1
|
Ataie S, Malmir A, Scott SS, Goettel JT, Clemens SN, Morrison DJ, Mackie C, Heyne B, Hatzikiriakos SG, Schafer LL. Hydroaminoalkylation for Amine Functionalization of Vinyl-Terminated Polyethylene Enables Direct Access to Responsive Functional Materials. Angew Chem Int Ed Engl 2024; 63:e202410154. [PMID: 39473397 DOI: 10.1002/anie.202410154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 11/26/2024]
Abstract
While functionalized polyethylenes (PEs) exhibit valuable characteristics, the constraints of existing synthetic approaches limit the variety of readily incorporated functionality. New methods to generate functionalized PEs are required to afford new applications of this common material. We report 100 % atom economic tantalum-catalyzed hydroaminoalkylation of vinyl-terminated polyethylene (VTPE) as a method to produce amine-terminated PE. VTPEs with molecular weights between 2200-16800 g/mol are successfully aminated using solvent-free conditions. Our catalytic system is efficient for the installation of both aromatic and aliphatic amines, and can be carried out on multigram scale. The associating amine functional groups afford modified material properties, as measured by water contact angle, differential scanning calorimetry (DSC) and polymer rheology. The basic amine functionality offers the opportunity to convert inert PE into stimuli-responsive materials, such that the protonation of aminated PE affords the generation of functional antibacterial PE films.
Collapse
Affiliation(s)
- Saeed Ataie
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Amir Malmir
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Sabrina S Scott
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - James T Goettel
- Centre for Applied Research, NOVA Chemicals, Calgary, Alberta, T2E 7K7, Canada
| | - Steven N Clemens
- Centre for Applied Research, NOVA Chemicals, Calgary, Alberta, T2E 7K7, Canada
| | - Darryl J Morrison
- Centre for Applied Research, NOVA Chemicals, Calgary, Alberta, T2E 7K7, Canada
| | - Cyrus Mackie
- Department of Chemistry, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Belinda Heyne
- Department of Chemistry, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Savvas G Hatzikiriakos
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Laurel L Schafer
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
2
|
Li X, Hu Z, Mahmood Q, Wang Y, Sohail S, Zou S, Liang T, Sun WH. Thermally stable C2-symmetric α-diimine nickel precatalysts for ethylene polymerization: semicrystalline to amorphous PE with high tensile and elastic properties. Dalton Trans 2024; 53:18193-18206. [PMID: 39450637 DOI: 10.1039/d4dt02543a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
In α-diimine nickel catalyst-mediated ethylene polymerization, adjusting catalytic parameters such as steric and electronic factors, as well as spectator ligands, offers an intriguing approach for tailoring the thermal and physical properties of the resulting products. This study explores two sets of C2-symmetric α-diimine nickel complexes-nickel bromide and nickel chloride-where ortho-steric and electronic substituents, as well as nickel halide, were varied to regulate simultaneously chain walking, chain transfer, and the properties of the polymers produced. These complexes were activated in situ with Et2AlCl, resulting in exceptionally high catalytic activities (in the level of 106-107 g (PE) mol-1 (Ni) h-1) under all reaction conditions. Nickel bromide complexes, with higher ortho-steric hindrance, exhibited superior catalytic activity compared to their less hindered counterparts, whereas the reverse was observed for complexes containing chloride. Increased steric hindrance in both sets of complexes facilitated higher polymer molecular weights and promoted chain walking reactions at lower reaction temperature (40 °C), while the effect became less pronounced at higher temperature (100 °C). However, the electron-withdrawing effect of ortho-substituents hindered the rate of monomer insertion, chain propagation, and chain walking reactions, leading to the synthesis of semi-crystalline polyethylene with an exceptionally high melt temperature of 134.6 °C and a high crystallinity of up to 31.9%. Most importantly, nickel bromide complexes demonstrated significantly higher activity compared to their chloride counterparts, while the latter yielded polymers with higher molecular weights and increased melt temperatures. These high molecular weights, coupled with controlled branching degrees, resulted in polyethylenes with excellent tensile strength (up to 13.9 MPa) and excellent elastic properties (up to 81%), making them suitable for a broad range of applications.
Collapse
Affiliation(s)
- Xiaoxu Li
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
| | - Zexu Hu
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
| | - Qaiser Mahmood
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
| | - Yizhou Wang
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Sunny Sohail
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Song Zou
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tongling Liang
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Wen-Hua Sun
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
- Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
3
|
Lu B, Takahashi K, Zhou J, Nakagawa S, Yamamoto Y, Katashima T, Yoshie N, Nozaki K. Mild Catalytic Degradation of Crystalline Polyethylene Units in a Solid State Assisted by Carboxylic Acid Groups. J Am Chem Soc 2024; 146:19599-19608. [PMID: 38952064 DOI: 10.1021/jacs.4c07458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Crystalline polyethylenes bearing carboxylic acid groups in the main chain were successfully degraded with a Ce catalyst and visible light. The reaction proceeds in a crystalline solid state without swelling in acetonitrile or water at a reaction temperature as low as 60 or 80 °C, employing dioxygen in air as the only stoichiometric reactant with nearly quantitative recovery of carbon atoms. Heterogeneous features of the reaction allowed us to reveal a dynamic morphological change of polymer crystals during the degradation.
