1
|
Hou Y, Chen J, Liu W, Zhu G, Yang Q, Wang X. Using the Theozyme Model to Study the Dynamical Mechanism of the Post-Transition State Bifurcation Reaction by NgnD Enzyme. Molecules 2024; 29:5518. [PMID: 39683677 DOI: 10.3390/molecules29235518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/19/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Post-transition state bifurcation (PTSB) is a fundamental process in which a single transition state leads to multiple products. This phenomenon is important in both biological and chemical contexts and offers valuable insights into reaction mechanisms and their applications. The theozyme model, which focuses on key residues within enzymes, offers a computationally efficient method for studying these processes while preserving the enzyme's catalytic properties. This approach enhances our understanding of how enzymes stabilize and direct the transition state, thereby influencing product distribution and selectivity. In this study, we investigate the dynamics and regulatory mechanisms of the PTSB reaction catalyzed by the enzyme NgnD. The enzyme NgnD facilitates a cycloaddition reaction that produces both [6 + 4] and [4 + 2] adducts, with a preference for the [6 + 4] adduct. By analyzing the potential energy surface, bond length distribution, and interactions between the theozyme and the ambimodal transition state, we elucidate the role of the enzyme's active site residues in determining product selectivity. We illustrate how these key residues contribute to the formation of different adducts, providing insights from various perspectives. Using theozyme models, we propose how the four most influential active residues collectively might control the direction of adduct formation through their cumulative effects.
Collapse
Affiliation(s)
- Yaning Hou
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jingyun Chen
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Weizhe Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Gaohua Zhu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qianying Yang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
2
|
Wang X, Yang L, Wang S, Wang J, Li K, Naowarojna N, Ju Y, Ye K, Han Y, Yan W, Liu X, Zhang L, Liu P. Characterizing Y224 conformational flexibility in FtmOx1-catalysis using 19F NMR spectroscopy. Catal Sci Technol 2024:d4cy01077a. [PMID: 39669701 PMCID: PMC11629144 DOI: 10.1039/d4cy01077a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/30/2024] [Indexed: 12/14/2024]
Abstract
α-Ketoglutarate-dependent non-haem iron (αKG-NHFe) enzymes play a crucial role in natural product biosynthesis, and in some cases exhibiting multifunctional catalysis capability. This study focuses on αKG-NHFe enzyme FtmOx1, which catalyzes endoperoxidation, dealkylation, and alcohol oxidation reactions in verruculogen biosynthesis. We explore the hypothesis that the conformational dynamics of the active site Y224 confer the multifunctional activities of FtmOx1-catalysis. Utilizing Y224-to-3,5-difluorotyrosine-substituted FtmOx1, produced via the amber codon suppression method, we conducted 19F NMR characterization to investigate FtmOx1's structural flexibility. Subsequent biochemical and X-ray crystallographic analyses provided insights into how specific conformations of FtmOx1-substrate complexes influence their catalytic activities. These findings underscore the utility of 19F NMR as a powerful tool for elucidating the complex mechanisms of multifunctional enzymes, offering potential avenues for developing biocatalytic processes to produce novel therapeutic agents harnessing their unique catalytic properties.
Collapse
Affiliation(s)
- Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Lingyun Yang
- iHuman Institute, Shanghaitech University Shanghai 201210 China
| | - Shenlin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Jun Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Kelin Li
- Department of Chemistry, Boston University Boston Massachusetts 02215 USA
| | - Nathchar Naowarojna
- Program of Chemistry, Faculty of Science and Technology, Sakon Nakhon Rajabhat University Sakon Nakhon 47000 Thailand
| | - Yi Ju
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Ke Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Yuchen Han
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Wupeng Yan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Pinghua Liu
- Department of Chemistry, Boston University Boston Massachusetts 02215 USA
| |
Collapse
|
3
|
Liu X, Xu Y, Li L, Li J. Chemoenzymatic Oxidation of Labdane and Formal Synthesis of Nimbolide. J Am Chem Soc 2024; 146:26243-26250. [PMID: 39276077 DOI: 10.1021/jacs.4c07956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
In nature, basic terpene skeletons are produced and subsequently undergo enzymatic or nonenzymatic oxidative transformations, leading to diverse structural variations. To date, thousands of natural products featuring a variety of oxidation patterns have been isolated solely from the labdane family. This work describes a strategy for the comprehensive introduction of oxidation states into the labdane core by employing a combination of enzyme library screening, directed evolution, and sequential chemical oxidation processes. Furthermore, we showcase the functional viability of our chemoenzymatic approach by accomplishing a formal synthesis of nimbolide, highlighting its potential for streamlining the synthesis of complex natural products.
Collapse
Affiliation(s)
- Xiaotao Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaoyao Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingling Li
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Tao H, Abe I. Functional analysis of an α-ketoglutarate-dependent non-heme iron oxygenase in fungal meroterpenoid biosynthesis. Methods Enzymol 2024; 704:173-198. [PMID: 39300647 DOI: 10.1016/bs.mie.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
α-Ketoglutarate-dependent non-heme iron (α-KG NHI) oxygenases compose one of the largest superfamilies of tailoring enzymes that play key roles in structural and functional diversifications. During the biosynthesis of meroterpenoids, α-KG NHI oxygenases catalyze diverse types of chemical reactions, including hydroxylation, desaturation, epoxidation, endoperoxidation, ring-cleavage, and skeletal rearrangements. Due to their catalytic versatility, keen attention has been focused on functional analyses of α-KG NHI oxygenases. This chapter provides detailed methodologies for the functional analysis of the fungal α-KG NHI oxygenase SptF, which plays an important role in the structural diversification of andiconin-derived meroterpenoids. The procedures included describe how to prepare the meroterpenoid substrate using a heterologous fungal host, measure the in vitro enzymatic activity of SptF, and how to perform structural and mutagenesis studies on SptF. These protocols are also applicable to functional analyses of other α-KG NHI oxygenases.
