-performance photocatalytic NOCM by atomic engineering.
Collapse
Affiliation(s)
- Wenqing Zhang
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
- Institute of Energy, Hefei Comprehensive National Science Center, 350 Shushanhu Rd, 230031, Hefei, Anhui, China
| | - Cenfeng Fu
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Jingxiang Low
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Delong Duan
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Jun Ma
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Wenbin Jiang
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Yihong Chen
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Hengjie Liu
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Zeming Qi
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Ran Long
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China.
| | - Yingfang Yao
- Eco-Materials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, 210093, Nanjing, Jiangsu, China.
| | - Xiaobao Li
- School of Physical Science and Technology, ShanghaiTech University, 201203, Shanghai, China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Hui Zhang
- School of Physical Science and Technology, ShanghaiTech University, 201203, Shanghai, China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Zhi Liu
- School of Physical Science and Technology, ShanghaiTech University, 201203, Shanghai, China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Jinlong Yang
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Zhigang Zou
- Eco-Materials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, 210093, Nanjing, Jiangsu, China
| | - Yujie Xiong
- School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Institute of Energy, Hefei Comprehensive National Science Center, 350 Shushanhu Rd, 230031, Hefei, Anhui, China.
| |
Collapse
|
28
|
Rodriguez JA, Rui N, Zhang F, Senanayake SD. In Situ Studies of Methane Activation Using Synchrotron-Based Techniques: Guiding the Conversion of C–H Bonds. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- José A. Rodriguez
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Materials Science and Chemical Engineering, SUNY at Stony Brook, Stony Brook, New York 11794, United States
| | - Ning Rui
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Feng Zhang
- Department of Materials Science and Chemical Engineering, SUNY at Stony Brook, Stony Brook, New York 11794, United States
| | - Sanjaya D. Senanayake
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
29
|
Grinter DC, Thornton G. Structure and reactivity of model CeO 2surfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:253001. [PMID: 35287117 DOI: 10.1088/1361-648x/ac5d89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
As a key component in many industrial heterogeneous catalysts, the surface structure and reactivity of ceria, CeO2, has attracted a lot of attention. In this topical review we discuss some of the approaches taken to form a deeper understanding of the surface physics and chemistry of this important and interesting material. In particular, we focus on the preparation of ultrathin ceria films, nanostructures and supported metal nanoparticles. Cutting-edge microscopic and spectroscopic experimental techniques are highlighted which can probe the behaviour of oxygen species and atomic defects on these model surfaces.
Collapse
Affiliation(s)
- David C Grinter
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Geoff Thornton
- Department of Chemistry and London Centre for Nanotechnology, University College London, London WC1H 0AJ, United Kingdom
| |
Collapse
|
30
|
Wang J, Fu Y, Kong W, Li S, Yuan C, Bai J, Chen X, Zhang J, Sun Y. Investigation of Atom-Level Reaction Kinetics of Carbon-Resistant Bimetallic NiCo-Reforming Catalysts: Combining Microkinetic Modeling and Density Functional Theory. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiyang Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yu Fu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, P.R. China
| | - Wenbo Kong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, P.R. China
| | - Shuqing Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, P.R. China
| | - Changkun Yuan
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, P.R. China
| | - Jieru Bai
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xia Chen
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jun Zhang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, P.R. China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, P.R. China
- Institute of 2060, ShanghaiTech University, Shanghai 201203, P.R. China
- Shanghai Institute of Clean Technology, Shanghai 201620, P.R. China
| |
Collapse
|
31
|
Partial Methane Oxidation in Fuel Cell-Type Reactors for Co-Generation of Energy and Chemicals: A Short Review. Catalysts 2022. [DOI: 10.3390/catal12020217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The conversion of methane into chemicals is of interest to achieve a decarbonized future. Fuel cells are electrochemical devices commonly used to obtain electrical energy but can be utilized either for chemicals’ production or both energy and chemicals cogeneration. In this work, the partial oxidation of methane in fuel cells for electricity generation and valuable chemicals production at the same time is reviewed. For this purpose, we compile different types of methane-fed fuel cells, both low- and high-temperature fuel cells. Despite the fact that few studies have been conducted on this subject, promising results are driving the development of fuel cells that use methane as a fuel source for the cogeneration of power and valuable chemicals.