Collapse
Affiliation(s)
- Bin Lu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kohei Takahashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jian Zhou
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Yuta Yamamoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuya Katashima
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoko Yoshie
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Wang Y, Lai J, Gao R, Gou Q, Li B, Zheng G, Zhang R, Yue Q, Song Z, Guo Z. Recent Advances in Nickel Catalysts with Industrial Exploitability for Copolymerization of Ethylene with Polar Monomers. Polymers (Basel) 2024; 16:1676. [PMID: 38932025 PMCID: PMC11207433 DOI: 10.3390/polym16121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
The direct copolymerization of ethylene with polar monomers to produce functional polyolefins continues to be highly appealing due to its simple operation process and controllable product microstructure. Low-cost nickel catalysts have been extensively utilized in academia for the synthesis of polar polyethylenes. However, the development of high-temperature copolymerization catalysts suitable for industrial production conditions remains a significant challenge. Classified by the resultant copolymers, this review provides a comprehensive summary of the research progress in nickel complex catalyzed ethylene-polar monomer copolymerization at elevated temperatures in the past five years. The polymerization results of ethylene-methyl acrylate copolymers, ethylene-tert-butyl acrylate copolymers, ethylene-other fundamental polar monomer copolymers, and ethylene-special polar monomer copolymers are thoroughly summarized. The involved nickel catalysts include the phosphine-phenolate type, bisphosphine-monoxide type, phosphine-carbonyl type, phosphine-benzenamine type, and the phosphine-enolate type. The effective modulation of catalytic activity, molecular weight, molecular weight distribution, melting point, and polar monomer incorporation ratio by these catalysts is concluded and discussed. It reveals that the optimization of the catalyst system is mainly achieved through the methods of catalyst structure rational design, extra additive introduction, and single-site catalyst heterogenization. As a result, some outstanding catalysts are capable of producing polar polyethylenes that closely resemble commercial products. To achieve industrialization, it is essential to further emphasize the fundamental science of high-temperature copolymerization systems and the application performance of resultant polar polyethylenes.
Collapse
Affiliation(s)
- Ying Wang
- Department of Polyethylene, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China; (J.L.); (R.G.); (Q.G.); (B.L.); (G.Z.); (R.Z.); (Q.Y.); (Z.S.)
| | | | | | | | | | | | | | | | | | - Zifang Guo
- Department of Polyethylene, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China; (J.L.); (R.G.); (Q.G.); (B.L.); (G.Z.); (R.Z.); (Q.Y.); (Z.S.)
| |
Collapse
|
5
|
Dai J, Dai S. Impact of o-aryl halogen effects on ethylene polymerization: steric vs. electronic effects. Dalton Trans 2024; 53:9286-9293. [PMID: 38712871 DOI: 10.1039/d4dt00850b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Ligand steric hindrance and electronic effects play a crucial role in late-transition metal-catalyzed olefin polymerization. In this research, a series of o-aryl halogenated α-diimine ligands bearing bulky dibenzhydryl substituents, along with their corresponding nickel catalysts, have been synthesized and thoroughly characterized. The nickel catalysts demonstrated very high activity in ethylene polymerization, achieving a high rate of up to 107 g mol-1 h-1. The produced polyethylenes displayed a broad spectrum of molecular weights (12.2-871.7 kg mol-1) but maintained consistent branching densities (50-82/1000 C) when polymerized at a fixed temperature with different nickel catalysts. Notably, the polymerization temperature has a significant influence on both the molecular weight and branching density of the resulting polyethylene. Higher temperatures led to the formation of polyethylenes with lower molecular weights and increased branching densities. Interestingly, the o-aryl halogens significantly impact the molecular weight of the polyethylene. The size of the halogen substituents primarily determines the molecular weight of the polyethylene. However, in terms of branching density, the steric and electronic effects of these substituents appear to counteract each other. In addition, the branched high molecular weight polyethylenes from the bromine and chlorine substituted nickel catalysts are excellent polyethylene thermoplastic elastomers with high strain at break values (688-2478%) and high strain recovery values (42-62%).
Collapse
Affiliation(s)
- Jianjian Dai
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China.
| | - Shengyu Dai
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China.
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
6
|
Liu J, Zhang J, Sun M, Li H, Lei M, Huang Q. Ethylene/Polar Monomer Copolymerization by [N, P] Ti Complexes: Polar Copolymers with Ultrahigh-Molecular Weight. ACS OMEGA 2024; 9:15030-15039. [PMID: 38585117 PMCID: PMC10993284 DOI: 10.1021/acsomega.3c09124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
A series of novel titanium complexes (2a-2e) bearing [N, P] aniline-chlorodiphenylphosphine ligands (1a-1e) featuring CH3 and F substituents have been synthesized and characterized. Surprisingly, in the presence of polar additive, the complexes (2a-2e) all displayed high catalytic activities (up to 1.04 × 106 gPolymer (mol·Ti)-1·h-1 and produced copolymer with the ultrahigh molecular weight up to 1.37 × 106 g/mol. The catalytic activities are significantly enhanced by introducing electron-withdrawing group (F) into the aniline aromatic ring. Especially, the increase in activity based on different complexes followed the order of 2e > 2d > 2c > 2b > 2a. Simultaneously, density functional theory (DFT) calculations have been performed to probe the polymerization mechanism as well as the electronic and steric effects of various substituents on the catalyst backbone. DFT computation revealed that the polymerization behaviors could be adjusted by the electronic effect of ligand substituents; however, it has little to do with the steric hindrance of the substituents. Furthermore, theoretical calculation results keep well in accordance with experimental measurement results. The article provided an appealing design method that the employment of fluorine atom as electron-withdrawing to be studied is the promotive effect of transition-metal coordination polymerization.
Collapse
Affiliation(s)
- Jingjiao Liu
- State
Key Laboratory of Chemical Resource Engineering, Key Laboratory of
Carbon Fiber and Functional Polymers, College of Material Science
and Technology, Beijing University of Chemical
Technology, Beijing 100029, P. R. China
| | - Jiaojiao Zhang
- State
Key Laboratory of Chemical Resource Engineering, Key Laboratory of
Carbon Fiber and Functional Polymers, College of Material Science
and Technology, Beijing University of Chemical
Technology, Beijing 100029, P. R. China
| | - Min Sun
- The
State Key Laboratory of Catalytic Materials and Reaction Engineering
(RIPP, SINPPEC), Beijing 100083, P. R. China
| | - Hongming Li
- Petrochemical
Research Institute, PetroChina, Beijing 102206, P. R. China
| | - Ming Lei
- College
of Chemistry, Beijing University of Chemical
Technology, Beijing 100029, P. R. China
| | - Qigu Huang
- State
Key Laboratory of Chemical Resource Engineering, Key Laboratory of
Carbon Fiber and Functional Polymers, College of Material Science
and Technology, Beijing University of Chemical
Technology, Beijing 100029, P. R. China
| |
Collapse
|
7
|
Qu W, Bi Z, Zou C, Chen C. Light, Heat, and Force-Responsive Polyolefins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307568. [PMID: 38183385 PMCID: PMC10953547 DOI: 10.1002/advs.202307568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Indexed: 01/08/2024]
Abstract
Stimuli-responsive polymers have found applications as shape-memory materials, optical switches, and sensors, but the installation of these responsive properties in non-polar and inert polyolefins is challenging. In this contribution, a series of spiropyran (SP)-based comonomers are synthesized and copolymerized with ethylene or ethylene/cyclic monomers. In addition to great mechanical and surface properties, these functionalized polyolefins responded to light, heat, and force, which induced changes in the polymer structure to transmit color or mechanical signals. These interesting responsive properties are also installed in a series of commercial polyolefin materials through reactive extrusion, making the scalable production of these materials possible.