Collapse
Affiliation(s)
- Hui Tao
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P.R. China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, Hubei, P.R. China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, P.R. China.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Quan Z, Awakawa T. Recent developments in the engineered biosynthesis of fungal meroterpenoids. Beilstein J Org Chem 2024; 20:578-588. [PMID: 38505236 PMCID: PMC10949012 DOI: 10.3762/bjoc.20.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Meroterpenoids are hybrid compounds that are partially derived from terpenoids. This group of natural products displays large structural diversity, and many members exhibit beneficial biological activities. This mini-review highlights recent advances in the engineered biosynthesis of meroterpenoid compounds with C15 and C20 terpenoid moieties, with the reconstruction of fungal meroterpenoid biosynthetic pathways in heterologous expression hosts and the mutagenesis of key enzymes, including terpene cyclases and α-ketoglutarate (αKG)-dependent dioxygenases, that contribute to the structural diversity. Notable progress in genome sequencing has led to the discovery of many novel genes encoding these enzymes, while continued efforts in X-ray crystallographic analyses of these enzymes and the invention of AlphaFold2 have facilitated access to their structures. Structure-based mutagenesis combined with applications of unnatural substrates has further diversified the catalytic repertoire of these enzymes. The information in this review provides useful knowledge for the design of biosynthetic machineries to produce a variety of bioactive meroterpenoids.
Collapse
Affiliation(s)
- Zhiyang Quan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takayoshi Awakawa
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Sato H. Theoretical Study of Natural Product Biosynthesis Using Computational Chemistry. Chem Pharm Bull (Tokyo) 2024; 72:524-528. [PMID: 38825452 DOI: 10.1248/cpb.c24-00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The biosynthetic pathways of natural products are complicated, and it is difficult to fully elucidate their details using experimental chemistry alone. In recent years, efforts have been made to elucidate the biosynthetic reaction mechanisms by combining computational and experimental methods. In this review, we will discuss the biosynthetic studies using computational chemistry for various terpene compounds such as cyclooctatin, sesterfisherol, quiannulatene, trichobrasilenol, asperterpenol, preasperterpenoid, spiroviolene, and mangicol.
Collapse
Affiliation(s)
- Hajime Sato
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
- PRESTO, Japan Science and Technology Agency
| |
Collapse
|
7
|
Liu K, Zhang J, Zhang G, Zhang L, Meng Z, Ma L, Zhang W, Xiong W, Zhu Y, Wang B, Zhang C. Deciphering Deoxynybomycin Biosynthesis Reveals Fe(II)/α-Ketoglutarate-Dependent Dioxygenase-Catalyzed Oxazoline Ring Formation and Decomposition. J Am Chem Soc 2023; 145:27886-27899. [PMID: 38055632 DOI: 10.1021/jacs.3c11772] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The antibacterial agents deoxynybomycin (DNM) and nybomycin (NM) have a unique tetracyclic structure featuring an angularly fused 4-oxazoline ring. Here, we report the identification of key enzymes responsible for forming the 4-oxazoline ring in Embleya hyalina NBRC 13850 by comparative bioinformatics analysis of the biosynthetic gene clusters encoding structurally similar natural products DNM, deoxynyboquinone (DNQ), and diazaquinomycins (DAQs). The N-methyltransferase DnmS plays a crucial role in catalyzing the N-dimethylation of a tricyclic precursor prenybomycin to generate NM D; subsequently, the Fe(II)/α-ketoglutarate-dependent dioxygenase (Fe/αKGD) DnmT catalyzes the formation of a 4-oxazoline ring from NM D to produce DNM; finally, a second Fe/αKGD DnmU catalyzes the C-12 hydroxylation of DNM to yield NM. Strikingly, DnmT is shown to display unexpected functions to also catalyze the decomposition of the 4-oxazoline ring and the N-demethylation, thereby converting DNM back to prenybomycin, to putatively serve as a manner to control the intracellular yield of DNM. Structure modeling, site-directed mutagenesis, and quantum mechanics calculations provide mechanistic insights into the DnmT-catalyzed reactions. This work expands our understanding of the functional diversity of Fe/αKGDs in natural product biosynthesis.
Collapse
Affiliation(s)
- Kai Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jinyan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guangtao Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Meng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Liang Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Weiliang Xiong
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, China-Sri Lanka Joint Center for Education and Research, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| |
Collapse
|
8
|
Matsuyama T, Togashi K, Nakano M, Sato H, Uchiyama M. Revision of the Peniroquesine Biosynthetic Pathway by Retro-Biosynthetic Theoretical Analysis: Ring Strain Controls the Unique Carbocation Rearrangement Cascade. JACS AU 2023; 3:1596-1603. [PMID: 37388688 PMCID: PMC10301677 DOI: 10.1021/jacsau.3c00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 07/01/2023]
Abstract
Peniroquesine, a sesterterpenoid featuring a unique 5/6/5/6/5 fused pentacyclic ring system, has been known for a long time, but its biosynthetic pathway/mechanism remains elusive. Based on isotopic labeling experiments, a plausible biosynthetic pathway to peniroquesines A-C and their derivatives was recently proposed, in which the characteristic peniroquesine-type 5/6/5/6/5 pentacyclic skeleton is synthesized from geranyl-farnesyl pyrophosphate (GFPP) via a complex concerted A/B/C-ring formation, repeated reverse-Wagner-Meerwein alkyl shifts, three successive secondary (2°) carbocation intermediates, and a highly distorted trans-fused bicyclo[4.2.1]nonane intermediate. However, our density functional theory calculations do not support this mechanism. By applying a retro-biosynthetic theoretical analysis strategy, we were able to find a preferred pathway for peniroquesine biosynthesis, involving a multistep carbocation cascade including triple skeletal rearrangements, trans-cis isomerization, and 1,3-H shift. This pathway/mechanism is in good agreement with all of the reported isotope-labeling results.
