1
|
Gruškienė R, Sereikaitė J. The effect of extremolytes ectoine and hydroxyectoine on the heat-induced protein aggregation: The case of growth hormone. Biochimie 2024:S0300-9084(24)00232-3. [PMID: 39389448 DOI: 10.1016/j.biochi.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The extremolytes ectoine and hydroxyectoine are osmolytes found in extremophilic microorganisms. They are stabilisers of proteins and other macromolecules, including DNA and lipids. The aim of the study was to investigate the effect of the additives on the heat-induced aggregation of mink growth hormone as a model protein. The first-order rate constants of protein aggregation were determined at 60 °C depending on the additive concentration and pH of the solution. The onset temperature of aggregation was also recorded using a circular dichroism spectropolarimeter. The study showed that the effect of the additives depended on the pH of the solution. The first-order rate constants of aggregation were lower when the protein molecule had a negative charge. The effect also depended on the structure of the extremolyte itself. When the protein molecule was positively charged, hydroxyectoine destabilised the mink growth hormone molecule and promoted the aggregation. The different effects of the additives were determined by the different interactions with the protein molecules, as shown by circular dichroism measurements and previously by fluorescence spectroscopy. Therefore, when using ectoine or hydroxyectoine for protein formulation, the effect of the additive should be carefully analysed for each protein individually.
Collapse
Affiliation(s)
- Rūta Gruškienė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Jolanta Sereikaitė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| |
Collapse
|
2
|
Sarkar S, Guha A, Narayanan TN, Mondal J. Osmolyte-Induced Modulation of Hofmeister Series. J Phys Chem B 2024; 128:9436-9446. [PMID: 39359138 DOI: 10.1021/acs.jpcb.4c05049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Natural selection has driven the convergence toward a selected set of osmolytes, endowing them with the necessary efficiency to manage stress arising from salt diversity. This study combines atomistic simulations and experiments to investigate how two osmolytes, glycine and betaine, individually modulate the Hofmeister ion ordering of alkali metal salts (LiCl, KCl, and CsCl) near a charged silica interface. Both osmolytes are found to prevent salt-induced aggregation of the charged entities, yet their mode and degree of relative modulation depend on their intricate interplay with specific salt cations. Betaine's ion-mediated surface interaction maintains Hofmeister ion ordering, whereas glycine alters the relative Hofmeister order of the cation by salt-specific ion desorption from the surface. Experimental validation through surface-enhanced Raman spectroscopy supports these findings, elucidating osmolyte-mediated alterations in interfacial water structures. These observations based on an inorganic interface are reciprocated in amyloid beta 40 dimerization dynamics, highlighting osmolytes' efficacy in mitigating salt-induced aggregation. A molecular analysis suggests that the differential modes of interaction, as found here for glycine and betaine, are prevalent across classes of zwitterionic osmolytes.
Collapse
Affiliation(s)
- Susmita Sarkar
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500046, India
| | - Anku Guha
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500046, India
| | - Tharangattu N Narayanan
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500046, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500046, India
| |
Collapse
|
3
|
Xu X, Stellacci F. Amino Acids and Their Biological Derivatives Modulate Protein-Protein Interactions in an Additive Way. J Phys Chem Lett 2024; 15:7154-7160. [PMID: 38967372 PMCID: PMC11261602 DOI: 10.1021/acs.jpclett.4c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Protein-protein interactions (PPIs) differ when measured in test tubes and cells due to the complexity of the intracellular environment. Free amino acids (AAs) and their derivatives constitute a significant fraction of the intracellular volume and mass. Recently, we have found that AAs have a generic property of rendering protein dispersions more stable by reducing the net attractive part of PPIs. Here, we study the effects on PPIs of different AA derivatives, AA mixtures, and short peptides. We find that all the tested AA derivatives modulate PPIs in solution as effectively as AAs. Furthermore, we show that the modulation effect is additive when AAs form mixtures or are bound into short peptides. Therefore, this study demonstrates the additive effects of a class of small molecules (i.e., AAs and their biological derivatives) on PPIs and provides insights into rationally designing biocompatible molecules for stabilizing protein interactions and consequently tuning protein functions.
Collapse
Affiliation(s)
- Xufeng Xu
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Francesco Stellacci
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Lausanne 1015, Switzerland
- Bioengineering
Institute, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
4
|
Arar S, Haque MA, Bhatt N, Zhao Y, Kayed R. Effect of Natural Osmolytes on Recombinant Tau Monomer: Propensity of Oligomerization and Aggregation. ACS Chem Neurosci 2024; 15:1366-1377. [PMID: 38503425 PMCID: PMC10995947 DOI: 10.1021/acschemneuro.3c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
The pathological misfolding and aggregation of the microtubule associated protein tau (MAPT), a full length Tau2N4R with 441aa, is considered the principal disease relevant constituent in tauopathies including Alzheimer's disease (AD) with an imbalanced ratio in 3R/4R isoforms. The exact cellular fluid composition, properties, and changes that coincide with tau misfolding, seed formation, and propagation events remain obscure. The proteostasis network, along with the associated osmolytes, is responsible for maintaining the presence of tau in its native structure or dealing with misfolding. In this study, for the first time, the roles of natural brain osmolytes are being investigated for their potential effects on regulating the conformational stability of the tau monomer (tauM) and its propensity to aggregate or disaggregate. Herein, the effects of physiological osmolytes myo-inositol, taurine, trimethyl amine oxide (TMAO), betaine, sorbitol, glycerophosphocholine (GPC), and citrulline on tau's aggregation state were investigated. The overall results indicate the ability of sorbitol and GPC to maintain the monomeric form and prevent aggregation of tau, whereas myo-inositol, taurine, TMAO, betaine, and citrulline promote tau aggregation to different degrees, as revealed by protein morphology in atomic force microscopy images. Biochemical and biophysical methods also revealed that tau proteins adopt different conformations under the influence of these osmolytes. TauM in the presence of all osmolytes expressed no toxicity when tested by a lactate dehydrogenase assay. Investigating the conformational stability of tau in the presence of osmolytes may provide a better understanding of the complex nature of tau aggregation in AD and the protective and/or chaotropic nature of osmolytes.
Collapse
Affiliation(s)
- Sharif Arar
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department
of Chemistry, School of Science, The University
of Jordan, Amman 11942, Jordan
| | - Md Anzarul Haque
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Nemil Bhatt
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yingxin Zhao
- Department
of Internal Medicine, University of Texas
Medical Branch, Galveston, Texas 77555, United States
- Institute
for Translational Sciences, University of
Texas Medical Branch, Galveston, Texas 77555, United States
| | - Rakez Kayed
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
5
|
Kaur H, Garg M, Tomar D, Singh S, Jena KC. Role of tungsten disulfide quantum dots in specific protein-protein interactions at air-water interface. J Chem Phys 2024; 160:084705. [PMID: 38411235 DOI: 10.1063/5.0187563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
The intriguing network of antibody-antigen (Ab-Ag) interactions is highly governed by environmental perturbations and the nature of biomolecular interaction. Protein-protein interactions (PPIs) have potential applications in developing protein-adsorption-based sensors and nano-scale materials. Therefore, characterizing PPIs in the presence of a nanomaterial at the molecular level becomes imperative. The present work involves the investigation of antiferritin-ferritin (Ab-Ag) protein interactions under the influence of tungsten disulfide quantum dots (WS2 QDs). Isothermal calorimetry and contact angle measurements validated the strong influence of WS2 QDs on Ab-Ag interactions. The interfacial signatures of nano-bio-interactions were evaluated using sum frequency generation vibration spectroscopy (SFG-VS) at the air-water interface. Our SFG results reveal a variation in the tilt angle of methyl groups by ∼12° ± 2° for the Ab-Ag system in the presence of WS2 QDs. The results illustrated an enhanced ordering of water molecules in the presence of QDs, which underpins the active role of interfacial water molecules during nano-bio-interactions. We have also witnessed a differential impact of QDs on Ab-Ag by raising the concentration of the Ab-Ag combination, which showcased an increased inter-molecular interaction among the Ab and Ag molecules and a minimal influence on the methyl tilt angle. These findings suggest the formation of stronger and ordered Ab-Ag complexes upon introducing WS2 QDs in the aqueous medium and signify the potentiality of WS2 QDs relevant to protein-based sensing assays.
Collapse
Affiliation(s)
- Harsharan Kaur
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Mayank Garg
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deepak Tomar
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Suman Singh
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kailash C Jena
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
6
|
Chaudhuri D, Chowdhury D, Chakraborty S, Bhatt M, Chowdhury R, Dutta A, Mistry A, Haldar S. Structurally different chemical chaperones show similar mechanical roles with independent molecular mechanisms. NANOSCALE 2024; 16:2540-2551. [PMID: 38214221 DOI: 10.1039/d3nr00398a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Osmolytes are well known to protect the protein structure against different chemical and physical denaturants. Since their actions with protein surfaces are mechanistically complicated and context dependent, the underlying molecular mechanism is not fully understood. Here, we combined single-molecule magnetic tweezers and molecular dynamics (MD) simulation to explore the mechanical role of osmolytes from two different classes, trimethylamine N-oxide (TMAO) and trehalose, as mechanical stabilizers of protein structure. We observed that these osmolytes increase the protein L mechanical stability by decreasing unfolding kinetics while accelerating the refolding kinetics under force, eventually shifting the energy landscape toward the folded state. These osmolytes mechanically stabilize the protein L and plausibly guide them to more thermodynamically robust states. Finally, we observed that osmolyte-modulated protein folding increases mechanical work output up to twofold, allowing the protein to fold under a higher force regime and providing a significant implication for folding-induced structural stability in proteins.