Collapse
Affiliation(s)
- Weicheng Qu
- Key Laboratory of Precision and Intelligent ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Zhengxing Bi
- Key Laboratory of Precision and Intelligent ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Chen Zou
- Key Laboratory of Precision and Intelligent ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Changle Chen
- Key Laboratory of Precision and Intelligent ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
8
|
Taylor NS, Gordinier MT, Suhagia T, Pinto DD, Cherry DD, Verry DS, Baker LN, DeYonker NJ, Young KJ, Brewster TP. Donor Ability of Bisphosphinemonoxide Ligands Relevant to Late-Metal Olefin Polymerization Catalysis. Inorg Chem 2024; 63:2888-2898. [PMID: 38295440 DOI: 10.1021/acs.inorgchem.3c02869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Late-transition-metal catalysts for polymerization of olefins have drawn a significant amount of attention owing to their ability to tolerate and incorporate polar comonomers. However, a systematic way to experimentally quantify the electronic properties of the ligands used in these systems has not been developed. Quantified ligand parameters will allow for the rational design of tailored polymerization catalysts, which would target specific polymer properties. We report a series of platinum complexes bearing bisphosphinemonoxide ligands, which resemble those used in the polymerization catalysts of Nozaki and Chen. Their electronic properties are investigated experimentally, and trends are rationalized by using computed spectral properties. Benchmarking computational data with known experimental parameters further enhances the utility of both methods for determining optimal ligands for catalytic application.
Collapse
Affiliation(s)
- Natalie S Taylor
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Maxwell T Gordinier
- Department of Chemistry, Centre College, Danville, Kentucky 40422, United States
| | - Tejaskumar Suhagia
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Danna D Pinto
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Demetrius D Cherry
- Department of Chemistry, Centre College, Danville, Kentucky 40422, United States
| | - Dominic S Verry
- Department of Chemistry, Centre College, Danville, Kentucky 40422, United States
| | - Lindsey N Baker
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Nathan J DeYonker
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Karin J Young
- Department of Chemistry, Centre College, Danville, Kentucky 40422, United States
| | - Timothy P Brewster
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| |
Collapse
|
9
|
Escayola S, Bahri-Laleh N, Poater A. % VBur index and steric maps: from predictive catalysis to machine learning. Chem Soc Rev 2024; 53:853-882. [PMID: 38113051 DOI: 10.1039/d3cs00725a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Steric indices are parameters used in chemistry to describe the spatial arrangement of atoms or groups of atoms in molecules. They are important in determining the reactivity, stability, and physical properties of chemical compounds. One commonly used steric index is the steric hindrance, which refers to the obstruction or hindrance of movement in a molecule caused by bulky substituents or functional groups. Steric hindrance can affect the reactivity of a molecule by altering the accessibility of its reactive sites and influencing the geometry of its transition states. Notably, the Tolman cone angle and %VBur are prominent among these indices. Actually, steric effects can also be described using the concept of steric bulk, which refers to the space occupied by a molecule or functional group. Steric bulk can affect the solubility, melting point, boiling point, and viscosity of a substance. Even though electronic indices are more widely used, they have certain drawbacks that might shift preferences towards others. They present a higher computational cost, and often, the weight of electronics in correlation with chemical properties, e.g. binding energies, falls short in comparison to %VBur. However, it is worth noting that this may be because the steric index inherently captures part of the electronic content. Overall, steric indices play an important role in understanding the behaviour of chemical compounds and can be used to predict their reactivity, stability, and physical properties. Predictive chemistry is an approach to chemical research that uses computational methods to anticipate the properties and behaviour of these compounds and reactions, facilitating the design of new compounds and reactivities. Within this domain, predictive catalysis specifically targets the prediction of the performance and behaviour of catalysts. Ultimately, the goal is to identify new catalysts with optimal properties, leading to chemical processes that are both more efficient and sustainable. In this framework, %VBur can be a key metric for deepening our understanding of catalysis, emphasizing predictive catalysis and sustainability. Those latter concepts are needed to direct our efforts toward identifying the optimal catalyst for any reaction, minimizing waste, and reducing experimental efforts while maximizing the efficacy of the computational methods.
Collapse
Affiliation(s)
- Sílvia Escayola
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Mª Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - Naeimeh Bahri-Laleh
- Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran
- Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM), Hiroshima University, Hiroshima, 739-8526, Japan
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Mª Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| |
Collapse
|
10
|
Xiong S, Hong A, Ghana P, Bailey BC, Spinney HA, Bailey H, Henderson BS, Marshall S, Agapie T. Acrylate-Induced β-H Elimination in Coordination Insertion Copolymerizaton Catalyzed by Nickel. J Am Chem Soc 2023; 145:26463-26471. [PMID: 37992227 DOI: 10.1021/jacs.3c10800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Polar monomer-induced β-H elimination is a key elementary step in polar polyolefin synthesis by coordination polymerization but remains underexplored. Herein, we show that a bulky neutral Ni catalyst, 1Ph, is not only a high-performance catalyst in ethylene/acrylate copolymerization (activity up to ∼37,000 kg/(mol·h) at 130 °C in a batch reactor, mol % tBA ∼ 0.3) but also a suitable platform for investigation of acrylate-induced β-H elimination. 4Ph-tBu, a novel Ni alkyl complex generated after acrylate-induced β-H elimination and subsequent acrylate insertion, was identified and characterized by crystallography. A combination of catalysis and mechanistic studies reveals effects of the acrylate monomer, bidentate ligand, and the labile ligand (e.g., pyridine) on the kinetics of β-H elimination, the role of β-H elimination in copolymerization catalysis as a chain-termination pathway, and its potential in controlling the polymer microstructure in polar polyolefin synthesis.