Collapse
Affiliation(s)
- Taro Matsuyama
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ko Togashi
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Moe Nakano
- Interdisciplinary
Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Hajime Sato
- Interdisciplinary
Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Masanobu Uchiyama
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Research
Initiative for Supra-Materials (RISM), Shinshu
University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
9
|
Awakawa T, Mori T, Ushimaru R, Abe I. Structure-based engineering of α-ketoglutarate dependent oxygenases in fungal meroterpenoid biosynthesis. Nat Prod Rep 2023; 40:46-61. [PMID: 35642933 DOI: 10.1039/d2np00014h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Non-heme iron- and α-ketoglutarate-dependent oxygenases (αKG OXs) are key enzymes that play a major role in diversifying the structure of fungal meroterpenoids. They activate a specific C-H bond of the substrate to first generate radical species, which is usually followed by oxygen rebound to produce cannonical hydroxylated products. However, in some cases remarkable chemistry induces dramatic structural changes in the molecular scaffolds, depending on the stereoelectronic characters of the substrate/intermediates and the resulting conformational changes/movements of the active site of the enzyme. Their molecular bases have been extensively investigated by crystallographic structural analyses and structure-based mutagenesis, which revealed intimate structural details of the enzyme reactions. This information facilitates the manipulation of the enzyme reactions to create unnatural, novel molecules for drug discovery. This review summarizes recent progress in the structure-based engineering of αKG OX enzymes, involved in the biosynthesis of polyketide-derived fungal meroterpenoids. The literature published from 2016 through February 2022 is reviewed.
Collapse
Affiliation(s)
- Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,ACT-X, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, the University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
10
|
Zhang T, Gu G, Liu G, Su J, Zhan Z, Zhao J, Qian J, Cai G, Cen S, Zhang D, Yu L. Late-stage cascade of oxidation reactions during the biosynthesis of oxalicine B in Penicillium oxalicum. Acta Pharm Sin B 2023; 13:256-270. [PMID: 36815048 PMCID: PMC9939320 DOI: 10.1016/j.apsb.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/01/2022] Open
Abstract
Oxalicine B (1) is an α-pyrone meroterpenoid with a unique bispirocyclic ring system derived from Penicillium oxalicum. The biosynthetic pathway of 15-deoxyoxalicine B (4) was preliminarily reported in Penicillium canescens, however, the genetic base and biochemical characterization of tailoring reactions for oxalicine B (1) has remained enigmatic. In this study, we characterized three oxygenases from the metabolic pathway of oxalicine B (1), including a cytochrome P450 hydroxylase OxaL, a hydroxylating Fe(II)/α-KG-dependent dioxygenase OxaK, and a multifunctional cytochrome P450 OxaB. Intriguingly, OxaK can catalyze various multicyclic intermediates or shunt products of oxalicines with impressive substrate promiscuity. OxaB was further proven via biochemical assays to have the ability to convert 15-hydroxdecaturin A (3) to 1 with a spiro-lactone core skeleton through oxidative rearrangement. We also solved the mystery of OxaL that controls C-15 hydroxylation. Chemical investigation of the wild-type strain and deletants enabled us to identify 10 metabolites including three new compounds, and the isolated compounds displayed potent anti-influenza A virus bioactivities exhibiting IC50 values in the range of 4.0-19.9 μmol/L. Our studies have allowed us to propose a late-stage biosynthetic pathway for oxalicine B (1) and create downstream derivatizations of oxalicines by employing enzymatic strategies.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guowei Gu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Jinhua Su
- The Third Medical Center, The General Hospital of People's Liberation Army, Beijing 100039, China
| | - Zhilai Zhan
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jinxiu Qian
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guowei Cai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dewu Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,Corresponding authors. Tel./fax: +86 10 63187118.
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,Corresponding authors. Tel./fax: +86 10 63187118.
| |
Collapse
|
11
|
Ushimaru R, Abe I. Unusual Dioxygen-Dependent Reactions Catalyzed by Nonheme Iron Enzymes in Natural Product Biosynthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Yan D, Matsuda Y. Biosynthetic Elucidation and Structural Revision of Brevione E: Characterization of the Key Dioxygenase for Pathway Branching from Setosusin Biosynthesis. Angew Chem Int Ed Engl 2022; 61:e202210938. [DOI: 10.1002/anie.202210938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Dexiu Yan
- Department of Chemistry City University of Hong Kong Tat Chee Avenue Kowloon, Hong Kong SAR China
| | - Yudai Matsuda
- Department of Chemistry City University of Hong Kong Tat Chee Avenue Kowloon, Hong Kong SAR China
| |
Collapse
|
13
|
Tao H, Abe I. Harnessing Fe(II)/α-ketoglutarate-dependent oxygenases for structural diversification of fungal meroterpenoids. Curr Opin Biotechnol 2022; 77:102763. [PMID: 35878474 DOI: 10.1016/j.copbio.2022.102763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
Fungal meroterpenoids are structurally diverse natural products with important biological activities. During their biosynthesis, α-ketoglutarate-dependent oxygenases (αKG-DOs) catalyze a wide range of chemically challenging transformation reactions, including desaturation, epoxidation, oxidative rearrangement, and endoperoxide formation, by selective C-H bond activation, to produce molecules with more complex and divergent structures. Investigations on the structure-function relationships of αKG-DO enzymes have revealed the intimate molecular bases of their catalytic versatility and reaction mechanisms. Notably, the catalytic repertoire of αKG-DOs is further expanded by only subtle changes in their active site and lid-like loop-region architectures. Owing to their remarkable biocatalytic potential, αKG-DOs are ideal candidates for future chemoenzymatic synthesis and enzyme engineering for the generation of terpenoids with diverse structures and biological activities.
Collapse
Affiliation(s)
- Hui Tao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
14
|
Mori T, Nakashima Y, Chen H, Hoshino S, Mitsuhashi T, Abe I. Structure-based redesign of Fe(II)/2-oxoglutarate-dependent oxygenase AndA to catalyze spiro-ring formation. Chem Commun (Camb) 2022; 58:5510-5513. [PMID: 35420093 DOI: 10.1039/d2cc00736c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Structure- and mechanism-based redesign of the Fe(II)/2-oxoglutarate-dependent oxygenase AndA was performed. The function of AndA was expanded to catalyze a spiro-ring formation reaction from an isomerization reaction. The redesigned AndA variants produced two unnatural novel spiro-ring containing compounds through two and three consecutive oxidation reactions.