Collapse
Affiliation(s)
- Deep Chaudhuri
- Department of Chemistry, Ashoka University, Sonepat, Haryana, India.
| | - Debojyoti Chowdhury
- Department of Chemical and Biological Sciences, S.N. Bose National Center for Basic Sciences, Kolkata, West Bengal, India
| | - Soham Chakraborty
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, India
| | - Madhu Bhatt
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, India
| | - Rudranil Chowdhury
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, India
| | - Aakashdeep Dutta
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, India
| | - Ayush Mistry
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, India
| | - Shubhasis Haldar
- Department of Chemistry, Ashoka University, Sonepat, Haryana, India.
- Department of Chemical and Biological Sciences, S.N. Bose National Center for Basic Sciences, Kolkata, West Bengal, India
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, India
| |
Collapse
|
7
|
Sarkar S, Narayanan TN, Mondal J. A Synergistic View on Osmolyte's Role against Salt and Cold Stress in Biointerfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17581-17592. [PMID: 38044584 DOI: 10.1021/acs.langmuir.3c02397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We present our perspective on the role of osmolytes in mitigating abiotic stresses such as hypersalinity and sudden temperature changes. While the stabilizing effect of osmolytes on protein tertiary structures has been extensively studied, their direct impact on abiotic stress factors has eluded mainstream attention. Via highlighting a set of recent success stories of a joint venture of computer simulations and experimental measurements, we summarize the mechanistic insights into osmolytic action, particularly in the context of salt stress and combined cold-salt stress at the interface of biomolecular surfaces and saline environments. We stress the importance of chemical specificity in osmolytic activity, the interplay of differential osmolytic behaviors against heterogeneous salt stress, and the capability of osmolytes to adopt combined actions. Additionally, we discuss the potential of incorporating nanomaterial-based systems to enrich our understanding of osmolyte bioactions and facilitate their practical applications. We anticipate that this discourse will inspire interdisciplinary collaborations and motivate further investigations on osmolytes, ultimately broadening their applications in the fields of health and disease.
Collapse
Affiliation(s)
- Susmita Sarkar
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500046, India
| | | | - Jagannath Mondal
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500046, India
| |
Collapse
|
8
|
Deng Z, Chapagain P, Leng F. Macromolecular crowding potently stimulates DNA supercoiling activity of Mycobacterium tuberculosis DNA gyrase. J Biol Chem 2023; 299:105439. [PMID: 37944619 PMCID: PMC10731242 DOI: 10.1016/j.jbc.2023.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Macromolecular crowding, manifested by high concentrations of proteins and nucleic acids in living cells, significantly influences biological processes such as enzymatic reactions. Studying these reactions in vitro, using agents such as polyetthylene glycols (PEGs) and polyvinyl alcohols (PVAs) to mimic intracellular crowding conditions, is essential due to the notable differences from enzyme behaviors observed in diluted aqueous solutions. In this article, we studied Mycobacterium tuberculosis (Mtb) DNA gyrase under macromolecular crowding conditions by incorporating PEGs and PVAs into the DNA supercoiling reactions. We discovered that high concentrations of potassium glutamate, glycine betaine, PEGs, and PVA substantially stimulated the DNA supercoiling activity of Mtb DNA gyrase. Steady-state kinetic studies showed that glycine betaine and PEG400 significantly reduced the KM of Mtb DNA gyrase and simultaneously increased the Vmax or kcat of Mtb DNA gyrase for ATP and the plasmid DNA molecule. Molecular dynamics simulation studies demonstrated that PEG molecules kept the ATP lid of DNA gyrase subunit B in a closed or semiclosed conformation, which prevented ATP molecules from leaving the ATP-binding pocket of DNA gyrase subunit B. The stimulation of the DNA supercoiling activity of Mtb DNA gyrase by these molecular crowding agents likely results from a decrease in water activity and an increase in excluded volume.
Collapse
Affiliation(s)
- Zifang Deng
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA; Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, USA
| | - Prem Chapagain
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA; Department of Physics, Florida International University, Miami, Florida, USA
| | - Fenfei Leng
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA; Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, USA.
| |
Collapse
|
9
|
Borde NL, Dweikat I. Identification of Genomic Regions Associated with Seedling Frost Tolerance in Sorghum. Genes (Basel) 2023; 14:2117. [PMID: 38136939 PMCID: PMC10743030 DOI: 10.3390/genes14122117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Sorghum bicolor (L.) Moench is the fifth most valuable cereal crop globally. Although sorghum is tolerant to drought and elevated temperatures, it is susceptible to chilling, frost, and freezing stresses. Sorghum seeds planted in April may encounter frequent frost during late April and early May. Early spring freezing temperatures adversely affect crop development and yield. This study aims to identify genomic regions associated with frost tolerance at the seedlings stage. Breeding freeze-tolerant cultivars require selection for freeze tolerance in nurseries. However, the unpredictability of environmental conditions complicates the identification of freeze-tolerant genotypes. An indoor selection protocol has been developed to investigate the genetic determinism of freeze tolerance at the seedling stages and its correlation with several developmental traits. To accomplish this, we used two populations of recombinant inbred lines (RIL) developed from crosses between cold-tolerant (CT19, ICSV700) and cold-sensitive (TX430, M81E) parents. The derived RIL populations were evaluated for single nucleotide polymorphism (SNP) using genotype-by-sequencing (GBS) under controlled environments for their response to freezing stress. Linkage maps were constructed with 464 and 875 SNPs for the CT19 X TX430 (C1) and ICSV700 X M81E(C2) populations. Using quantitative trait loci (QTL) mapping, we identified six QTLs conferring tolerance to freezing temperatures. One QTL in the C1 population and four QTLs in the C2 population, explain 17.75-98% of the phenotypic variance of traits measured. Proline leaf content was increased in response to exposing the seedlings to low temperatures. Candidate QTLs identified in this study could be further exploited to develop frost-tolerant cultivars as proxies in marker-assisted breeding, genomic selection, and genetic engineering.
Collapse
Affiliation(s)
| | - Ismail Dweikat
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583-0915, USA;
| |
Collapse
|
10
|
Sarkar S, Guha A, Sadhukhan R, Narayanan TN, Mondal J. Osmolytes as Cryoprotectants under Salt Stress. ACS Biomater Sci Eng 2023; 9:5639-5652. [PMID: 37697623 DOI: 10.1021/acsbiomaterials.3c00763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Cryoprotecting agent (CPA)-guided preservation is essential for effective protection of cells from cryoinjuries. However, current cryoprotecting technologies practiced to cryopreserve cells for biomedical applications are met with extreme challenges due to the associated toxicity of CPAs. Because of these limitations of present CPAs, the quest for nontoxic alternatives for useful application in cell-based biomedicines has been attracting growing interest. Toward this end, here, we investigate naturally occurring osmolytes' scope as biocompatible cryoprotectants under cold stress conditions in high-saline medium. Via a combination of the simulation and experiment on charged silica nanostructures, we render first-hand evidence that a pair of archetypal osmolytes, glycine and betaine, would act as a cryoprotectant by restoring the indigenous intersurface electrostatic interaction, which had been a priori screened due to the cold effect under salt stress. While these osmolytes' individual modes of action are sensitive to subtle chemical variation, a uniform augmentation in the extent of osmolytic activity is observed with an increase in temperature to counter the proportionately enhanced salt screening. The trend as noted in inorganic nanostructures is found to be recurrent and robustly transferable in a charged protein interface. In hindsight, our observation justifies the sufficiency of the reduced requirement of osmolytes in cells during critical cold conditions and encourages their direct usage and biomimicry for cryopreservation.