Collapse
|
32
|
Direct methane conversion with oxygen and CO over hydrophobic dB-ZSM-5 supported Rh single-atom catalyst. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2021.106374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
33
|
Wang X, Jiao Y, Li L, Zheng Y, Qiao S. Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xuesi Wang
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Yan Jiao
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Laiquan Li
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Yao Zheng
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Shi‐Zhang Qiao
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
34
|
Alioui O, Badawi M, Erto A, Amin MA, Tirth V, Jeon BH, Islam S, Balsamo M, Virginie M, Ernst B, Benguerba Y. Contribution of DFT to the optimization of Ni-based catalysts for dry reforming of methane: a review. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2021.2020518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Oualid Alioui
- Laboratoire de génie des procédés chimiques, LGPC, Université Ferhat ABBAS Sétif-1 19000 Sétif, Algeria
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, Université de Lorraine, 54000 Nancy, France
| | - Alessandro Erto
- Dipartimento di Ingegneria Chimica, dei Materiali e Università degli Studi di Napoli, P.leTecchio, 80, 80125, Napoli, Italy
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Asir, Kingdom of Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha, Asir, Kingdom of Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha-61411, Asir, Kingdom of Saudi Arabia
| | - Marco Balsamo
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, 80126 Napoli, Italy
| | - Mirella Virginie
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Uni. Artois, UMR 8181 –UCCS – Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France
| | - Barbara Ernst
- Université de Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), ECPM 25 rue Becquerel, Université de Strasbourg, Strasbourg, France
| | - Yacine Benguerba
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
- Department of process engineering, Faculty of Technology, Ferhat ABBAS Sétif 1 University, 19000 Setif, Algeria
| |
Collapse
|
35
|
Jocz JN, Lyu Y, Hare BJ, Sievers C. Characterization of Surface Species during Benzene Hydroxylation over a NiO-Ceria-Zirconia Catalyst. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:458-471. [PMID: 34936356 DOI: 10.1021/acs.langmuir.1c02833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
NiO/ceria-zirconia (CZ) is a promising catalyst for the selective oxidation of benzene, as the Lewis-acidic NiO clusters can activate C-H bonds and the redox-active CZ support can activate O2 and supply active oxygen species for the reaction. In this study, we used transmission in situ infrared (IR) spectroscopy to examine surface species formed from benzene, water, oxygen, phenol, and catechol on a NiO/CZ catalyst. The formation of surface species from benzene and phenol was compared at different temperatures in the range of 50-200 °C in the presence and absence of water vapor. We also examined the role of the NiO clusters and the CZ support during benzene activation by comparing the surface species formed on NiO-CZ with those formed on a Ni-free CZ support and on a NiO/SiO2 catalyst. The spectrum of surface species from dosing benzene at 180 °C provides evidence for C-H bond activation. Specifically, the observation of C-O stretching vibrations indicates the formation of phenolate species. Introduction of water enhances these IR signals and introduces several additional peaks, indicating that a variety of different surface species are formed. These results show that NiO/CZ could catalyze direct conversion of benzene to phenol.