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Yu Nakashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Heping Chen
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Shotaro Hoshino
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
15
|
Mori T, Yu Z, Tao H, Abe I. Rational Engineering of the Nonheme Iron- and 2-Oxoglutarate-Dependent Oxygenase SptF. Org Lett 2022; 24:1737-1741. [PMID: 35194997 DOI: 10.1021/acs.orglett.2c00409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Fe- and 2-oxoglutarate-dependent oxygenase SptF is a promising powerful biocatalys with unusual catalytic versatility and promiscuity. The site-specific random substitution of N150, I63, and N65, which are involved in substrate interactions, generated three compounds that were not produced by the SptF wild type. The substrate binding mode was dramatically altered by the introduction of only one or two substitutions. These results provide insights into the engineering of Fe- and 2-oxoglutarate-dependent oxygenases for chemoenzymatic syntheses of bioactive compounds.
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Ziheng Yu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hui Tao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
16
|
Tao H, Mori T, Chen H, Lyu S, Nonoyama A, Lee S, Abe I. Molecular insights into the unusually promiscuous and catalytically versatile Fe(II)/α-ketoglutarate-dependent oxygenase SptF. Nat Commun 2022; 13:95. [PMID: 35013177 PMCID: PMC8748661 DOI: 10.1038/s41467-021-27636-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
Non-heme iron and α-ketoglutarate-dependent (Fe/αKG) oxygenases catalyze various oxidative biotransformations. Due to their catalytic flexibility and high efficiency, Fe/αKG oxygenases have attracted keen attention for their application as biocatalysts. Here, we report the biochemical and structural characterizations of the unusually promiscuous and catalytically versatile Fe/αKG oxygenase SptF, involved in the biosynthesis of fungal meroterpenoid emervaridones. The in vitro analysis revealed that SptF catalyzes several continuous oxidation reactions, including hydroxylation, desaturation, epoxidation, and skeletal rearrangement. SptF exhibits extremely broad substrate specificity toward various meroterpenoids, and efficiently produced unique cyclopropane-ring-fused 5/3/5/5/6/6 and 5/3/6/6/6 scaffolds from terretonins. Moreover, SptF also hydroxylates steroids, including androsterone, testosterone, and progesterone, with different regiospecificities. Crystallographic and structure-based mutagenesis studies of SptF revealed the molecular basis of the enzyme reactions, and suggested that the malleability of the loop region contributes to the remarkable substrate promiscuity. SptF exhibits great potential as a promising biocatalyst for oxidation reactions.
Collapse
Affiliation(s)
- Hui Tao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| | - Heping Chen
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shuang Lyu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Shoukou Lee
- Sumitomo Dainippon Pharma Co., Ltd, Osaka, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
17
|
Tang J, Matsuda Y. Discovery of branching meroterpenoid biosynthetic pathways in Aspergillus insuetus: involvement of two terpene cyclases with distinct cyclization modes. Chem Sci 2022; 13:10361-10369. [PMID: 36277653 PMCID: PMC9473517 DOI: 10.1039/d2sc02994d] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022] Open
Abstract
Branching meroterpenoid biosynthetic pathways were discovered in the fungus Aspergillus insuetus CBS 107.25, in which two terpene cyclases, InsA7 and InsB2, accept the same substrate but generate distinctly cyclized products.
Collapse
Affiliation(s)
- Jia Tang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
18
|
Harken L, Liu J, Kreuz O, Berger R, Li SM. Biosynthesis of Guatrypmethine C Implies Two Different Oxidases for exo Double Bond Installation at the Diketopiperazine Ring. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lauritz Harken
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Jing Liu
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Oliver Kreuz
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Robert Berger
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| |
Collapse
|
19
|
Li X, Awakawa T, Mori T, Ling M, Hu D, Wu B, Abe I. Heterodimeric Non-heme Iron Enzymes in Fungal Meroterpenoid Biosynthesis. J Am Chem Soc 2021; 143:21425-21432. [PMID: 34881885 DOI: 10.1021/jacs.1c11548] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Talaromyolides (1-6) are a group of unusual 6/6/6/6/6/6 hexacyclic meroterpenoids with (3R)-6-hydroxymellein and 4,5-seco-drimane substructures, isolated from the marine fungus Talaromyces purpureogenus. We have identified the biosynthetic gene cluster tlxA-J by heterologous expression in Aspergillus, in vitro enzyme assays, and CRISPR-Cas9-based gene inactivation. Remarkably, the heterodimer of non-heme iron (NHI) enzymes, TlxJ-TlxI, catalyzes three steps of oxidation including a key reaction, hydroxylation at C-5 and C-9 of 12, the intermediate with 3-ketohydroxydrimane scaffold, to facilitate a retro-aldol reaction, leading to the construction of the 4,5-secodrimane skeleton and characteristic ketal scaffold of 1-6. The products of TlxJ-TlxI, 1 and 4, were further hydroxylated at C-4'β by another NHI heterodimer, TlxA-TlxC, and acetylated by TlxB to yield the final products, 3 and 6. The X-ray structural analysis coupled with site-directed mutagenesis provided insights into the heterodimer TlxJ-TlxI formation and its catalysis. This is the first report to show that two NHI proteins form a heterodimer for catalysis and utilizes a novel methodology to create functional oxygenase structures in secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Xinyang Li
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Meiqi Ling
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Bin Wu
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
20
|
Huang ZH, Liang X, Li CJ, Gu Q, Ma X, Qi SH. Talaromynoids A-I, Highly Oxygenated Meroterpenoids from the Marine-Derived Fungus Talaromyces purpureogenus SCSIO 41517 and Their Lipid Accumulation Inhibitory Activities. JOURNAL OF NATURAL PRODUCTS 2021; 84:2727-2737. [PMID: 34596414 DOI: 10.1021/acs.jnatprod.1c00681] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nine new highly oxygenated 3,5-dimethylorsellinic acid-derived meroterpenoids, talaromynoids A-I (1-9), were isolated from the marine-derived fungus Talaromyces purpureogenus SCSIO 41517. Their structures including absolute configurations were elucidated by HRMS, NMR, single-crystal X-ray diffraction analysis, and electronic circular dichroism calculations. Compounds 1 and 7-9 possessed unprecedented 5/7/6/5/6/6, 6/7/6/6/6/5, 6/7/6/5/6/5/4, and 7/6/5/6/5/4 polycyclic systems, respectively. Biologically, compound 5 showed selective inhibitory activity against phosphatase CDC25B with an IC50 value of 13 μM. Moreover, 7-9 and 12 exhibited the activity of reducing triglyceride in 3T3-L1 adipocytes in a dosage-dependent manner.