Collapse
Affiliation(s)
- Susmita Sarkar
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Anku Guha
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Rayantan Sadhukhan
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Tharangattu N Narayanan
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Jagannath Mondal
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| |
Collapse
|
11
|
Meng X, Lv Z, Jiang T, Tan Y, Sun S, Feng J. Preparation and Characterization of a Novel Artemisia Oil Packaging Film and Its Application in Mango Preservation. Foods 2023; 12:2969. [PMID: 37569238 PMCID: PMC10418662 DOI: 10.3390/foods12152969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
In this work, a new food packaging film was synthesized via blending Artemisia oil (AO) into soybean protein isolate (SPI) and gelatin (Gel) for the postharvest storage of mango. The morphological architecture and mechanical properties of the films were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD), and other technologies. The results show that the prepared films had relatively flat surfaces with good mechanical properties. AO enhanced the light-blocking ability of the film, increased the hydrophobicity, and affected the moisture content and water solubility of the film to a certain extent. Furthermore, the antioxidant performance and antifungal (Colletotrichum gloeosporioides) capacity of the films increased with higher AO concentration due to the presence of the active components contained in AO. During mango storage applications, the films showed good freshness retention properties. The above results indicate that SPI-Gel films containing AO have excellent physicochemical and application properties and have great potential in the field of food packaging.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianguo Feng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Pan L, Liu X, Fan D, Qian Z, Sun X, Wu P, Zhong L. Study of Oncolytic Virus Preservation and Formulation. Pharmaceuticals (Basel) 2023; 16:843. [PMID: 37375789 DOI: 10.3390/ph16060843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, oncolytic viruses (OVs) have emerged as an effective means of treating cancer. OVs have multiple oncotherapeutic functions including specifically infecting and lysing tumor cells, initiating immune cell death, attacking and destroying tumor angiogenesis and triggering a broad bystander effect. Oncolytic viruses have been used in clinical trials and clinical treatment as drugs for cancer therapy, and as a result, oncolytic viruses are required to have long-term storage stability for clinical use. In the clinical application of oncolytic viruses, formulation design plays a decisive role in the stability of the virus. Therefore, this paper reviews the degradation factors and their degradation mechanisms (pH, thermal stress, freeze-thaw damage, surface adsorption, oxidation, etc.) faced by oncolytic viruses during storage, and it discusses how to rationally add excipients for the degradation mechanisms to achieve the purpose of maintaining the long-term stability of oncolytic viral activity. Finally, the formulation strategies for the long-term formulation stability of oncolytic viruses are discussed in terms of buffers, permeation agents, cryoprotectants, surfactants, free radical scavengers, and bulking agent based on virus degradation mechanisms.
Collapse
Affiliation(s)
- Lina Pan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Zhangbo Qian
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xinjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
13
|
Khan S, Siraj S, Shahid M, Haque MM, Islam A. Osmolytes: Wonder molecules to combat protein misfolding against stress conditions. Int J Biol Macromol 2023; 234:123662. [PMID: 36796566 DOI: 10.1016/j.ijbiomac.2023.123662] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
The proper functioning of any protein depends on its three dimensional conformation which is achieved by the accurate folding mechanism. Keeping away from the exposed stress conditions leads to cooperative unfolding and sometimes partial folding, forming the structures like protofibrils, fibrils, aggregates, oligomers, etc. leading to several neurodegenerative diseases like Parkinson's disease, Alzheimer's, Cystic fibrosis, Huntington, Marfan syndrome, and also cancers in some cases, too. Hydration of proteins is necessary, which may be achieved by the presence of organic solutes called osmolytes within the cell. Osmolytes belong to different classes in different organisms and play their role by preferential exclusion of osmolytes and preferential hydration of water molecules and achieves the osmotic balance in the cell otherwise it may cause problems like cellular infection, cell shrinkage leading to apoptosis and cell swelling which is also the major injury to the cell. Osmolyte interacts with protein, nucleic acids, intrinsically disordered proteins by non-covalent forces. Stabilizing osmolytes increases the Gibbs free energy of the unfolded protein and decreases that of folded protein and vice versa with denaturants (urea and guanidinium hydrochloride). The efficacy of each osmolyte with the protein is determined by the calculation of m value which reflects its efficiency with protein. Hence osmolytes can be therapeutically considered and used in drugs.
Collapse
Affiliation(s)
- Sobia Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Seerat Siraj
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box: 173, Al Kharj, Saudi Arabia
| | | | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
14
|
Mikhaylova VV, Eronina TB, Chebotareva NA, Kurganov BI. The Effect of Chemical Chaperones on Proteins with Different Aggregation Kinetics. BIOCHEMISTRY (MOSCOW) 2023; 88:1-12. [PMID: 37068874 DOI: 10.1134/s0006297923010017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Formation and accumulation of protein aggregates adversely affect intracellular processes in living cells and are negative factors in the production and storage of protein preparations. Chemical chaperones can prevent protein aggregation, but this effect is not universal and depends on the target protein structure and kinetics of its aggregation. We studied the effect of betaine (Bet) and lysine (Lys) on thermal aggregation of muscle glycogen phosphorylase b (Phb) at 48°C (aggregation order, n = 0.5), UV-irradiated Phb (UV-Phb) at 37°C (n = 1), and apo-form of Phb (apo-Phb) at 37°C (n = 2). Using dynamic light scattering, differential scanning calorimetry, and analytical ultracentrifugation, we have shown that Bet protected Phb and apo-Phb from aggregation, but accelerated the aggregation of UV-Phb. At the same time, Lys prevented UV-Phb and apo-Phb aggregation, but increased the rate of Phb aggregation. The mechanisms of chemical chaperone action on the tertiary and quaternary structures and kinetics of thermal aggregation of the target proteins are discussed. Comparison of the effects of chemical chaperones on the proteins with different aggregation kinetics provides more complete information on the mechanism of their action.
Collapse
Affiliation(s)
- Valeriya V Mikhaylova
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Centre, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Tatiana B Eronina
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Centre, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Natalia A Chebotareva
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Centre, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Boris I Kurganov
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Centre, Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
15
|
Effects of Molecular Crowding and Betaine on HSPB5 Interactions, with Target Proteins Differing in the Quaternary Structure and Aggregation Mechanism. Int J Mol Sci 2022; 23:ijms232315392. [PMID: 36499725 PMCID: PMC9737104 DOI: 10.3390/ijms232315392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The aggregation of intracellular proteins may be enhanced under stress. The expression of heat-shock proteins (HSPs) and the accumulation of osmolytes are among the cellular protective mechanisms in these conditions. In addition, one should remember that the cell environment is highly crowded. The antiaggregation activity of HSPB5 and the effect on it of either a crowding agent (polyethylene glycol (PEG)) or an osmolyte (betaine), or their mixture, were tested on the aggregation of two target proteins that differ in the order of aggregation with respect to the protein: thermal aggregation of glutamate dehydrogenase and DTT-induced aggregation of lysozyme. The kinetic analysis of the dynamic light-scattering data indicates that crowding can decrease the chaperone-like activity of HSPB5. Nonetheless, the analytical ultracentrifugation shows the protective effect of HSPB5, which retains protein aggregates in a soluble state. Overall, various additives may either improve or impair the antiaggregation activity of HSPB5 against different protein targets. The mixed crowding arising from the presence of PEG and 1 M betaine demonstrates an extraordinary effect on the oligomeric state of protein aggregates. The shift in the equilibrium of HSPB5 dynamic ensembles allows for the regulation of its antiaggregation activity. Crowding can modulate HSPB5 activity by affecting protein-protein interactions.
Collapse
|
16
|
Anjali, Kishore N. Influence of amino acids on alkaline pH induced partially folded molten globule like intermediate of bovine serum albumin: Conformational and thermodynamic insights. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Mandalaparthy V, Noid WG. A simple theory for interfacial properties of dilute solutions. J Chem Phys 2022; 157:034703. [DOI: 10.1063/5.0098579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent studies suggest that cosolute mixtures may exert significant non-additive effects upon protein stability. The corresponding liquid–vapor interfaces may provide useful insight into these non-additive effects. Accordingly, in this work, we relate the interfacial properties of dilute multicomponent solutions to the interactions between solutes. We first derive a simple model for the surface excess of solutes in terms of thermodynamic observables. We then develop a lattice-based statistical mechanical perturbation theory to derive these observables from microscopic interactions. Rather than adopting a random mixing approximation, this dilute solution theory (DST) exactly treats solute–solute interactions to lowest order in perturbation theory. Although it cannot treat concentrated solutions, Monte Carlo (MC) simulations demonstrate that DST describes the interactions in dilute solutions with much greater accuracy than regular solution theory. Importantly, DST emphasizes a fundamental distinction between the “intrinsic” and “effective” preferences of solutes for interfaces. DST predicts that three classes of solutes can be distinguished by their intrinsic preference for interfaces. While the surface preference of strong depletants is relatively insensitive to interactions, the surface preference of strong surfactants can be modulated by interactions at the interface. Moreover, DST predicts that the surface preference of weak depletants and weak surfactants can be qualitatively inverted by interactions in the bulk. We also demonstrate that DST can be extended to treat surface polarization effects and to model experimental data. MC simulations validate the accuracy of DST predictions for lattice systems that correspond to molar concentrations.