Collapse
Affiliation(s)
- Jennifer N Jocz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30309, United States
| | - Yimeng Lyu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30309, United States
| | - Bryan J Hare
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30309, United States
| | - Carsten Sievers
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30309, United States
| |
Collapse
|
36
|
Cui Z, Meng S, Yi Y, Jafarzadeh A, Li S, Neyts EC, Hao Y, Li L, Zhang X, Wang X, Bogaerts A. Plasma-Catalytic Methanol Synthesis from CO2 Hydrogenation over a Supported Cu Cluster Catalyst: Insights into the Reaction Mechanism. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zhaolun Cui
- School of Electric Power Engineering, South China University of Technology, Guangzhou 510630, China
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp BE-2610, Belgium
| | - Shengyan Meng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yanhui Yi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Amin Jafarzadeh
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp BE-2610, Belgium
| | - Shangkun Li
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp BE-2610, Belgium
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Erik Cornelis Neyts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp BE-2610, Belgium
| | - Yanpeng Hao
- School of Electric Power Engineering, South China University of Technology, Guangzhou 510630, China
| | - Licheng Li
- School of Electric Power Engineering, South China University of Technology, Guangzhou 510630, China
| | - Xiaoxing Zhang
- School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xinkui Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp BE-2610, Belgium
| |
Collapse
|
37
|
Xiong H, Zhang H, Lv J, Zhang Z, Du C, Wang S, Lin J, Wan S, Wang Y. Oxidation of methane to methanol by water over Cu/SSZ‐13: impact of Cu loading and formation of active sites. ChemCatChem 2022. [DOI: 10.1002/cctc.202101609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haifeng Xiong
- Xiamen University College of Chemistry and Chemical Engineering Siming district of Xiamen city, Fujian province, China 361005 xiamen CHINA
| | - Hailong Zhang
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Jianhang Lv
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Zhun Zhang
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | | | - Shuai Wang
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Jingdong Lin
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Shaolong Wan
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Yong Wang
- Washington State University Chemical Engineering and Bioengineering UNITED STATES
| |
Collapse
|
38
|
Wang S, Yu B, Wang L. A DFT Study of Boron Nitride-confined Nickel Single Atoms for the Oxidation of Methane to Methanol. Phys Chem Chem Phys 2022; 24:21886-21891. [DOI: 10.1039/d2cp03671a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct oxidation of methane to methanol (DMTM) remains an economically tantalizing but fundamentally challenging goal because of the highly stable C-H bonds. By using density functional theory calculations, we investigated...
Collapse
|
39
|
Shi T, Sridhar D, Zeng L, Chen A. Recent Advances in Catalyst Design for the Electrochemical and Photoelectrochemical Conversion of Methane to Value-Added Products. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
40
|
Luo L, Gong Z, Xu Y, Ma J, Liu H, Xing J, Tang J. Binary Au-Cu Reaction Sites Decorated ZnO for Selective Methane Oxidation to C1 Oxygenates with Nearly 100% Selectivity at Room Temperature. J Am Chem Soc 2021; 144:740-750. [PMID: 34928583 DOI: 10.1021/jacs.1c09141] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Direct and efficient oxidation of methane to methanol and the related liquid oxygenates provides a promising pathway for sustainable chemical industry, while still remaining an ongoing challenge owing to the dilemma between methane activation and overoxidation. Here, ZnO with highly dispersed dual Au and Cu species as cocatalysts enables efficient and selective photocatalytic conversion of methane to methanol and one-carbon (C1) oxygenates using O2 as the oxidant operated at ambient temperature. The optimized AuCu-ZnO photocatalyst achieves up to 11225 μmol·g-1·h-1 of primary products (CH3OH and CH3OOH) and HCHO with a nearly 100% selectivity, resulting in a 14.1% apparent quantum yield at 365 nm, much higher than the previous best photocatalysts reported for methane conversion to oxygenates. In situ EPR and XPS disclose that Cu species serve as photoinduced electron mediators to promote O2 activation to •OOH, and simultaneously that Au is an efficient hole acceptor to enhance H2O oxidation to •OH, thus synergistically promoting charge separation and methane transformation. This work highlights the significances of co-modification with suitable dual cocatalysts on simultaneous regulation of activity and selectivity.
Collapse
Affiliation(s)
- Lei Luo
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Zhuyu Gong
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Youxun Xu
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Jiani Ma
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Huifen Liu
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jialiang Xing
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| |
Collapse
|
41
|
Lyu Y, Xu R, Williams O, Wang Z, Sievers C. Reaction paths of methane activation and oxidation of surface intermediates over NiO on Ceria-Zirconia catalysts studied by In-situ FTIR spectroscopy. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Wang X, Jiao Y, Li L, Zheng Y, Qiao SZ. Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angew Chem Int Ed Engl 2021; 61:e202114253. [PMID: 34825452 DOI: 10.1002/anie.202114253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/07/2022]
Abstract
We demonstrate a widely applicable method to alter the adsorption configuration of multi-carbon containing reactants by no catalyst engineering but simply adjusting the local reaction environment of the catalyst surface. Using electrocatalytic acetone to propane hydrogenation (APH) as a model reaction and common commercial Pt/Pt-based materials as catalysts, we found local H+ concentration can significantly influence the adsorption mode of acetone reactant, for example, in vertical or flat mode, and target product selectivity. Electrocatalytic measurement combined with in situ spectroscopic characterizations reveals that the vertically adsorbed acetone is favorable for propane production while the flatly adsorbed mode suppresses the reaction. DFT calculations indicate that the H coverage on catalyst surface plays a decisive role in the adsorption configuration of acetone. The increased local acidity can facilitate the adsorption configuration of acetone from flat to vertical mode and suppress the competing hydrogen evaluation reaction, which consequently enhances the APH selectivity.