Collapse
Affiliation(s)
- Shuoyan Xiong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Alexandria Hong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Priyabrata Ghana
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Brad C Bailey
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Heather A Spinney
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Hannah Bailey
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Briana S Henderson
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Steve Marshall
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
11
|
Samudrala KK, Conley MP. Effects of surface acidity on the structure of organometallics supported on oxide surfaces. Chem Commun (Camb) 2023; 59:4115-4127. [PMID: 36912586 DOI: 10.1039/d3cc00047h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Well-defined organometallics supported on high surface area oxides are promising heterogeneous catalysts. An important design factor in these materials is how the metal interacts with the functionalities on an oxide support, commonly anionic X-type ligands derived from the reaction of an organometallic M-R with an -OH site on the oxide. The metal can either form a covalent M-O bond or form an electrostatic M+⋯-O ion-pair, which impacts how well-defined organometallics will interact with substrates in catalytic reactions. A less common reaction pathway involves the reaction of a Lewis site on the oxide with the organometallic, resulting in abstraction to form an ion-pair, which is relevant to industrial olefin polymerization catalysts. This Feature Article views the spectrum of reactivity between an organometallic and an oxide through the prism of Brønsted and/or Lewis acidity of surface sites and draws analogies to the molecular frame where Lewis and Brønsted acids are known to form reactive ion-pairs. Applications of the well-defined sites developed in this article are also discussed.
Collapse
Affiliation(s)
| | - Matthew P Conley
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| |
Collapse
|
12
|
Wang S, Zhou Y, Xiao W, Li Z, Liu X, Feng X. Asymmetric synthesis of complex tricyclo[3.2.2.0]nonenes from racemic norcaradienes: kinetic resolution via Diels-Alder reaction. Chem Sci 2023; 14:1844-1851. [PMID: 36819855 PMCID: PMC9930936 DOI: 10.1039/d2sc06490a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Herein, the enantioselective synthesis of complex tricyclo[3.2.2.0]nonenes through the Diels-Alder reaction is reported. Utilizing racemic norcaradienes prepared from the visible-light-mediated dearomative cyclopropanation of m-xylene as dienes and enone derivatives as dienophiles, the overall process represents a kinetic asymmetric transformation in the presence of a chiral cobalt(ii) complex of chiral N,N'-dioxide. High diastereo- and enantioselectivity could be obtained in most cycloaddition processes and part racemization of norcaradiene is observed. The topographic steric maps of the catalysts were collected to rationalize the relationship between reactivity and enantioselectivity with the catalysts.
Collapse
Affiliation(s)
- Siyuan Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Wanlong Xiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Zegong Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
13
|
Capacchione C, Grisi F, Lamberti M, Mazzeo M, Milani B, Milione S, Pappalardo D, Zuccaccia C, Pellecchia C. Metal Catalyzed Polymerization: From Stereoregular Poly(α‐olefins) to Tailor‐Made Biodegradable/Biorenewable Polymers and Copolymers. Eur J Inorg Chem 2023. [DOI: 10.1002/ejic.202200644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Carmine Capacchione
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Fabia Grisi
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Marina Lamberti
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Mina Mazzeo
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Barbara Milani
- Dipartimento di Scienze Chimiche e Farmaceutiche Università di Trieste Via Licio Giorgieri 1 34127 Trieste Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Stefano Milione
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Daniela Pappalardo
- Dipartimento di Scienze e Tecnologie Università del Sannio Via de Sanctis snc 82100 Benevento Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Cristiano Zuccaccia
- Dipartimento di Chimica, Biologia e Biotecnologie Università di Perugia Via Elce di Sotto 8 06132 Perugia Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno via Giovanni Paolo II 132 84084 Fisciano (SA) Italy
- Consorzio per la Reattività Chimica e la Catalisi (CIRCC) Via Celso Ulpiani 27 70126 Bari Italy
| |
Collapse
|
14
|
Mo Y, Chen Q, Li J, Ye D, Zhou Y, Dong S, Liu X, Feng X. Asymmetric Catalytic Conjugate Addition of Cyanide to Chromones and β-Substituted Cyclohexenones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuhao Mo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qiyou Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jinzhao Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Dong Ye
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
15
|
Density Functional Theory Analysis of the Copolymerization of Cyclopropenone with Ethylene Using a Palladium Catalyst. Polymers (Basel) 2022; 14:polym14235273. [PMID: 36501667 PMCID: PMC9739415 DOI: 10.3390/polym14235273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Density functional theory has been used to elucidate the mechanism of Pd copolymerization of cyclopropenone with ethylene. The results reveal that introducing ethylene and cyclopropenone to Pd catalyst is thermodynamically feasible and generates the α,β-unsaturated ketone unit (UnitA). Cis-mode insertion and Path A1a are the most favorable reaction routes for ethylene and cyclopropenone, respectively. Moreover, cyclopropenone decomposition can generate CO in situ without a catalyst or with a Pd catalyst. The Pd-catalyzed decomposition of cyclopropenone exhibits a lower reaction barrier (22.7 kcal/mol) than its direct decomposition. Our study demonstrates that incorporating CO into the Pd catalyst can generate the isolated ketone unit (UnitB). CO is formed first; thereafter, UnitB is generated. Therefore, the total energy barrier of UnitB generation, accounting for the CO barrier, is 22.7 kcal/mol, which is slightly lower than that of UnitA generation (24.0 kcal/mol). Additionally, the possibility of copolymerizing ethylene, cyclopropenone, and allyl acetate (AAc) has been investigated. The free energy and global reactivity index analyses indicate that the cyclopropenone introduction reaction is more favorable than the AAc insertion, which is consistent with the experimental results. Investigating the copolymerization mechanism will help to develop of a functionalization strategy for polyethylene polymers.