Collapse
Affiliation(s)
- Varun Mandalaparthy
- Department of Chemistry, Penn State University, University Park, State College, Pennsylvania 16802, USA
| | - W. G. Noid
- Department of Chemistry, Penn State University, University Park, State College, Pennsylvania 16802, USA
| |
Collapse
|
18
|
Sarkar S, Guha A, Narayanan TN, Mondal J. Zwitterionic Osmolytes Revive Surface Charges under Salt Stress via Dual Mechanisms. J Phys Chem Lett 2022; 13:5660-5668. [PMID: 35709362 DOI: 10.1021/acs.jpclett.2c00853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To counter the stress of a salt imbalance, the cell often produces low molecular weight osmolytes to resuscitate homeostasis. However, how zwitterionic osmolytes would tune the electrostatic interactions among charged biomacromolecular surfaces under salt stress has eluded mainstream investigations. Here, via combination of molecular simulation and experiment, we demonstrate that a set of zwitterionic osmolytes is able to restore the electrostatic interaction between two negatively charged surfaces that had been masked in the presence of salt. Interestingly, the mechanisms of resurrecting charge interaction under excess salt are revealed to be mutually divergent and osmolyte specific. In particular, glycine is found to competitively desorb the salt ions from the surface via its direct interaction with the surface. On the contrary, TMAO and betaine counteract salt stress by retaining adsorbed cations but partially neutralizing their charge density via ion-mediated interaction. These access to alternative modes of osmolytic actions would provide the cell the required flexibility in combating salt stress.
Collapse
Affiliation(s)
- Susmita Sarkar
- Tata Institute of Fundamental Research, Hyderabad500046, India
| | - Anku Guha
- Tata Institute of Fundamental Research, Hyderabad500046, India
| | | | | |
Collapse
|
19
|
Loo RL, Chan Q, Nicholson JK, Holmes E. Balancing the Equation: A Natural History of Trimethylamine and Trimethylamine- N-oxide. J Proteome Res 2022; 21:560-589. [PMID: 35142516 DOI: 10.1021/acs.jproteome.1c00851] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trimethylamine (TMA) and its N-oxide (TMAO) are ubiquitous in prokaryote and eukaryote organisms as well as in the environment, reflecting their fundamental importance in evolutionary biology, and their diverse biochemical functions. Both metabolites have multiple biological roles including cell-signaling. Much attention has focused on the significance of serum and urinary TMAO in cardiovascular disease risk, yet this is only one of the many facets of a deeper TMA-TMAO partnership that reflects the significance of these metabolites in multiple biological processes spanning animals, plants, bacteria, and fungi. We report on analytical methods for measuring TMA and TMAO and attempt to critically synthesize and map the global functions of TMA and TMAO in a systems biology framework.
Collapse
Affiliation(s)
- Ruey Leng Loo
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, United Kingdom.,MRC Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, United Kingdom
| | - Jeremy K Nicholson
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Institute of Global Health Innovation, Imperial College London, Level 1, Faculty Building, South Kensington Campus, London SW7 2NA, United Kingdom
| | - Elaine Holmes
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Nutrition Research, Department of Metabolism, Nutrition and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| |
Collapse
|
20
|
Speer SL, Stewart CJ, Sapir L, Harries D, Pielak GJ. Macromolecular Crowding Is More than Hard-Core Repulsions. Annu Rev Biophys 2022; 51:267-300. [PMID: 35239418 DOI: 10.1146/annurev-biophys-091321-071829] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells are crowded, but proteins are almost always studied in dilute aqueous buffer. We review the experimental evidence that crowding affects the equilibrium thermodynamics of protein stability and protein association and discuss the theories employed to explain these observations. In doing so, we highlight differences between synthetic polymers and biologically relevant crowders. Theories based on hard-core interactions predict only crowding-induced entropic stabilization. However, experiment-based efforts conducted under physiologically relevant conditions show that crowding can destabilize proteins and their complexes. Furthermore, quantification of the temperature dependence of crowding effects produced by both large and small cosolutes, including osmolytes, sugars, synthetic polymers, and proteins, reveals enthalpic effects that stabilize or destabilize proteins. Crowding-induced destabilization and the enthalpic component point to the role of chemical interactions between and among the macromolecules, cosolutes, and water. We conclude with suggestions for future studies. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shannon L Speer
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Claire J Stewart
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Liel Sapir
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Daniel Harries
- Institute of Chemistry and The Fritz Haber Research Center, The Hebrew University, Jerusalem, Israel
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA; .,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina, USA.,Lineberger Cancer Research Center, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
21
|
Eronina TB, Mikhaylova VV, Chebotareva NA, Kleymenov SY, Pivovarova AV, Kurganov BI. Combined action of chemical chaperones on stability, aggregation and oligomeric state of muscle glycogen phosphorylase b. Int J Biol Macromol 2022; 203:406-416. [PMID: 35066023 DOI: 10.1016/j.ijbiomac.2022.01.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 01/19/2023]
Abstract
Chemical chaperones are a class of small molecules, which enhance protein stability, folding, inhibit protein aggregation, and are used for long-term storage of therapeutic proteins. The combined action of chemical chaperones trehalose, betaine and lysine on stability, aggregation and oligomeric state of muscle glycogen phosphorylase b (Phb) has been studied. Dynamic light scattering data indicate that the affinity of trehalose to Phb increased in the presence of betaine or lysine at both stages (stage of nucleation and aggregate growth) of enzyme aggregation at 48 °C, in contrast, the affinity of betaine to the enzyme in the presence of lysine remained practically unchanged. According to differential scanning calorimetry and analytical ultracentrifugation data, the mixture of trehalose and betaine stabilized Phb stronger than either of them in total. Moreover, the destabilizing effect of lysine on the enzyme was almost completely compensated by trehalose and only partially by betaine. The main protective effect of the mixtures of osmolytes and lysine is associated with their influence on the dissociation/denaturation stage, which is the rate-limiting one of Phb aggregation. Thus, a pair of chaperones affects the stability, oligomeric state, and aggregation of Phb differently than individual chaperones.
Collapse
Affiliation(s)
- Tatiana B Eronina
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia.
| | - Valeriya V Mikhaylova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Natalia A Chebotareva
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Sergey Y Kleymenov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia; Koltsov's Institute of Developmental Biology, Russian Academy of Sciences, Vavilova 26, Moscow 119991, Russia
| | - Anastasia V Pivovarova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Boris I Kurganov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| |
Collapse
|
22
|
Hoermiller II, Funck D, Schönewolf L, May H, Heyer AG. Cytosolic proline is required for basal freezing tolerance in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:147-155. [PMID: 34605046 DOI: 10.1111/pce.14196] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
The amino acid proline accumulates in many plant species under abiotic stress conditions, and various protective functions have been proposed. During cold stress, however, proline content in Arabidopsis thaliana does not correlate with freezing tolerance. Freezing sensitivity of a starchless plastidic phosphoglucomutase mutant (pgm) indicated that localization of proline in the cytosol might stabilize the plasma membrane during freeze-thaw events. Here, we show that re-allocation of proline from cytosol to vacuole was similar in the pyrroline-5-carboxylate synthase 2-1 (p5cs2-1) mutant and the pgm mutant and caused similar reduction of basal freezing tolerance. In contrast, the starch excess 1-1 mutant (sex1-1) had even lower freezing tolerance than pgm but did not affect sub-cellular localization of proline. Freezing sensitivity of sex1-1 mutants affected primarily the photosynthetic electron transport and was enhanced in a sex1-1::p5cs2-1 double mutant. These findings indicate that several independent factors determine basal freezing tolerance. In a pgm::p5cs2-1 double mutant, freezing sensitivity and proline allocation to the vacuole were the same as in the parental lines, indicating that the lack of cytosolic proline was the common cause of reduced basal freezing tolerance in both mutants. We conclude that cytosolic proline is an important factor in freezing tolerance of non-acclimated plants.
Collapse
Affiliation(s)
- Imke I Hoermiller
- Department of Plant Biotechnology, University of Stuttgart, Institute of Biomaterials & Biomolecular Systems, Stuttgart, Germany
| | - Dietmar Funck
- Department of Biology, University of Konstanz, Constance, Germany
| | - Lilli Schönewolf
- Department of Plant Biotechnology, University of Stuttgart, Institute of Biomaterials & Biomolecular Systems, Stuttgart, Germany
| | - Henrik May
- Department of Plant Biotechnology, University of Stuttgart, Institute of Biomaterials & Biomolecular Systems, Stuttgart, Germany
| | - Arnd G Heyer
- Department of Plant Biotechnology, University of Stuttgart, Institute of Biomaterials & Biomolecular Systems, Stuttgart, Germany
| |
Collapse
|
23
|
Sun J, Li W, Liao H, Li L, Ni H, Chen F, Li Q. Adding sorbitol improves the thermostability of α-l-rhamnosidase from Aspergillus niger and increases the conversion of hesperidin. J Food Biochem 2021; 46:e14055. [PMID: 34967461 DOI: 10.1111/jfbc.14055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
In this study, we found the addition of sorbitol could improve the thermostability of α-l-rhamnosidase from Aspergillus niger. When α-l-rhamnosidase with sorbitol was heat-treated at 60°C, 65°C, and 70°C, the half-life t1/2 increased by 28-, 18-, and 9-fold, respectively. Inactivation thermodynamic analysis showed that both Ea and ΔG≠ of α-l-rhamnosidase increased. Through the response surface methodology (RSM) analysis, the higher hesperidin conversion (63.26%) by α-l-rhamnosidase was attained with 0.7 M sorbitol at 60°C and pH 4.5 for 10 min. Furthermore, hesperidin could be completely hydrolyzed after 10 hr of reaction. Overall, the results indicated that the addition of sorbitol improved the thermostability of α-l-rhamnosidase and increased the enzymatic conversion of hesperidin to hesperetin-7-O-glucoside (HMG). It also provided a simple and efficient way to increase enzymatic conversion of other valuable flavonoid monomers due to the broad substrate specificities of α-l-rhamnosidase from A. niger. PRACTICAL APPLICATIONS: Hesperetin-7-O-glucoside (HMG), a derhamnosylation product of hesperidin, is considered as a synthetic precursor for novel and efficient sweeteners and is important in food, functional food, and nutraceutical industries. Compared to chemical hydrolysis methods, the enzymatic conversion of hesperidin is milder and has the advantages of high specificity. Adding sorbitol can improve the thermostability of α-l-rhamnosidase and increase the enzyme efficacy against hesperidin. This study gave more evidence that adding sorbitol could improve the thermostability of enzymes and provide a better choice for improving biotransformation potency of enzymes.