Collapse
Affiliation(s)
- Zhong-Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiao Liang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Chan-Juan Li
- College of Agriculture & Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuan Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
21
|
Mori T, Zhai R, Ushimaru R, Matsuda Y, Abe I. Molecular insights into the endoperoxide formation by Fe(II)/α-KG-dependent oxygenase NvfI. Nat Commun 2021; 12:4417. [PMID: 34285212 PMCID: PMC8292354 DOI: 10.1038/s41467-021-24685-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/30/2021] [Indexed: 11/08/2022] Open
Abstract
Endoperoxide-containing natural products are a group of compounds with structurally unique cyclized peroxide moieties. Although numerous endoperoxide-containing compounds have been isolated, the biosynthesis of the endoperoxides remains unclear. NvfI from Aspergillus novofumigatus IBT 16806 is an endoperoxidase that catalyzes the formation of fumigatonoid A in the biosynthesis of novofumigatonin. Here, we describe our structural and functional analyses of NvfI. The structural elucidation and mutagenesis studies indicate that NvfI does not utilize a tyrosyl radical in the reaction, in contrast to other characterized endoperoxidases. Further, the crystallographic analysis reveals significant conformational changes of two loops upon substrate binding, which suggests a dynamic movement of active site during the catalytic cycle. As a result, NvfI installs three oxygen atoms onto a substrate in a single enzyme turnover. Based on these results, we propose a mechanism for the NvfI-catalyzed, unique endoperoxide formation reaction to produce fumigatonoid A.
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| | - Rui Zhai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- ACT-X, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
22
|
Bunno R, Awakawa T, Mori T, Abe I. Aziridine Formation by a Fe II /α-Ketoglutarate Dependent Oxygenase and 2-Aminoisobutyrate Biosynthesis in Fungi. Angew Chem Int Ed Engl 2021; 60:15827-15831. [PMID: 33973699 DOI: 10.1002/anie.202104644] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/03/2021] [Indexed: 11/08/2022]
Abstract
Aziridine is a characteristically reactive molecule with increased bioactivity due to its strained ring structure. Here, we investigated the biosynthesis of 2-aminoisobutyric acid (AIB) in Penicillium, and successfully reconstituted the three-step biosynthesis from L-Val to AIB in vitro. This previously unknown aziridine formation pathway proceeded with the non-heme iron and α-ketoglutarate-dependent (FeII /αKG) oxygenase TqaL, followed by aziridine ring opening by the haloalkanoic acid dehalogenase (HAD)-type hydrolase TqaF, and subsequent oxidative decarboxylation by the NovR/CloR-like non-heme iron oxygenase TqaM. Furthermore, the X-ray crystal structure of the C-N bond forming FeII /αKG oxygenase TqaL was solved at 2.0 Å resolution. This work presents the first molecular basis for aziridine biogenesis, thereby expanding the catalytic repertoire of the FeII /αKG oxygenases. We also report the unique aziridine ring opening by a HAD-type hydrolase and the remarkable oxidative decarboxylation by a non-heme iron oxygenase to produce AIB.
Collapse
Affiliation(s)
- Reito Bunno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- PRESTO (Japan) Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
23
|
Bunno R, Awakawa T, Mori T, Abe I. Aziridine Formation by a Fe
II
/α‐Ketoglutarate Dependent Oxygenase and 2‐Aminoisobutyrate Biosynthesis in Fungi. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Reito Bunno
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Yayoi 1-1-1, Bunkyo-ku Tokyo 113-8657 Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Yayoi 1-1-1, Bunkyo-ku Tokyo 113-8657 Japan
- PRESTO (Japan) Science and Technology Agency Kawaguchi Saitama 332-0012 Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Yayoi 1-1-1, Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
24
|
Awakawa T, Abe I. Reconstitution of Polyketide-Derived Meroterpenoid Biosynthetic Pathway in Aspergillus oryzae. J Fungi (Basel) 2021; 7:jof7060486. [PMID: 34208768 PMCID: PMC8235479 DOI: 10.3390/jof7060486] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 02/03/2023] Open
Abstract
The heterologous gene expression system with Aspergillus oryzae as the host is an effective method to investigate fungal secondary metabolite biosynthetic pathways for reconstruction to produce un-natural molecules due to its high productivity and genetic tractability. In this review, we focus on biosynthetic studies of fungal polyketide-derived meroterpenoids, a group of bioactive natural products, by means of the A. oryzae heterologous expression system. The heterologous expression methods and the biosynthetic reactions are described in detail for future prospects to create un-natural molecules via biosynthetic re-design.
Collapse
Affiliation(s)
- Takayoshi Awakawa
- Laboratory of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence: (T.A.); (I.A.)
| | - Ikuro Abe
- Laboratory of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Correspondence: (T.A.); (I.A.)
| |
Collapse
|
25
|
Yan D, Matsuda Y. Genome Mining-Driven Discovery of 5-Methylorsellinate-Derived Meroterpenoids from Aspergillus funiculosus. Org Lett 2021; 23:3211-3215. [PMID: 33821662 DOI: 10.1021/acs.orglett.1c00951] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterologous expression of a cryptic gene cluster in the fungus Aspergillus funiculosus CBS 116.56 led to the discovery of four new meroterpenoids, funiculolides A-D (1-4), derived from the aromatic polyketide 5-methylorsellinic acid (5-MOA). Intriguingly, funiculolide D (4), the apparent end product of the pathway, harbors an unusual spirocyclopentanone moiety, which is synthesized by the oxidative rearrangement catalyzed by the ferrous iron and α-ketoglutarate-dependent dioxygenase FncG.