Collapse
|
16
|
Zhang Y, Zhang Y, Hu X, Wang C, Jian Z. Advances on Controlled Chain Walking and Suppression of Chain Transfer in Catalytic Olefin Polymerization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yuxing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xiaoqiang Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Chaoqun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Developments in late transition metal catalysts with high thermal stability for ethylene polymerization: A crucial aspect from laboratory to industrialization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Zhang R, Gao R, Gou Q, Lai J, Li X. Recent Advances in the Copolymerization of Ethylene with Polar Comonomers by Nickel Catalysts. Polymers (Basel) 2022; 14:3809. [PMID: 36145954 PMCID: PMC9500745 DOI: 10.3390/polym14183809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
The less-expensive and earth-abundant nickel catalyst is highly promising in the copolymerization of ethylene with polar monomers and has thus attracted increasing attention in both industry and academia. Herein, we have summarized the recent advancements made in the state-of-the-art nickel catalysts with different types of ligands for ethylene copolymerization and how these modifications influence the catalyst performance, as well as new polymerization modulation strategies. With regard to α-diimine, salicylaldimine/ketoiminato, phosphino-phenolate, phosphine-sulfonate, bisphospnine monoxide, N-heterocyclic carbene and other unclassified chelates, the properties of each catalyst and fine modulation of key copolymerization parameters (activity, molecular weight, comonomer incorporation rate, etc.) are revealed in detail. Despite significant achievements, many opportunities and possibilities are yet to be fully addressed, and a brief outlook on the future development and long-standing challenges is provided.
Collapse
Affiliation(s)
- Randi Zhang
- Department of Polyethylene, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | | | | | | | | |
Collapse
|
19
|
Xiong S, Hong A, Bailey BC, Spinney HA, Senecal TD, Bailey H, Agapie T. Highly Active and Thermally Robust Nickel Enolate Catalysts for the Synthesis of Ethylene-Acrylate Copolymers. Angew Chem Int Ed Engl 2022; 61:e202206637. [PMID: 35723944 DOI: 10.1002/anie.202206637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 11/05/2022]
Abstract
The insertion copolymerization of polar olefins and ethylene remains a significant challenge in part due to catalysts' low activity and poor thermal stability. Herein we demonstrate a strategy toward addressing these obstacles through ligand design. Neutral nickel phosphine enolate catalysts with large phosphine substituents reaching the axial positions of Ni achieve activity of up to 7.7×103 kg mol-1 h-1 (efficiency >35×103 g copolymer/g Ni) at 110 °C, notable for ethylene/acrylate copolymerization. NMR analysis of resulting copolymers reveals highly linear microstructures with main-chain ester functionality. Structure-performance studies indicate a strong correlation between axial steric hindrance and catalyst performance.
Collapse
Affiliation(s)
- Shuoyan Xiong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexandria Hong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brad C Bailey
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, MI 48667, USA
| | - Heather A Spinney
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, MI 48667, USA
| | - Todd D Senecal
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, MI 48667, USA
| | - Hannah Bailey
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, MI 48667, USA
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
20
|
Wang Y, Pang W, Zhang S, Tan C. Lewis Acids Modulation in Phosphine‐Sulfonate Palladium Catalyzed Ethylene Polymerization. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yong Wang
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Wenmin Pang
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Shaojie Zhang
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui China
| | - Chen Tan
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei Anhui China
| |
Collapse
|
21
|
Xiong S, Hong A, Bailey BC, Spinney HA, Senecal TD, Bailey H, Agapie T. Highly Active and Thermally Robust Nickel Enolate Catalysts for the Synthesis of Ethylene‐Acrylate Copolymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shuoyan Xiong
- California Institute of Technology Division of Chemistry and Chemical Engineering UNITED STATES
| | - Alexandria Hong
- California Institute of Technology Chemistry and Chemical Engineering UNITED STATES
| | | | | | | | | | - Theodor Agapie
- California Institute of Technology Chemistry 1200 California BlvdMC 127-72 91106 Pasadena UNITED STATES
| |
Collapse
|
22
|
Karimi M, Arabi H, Sadjadi S. New advances in olefin homo and copolymerization using neutral, single component palladium/nickel complexes ligated by a phosphine-sulfonate. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Chen M, Chen C. Nickel catalysts for the preparation of functionalized polyolefin materials. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2021-1187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Gao J, Dorn RW, Laurent GP, Perras FA, Rossini AJ, Conley MP. A Heterogeneous Palladium Catalyst for the Polymerization of Olefins Prepared by Halide Abstraction Using Surface R
3
Si
+
Species. Angew Chem Int Ed Engl 2022; 61:e202117279. [DOI: 10.1002/anie.202117279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Jiaxin Gao
- Department of Chemistry University of California, Riverside Riverside CA 92521 USA
| | - Rick W. Dorn
- Department of Chemistry Iowa State University Ames IA 50011 USA
- U.S. Department of Energy Ames Laboratory Ames IA 50011 USA
| | - Guillaume P. Laurent
- U.S. Department of Energy Ames Laboratory Ames IA 50011 USA
- CNRS Laboratoire de Chimie de la Matière Condensée de Paris Sorbonne Université, LCMCP 75005 Paris France
| | | | - Aaron J. Rossini
- Department of Chemistry Iowa State University Ames IA 50011 USA
- U.S. Department of Energy Ames Laboratory Ames IA 50011 USA
| | - Matthew P. Conley
- Department of Chemistry University of California, Riverside Riverside CA 92521 USA
| |
Collapse
|
25
|
Li K, Mu H, Kang X, Jian Z. Suppression of Chain Transfer and Promotion of Chain Propagation in Neutral Anilinotropone Nickel Polymerization Catalysis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kangkang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Hongliang Mu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