Collapse
Affiliation(s)
- Jiang Sun
- College of Food and Biology Engineering, Jimei University, Xiamen, China
| | - Wenjing Li
- College of Food and Biology Engineering, Jimei University, Xiamen, China
| | - Hui Liao
- College of Food and Biology Engineering, Jimei University, Xiamen, China
| | - Lijun Li
- College of Food and Biology Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Hui Ni
- College of Food and Biology Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Feng Chen
- College of Food and Biology Engineering, Jimei University, Xiamen, China.,Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - Qingbiao Li
- College of Food and Biology Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| |
Collapse
|
24
|
Contessoto VG, Ferreira PHB, Chahine J, Leite VBP, Oliveira RJ. Small Neutral Crowding Solute Effects on Protein Folding Thermodynamic Stability and Kinetics. J Phys Chem B 2021; 125:11673-11686. [PMID: 34644091 DOI: 10.1021/acs.jpcb.1c07663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular crowding is a ubiquitous phenomenon in biological systems, with significant consequences on protein folding and stability. Small compounds, such as the osmolyte trimethylamine N-oxide (TMAO), can also present similar effects. To analyze the effects arising from these solute-like molecules, we performed a series of crowded coarse-grained folding simulations. Two well-known proteins were chosen, CI2 and SH3, modeled by the alpha-carbon-structure-based model. In the simulations, the crowding molecules were represented by low-sized neutral atom beads in different concentrations. The results show that a low level of the volume fraction occupied by neutral agents can change protein stability and folding kinetics for the two systems. However, the kinetics were shown to be unaffected in their respective folding temperatures. The faster kinetics correlates with changes in the folding route for systems at the same temperature, where non-native contacts were shown to be relevant. The transition states of the two systems with and without crowders are similar. In the case of SH3, there are differences in the structuring of two strands, which may be associated with the increase in its folding rate, in addition to the destabilization of the denatured ensemble. The present study also detected a crossover in the thermodynamic stability behavior, previously observed experimentally and theoretically. As the temperature increases, crowders change from destabilizing to stabilizing agents.
Collapse
Affiliation(s)
- Vinícius G Contessoto
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, Brazil
| | - Paulo H B Ferreira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba 38064-200, Brazil
| | - Jorge Chahine
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, Brazil
| | - Vitor B P Leite
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto 15054-000, Brazil
| | - Ronaldo J Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba 38064-200, Brazil
| |
Collapse
|
25
|
Atomic view of cosolute-induced protein denaturation probed by NMR solvent paramagnetic relaxation enhancement. Proc Natl Acad Sci U S A 2021; 118:2112021118. [PMID: 34404723 DOI: 10.1073/pnas.2112021118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cosolvent effect arises from the interaction of cosolute molecules with a protein and alters the equilibrium between native and unfolded states. Denaturants shift the equilibrium toward the latter, while osmolytes stabilize the former. The molecular mechanism whereby cosolutes perturb protein stability is still the subject of considerable debate. Probing the molecular details of the cosolvent effect is experimentally challenging as the interactions are very weak and transient, rendering them invisible to most conventional biophysical techniques. Here, we probe cosolute-protein interactions by means of NMR solvent paramagnetic relaxation enhancement together with a formalism we recently developed to quantitatively describe, at atomic resolution, the energetics and dynamics of cosolute-protein interactions in terms of a concentration normalized equilibrium average of the interspin distance, [Formula: see text], and an effective correlation time, τc The system studied is the metastable drkN SH3 domain, which exists in dynamic equilibrium between native and unfolded states, thereby permitting us to probe the interactions of cosolutes with both states simultaneously under the same conditions. Two paramagnetic cosolute denaturants were investigated, one neutral and the other negatively charged, differing in the presence of a carboxyamide group versus a carboxylate. Our results demonstrate that attractive cosolute-protein backbone interactions occur largely in the unfolded state and some loop regions in the native state, electrostatic interactions reduce the [Formula: see text] values, and temperature predominantly impacts interactions with the unfolded state. Thus, destabilization of the native state in this instance arises predominantly as a consequence of interactions of the cosolutes with the unfolded state.
Collapse
|
26
|
Hammerling MJ, Warfel KF, Jewett MC. Lyophilization of premixed COVID-19 diagnostic RT-qPCR reactions enables stable long-term storage at elevated temperature. Biotechnol J 2021; 16:e2000572. [PMID: 33964860 PMCID: PMC8237061 DOI: 10.1002/biot.202000572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
Reverse transcriptase‐quantitative polymerase chain reaction (RT‐qPCR) diagnostic tests for SARS‐CoV‐2 are the cornerstone of the global testing infrastructure. However, these tests require cold‐chain shipping to distribute, and the labor of skilled technicians to assemble reactions and interpret the results. Strategies to reduce shipping and labor costs at the point‐of‐care could aid in diagnostic testing scale‐up and response to the COVID‐19 outbreak, as well as in future outbreaks.
Collapse
Affiliation(s)
- Michael J Hammerling
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA.,Simpson Querrey Institute, Northwestern University, Evanston, Illinois, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
27
|
Song X, An L, Wang M, Chen J, Liu Z, Yao L. Osmolytes Can Destabilize Proteins in Cells by Modulating Electrostatics and Quinary Interactions. ACS Chem Biol 2021; 16:864-871. [PMID: 33843182 DOI: 10.1021/acschembio.1c00024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although numerous in vitro studies have shown that osmolytes are capable of stabilizing proteins, their effect on protein folding in vivo has been less understood. In this work, we investigated the effect of osmolytes, including glycerol, sorbitol, betaine, and taurine, on the folding of a protein GB3 variant in E. coli cells using NMR spectroscopy. 400 mM osmolytes were added to E. coli cells; only glycerol stabilizes the folded protein, whereas betaine and taurine considerably destabilize the protein through modulating folding and unfolding rates. Further investigation indicates that betaine and taurine can enhance the quinary interaction between the protein and cellular environment and manifestly weaken the electrostatic attraction in protein salt bridges. The combination of the two factors causes destabilization of the protein in E. coli cells. These factors counteract the preferential exclusion mechanism that is adopted by osmolytes to stabilize proteins.
Collapse
Affiliation(s)
- Xiangfei Song
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liaoyuan An
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengting Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Zhijun Liu
- National Facility for Protein Science, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | | |
Collapse
|
28
|
Mateos B, Bernardo-Seisdedos G, Dietrich V, Zalba N, Ortega G, Peccati F, Jiménez-Osés G, Konrat R, Tollinger M, Millet O. Cosolute modulation of protein oligomerization reactions in the homeostatic timescale. Biophys J 2021; 120:2067-2077. [PMID: 33794151 PMCID: PMC8204390 DOI: 10.1016/j.bpj.2021.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Protein oligomerization processes are widespread and of crucial importance to understand degenerative diseases and healthy regulatory pathways. One particular case is the homo-oligomerization of folded domains involving domain swapping, often found as a part of the protein homeostasis in the crowded cytosol, composed of a complex mixture of cosolutes. Here, we have investigated the effect of a plethora of cosolutes of very diverse nature on the kinetics of a protein dimerization by domain swapping. In the absence of cosolutes, our system exhibits slow interconversion rates, with the reaction reaching the equilibrium within the average protein homeostasis timescale (24-48 h). In the presence of crowders, though, the oligomerization reaction in the same time frame will, depending on the protein's initial oligomeric state, either reach a pure equilibrium state or get kinetically trapped into an apparent equilibrium. Specifically, when the reaction is initiated from a large excess of dimer, it becomes unsensitive to the effect of cosolutes and reaches the same equilibrium populations as in the absence of cosolute. Conversely, when the reaction starts from a large excess of monomer, the reaction during the homeostatic timescale occurs under kinetic control, and it is exquisitely sensitive to the presence and nature of the cosolute. In this scenario (the most habitual case in intracellular oligomerization processes), the effect of cosolutes on the intermediate conformation and diffusion-mediated encounters will dictate how the cellular milieu affects the domain-swapping reaction.