Collapse
Affiliation(s)
- Xuesi Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yan Jiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Laiquan Li
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yao Zheng
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
43
|
Huang E, Orozco I, Ramírez PJ, Liu Z, Zhang F, Mahapatra M, Nemšák S, Senanayake SD, Rodriguez JA, Liu P. Selective Methane Oxidation to Methanol on ZnO/Cu 2O/Cu(111) Catalysts: Multiple Site-Dependent Behaviors. J Am Chem Soc 2021; 143:19018-19032. [PMID: 34735767 DOI: 10.1021/jacs.1c08063] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because of the abundance of natural gas in our planet, a major goal is to achieve a direct methane-to-methanol conversion at medium to low temperatures using mixtures of methane and oxygen. Here, we report an efficient catalyst, ZnO/Cu2O/Cu(111), for this process investigated using a combination of reactor testing, scanning tunneling microscopy, ambient-pressure X-ray photoemission spectroscopy, density functional calculations, and kinetic Monte Carlo simulations. The catalyst is capable of methane activation at room temperature and transforms mixtures of methane and oxygen to methanol at 450 K with a selectivity of ∼30%. This performance is not seen for other heterogeneous catalysts which usually require the addition of water to enable a significant conversion of methane to methanol. The unique coarse structure of the ZnO islands supported on a Cu2O/Cu(111) substrate provides a collection of multiple centers that display different catalytic activity during the reaction. ZnO-Cu2O step sites are active centers for methanol synthesis when exposed to CH4 and O2 due to an effective O-O bond dissociation, which enables a methane-to-methanol conversion with a reasonable selectivity. Upon addition of water, the defected O-rich ZnO sites, introduced by Zn vacancies, show superior behavior toward methane conversion and enhance the overall methanol selectivity to over 80%. Thus, in this case, the surface sites involved in a direct CH4 → CH3OH conversion are different from those engaged in methanol formation without water. The identification of the site-dependent behavior of ZnO/Cu2O/Cu(111) opens a design strategy for guiding efficient methane reformation with high methanol selectivity.
Collapse
Affiliation(s)
- Erwei Huang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Ivan Orozco
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Pedro J Ramírez
- Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1020-A Venezuela.,Zoneca-CENEX, R&D Laboratories, Alta Vista, 64770 Monterrey, México
| | - Zongyuan Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Feng Zhang
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Mausumi Mahapatra
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Slavomír Nemšák
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sanjaya D Senanayake
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - José A Rodriguez
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States.,Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States.,Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Ping Liu
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States.,Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
44
|
Contribution of Different Species in Ni‐Ceria Nanorods Catalysts Applied to Steam Reforming of Ethanol. ChemistrySelect 2021. [DOI: 10.1002/slct.202103005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Pérez-Bailac P, Lustemberg PG, Ganduglia-Pirovano MV. Facet-dependent stability of near-surface oxygen vacancies and excess charge localization at CeO 2surfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:504003. [PMID: 34479232 DOI: 10.1088/1361-648x/ac238b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/03/2021] [Indexed: 05/25/2023]
Abstract
To study the dependence of the relative stability of surface (VA) and subsurface (VB) oxygen vacancies with the crystal facet of CeO2, the reduced (100), (110) and (111) surfaces, with two different concentrations of vacancies, were investigated by means of density functional theory (DFT + U) calculations. The results show that the trend in the near-surface vacancy formation energies for comparable vacancy spacings, i.e. (110) < (100) < (111), does not follow the one in the surface stability of the facets, i.e. (111) < (110) < (100). The results also reveal that the preference of vacancies for surface or subsurface sites, as well as the preferred location of the associated Ce3+polarons, are facet- and concentration-dependent. At the higher vacancy concentration, theVAis more stable than theVBat the (110) facet whereas at the (111), it is the other way around, and at the (100) facet, both theVAand theVBhave similar stability. The stability of theVAvacancies, compared to that of theVB, is accentuated as the concentration decreases. Nearest neighbor polarons to the vacant sites are only observed for the less densely packed (110) and (100) facets. These findings are rationalized in terms of the packing density of the facets, the lattice relaxation effects induced by vacancy formation and the localization of the excess charge, as well as the repulsive Ce3+-Ce3+interactions.