26
|
Gao J, Dorn RW, Laurent GP, Perras FA, Rossini AJ, Conley MP. A Heterogeneous Palladium Catalyst for the Polymerization of Olefins Prepared by Halide Abstraction Using Surface R
3
Si
+
Species. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiaxin Gao
- Department of Chemistry University of California, Riverside Riverside CA 92521 USA
| | - Rick W. Dorn
- Department of Chemistry Iowa State University Ames IA 50011 USA
- U.S. Department of Energy Ames Laboratory Ames IA 50011 USA
| | - Guillaume P. Laurent
- U.S. Department of Energy Ames Laboratory Ames IA 50011 USA
- CNRS Laboratoire de Chimie de la Matière Condensée de Paris Sorbonne Université, LCMCP 75005 Paris France
| | | | - Aaron J. Rossini
- Department of Chemistry Iowa State University Ames IA 50011 USA
- U.S. Department of Energy Ames Laboratory Ames IA 50011 USA
| | - Matthew P. Conley
- Department of Chemistry University of California, Riverside Riverside CA 92521 USA
| |
Collapse
|
27
|
Alberoni C, D’Alterio MC, Balducci G, Immirzi B, Polentarutti M, Pellecchia C, Milani B. Tunable “In-Chain” and “At the End of the Branches” Methyl Acrylate Incorporation in the Polyolefin Skeleton through Pd(II) Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chiara Alberoni
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Massimo C. D’Alterio
- Dipartimento di Chimica e Biologia ″A. Zambelli″, Università di Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
| | - Gabriele Balducci
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Barbara Immirzi
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Maurizio Polentarutti
- Elettra − Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza, Trieste 34149, Italy
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia ″A. Zambelli″, Università di Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
| | - Barbara Milani
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
28
|
Tan C, Zou C, Chen C. Material Properties of Functional Polyethylenes from Transition-Metal-Catalyzed Ethylene–Polar Monomer Copolymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00058] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chen Tan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Chen Zou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
29
|
Multivariate Linear Regression Models to Predict Monomer Poisoning Effect in Ethylene/Polar Monomer Copolymerization Catalyzed by Late Transition Metals. INORGANICS 2022. [DOI: 10.3390/inorganics10020026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This study combined density functional theory (DFT) calculations and multivariate linear regression (MLR) to analyze the monomer poisoning effect in ethylene/polar monomer copolymerization catalyzed by the Brookhart-type catalysts. The calculation results showed that the poisoning effect of polar monomers with relatively electron-deficient functional groups is weaker, such as ethers, and halogens. On the contrary, polar monomers with electron-rich functional groups (carbonyl, carboxyl, and acyl groups) exert a stronger poisoning effect. In addition, three descriptors that significantly affect the poisoning effect have been proposed on the basis of the multiple linear regression model, viz., the chemical shift of the vinyl carbon atom and heteroatom of polar monomer as well as the metal-X distance in the σ-coordination structure. It is expected that these models could guide the development of efficient catalytic copolymerization system in this field.
Collapse
|
30
|
Cui L, Chu YK, Liu DJ, Han YF, Mu HL, Jian ZB. Enhancement on Hemilabile Phosphine-Amide Palladium and Nickel Catalysts for Ethylene (Co)Polymerization with Polar Monomers Using a Cyclizing Strategy. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2650-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Zhu N, Liang T, Huang Y, Pang W, Chen M, Tan C. Influences of Ligand Backbone Substituents on Phosphinecarbonylpalladium and -nickel Catalysts for Ethylene Polymerization and Copolymerization with Polar Monomers. Inorg Chem 2021; 60:13080-13090. [PMID: 34357773 DOI: 10.1021/acs.inorgchem.1c01490] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of phosphinecarbonylpalladium and -nickel catalysts bearing various substituents on the ligand backbone were prepared, characterized, and used in ethylene polymerization and copolymerization with polar monomers. The Pd and Ni catalysts can achieve high activities as well as high polymer molecular weights in both ethylene polymerization and copolymerization with polar monomers. The electron-donating group from the carbonyl side can effectively increase the polymer molecular weights. Utilization of a cyclic backbone structure can increase the catalytic activities at the expense of the polymer molecular weights. Moreover, installation of a pyridyl moiety in the ligand backbone can enable Lewis acid responsiveness and can enhance the polymerization activities. These results suggest the importance of the ligand backbone for the properties of catalysts in ethylene polymerization and copolymerization reactions.
Collapse
Affiliation(s)
- Ningning Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Tao Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yongshuang Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wenmin Pang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Min Chen
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Chen Tan
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
32
|
Yu F, Li P, Xu M, Xu G, Na Y, Zhang S, Wang F, Tan C. Iminopyridyl ligands bearing polyethylene glycol unit for nickel catalyzed ethylene polymerization. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Rodriguez J, Conley MP. Ethylene Polymerization Activity of (R 3P)Ni(codH) + (cod = 1,5-cylcooctadiene) Sites Supported on Sulfated Zirconium Oxide. Inorg Chem 2021; 60:6946-6949. [PMID: 33844523 DOI: 10.1021/acs.inorgchem.1c00454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PAr3 containing o-OMe, o-Me, or o-Et substituents reacts with Brønsted sites on sulfated zirconium oxide (SZO) to form [HPAr3][SZO]. The phosphonium sites on this material react with bis(cyclooctadiene)nickel [Ni(cod)2] to form [Ni(PAr3)(codH)][SZO] that are active in ethylene polymerization reactions. Selective poisoning studies with pyridine show that ∼90% of the Ni(PAr3)(codH)+ sites in this material are active in polymerization reactions.