Collapse
Affiliation(s)
- Borja Mateos
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Parque Tecnológico de Bizkaia, Derio, Spain; Department of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna Biocenter Campus 5, Vienna, Austria
| | - Ganeko Bernardo-Seisdedos
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Valentin Dietrich
- Center of Molecular Biosciences and Institute of Organic Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Nicanor Zalba
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Gabriel Ortega
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California
| | - Francesca Peccati
- Computational Chemistry Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Gonzalo Jiménez-Osés
- Computational Chemistry Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Robert Konrat
- Department of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna Biocenter Campus 5, Vienna, Austria
| | - Martin Tollinger
- Center of Molecular Biosciences and Institute of Organic Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Parque Tecnológico de Bizkaia, Derio, Spain.
| |
Collapse
|
29
|
İbrahimova U, Kumari P, Yadav S, Rastogi A, Antala M, Suleymanova Z, Zivcak M, Tahjib-Ul-Arif M, Hussain S, Abdelhamid M, Hajihashemi S, Yang X, Brestic M. Progress in understanding salt stress response in plants using biotechnological tools. J Biotechnol 2021; 329:180-191. [PMID: 33610656 DOI: 10.1016/j.jbiotec.2021.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/06/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Salinization is a worldwide environmental problem, which is negatively impacting crop yield and thus posing a threat to the world's food security. Considering the rising threat of salinity, it is need of time, to understand the salt tolerant mechanism in plants and find avenues for the development of salinity resistant plants. Several plants tolerate salinity in a different manner, thereby halophytes and glycophytes evolved altered mechanisms to counter the stress. Therefore, in this review article, physiological, metabolic, and molecular aspects of the plant adaptation to salt stress have been discussed. The conventional breeding techniques for developing salt tolerant plants has not been much successful, due to its multigenic trait. The inflow of data from plant sequencing projects and annotation of genes led to the identification of many putative genes having a role in salt stress. The bioinformatics tools provided preliminary information and were helpful for making salt stress-specific databases. The microRNA identification and characterization led to unraveling the finer intricacies of the network. The transgenic approach finally paved a way for overexpressing some important genes viz. DREB, MYB, COMT, SOS, PKE, NHX, etc. conferred salt stress tolerance. In this review, we tried to show the effect of salinity on plants, considering ion homeostasis, antioxidant defense response, proteins involved, possible utilization of transgenic plants, and bioinformatics for coping with this stress factor. An overview of previous studies related to salt stress is presented in order to assist researchers in providing a potential solution for this increasing environmental threat.
Collapse
Affiliation(s)
- Ulkar İbrahimova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ 1073, Azerbaijan
| | - Pragati Kumari
- Department of Life Science, Singhania University, Jhunjhunu, Rajasthan 333515, India; Scientist Hostel-S-02, Chauras campus, Srinagar Garhwal, Uttarakhand 246174, India
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland.
| | - Michal Antala
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland; Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Zarifa Suleymanova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ 1073, Azerbaijan
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Md Tahjib-Ul-Arif
- Department of Biochemistry & Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Sajad Hussain
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | | | - Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan, 47189-63616, Iran
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic.
| |
Collapse
|
30
|
Sharma GS, Krishna S, Khan S, Dar TA, Khan KA, Singh LR. Protecting thermodynamic stability of protein: The basic paradigm against stress and unfolded protein response by osmolytes. Int J Biol Macromol 2021; 177:229-240. [PMID: 33607142 DOI: 10.1016/j.ijbiomac.2021.02.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/10/2023]
Abstract
Organic osmolytes are known to play important role in stress protection by stabilizing macromolecules and suppressing harmful effects on functional activity. There is existence of several reports in the literature regarding their effects on structural, functional and thermodynamic aspects of many enzymes and the interaction parameters with proteins have been explored. Osmolytes are compatible with enzyme function and therefore, can be accumulated up to several millimolar concentrations. From the thermodynamic point of view, osmolyte raises mid-point of thermal denaturation (Tm) of proteins while having no significant effect on ΔGD° (free energy change at physiological condition). Unfavorable interaction with the peptide backbone due to preferential hydration is the major driving force for folding of unfolded polypeptide in presence of osmolyte. However, the thermodynamic basis of stress protection and origin of compatibility paradigm has been a debatable issue. In the present manuscript, we attempt to elaborate the origin of stress protection and compatibility paradigm of osmolytes based on the effect on thermodynamic stability of proteins. We also infer that protective effects of osmolytes on ΔGD° (of proteins) could also indicate its potential involvement in unfolded protein response and overall stress biology on macromolecular level.
Collapse
Affiliation(s)
- Gurumayum Suraj Sharma
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Snigdha Krishna
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Sheeza Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, J&K, India
| | - Khurshid A Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | | |
Collapse
|
31
|
Crilly CJ, Brom JA, Kowalewski ME, Piszkiewicz S, Pielak GJ. Dried Protein Structure Revealed at the Residue Level by Liquid-Observed Vapor Exchange NMR. Biochemistry 2021; 60:152-159. [PMID: 33400518 DOI: 10.1021/acs.biochem.0c00863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Water is key to protein structure and stability, yet the relationship between protein-water interactions and structure is poorly understood, in part because there are few techniques that permit the study of dehydrated protein structure at high resolution. Here, we describe liquid-observed vapor exchange (LOVE) NMR, a solution NMR-based method that provides residue-level information about the structure of dehydrated proteins. Using the model protein GB1, we show that LOVE NMR measurements reflect the fraction of the dried protein population trapped in a conformation where a given residue is protected from exchange with D2O vapor. Comparisons to solution hydrogen-deuterium exchange data affirm that the dried protein structure is strongly influenced by local solution stability and that the mechanism of dehydration protection exerted by the widely used protectant trehalose differs from its mechanism of stabilization in solution. Our results highlight the need for refined models of cosolute-mediated dehydration protection and demonstrate the ability of LOVE NMR to inform such models.
Collapse
Affiliation(s)
- Candice J Crilly
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Julia A Brom
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Mark E Kowalewski
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Samantha Piszkiewicz
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Gary J Pielak
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States.,Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Integrative Program for Biological & Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7100, United States
| |
Collapse
|
32
|
Mukherjee M, Mondal J. Bottom-Up View of the Mechanism of Action of Protein-Stabilizing Osmolytes. J Phys Chem B 2020; 124:11316-11323. [PMID: 33198465 DOI: 10.1021/acs.jpcb.0c06658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular mechanism of osmolytes on the stabilization of native states of protein is still controversial irrespective of extensive studies over several decades. Recent investigations in terms of experiments and molecular dynamics simulations challenge the popular osmophobic model explaining the mechanistic action of protein-stabilizing osmolytes. The current Perspective presents an updated view on the mechanistic action of osmolytes in light of resurgence of interesting experiments and computer simulations over the past few years in this direction. In this regard, the Perspective adopts a bottom-up approach starting from hydrophobic interactions and eventually adds complexity in the system, going toward the protein, in a complex topology of hydrophobic and electrostatic interactions. Finally, the Perspective unifies osmolyte-induced protein conformational equilibria in terms of preferential interaction theory, irrespective of individual preferential binding or exclusion of osmolytes depending on different osmolytes and protein surfaces. The Perspective also identifies future research directions that can potentially shape this interesting area.
Collapse
Affiliation(s)
- Mrinmoy Mukherjee
- Tata Institute of Fundamental Research, Center For Interdisciplinary Sciences, Hyderabad 500107, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Center For Interdisciplinary Sciences, Hyderabad 500107, India
| |
Collapse
|
33
|
Nandakumar A, Ito Y, Ueda M. Solvent Effects on the Self-Assembly of an Amphiphilic Polypeptide Incorporating α-Helical Hydrophobic Blocks. J Am Chem Soc 2020; 142:20994-21003. [PMID: 33272014 DOI: 10.1021/jacs.0c03425] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The self-assembly of biological molecules is an important pathway to understanding the molecular basis of complex metabolic events. The presence of a cosolvent in an aqueous solution during the self-assembly process can promote the formation of kinetically trapped metastable intermediates. In nature, a category of cosolvents termed osmolytes can work to strengthen the hydrogen-bond network of water such that the native states of certain proteins are favored, thus modulating their function and stability. However, identifying cosolvents that act as osmolytes in biomimetic applications, such as the self-assembly of soft materials, remains challenging. The present work examined the effects of ethanol (EtOH) and acetonitrile (ACN) as cosolvents on the self-assembly of the amphiphilic polypeptide PSar30-(l-Leu-Aib)6 (S30L12), which incorporates α-helical hydrophobic blocks, in aqueous solution. The results provided a direct observation of morphological behavior of S30L12 as a function of solvent composition. Morphological transitions were investigated using transmission electron microscopy, while the packing of peptide molecules was assessed using circular dichroism analyses and evaluations of membrane fluidity. In the EtOH/H2O mixtures, the EtOH strengthened the hydrogen-bond network of the water, thus limiting the hydrophobic hydration of S30L12 assemblies and enhancing hydrophobic interactions between assemblies. In contrast, ACN formed self-associated nanoclusters in water and at the hydrophobic cores of peptide assemblies to stabilize the edges exposed to bulk water and enhance the assembly kinetics. Fourier transform infrared (FT-IR) analysis indicated that both EtOH and ACN can modify the self-assembly of biomaterials in the same manner as osmolyte protectants or denaturants.