Collapse
Affiliation(s)
- Patricia Pérez-Bailac
- Instituto de Catálisis y Petroleoquímica (ICP-CSIC), C/Marie Curie 2, 28049 Madrid, Spain
- PhD Programme in Applied Chemistry, Doctoral School, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 2, 28049 Ciudad Universitaria de Cantoblanco, Madrid, Spain
| | - Pablo G Lustemberg
- Instituto de Catálisis y Petroleoquímica (ICP-CSIC), C/Marie Curie 2, 28049 Madrid, Spain
- Instituto de Física Rosario (IFIR-CONICET), Ocampo y Esmeralda, S2000EKF Rosario, Santa Fe, Argentina
| | | |
Collapse
|
46
|
Kang J, Rui N, Huang E, Tian Y, Mahapatra M, Rosales R, Orozco I, Shi R, Senanayake SD, Liu P, Rodriguez JA. Surface characterization and methane activation on SnO x/Cu 2O/Cu(111) inverse oxide/metal catalysts. Phys Chem Chem Phys 2021; 23:17186-17196. [PMID: 34346423 DOI: 10.1039/d1cp02829d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To activate methane at low or medium temperatures is a difficult task and a pre-requisite for the conversion of this light alkane into high value chemicals. Herein, we report the preparation and characterizations of novel SnOx/Cu2O/Cu(111) interfaces that enable low-temperature methane activation. Scanning tunneling microscopy identified small, well-dispersed SnOx nanoclusters on the Cu2O/Cu(111) substrate with an average size of 8 Å, and such morphology was sustained up to 450 K in UHV annealing. Ambient pressure X-ray photoelectron spectroscopy showed that hydrocarbon species (CHx groups), the product of methane activation, were formed on SnOx/Cu2O/Cu(111) at a temperature as low as 300 K. An essential role of the SnOx-Cu2O interface was evinced by the SnOx coverage dependence. Systems with a small amount of tin oxide, 0.1-0.2 ML coverage, produced the highest concentration of adsorbed CHx groups. Calculations based on density functional theory showed a drastic reduction in the activation barrier for C-H bond cleavage when going from Cu2O/Cu(111) to SnOx/Cu2O/Cu(111). On the supported SnOx, the dissociation of methane was highly exothermic (ΔE∼-35 kcal mol-1) and the calculated barrier for activation (∼20 kcal mol-1) could be overcome at 300-500 K, target temperatures for the conversion of methane to high value chemicals.
Collapse
Affiliation(s)
- Jindong Kang
- Department of Chemistry, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lustemberg PG, Mao Z, Salcedo A, Irigoyen B, Ganduglia-Pirovano MV, Campbell CT. Nature of the Active Sites on Ni/CeO 2 Catalysts for Methane Conversions. ACS Catal 2021; 11:10604-10613. [PMID: 34484854 PMCID: PMC8411779 DOI: 10.1021/acscatal.1c02154] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/23/2021] [Indexed: 11/30/2022]
Abstract
![]()
Effective
catalysts for the direct conversion of methane to methanol
and for methane’s dry reforming to syngas are Holy Grails of
catalysis research toward clean energy technologies. It has recently
been discovered that Ni at low loadings on CeO2(111) is
very active for both of these reactions. Revealing the nature of the
active sites in such systems is paramount to a rational design of
improved catalysts. Here, we correlate experimental measurements on
the CeO2(111) surface to show that the most active sites
are cationic Ni atoms in clusters at step edges, with a small size
wherein they have the highest Ni chemical potential. We clarify the
reasons for this observation using density functional theory calculations.