Collapse
Affiliation(s)
- Jessica Rodriguez
- Department of Chemistry, University of California-Riverside (UCR), Riverside, California 92521, United States
| | - Matthew P Conley
- Department of Chemistry, University of California-Riverside (UCR), Riverside, California 92521, United States
| |
Collapse
|
34
|
|
35
|
Xiong S, Shoshani MM, Zhang X, Spinney HA, Nett AJ, Henderson BS, Miller TF, Agapie T. Efficient Copolymerization of Acrylate and Ethylene with Neutral P, O-Chelated Nickel Catalysts: Mechanistic Investigations of Monomer Insertion and Chelate Formation. J Am Chem Soc 2021; 143:6516-6527. [DOI: 10.1021/jacs.1c00566] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shuoyan Xiong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Manar M. Shoshani
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Xinglong Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | - Alex J. Nett
- Chemical Science, Core R&D, Dow, Midland, Michigan 48667, United States
| | | | - Thomas F. Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
36
|
Tan Q, Yu H, Luo Y, Chang F, Liu X, Zhou Y, Feng X. Asymmetric catalytic [4+3] cycloaddition of ortho-quinone methides with oxiranes. Chem Commun (Camb) 2021; 57:3018-3021. [PMID: 33624677 DOI: 10.1039/d1cc00262g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Catalytic enantioselective [4+3] cycloaddition reaction between o-quinone methides and oxiranes was achieved by using a chiral N,N'-dioxide/TbIII complex as the catalyst, affording medium-sized hydrodioxepine derivatives in high yields (up to 99%) with good to excellent diastereo-(up to 94 : 6 dr) and enantioselectivities (up to 97% ee). The topographic steric maps and distribution of the buried volume (% VBur) of the catalysts via Cavallo's SambVca 2 tool were collected to effectively represent the chiral pocket of metal complexes of chiral N,N'-dioxides.
Collapse
Affiliation(s)
- Qingfa Tan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Janeta M, Heidlas JX, Daugulis O, Brookhart M. 2,4,6‐Triphenylpyridinium: A Bulky, Highly Electron‐Withdrawing Substituent That Enhances Properties of Nickel(II) Ethylene Polymerization Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mateusz Janeta
- Department of Chemistry University of Houston Houston TX 77204-5003 USA
- Faculty of Chemistry University of Wrocław F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Julius X. Heidlas
- Department of Chemistry University of Houston Houston TX 77204-5003 USA
| | - Olafs Daugulis
- Department of Chemistry University of Houston Houston TX 77204-5003 USA
| | - Maurice Brookhart
- Department of Chemistry University of Houston Houston TX 77204-5003 USA
| |
Collapse
|
38
|
Wang XL, Zhang YP, Wang F, Pan L, Wang B, Li YS. Robust and Reactive Neutral Nickel Catalysts for Ethylene Polymerization and Copolymerization with a Challenging 1,1-Disubstituted Difunctional Polar Monomer. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04450] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xu-ling Wang
- Tianjin Key Lab of Composite & Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yan-ping Zhang
- Tianjin Key Lab of Composite & Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Fei Wang
- Tianjin Key Lab of Composite & Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Li Pan
- Tianjin Key Lab of Composite & Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Bin Wang
- Tianjin Key Lab of Composite & Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yue-sheng Li
- Tianjin Key Lab of Composite & Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
39
|
Janeta M, Heidlas JX, Daugulis O, Brookhart M. 2,4,6-Triphenylpyridinium: A Bulky, Highly Electron-Withdrawing Substituent That Enhances Properties of Nickel(II) Ethylene Polymerization Catalysts. Angew Chem Int Ed Engl 2021; 60:4566-4569. [PMID: 33230900 DOI: 10.1002/anie.202013854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 11/06/2022]
Abstract
The reactivity of NiII and PdII olefin polymerization catalysts can be enhanced by introduction of electron-withdrawing substituents on the supporting ligands rendering the metal centers more electrophilic. Reported here is a comparison of ethylene polymerization activity of a classical salicyliminato nickel catalyst substituted with the powerful electron-withdrawing 2,4,6-triphenylpyridinium (trippy) group to the -CF3 analogue. The trippy substituent is substantially more electron-withdrawing (σmeta =0.63) than the trifluoromethyl group (σmeta =0.43) which results in a ca. 8-fold increase in catalytic turnover frequency. An additional advantage of trippy is the high steric bulk relative to the trifluoromethyl group. This feature results in a four-fold increase in polymer molecular weight owing to enhanced retardation of chain transfer. A significant increase in catalyst lifetime is observed as well.
Collapse
Affiliation(s)
- Mateusz Janeta
- Department of Chemistry, University of Houston, Houston, TX, 77204-5003, USA.,Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Julius X Heidlas
- Department of Chemistry, University of Houston, Houston, TX, 77204-5003, USA
| | - Olafs Daugulis
- Department of Chemistry, University of Houston, Houston, TX, 77204-5003, USA
| | - Maurice Brookhart
- Department of Chemistry, University of Houston, Houston, TX, 77204-5003, USA
| |
Collapse
|
40
|
Takeuchi D, Nakamura M, Osakada K. Copolymerisation of 1-alkenes with bulky oxygen-containing olefins for dual-stage functionalisation of polyolefins. Polym Chem 2021. [DOI: 10.1039/d0py01303j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pd–Diimine complexes catalyse the copolymerisation of 1-alkenes with olefins having a bulky oxygen-containing substituents, such as cyclic acetal or bicycloorthoester groups, affording the copolymers containing the comonomer unit up to 34%.
Collapse
Affiliation(s)
- Daisuke Takeuchi
- Department of Frontier Materials Chemistry
- Faculty of Science and Technology
- Hirosaki University
- Aomori 036-8561
- Japan
| | - Makoto Nakamura
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Kohtaro Osakada
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| |
Collapse
|
41
|
|
42
|
Versatile PNPO ligands for palladium and nickel catalyzed ethylene polymerization and copolymerization with polar monomers. J Catal 2021. [DOI: 10.1016/j.jcat.2020.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
43
|
Zhou G, Cui L, Mu H, Jian Z. Custom-made polar monomers utilized in nickel and palladium promoted olefin copolymerization. Polym Chem 2021. [DOI: 10.1039/d1py00492a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this review, the functions of custom-made polar monomers are insightfully emphasized in the preparation of functional polyolefins.