Collapse
Affiliation(s)
- Avanashiappan Nandakumar
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Motoki Ueda
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
34
|
Schnatwinkel J, Herrmann C. The interaction strength of an intrinsically disordered protein domain with its binding partner is little affected by very different cosolutes. Phys Chem Chem Phys 2020; 22:27903-27911. [PMID: 33284914 DOI: 10.1039/d0cp03040f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A common feature of intrinsically disordered proteins (IDPs) is a disorder-to-order transition upon binding to other proteins, which has been tied to multiple benefits, including accelerated association rates or binding with low affinity, yet high specificity. Given the balanced equilibrium concentrations of folded and unfolded state of an IDP we asked the question if changes in the chemical environment, such as the presence of osmolytes or crowding agents, have a strong influence on the interaction of an IDP. Here, we demonstrate the impact of cosolutes on the interaction of the intrinsically disordered transcription factor c-Myb and its binding partner, the kinase-inducible interaction domain (KIX) of the CREB-binding protein. Temperature jump relaxation kinetics and microscale thermophoresis were employed in order to quantify the rate constants and the binding affinity of the c-Myb/KIX complex, respectively, in the presence of various cosolutes. We find the binding free energy of the c-Myb/KIX complex only marginally modulated by cosolutes, whereas the enthalpy and entropy of the interaction are very sensitive to the respective solvent conditions. For different cosolutes we observe substantial changes in enthalpy, both favorable and unfavorable, which are going with entropy changes largely compensating the enthalpy effects in each case. These characteristics might reflect a potential mechanism by which c-Myb offsets changes in the physico-chemical environment to maintain a roughly unaltered binding affinity.
Collapse
Affiliation(s)
- Jan Schnatwinkel
- Physical Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, D-44780 Bochum, Germany.
| | | |
Collapse
|
35
|
Stadmiller SS, Pielak GJ. Protein-complex stability in cells and in vitro under crowded conditions. Curr Opin Struct Biol 2020; 66:183-192. [PMID: 33285342 DOI: 10.1016/j.sbi.2020.10.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 11/29/2022]
Abstract
Biology is beginning to appreciate the effects of the crowded and complex intracellular environment on the equilibrium thermodynamics and kinetics of protein folding. The next logical step involves the interactions between proteins. We review quantitative, wet-experiment based efforts aimed at understanding how and why high concentrations of small molecules, synthetic polymers, biologically relevant cosolutes and the interior of living cells affect the energetics of protein-protein interactions. We then address popular theories used to explain the effects and suggest expeditious paths for a more methodical integration of experiment and simulation.
Collapse
Affiliation(s)
- Samantha S Stadmiller
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-3290, USA; Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
36
|
Mattioli R, Palombi N, Funck D, Trovato M. Proline Accumulation in Pollen Grains as Potential Target for Improved Yield Stability Under Salt Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:582877. [PMID: 33193531 PMCID: PMC7655902 DOI: 10.3389/fpls.2020.582877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/12/2020] [Indexed: 06/04/2023]
Abstract
Seed yield, a major determinant for the commercial success of grain crops, critically depends on pollen viability, which is dramatically reduced by environmental stresses, such as drought, salinity, and extreme temperatures. Salinity, in particular, is a major problem for crop yield known to affect about 20% of all arable land and cause huge economic losses worldwide. Flowering plants are particularly sensitive to environmental stress during sexual reproduction, and even a short exposure to stressing conditions can severely hamper reproductive success, and thus reduce crop yield. Since proline is required for pollen fertility and accumulates in plant tissues in response to different abiotic stresses, a role of proline in pollen protection under salt stress conditions can be envisaged. In this perspective, we analyze old and new data to evaluate the importance of pollen development under saline conditions, and discuss the possibility of raising proline levels in pollen grains as a biotechnological strategy to stabilize seed yield in the presence of salt stress. The overall data confirm that proline is necessary to preserve pollen fertility and limit seed loss under stressful conditions. However, at present, we have not enough data to conclude whether or not raising proline over wildtype levels in pollen grains can effectively ameliorate seed yield under saline conditions, and further work is still required.
Collapse
Affiliation(s)
- Roberto Mattioli
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- Department of Science, Roma Tre University, Rome, Italy
| | - Noemi Palombi
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Dietmar Funck
- Department of Plant Physiology and Biochemistry, University of Konstanz, Konstanz, Germany
| | - Maurizio Trovato
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
37
|
Li J, Chen J, An L, Yuan X, Yao L. Polyol and sugar osmolytes can shorten protein hydrogen bonds to modulate function. Commun Biol 2020; 3:528. [PMID: 32968183 PMCID: PMC7511342 DOI: 10.1038/s42003-020-01260-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
Polyol and sugar osmolytes are commonly used in therapeutic protein formulations. How they may affect protein structure and function is an important question. In this work, through NMR measurements, we show that glycerol and sorbitol (polyols), as well as glucose (sugar), can shorten protein backbone hydrogen bonds. The hydrogen bond shortening is also captured by molecular dynamics simulations, which suggest a hydrogen bond competition mechanism. Specifically, osmolytes weaken hydrogen bonds between the protein and solvent to strengthen those within the protein. Although the hydrogen bond change is small, with the average experimental cross hydrogen bond 3hJNC' coupling of two proteins GB3 and TTHA increased by ~ 0.01 Hz by the three osmolytes (160 g/L), its effect on protein function should not be overlooked. This is exemplified by the PDZ3-peptide binding where several intermolecular hydrogen bonds are formed and osmolytes shift the equilibrium towards the bound state.
Collapse
Affiliation(s)
- Jingwen Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jingfei Chen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Liaoyuan An
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiang Yuan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lishan Yao
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
38
|
Mukherjee M, Mondal J. Unifying the Contrasting Mechanisms of Protein-Stabilizing Osmolytes. J Phys Chem B 2020; 124:6565-6574. [DOI: 10.1021/acs.jpcb.0c04757] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mrinmoy Mukherjee
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500046, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500046, India
| |
Collapse
|
39
|
El-Chami C, Foster AR, Johnson C, Clausen RP, Cornwell P, Haslam IS, Steward MC, Watson REB, Young HS, O'Neill CA. Organic osmolytes increase expression of specific tight junction proteins in skin and alter barrier function in keratinocytes. Br J Dermatol 2020; 184:482-494. [PMID: 32348549 DOI: 10.1111/bjd.19162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The epidermal barrier is important for water conservation, failure of which is evident in dry-skin conditions. Barrier function is fulfilled by the stratum corneum, tight junctions (TJs, which control extracellular water) and keratinocyte mechanisms, such as organic osmolyte transport, which regulate intracellular water homeostasis. Organic osmolyte transport by keratinocytes is largely unexplored and nothing is known regarding how cellular and extracellular mechanisms of water conservation may interact. OBJECTIVES We aimed to characterize osmolyte transporters in skin and keratinocytes, and, using transporter inhibitors, to investigate whether osmolytes can modify TJs. Such modification would suggest a possible link between intracellular and extracellular mechanisms of water regulation in skin. METHODS Immunostaining and quantitative polymerase chain reaction of organic osmolyte-treated organ-cultured skin were used to identify changes to organic osmolyte transporters, and TJ protein and gene expression. TJ functional assays were performed on organic osmolyte-treated primary human keratinocytes in culture. RESULTS Immunostaining demonstrated the expression of transporters for betaine, taurine and myo-inositol in transporter-specific patterns. Treatment of human skin with either betaine or taurine increased the expression of claudin-1, claudin-4 and occludin. Osmolyte transporter inhibition abolished this response. Betaine and taurine increased TJ function in primary human keratinocytes in vitro. CONCLUSIONS Treatment of skin with organic osmolytes modulates TJ structure and function, which could contribute to the epidermal barrier. This emphasizes a role for organic osmolytes beyond the maintenance of intracellular osmolarity. This could be harnessed to enhance topical therapies for diseases characterized by skin barrier dysfunction.