Focusing on the activation barrier for C–H bond cleavage during
the dissociative adsorption of CH4 as an example, we show
that the size and morphology of the supported Ni nanoparticles together
with strong Ni-support bonding and charge transfer at the step edge
are key to the high catalytic activity. We anticipate that this knowledge
will inspire the development of more efficient catalysts for these
reactions.
Collapse
Affiliation(s)
- Pablo G. Lustemberg
- Instituto de Catálisis y Petroleoquímica (ICP-CSIC), 28049 Madrid, Spain
- Instituto de Física Rosario (IFIR-CONICET) and Universidad Nacional de Rosario (UNR), S2000EKF Rosario, Santa Fe, Argentina
| | - Zhongtian Mao
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Agustín Salcedo
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Buenos Aires (UBA), Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- Instituto de Tecnologías del Hidrógeno y Energías Sostenibles (ITHES, CONICET-UBA), Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Beatriz Irigoyen
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Buenos Aires (UBA), Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- Instituto de Tecnologías del Hidrógeno y Energías Sostenibles (ITHES, CONICET-UBA), Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | | | - Charles T. Campbell
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
48
|
Feng N, Lin H, Song H, Yang L, Tang D, Deng F, Ye J. Efficient and selective photocatalytic CH 4 conversion to CH 3OH with O 2 by controlling overoxidation on TiO 2. Nat Commun 2021; 12:4652. [PMID: 34341354 PMCID: PMC8329221 DOI: 10.1038/s41467-021-24912-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022] Open
Abstract
The conversion of photocatalytic methane into methanol in high yield with selectivity remains a huge challenge due to unavoidable overoxidation. Here, the photocatalytic oxidation of CH4 into CH3OH by O2 is carried out on Ag-decorated facet-dominated TiO2. The {001}-dominated TiO2 shows a durable CH3OH yield of 4.8 mmol g−1 h−1 and a selectivity of approximately 80%, which represent much higher values than those reported in recent studies and are better than those obtained for {101}-dominated TiO2. Operando Fourier transform infrared spectroscopy, electron spin resonance, and nuclear magnetic resonance techniques are used to comprehensively clarify the underlying mechanism. The straightforward generation of oxygen vacancies on {001} by photoinduced holes plays a key role in avoiding the formation of •CH3 and •OH, which are the main factors leading to overoxidation and are generally formed on the {101} facet. The generation of oxygen vacancies on {001} results in distinct intermediates and reaction pathways (oxygen vacancy → Ti–O2• → Ti–OO–Ti and Ti–(OO) → Ti–O• pairs), thus achieving high selectivity and yield for CH4 photooxidation into CH3OH. The photocatalytic conversion of CH4 into CH3OH with high activity and selectivity must avoid product overoxidation. Here, authors minimize overoxidation by using a (001)-dominated TiO2 nanosheet to circumvent CH4 overoxidation intermediates plus reaction pathways that occur on (101) facets.
Collapse
Affiliation(s)
- Ningdong Feng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, CAS Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China. .,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan.
| | - Huiwen Lin
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan.,College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Hui Song
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Longxiao Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, CAS Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Daiming Tang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, CAS Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Jinhua Ye
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan. .,TJU-NIMS International Collaboration Laboratory, School of Material Science and Engineering, Tianjin University, Tianjin, China.
| |
Collapse
|
49
|
Álvarez M, Marín P, Ordóñez S. Harnessing of Diluted Methane Emissions by Direct Partial Oxidation of Methane to Methanol over Cu/Mordenite. Ind Eng Chem Res 2021; 60:9409-9417. [PMID: 35273425 PMCID: PMC8900128 DOI: 10.1021/acs.iecr.1c01069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 11/28/2022]
Abstract
![]()
The upgrading of diluted methane
emissions into valuable products
can be accomplished at low temperatures (200 °C) by the direct
partial oxidation of methanol over copper-exchanged zeolite catalysts.