Collapse
Affiliation(s)
- Dexiu Yan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
26
|
Kahlert L, Schotte C, Cox RJ. Total Mycosynthesis: Rational Bioconstruction and Bioengineering of Fungal Natural Products. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1401-2716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractTotal biosynthesis in fungi is beginning to compete with traditional chemical total synthesis campaigns. Herein, the advantages, disadvantages and future opportunities are discussed within the scope of several recent examples.1 Introduction2 Synthetic Examples2.1 2-Pyridones2.2 Cytochalasans2.3 Sorbicillinoids2.4 Decalins: Solanapyrone2.5 α-Pyrone Polyenes: Citreoviridin and Aurovertin2.6 Anditomin and Related Meroterpenoids2.7 Tropolone Sesquiterpenoids3 Conclusion
Collapse
|
27
|
Mitsuhashi T, Barra L, Powers Z, Kojasoy V, Cheng A, Yang F, Taniguchi Y, Kikuchi T, Fujita M, Tantillo DJ, Porco JA, Abe I. Exploiting the Potential of Meroterpenoid Cyclases to Expand the Chemical Space of Fungal Meroterpenoids. Angew Chem Int Ed Engl 2020; 59:23772-23781. [PMID: 32931152 PMCID: PMC8957209 DOI: 10.1002/anie.202011171] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Indexed: 12/20/2022]
Abstract
Fungal meroterpenoids are a diverse group of hybrid natural products with impressive structural complexity and high potential as drug candidates. In this work, we evaluate the promiscuity of the early structure diversity-generating step in fungal meroterpenoid biosynthetic pathways: the multibond-forming polyene cyclizations catalyzed by the yet poorly understood family of fungal meroterpenoid cyclases. In total, 12 unnatural meroterpenoids were accessed chemoenzymatically using synthetic substrates. Their complex structures were determined by 2D NMR studies as well as crystalline-sponge-based X-ray diffraction analyses. The results obtained revealed a high degree of enzyme promiscuity and experimental results which together with quantum chemical calculations provided a deeper insight into the catalytic activity of this new family of non-canonical, terpene cyclases. The knowledge obtained paves the way to design and engineer artificial pathways towards second generation meroterpenoids with valuable bioactivities based on combinatorial biosynthetic strategies.
Collapse
Affiliation(s)
- Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
- Division of Advanced Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787 (Japan)
| | - Lena Barra
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
| | - Zachary Powers
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, 02215 (USA)
| | - Volga Kojasoy
- Department of Chemistry, University of California Davis 1 Shields Avenue, Davis, California 95616 (USA)
| | - Andrea Cheng
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, 02215 (USA)
| | - Feng Yang
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, 02215 (USA)
| | - Yoshimasa Taniguchi
- Central Laboratories for Key Technologies, Kirin Holdings Co. Ltd. 1-13-5, Fukuura Kana-zawa-ku, Yokohama-shi, Kanagawa, 236-0004 (Japan)
| | - Takashi Kikuchi
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666 (Japan)
| | - Makoto Fujita
- Division of Advanced Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787 (Japan)
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
| | - Dean J. Tantillo
- Department of Chemistry, University of California Davis 1 Shields Avenue, Davis, California 95616 (USA)
| | - John A. Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts, 02215 (USA)
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657 (Japan)
| |
Collapse
|
28
|
Sato H, Hashishin T, Kanazawa J, Miyamoto K, Uchiyama M. DFT Study of a Missing Piece in Brasilane-Type Structure Biosynthesis: An Unusual Skeletal Rearrangement. J Am Chem Soc 2020; 142:19830-19834. [PMID: 33124823 DOI: 10.1021/jacs.0c09616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Brasilane-type sesquiterpenes have been known for a long time, but their biosynthetic pathways and mechanisms remain elusive. Recently, two groups independently characterized a Trichoderma terpene cyclase that produces trichobrasilenol, a brasilane-type sesquiterpene, and a plausible biosynthetic pathway was proposed based on isotopic labeling experiments. In the proposed mechanism, the characteristic brasilane-type 5/6 bicyclic skeleton is synthesized from a 5/7/3 tricyclic intermediate via a complicated concerted reaction, including six chemical events of C-C σ bond metathesis and rearrangements, ring-contraction, π bond formation, and regioselective hydroxylation. However, our density functional theory (DFT) calculations do not support this mechanism. On the basis of DFT calculations, we propose a new pathway for trichobrasilenol biosynthesis, involving a multistep carbocation cascade in which cyclopropylcarbinyl cations in equilibrium with homoallyl cations play a pivotal role. This pathway and mechanism is in good agreement with previous biosynthetic studies on brasilane-type compounds and related terpenoids, including isotope-labeling experiments and byproducts analysis.
Collapse
Affiliation(s)
- Hajime Sato
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.,Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Clustering of Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takahiro Hashishin
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junichiro Kanazawa
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Clustering of Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
29
|
Mitsuhashi T, Barra L, Powers Z, Kojasoy V, Cheng A, Yang F, Taniguchi Y, Kikuchi T, Fujita M, Tantillo DJ, Porco JA, Abe I. Exploiting the Potential of Meroterpenoid Cyclases to Expand the Chemical Space of Fungal Meroterpenoids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Division of Advanced Molecular Science Institute for Molecular Science National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji Okazaki 444-8787 Japan
| | - Lena Barra
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Zachary Powers
- Department of Chemistry and Center for Molecular Discovery (BU-CMD) Boston University Boston Massachusetts 02215 USA
| | - Volga Kojasoy
- Department of Chemistry University of California Davis 1 Shields Avenue Davis California 95616 USA
| | - Andrea Cheng
- Department of Chemistry and Center for Molecular Discovery (BU-CMD) Boston University Boston Massachusetts 02215 USA
| | - Feng Yang
- Department of Chemistry and Center for Molecular Discovery (BU-CMD) Boston University Boston Massachusetts 02215 USA
| | - Yoshimasa Taniguchi
- Central Laboratories for Key Technologies Kirin Holdings Co. Ltd. 1-13-5, Fukuura Kana-zawa-ku, Yokohama-shi Kanagawa 236-0004 Japan
| | - Takashi Kikuchi
- Rigaku Corporation 3-9-12 Matsubara-cho, Akishima-shi Tokyo 196-8666 Japan
| | - Makoto Fujita
- Division of Advanced Molecular Science Institute for Molecular Science National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji Okazaki 444-8787 Japan
- Department of Applied Chemistry Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Dean J. Tantillo
- Department of Chemistry University of California Davis 1 Shields Avenue Davis California 95616 USA
| | - John A. Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD) Boston University Boston Massachusetts 02215 USA
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Yayoi 1-1-1, Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
30
|
Abstract
Covering: up to July 2020Fungal meroterpenoid cyclases are a recently discovered emerging family of membrane-integrated, non-canonical terpene cyclases. They catalyze the conversion of hybrid isoprenic precursors towards complex scaffolds and are therefore of great importance in the structure diversification in meroterpenoid biosynthesis. The products of these pathways exhibit intriguing molecular scaffolds and highly potent bioactivities, making them privileged structures from Nature and attractive candidates for drug development or industrial applications. This review will provide a comprehensive and comparative view on fungal meroterpenoid cyclases, their intriguing chemistries and importance for the scaffold formation step towards polycyclic meroterpenoid natural products.