Collapse
Affiliation(s)
- C El-Chami
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - A R Foster
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - C Johnson
- School of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - R P Clausen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - P Cornwell
- TRI Princeton, 601 Prospect Avenue, Princeton, NJ, 08540, USA
| | - I S Haslam
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - M C Steward
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - R E B Watson
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - H S Young
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Department of Dermatology, Salford Royal NHS Foundation Trust, Manchester, UK
| | - C A O'Neill
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
40
|
Okuno Y, Szabo A, Clore GM. Quantitative Interpretation of Solvent Paramagnetic Relaxation for Probing Protein-Cosolute Interactions. J Am Chem Soc 2020; 142:8281-8290. [PMID: 32286812 DOI: 10.1021/jacs.0c00747] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein-small cosolute molecule interactions are ubiquitous and known to modulate the solubility, stability, and function of many proteins. Characterization of such transient weak interactions at atomic resolution remains challenging. In this work, we develop a simple and practical NMR method for extracting both energetic and dynamic information on protein-cosolute interactions from solvent paramagnetic relaxation enhancement (sPRE) measurements. Our procedure is based on an approximate (non-Lorentzian) spectral density that behaves exactly at both high and low frequencies. This spectral density contains two parameters, one global related to the translational diffusion coefficient of the paramagnetic cosolute, and the other residue specific. These parameters can be readily determined from sPRE data, and then used to calculate analytically a concentration normalized equilibrium average of the interspin distance, ⟨r-6⟩norm, and an effective correlation time, τC, that provide measures of the energetics and dynamics of the interaction at atomic resolution. We compare our approach with existing ones, and demonstrate the utility of our method using experimental 1H longitudinal and transverse sPRE data recorded on the protein ubiquitin in the presence of two different nitroxide radical cosolutes, at multiple static magnetic fields. The approach for analyzing sPRE data outlined here provides a powerful tool for deepening our understanding of extremely weak protein-cosolute interactions.
Collapse
Affiliation(s)
- Yusuke Okuno
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Attila Szabo
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
41
|
Gregorio NE, Kao WY, Williams LC, Hight CM, Patel P, Watts KR, Oza JP. Unlocking Applications of Cell-Free Biotechnology through Enhanced Shelf Life and Productivity of E. coli Extracts. ACS Synth Biol 2020; 9:766-778. [PMID: 32083847 DOI: 10.1021/acssynbio.9b00433] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell-free protein synthesis (CFPS) is a platform biotechnology that enables a breadth of applications. However, field applications remain limited due to the poor shelf-stability of aqueous cell extracts required for CFPS. Lyophilization of E. coli extracts improves shelf life but remains insufficient for extended storage at room temperature. To address this limitation, we mapped the chemical space of ten low-cost additives with four distinct mechanisms of action in a combinatorial manner to identify formulations capable of stabilizing lyophilized cell extract. We report three key findings: (1) unique additive formulations that maintain full productivity of cell extracts stored at 4 °C and 23 °C; (2) additive formulations that enhance extract productivity by nearly 2-fold; (3) a machine learning algorithm that provides predictive capacity for the stabilizing effects of additive formulations that were not tested experimentally. These findings provide a simple and low-cost advance toward making CFPS field-ready and cost-competitive for biomanufacturing.
Collapse
Affiliation(s)
- Nicole E. Gregorio
- Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Wesley Y. Kao
- Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Layne C. Williams
- Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Christopher M. Hight
- Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Pratish Patel
- Department of Finance, Orfalea College of Business, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Katharine R. Watts
- Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Javin P. Oza
- Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| |
Collapse
|
42
|
Application of a protein domain as chaperone for enhancing biological activity and stability of other proteins. J Biotechnol 2020; 310:68-79. [DOI: 10.1016/j.jbiotec.2020.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 11/21/2022]
|
43
|
Physicochemical considerations for bottom-up synthetic biology. Emerg Top Life Sci 2019; 3:445-458. [PMID: 33523159 PMCID: PMC7289010 DOI: 10.1042/etls20190017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
The bottom-up construction of synthetic cells from molecular components is arguably one of the most challenging areas of research in the life sciences. We review the impact of confining biological systems in synthetic vesicles. Complex cell-like systems require control of the internal pH, ionic strength, (macro)molecular crowding, redox state and metabolic energy conservation. These physicochemical parameters influence protein activity and need to be maintained within limits to ensure the system remains in steady-state. We present the physicochemical considerations for building synthetic cells with dimensions ranging from the smallest prokaryotes to eukaryotic cells.
Collapse
|
44
|
Shou K, Bremer A, Rindfleisch T, Knox-Brown P, Hirai M, Rekas A, Garvey CJ, Hincha DK, Stadler AM, Thalhammer A. Conformational selection of the intrinsically disordered plant stress protein COR15A in response to solution osmolarity - an X-ray and light scattering study. Phys Chem Chem Phys 2019; 21:18727-18740. [PMID: 31424463 DOI: 10.1039/c9cp01768b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The plant stress protein COR15A stabilizes chloroplast membranes during freezing. COR15A is an intrinsically disordered protein (IDP) in aqueous solution, but acquires an α-helical structure during dehydration or the increase of solution osmolarity. We have used small- and wide-angle X-ray scattering (SAXS/WAXS) combined with static and dynamic light scattering (SLS/DLS) to investigate the structural and hydrodynamic properties of COR15A in response to increasing solution osmolarity. Coarse-grained ensemble modelling allowed a structure-based interpretation of the SAXS data. Our results demonstrate that COR15A behaves as a biomacromolecule with polymer-like properties which strongly depend on solution osmolarity. Biomacromolecular self-assembly occurring at high solvent osmolarity is initiated by the occurrence of two specific structural subpopulations of the COR15A monomer. The osmolarity dependent structural selection mechanism is an elegant way for conformational regulation and assembly of COR15A. It highlights the importance of the polymer-like properties of IDPs for their associated biological function.
Collapse
Affiliation(s)
- Keyun Shou
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mukherjee M, Mondal J. Osmolyte-Induced Macromolecular Aggregation Is Length-Scale Dependent. J Phys Chem B 2019; 123:8697-8703. [DOI: 10.1021/acs.jpcb.9b07746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mrinmoy Mukherjee
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, 36/P Gopanpally, Serilingampally Mandal, Hyderabad 500107, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, 36/P Gopanpally, Serilingampally Mandal, Hyderabad 500107, India
| |
Collapse
|
46
|
Abstract
The pharmaceutical and chemical industries depend on additives to protect enzymes and other proteins against stresses that accompany their manufacture, transport, and storage. Common stresses include vacuum-drying, freeze-thawing, and freeze-drying. The additives include sugars, compatible osmolytes, amino acids, synthetic polymers, and both globular and disordered proteins. Scores of studies have been published on protection, but the data have never been analyzed systematically. To spur efforts to understand the sources of protection and ultimately develop more effective formulations, we review ideas about the mechanisms of protection, survey the literature searching for patterns of protection, and then compare the ideas to the data.
Collapse
Affiliation(s)
- Samantha Piszkiewicz
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Gary J. Pielak
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
47
|
Govrin R, Obstbaum T, Sivan U. Common Source of Cryoprotection and Osmoprotection by Osmolytes. J Am Chem Soc 2019; 141:13311-13314. [DOI: 10.1021/jacs.9b06727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Roy Govrin
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Tal Obstbaum
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Uri Sivan
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| |
Collapse
|
48
|
Mukherjee M, Mondal J. Osmolyte-Induced Collapse of a Charged Macromolecule. J Phys Chem B 2019; 123:4636-4644. [DOI: 10.1021/acs.jpcb.9b01383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mrinmoy Mukherjee
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Jagannath Mondal
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| |
Collapse
|
49
|
Piszkiewicz S, Gunn KH, Warmuth O, Propst A, Mehta A, Nguyen KH, Kuhlman E, Guseman AJ, Stadmiller SS, Boothby TC, Neher SB, Pielak GJ. Protecting activity of desiccated enzymes. Protein Sci 2019; 28:941-951. [PMID: 30868674 DOI: 10.1002/pro.3604] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 01/04/2023]
Abstract
Protein-based biological drugs and many industrial enzymes are unstable, making them prohibitively expensive. Some can be stabilized by formulation with excipients, but most still require low temperature storage. In search of new, more robust excipients, we turned to the tardigrade, a microscopic animal that synthesizes cytosolic abundant heat soluble (CAHS) proteins to protect its cellular components during desiccation. We find that CAHS proteins protect the test enzymes lactate dehydrogenase and lipoprotein lipase against desiccation-, freezing-, and lyophilization-induced deactivation. Our data also show that a variety of globular and disordered protein controls, with no known link to desiccation tolerance, protect our test enzymes. Protection of lactate dehydrogenase correlates, albeit imperfectly, with the charge density of the protein additive, suggesting an approach to tune protection by modifying charge. Our results support the potential use of CAHS proteins as stabilizing excipients in formulations and suggest that other proteins may have similar potential.
Collapse
Affiliation(s)
- Samantha Piszkiewicz
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Kathryn H Gunn
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Owen Warmuth
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Ashlee Propst
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Aakash Mehta
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Kenny H Nguyen
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Elizabeth Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Alex J Guseman
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Samantha S Stadmiller
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Thomas C Boothby
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Saskia B Neher
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, 27599.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina, 27599
| |
Collapse
|
50
|
Mondal B, Reddy G. Cosolvent Effects on the Growth of Protein Aggregates Formed by a Single Domain Globular Protein and an Intrinsically Disordered Protein. J Phys Chem B 2019; 123:1950-1960. [DOI: 10.1021/acs.jpcb.8b11128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Balaka Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| |
Collapse
|