Collapse
Affiliation(s)
- Guanglin Zhou
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Lei Cui
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Hongliang Mu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
44
|
Teator AJ, Varner TP, Knutson PC, Sorensen CC, Leibfarth FA. 100th Anniversary of Macromolecular Science Viewpoint: The Past, Present, and Future of Stereocontrolled Vinyl Polymerization. ACS Macro Lett 2020; 9:1638-1654. [PMID: 35617075 DOI: 10.1021/acsmacrolett.0c00664] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The thermomechanical properties exhibited by synthetic macromolecules can be directly linked to their tacticity, or the relative stereochemistry of repeat units. The development of stereoselective coordination-insertion polymerization, for example, led to the discovery of isotactic polypropylene, now one of the most widely produced commodity plastics in the world. Widespread interest in controlling polymer tacticity has led to a variety of stereoselective polymerization methodologies; however, this area of polymer science has lagged behind when compared to the ability to control molecular weight, dispersity, and composition. Despite decades of advancements, many stereoregular vinyl polymers remain unknown, particularly those comprised of polar functionality or derived from renewable resources. This Viewpoint provides an overview of recent developments in stereocontrolled polymerization, with an emphasis on propagation mechanism, and highlights successes, limitations, and future challenges for continued innovation.
Collapse
Affiliation(s)
- Aaron J. Teator
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Travis P. Varner
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Phil C. Knutson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Cole C. Sorensen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Frank A. Leibfarth
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
45
|
Saki Z, D’Auria I, Dall’Anese A, Milani B, Pellecchia C. Copolymerization of Ethylene and Methyl Acrylate by Pyridylimino Ni(II) Catalysts Affording Hyperbranched Poly(ethylene- co-methyl acrylate)s with Tunable Structures of the Ester Groups. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zeinab Saki
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Ilaria D’Auria
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Anna Dall’Anese
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Barbara Milani
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
46
|
Mehmood A, Xu X, Raza W, Kim KH, Luo Y. Mechanistic Studies for Palladium Catalyzed Copolymerization of Ethylene with Vinyl Ethers. Polymers (Basel) 2020; 12:E2401. [PMID: 33086515 PMCID: PMC7603233 DOI: 10.3390/polym12102401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 11/17/2022] Open
Abstract
The mechanism of ethylene with vinyl ether (VE, CH2=CHOEt) copolymerization catalyzed by phosphine-sulfonate palladium complex (A) was investigated by density functional theory (DFT) calculation. On achieving an agreement between theory and experiment, it is found that the favorable 1,2-selective insertion of VE into the complex A originates from stronger hydrogen interaction between the oxygen atom of VE and the ancillary ligand of catalyst A. Additionally, VE insertion is easier into the ethylene pre-inserted intermediate than that into the catalyst to form the resultant copolymers with the major units of OEt in chain and minor units of OEt at the chain end. The effect of β-OEt and β-H elimination was explored to elucidate chain termination and the molecular weight of copolymers. Furthermore, a family of cationic catalysts has been demonstrated to copolymerize ethylene with VE along with our modified cationic complex B with higher incorporation of VE and reactivity in comparison with complex A, which was modelled computationally by increasing the strong interactions between the catalyst and monomer moiety. Other than VE, the activity of cationic complex B for copolymerization of vinyl chloride and methacrylate is also computed successfully.
Collapse
Affiliation(s)
- Andleeb Mehmood
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (A.M.); (X.X.); (W.R.)
| | - Xiaowei Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (A.M.); (X.X.); (W.R.)
| | - Waseem Raza
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (A.M.); (X.X.); (W.R.)
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Korea
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (A.M.); (X.X.); (W.R.)
| |
Collapse
|
47
|
Expedient Synthetic Identification of a P‐Stereogenic Ligand Motif for the Palladium‐Catalyzed Preparation of Isotactic Polar Polypropylenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Seidel FW, Tomizawa I, Nozaki K. Expedient Synthetic Identification of a P‐Stereogenic Ligand Motif for the Palladium‐Catalyzed Preparation of Isotactic Polar Polypropylenes. Angew Chem Int Ed Engl 2020; 59:22591-22601. [DOI: 10.1002/anie.202009027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Falk William Seidel
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1- Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Izumi Tomizawa
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1- Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1- Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
49
|
Liang C, Yang J, Luo G, Luo Y. Benchmark study of density functionals for the insertions of olefin and polar monomers catalyzed by α–diimine palladium complexes. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Varner TP, Teator AJ, Reddi Y, Jacky PE, Cramer CJ, Leibfarth FA. Mechanistic Insight into the Stereoselective Cationic Polymerization of Vinyl Ethers. J Am Chem Soc 2020; 142:17175-17186. [PMID: 32986420 DOI: 10.1021/jacs.0c08254] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The control of the tacticity of synthetic polymers enables the realization of emergent physical properties from readily available starting materials. While stereodefined polymers derived from nonpolar vinyl monomers can be efficiently prepared using early transition metal catalysts, general methods for the stereoselective polymerization of polar vinyl monomers remain underdeveloped. We recently demonstrated asymmetric ion pairing catalysis as an effective approach to achieve stereoselective cationic polymerization of vinyl ethers. Herein, we provide a deeper understanding of stereoselective ion-pairing polymerization through comprehensive experimental and computational studies. These findings demonstrate the importance of ligand deceleration effects for the identification of reaction conditions that enhance stereoselectivity, which was supported by computational studies that identified the solution-state catalyst structure. An evaluation of monomer substrates with systematic variations in steric parameters and functional group identities established key structure-reactivity relationships for stereoselective homo- and copolymerization. Expansion of the monomer scope to include enantioenriched vinyl ethers enabled the preparation of an isotactic poly(vinyl ether) with the highest stereoselectivity (95.1% ± 0.1 meso diads) reported to date, which occurred when monomer and catalyst stereochemistry were fully matched under a triple diastereocontrol model. The more complete understanding of stereoselective cationic polymerization reported herein offers a foundation for the design of improved catalytic systems and for the translation of isotactic poly(vinyl ether)s to applied areas.
Collapse
Affiliation(s)
- Travis P Varner
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Aaron J Teator
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yernaidu Reddi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Paige E Jacky
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christopher J Cramer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank A Leibfarth
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|