Collapse
Affiliation(s)
- Lena Barra
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
31
|
Abe I. Nonheme Iron- and 2-Oxoglutarate-Dependent Dioxygenases in Fungal Meroterpenoid Biosynthesis. Chem Pharm Bull (Tokyo) 2020; 68:823-831. [PMID: 32879222 DOI: 10.1248/cpb.c20-00360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review summarizes the recent progress in research on the non-heme Fe(II)- and 2-oxoglutarate-dependent dioxygenases, which are involved in the biosynthesis of pharmaceutically important fungal meroterpenoids. This enzyme class activates a selective C-H bond of the substrate and catalyzes a wide range of chemical reactions, from simple hydroxylation to dynamic carbon skeletal rearrangements, thereby significantly contributing to the structural diversification and complexification of the molecules. Structure-function studies of these enzymes provide an excellent platform for the development of useful biocatalysts for synthetic biology to create novel molecules for future drug discovery.
Collapse
Affiliation(s)
- Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| |
Collapse
|
32
|
Li H, Feng W, Li X, Kang X, Yan S, Chao M, Mo S, Sun W, Lu Y, Chen C, Wang J, Zhu H, Zhang Y. Terreuspyridine: An Unexpected Pyridine-Fused Meroterpenoid Alkaloid with a Tetracyclic 6/6/6/6 Skeleton from Aspergillus terreus. Org Lett 2020; 22:7041-7046. [PMID: 32841036 DOI: 10.1021/acs.orglett.0c02641] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Terreuspyridine (1), the first 3,5-demethylorsellinic acid (DMOA) derived meroterpenoid alkaloid, was isolated from the fungus Aspergillus terreus, which represents a new type of meroterpenoid possessing an unexpected tetracyclic 6/6/6/6 architecture. The structure of 1 with absolute configuration was determined by X-ray diffraction analysis. Biogenetically, it was proposed to be derived from the fusion of a DMOA-meroterpenoid and a glutamate. Terreuspyridine (1) exhibited moderate inhibitory activity against the BChE with an IC50 value of 16.4 μM.
Collapse
Affiliation(s)
- Huaqiang Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenya Feng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoxin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Kang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shan Yan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Menghang Chao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuyuan Mo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanyuan Lu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
33
|
Bai T, Matsuda Y, Tao H, Mori T, Zhang Y, Abe I. Structural Diversification of Andiconin-Derived Natural Products by α-Ketoglutarate-Dependent Dioxygenases. Org Lett 2020; 22:4311-4315. [DOI: 10.1021/acs.orglett.0c01358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tongxuan Bai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Hui Tao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
34
|
Tantillo DJ. Interrogating chemical mechanisms in natural products biosynthesis using quantum chemical calculations. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dean J. Tantillo
- Department of Chemistry University of California–Davis Davis California
| |
Collapse
|
35
|
Powers Z, Scharf A, Cheng A, Yang F, Himmelbauer M, Mitsuhashi T, Barra L, Taniguchi Y, Kikuchi T, Fujita M, Abe I, Porco JA. Biomimetic Synthesis of Meroterpenoids by Dearomatization-Driven Polycyclization. Angew Chem Int Ed Engl 2019; 58:16141-16146. [PMID: 31515901 PMCID: PMC6814491 DOI: 10.1002/anie.201910710] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Indexed: 12/16/2022]
Abstract
A biomimetic route to farnesyl pyrophosphate and dimethyl orsellinic acid (DMOA)-derived meroterpenoid scaffolds has yet to be reported despite great interest from the chemistry and biomedical research communities. A concise synthetic route with the potential to access DMOA-derived meroterpenoids is highly desirable to create a library of related compounds. Herein, we report novel dearomatization methodology followed by polyene cyclization to access DMOA-derived meroterpenoid frameworks in six steps from commercially available starting materials. Furthermore, several farnesyl alkene substrates were used to generate structurally novel, DMOA-derived meroterpenoid derivatives. DFT calculations combined with experimentation provided a rationale for the observed thermodynamic distribution of polycyclization products.
Collapse
Affiliation(s)
- Zachary Powers
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215, USA
| | - Adam Scharf
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215, USA
| | - Andrea Cheng
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215, USA
| | - Feng Yang
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215, USA
| | - Martin Himmelbauer
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215, USA
| | - Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo, 113-0033, Japan
| | | | - Yoshimasa Taniguchi
- Central Laboratories for Key Technologies, Kirin Holdings Co. Ltd., 1-13-5, Fukuura Kanazawaku, Yokohama-shi, Kanagawa, 236-0004, Japan
| | - Takashi Kikuchi
- Rigaku Corporation, 3-9-12 Matsubaracho, Akishima-shi, Tokyo, 196-8666, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo, 113-8656, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo, 113-0033, Japan
| | - John A Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215, USA
| |
Collapse
|
36
|
Chen X, Wang L, Zhang J, Jiang T, Hu C, Li D, Zou Y. Immunosuppressant mycophenolic acid biosynthesis employs a new globin-like enzyme for prenyl side chain cleavage. Acta Pharm Sin B 2019; 9:1253-1258. [PMID: 31867170 PMCID: PMC6900556 DOI: 10.1016/j.apsb.2019.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/16/2023] Open
Abstract
Mycophenolic acid (MPA, 1) and its derivatives are first-line immunosuppressants used in organ transplantation and for treating autoimmune diseases. Despite chemical synthetic achievements, the biosynthetic formation of a seven-carbon carboxylic acid pharmacophore side chain of 1, especially the processes involving the cleavage of the prenyl side chain between DHMP (4) and DMMPA (5), remains unknown. In this work, we identified a membrane-bound prenyltransferase, PgMpaA, that transfers FPP to 4 to yield FDHMP (6). Compound 6 undergoes the first cleavage step via a new globin-like enzyme PgMpaB to form a cryptic intermediate 12. Heterologous expression of PgMpa genes in Aspergillus nidulans demonstrates that the second cleavage step (from 12 to 5) of 1 is a PgMpa cluster-independent process in vivo. Our results, especially the discovery of the broad tolerance of substrates recognized by PgMpaB, set up a strategy for the formation of "pseudo-isopentenyl" natural products using fungal globin-like enzymes.