The reaction has been studied in a continuous fixed-bed reactor loaded
with a Cu–mordenite catalyst, according to a three-step cyclic
process: adsorption of methane, desorption of methanol, and reactivation
of the catalyst. The purpose of the work is the use of methane emissions
as feedstocks, which is challenging due to their low methane concentration
and the presence of oxygen. Methane concentration had a marked influence
on methane adsorption and methanol production (decreased from 164
μmol/g Cu for pure methane to 19 μmol/g Cu for 5% methane).
The presence of oxygen, even in low concentrations (2.5%), reduced
methane adsorption drastically. However, methanol production was only
affected slightly (average decrease of 9%), concluding that methane
adsorbed on the active centers yielding methanol is not influenced
by oxygen.
Collapse
Affiliation(s)
- Mauro Álvarez
- Catalysis, Reactors and Control Research Group (CRC), Department of Chemical and Environmental Engineering, University of Oviedo, Faculty of Chemistry, Julián Clavería 8, 33006 Oviedo, Spain
| | - Pablo Marín
- Catalysis, Reactors and Control Research Group (CRC), Department of Chemical and Environmental Engineering, University of Oviedo, Faculty of Chemistry, Julián Clavería 8, 33006 Oviedo, Spain
| | - Salvador Ordóñez
- Catalysis, Reactors and Control Research Group (CRC), Department of Chemical and Environmental Engineering, University of Oviedo, Faculty of Chemistry, Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
50
|
Salcedo A, Lustemberg PG, Rui N, Palomino RM, Liu Z, Nemsak S, Senanayake SD, Rodriguez JA, Ganduglia-Pirovano MV, Irigoyen B. Reaction Pathway for Coke-Free Methane Steam Reforming on a Ni/CeO 2 Catalyst: Active Sites and the Role of Metal-Support Interactions. ACS Catal 2021; 11:8327-8337. [PMID: 34306812 PMCID: PMC8294006 DOI: 10.1021/acscatal.1c01604] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/28/2021] [Indexed: 11/28/2022]
Abstract
![]()
Methane steam reforming
(MSR) plays a key role in the production
of syngas and hydrogen from natural gas. The increasing interest in
the use of hydrogen for fuel cell applications demands development
of catalysts with high activity at reduced operating temperatures.
Ni-based catalysts are promising systems because of their high activity
and low cost, but coke formation generally poses a severe problem.
Studies of ambient-pressure X-ray photoelectron spectroscopy (AP-XPS)
indicate that CH4/H2O gas mixtures react with
Ni/CeO2(111) surfaces to form OH, CHx, and CHxO at 300 K. All of these
species are easy to form and desorb at temperatures below 700 K when
the rate of the MSR process is accelerated. Density functional theory
(DFT) modeling of the reaction over ceria-supported small Ni nanoparticles
predicts relatively low activation barriers between 0.3 and 0.7 eV
for complete dehydrogenation of methane to carbon and the barrierless
activation of water at interfacial Ni sites. Hydroxyls resulting from
water activation allow for CO formation via a COH intermediate with
a barrier of about 0.9 eV, which is much lower than that through a
pathway involving lattice oxygen from ceria. Neither methane nor water
activation is a rate-determining step, and the OH-assisted CO formation
through the COH intermediate constitutes a low-barrier pathway that
prevents carbon accumulation. The interactions between Ni and the
ceria support and the low metal loading are crucial for the reaction
to proceed in a coke-free and efficient way. These results pave the
way for further advances in the design of stable and highly active
Ni-based catalysts for hydrogen production.
Collapse
Affiliation(s)
- Agustín Salcedo
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Buenos Aires (UBA), Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- Instituto de Tecnologías del Hidrógeno y Energías Sostenibles (ITHES, CONICET-UBA), Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Pablo G. Lustemberg
- Instituto de Catálisis y Petroleoquímica (ICP, CSIC), 28049 Madrid, Spain
- Instituto de Física Rosario (IFIR, CONICET-UNR), S2000EKF Rosario, Santa Fe, Argentina
| | - Ning Rui
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Robert M. Palomino
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Zongyuan Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Slavomir Nemsak
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sanjaya D. Senanayake
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - José A. Rodriguez
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | | | - Beatriz Irigoyen
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Buenos Aires (UBA), Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
- Instituto de Tecnologías del Hidrógeno y Energías Sostenibles (ITHES, CONICET-UBA), Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| |
Collapse
|