Collapse
Affiliation(s)
- Xiwei Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lu Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jinmei Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Tao Jiang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Changhua Hu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
| |
Collapse
|
37
|
Abstract
A synthetic study toward the BCDEF core skeleton of andilesin C is presented. Key elements involved iron-promoted intramolecular perezone-type [5 + 2] cycloaddition to install the BCD ring system simultaneously in a one-step, copper-catalyzed intramolecular cyclopropanation followed by BiCl3-promoted retro-aldol reaction to construct ring E and a one-pot manipulation involving reduction, lactonization, and isomerization to introduce the lactone ring F. We finally synthesized the congested BCDEF ring system of andilesin C, featuring four quaternary centers and two tertiary centers, by following a strategy with a 15-pot reaction and 11 purification operations.
Collapse
Affiliation(s)
- Guili Zhu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Chengying Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Song Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China.,State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
38
|
Powers Z, Scharf A, Cheng A, Yang F, Himmelbauer M, Mitsuhashi T, Barra L, Taniguchi Y, Kikuchi T, Fujita M, Abe I, Porco JA. Biomimetic Synthesis of Meroterpenoids by Dearomatization‐Driven Polycyclization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zachary Powers
- Department of ChemistryCenter for Molecular Discovery (BU-CMD)Boston University 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| | - Adam Scharf
- Department of ChemistryCenter for Molecular Discovery (BU-CMD)Boston University 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| | - Andrea Cheng
- Department of ChemistryCenter for Molecular Discovery (BU-CMD)Boston University 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| | - Feng Yang
- Department of ChemistryCenter for Molecular Discovery (BU-CMD)Boston University 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| | - Martin Himmelbauer
- Department of ChemistryCenter for Molecular Discovery (BU-CMD)Boston University 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| | - Takaaki Mitsuhashi
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyoku Tokyo 113-0033 Japan
| | | | - Yoshimasa Taniguchi
- Central Laboratories for Key TechnologiesKirin Holdings Co. Ltd. 1-13-5, Fukuura Kanazawaku Yokohama-shi Kanagawa 236-0004 Japan
| | - Takashi Kikuchi
- Rigaku Corporation 3-9-12 Matsubaracho, Akishima-shi Tokyo 196-8666 Japan
| | - Makoto Fujita
- Department of Applied ChemistryGraduate School of EngineeringThe University of Tokyo 7-3-1 Hongo, Bunkyoku Tokyo 113-8656 Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical SciencesThe University of Tokyo 7-3-1 Hongo, Bunkyoku Tokyo 113-0033 Japan
| | - John A. Porco
- Department of ChemistryCenter for Molecular Discovery (BU-CMD)Boston University 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| |
Collapse
|
39
|
Abstract
Enzyme-mediated cascade reactions are widespread in biosynthesis. To facilitate comparison with the mechanistic categorizations of cascade reactions by synthetic chemists and delineate the common underlying chemistry, we discuss four types of enzymatic cascade reactions: those involving nucleophilic, electrophilic, pericyclic, and radical reactions. Two subtypes of enzymes that generate radical cascades exist at opposite ends of the oxygen abundance spectrum. Iron-based enzymes use O2 to generate high valent iron-oxo species to homolyze unactivated C-H bonds in substrates to initiate skeletal rearrangements. At anaerobic end, enzymes reversibly cleave S-adenosylmethionine (SAM) to generate the 5'-deoxyadenosyl radical as a powerful oxidant to initiate C-H bond homolysis in bound substrates. The latter enzymes are termed radical SAM enzymes. We categorize the former as "thwarted oxygenases".
Collapse
Affiliation(s)
- Christopher T Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (CheM-H), Stanford University, Stanford, CA, 94305, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
40
|
Affiliation(s)
- Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (CheM-H)Stanford University Stanford CA 94305 USA
| | - Bradley S. Moore
- Center for Marine Biotechnology and BiomedicineScripps Institution of OceanographyUniversity of California, San Diego La Jolla CA 92093 USA
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San Diego La Jolla CA 92093 USA
| |
Collapse
|
41
|
Sato H, Saito K, Yamazaki M. Acceleration of Mechanistic Investigation of Plant Secondary Metabolism Based on Computational Chemistry. FRONTIERS IN PLANT SCIENCE 2019; 10:802. [PMID: 31293608 PMCID: PMC6606707 DOI: 10.3389/fpls.2019.00802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/04/2019] [Indexed: 05/04/2023]
Abstract
This review describes the application of computational chemistry to plant secondary metabolism, focusing on the biosynthetic mechanisms of terpene/terpenoid, alkaloid, flavonoid, and lignin as representative examples. Through these biosynthetic studies, we exhibit several computational methods, including density functional theory (DFT) calculations, theozyme calculation, docking simulation, molecular dynamics (MD) simulation, and quantum mechanics/molecular mechanics (QM/MM) calculation. This review demonstrates how modern computational chemistry can be employed as an effective tool for revealing biosynthetic mechanisms and the potential of computational chemistry-for example, elucidating how enzymes regulate regio- and stereoselectivity, finding the key catalytic residue of an enzyme, and assessing the viability of hypothetical pathways. Furthermore, insights for the next research objective involving application of computational chemistry to plant secondary metabolism are provided herein. This review will be helpful for plant scientists who are not well versed with computational chemistry.
Collapse
Affiliation(s)
- Hajime Sato
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Center for Sustainable Resource Science, Advanced Elements Chemistry Laboratory, Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- *Correspondence: Mami Yamazaki,
| |
Collapse
|