1
|
Čonková M, Markiewicz G, Majchrzycki Ł, Szmulewicz A, Stefankiewicz AR. Chiral versus Achiral Assemblies in Multi-Stimuli Responsive Supramolecular Polymerization of Tetra-Substituted Azobenzene Dye. SMALL METHODS 2024; 8:e2301681. [PMID: 38344884 DOI: 10.1002/smtd.202301681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/16/2024] [Indexed: 10/18/2024]
Abstract
Incorporating photoswitchable moieties into the molecular design of supramolecular architectures provides unique opportunities for controlling their morphology and functionality via optical stimuli. Harnessing geometrical and electrical changes in response to multiple external stimuli on the molecular level to modulate properties remains a fundamental challenge. Herein, the reversible formation of the aggregates of l-tyrosine E-azobenzene-tetracarboxamide (E-ABT) is shown to be finely controlled by light, solvent, or chemical additives. The resulting products differ not only in their overall morphology and supramolecular interactions, but also in their intrinsic chirality, that is, depending on the conditions applied, self-assembly yields chiral columns or π-stacked "achiral" oligomers. This report shows the potential of rational monomer design to achieve controlled self-assembly by stimuli of choice and paves the way toward the use of multi-responsive, sterically hindered azo-benzene aggregates in materials chemistry and nanotechnology.
Collapse
Affiliation(s)
- Miroslava Čonková
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
| | - Grzegorz Markiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
| | - Łukasz Majchrzycki
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
| | - Adrianna Szmulewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
| | - Artur R Stefankiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
| |
Collapse
|
2
|
Friedrich LM, Hartke B, Lindhorst TK. Advancing Optoglycomics: Two Orthogonal Azobenzene Glycoside Antennas in One Glycocluster-Synthesis, Switching Cycles, Kinetics and Molecular Dynamics. Chemistry 2024; 30:e202402125. [PMID: 39037782 DOI: 10.1002/chem.202402125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Carbohydrate recognition is essential for numerous biological processes and is governed by various factors within the supramolecular environment of the cell. Photoswitchable glycoconjugates have proven as valuable tools for the investigation and modulation of carbohydrate recognition as they allow to control the relative orientation of sugar ligands by light. In order to advance the possibilities of such an "optoglycomics" approach for the glycosciences, we have synthesized a biantennary glycocluster in which two glycoazobenzene antennas are conjugated to the 3- and 6-position of a scaffold glycoside. Orthogonal isomerization of the photoswitchable units was made possible by the different conjugation of the azobenzene moieties via an oxygen and a sulfur atom, respectively, and the ortho-fluorination of one of the azobenzene units. This design enabled a switching cycle comprising the EE, EZ and the ZZ isomer. This is the first example of an orthogonally photoswitchable glycocluster. The full analysis of its photochromic properties included the investigation of the isolated glycoazobenzene antennas allowing the comparison of the intra- versus the intermolecular orthogonal photoswitching. The kinetics of the thermal relaxation were analyzed in detail. A molecular dynamics study shows that indeed, the relative orientation of the glycoantennas and the distances between the terminal sugar ligands significantly vary depending on the isomeric state, as intended.
Collapse
Affiliation(s)
- Leon M Friedrich
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| | - Bernd Hartke
- Institute for Physical Chemistry, Christiana Albertina University of Kiel, Max-Eyth-Straße 2, 24118, Kiel, Germany
| | - Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| |
Collapse
|
3
|
Xu X, Gao C, Emusani R, Jia C, Xiang D. Toward Practical Single-Molecule/Atom Switches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400877. [PMID: 38810145 PMCID: PMC11304318 DOI: 10.1002/advs.202400877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/29/2024] [Indexed: 05/31/2024]
Abstract
Electronic switches have been considered to be one of the most important components of contemporary electronic circuits for processing and storing digital information. Fabricating functional devices with building blocks of atomic/molecular switches can greatly promote the minimization of the devices and meet the requirement of high integration. This review highlights key developments in the fabrication and application of molecular switching devices. This overview offers valuable insights into the switching mechanisms under various stimuli, emphasizing structural and energy state changes in the core molecules. Beyond the molecular switches, typical individual metal atomic switches are further introduced. A critical discussion of the main challenges for realizing and developing practical molecular/atomic switches is provided. These analyses and summaries will contribute to a comprehensive understanding of the switch mechanisms, providing guidance for the rational design of functional nanoswitch devices toward practical applications.
Collapse
Affiliation(s)
- Xiaona Xu
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Chunyan Gao
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Ramya Emusani
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Chuancheng Jia
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Dong Xiang
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| |
Collapse
|
4
|
Sun X, Liu R, Kandapal S, Xu B. Development and mechanisms of photo-induced molecule junction device. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1535-1560. [PMID: 39678175 PMCID: PMC11636484 DOI: 10.1515/nanoph-2023-0921] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 12/17/2024]
Abstract
The utilization of single molecule electronic devices represents a significant avenue toward advancing next-generation circuits. Recent investigations have notably augmented our understanding of the optoelectronic characteristics exhibited by diverse single molecule materials. This comprehensive review underscores the latest progressions in probing photo-induced electron transport behaviors within molecular junctions. Encompassing both single molecule and self-assembled monolayer configurations, this review primarily concentrates on unraveling the fundamental mechanisms and guiding principles underlying photo-switchable devices within single molecule junctions. Furthermore, it presents an outlook on the obstacles faced and future prospects within this dynamically evolving domain.
Collapse
Affiliation(s)
- Xin Sun
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA30602, USA
| | - Ran Liu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA30602, USA
| | - Sneha Kandapal
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA30602, USA
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA30602, USA
| |
Collapse
|
5
|
Gupta D, Gaur AK, Kaur R, Ashish, Kaur N, Venkataramani S. Photoswitchable Azoheteroarene-Based Chelating Ligands: Light Modulation of Properties, Aqueous Solubility and Catalysis. Chemistry 2023; 29:e202301906. [PMID: 37477625 DOI: 10.1002/chem.202301906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/22/2023]
Abstract
We report the design and synthesis of eight photoswitchable phenylazopyridine- and phenylazopyrazole-based molecular systems as chelation-type light-controllable ligands. Besides the studies on fundamental photoisomerization behaviour, the ligands were also screened for light-tuneable properties such as photochromism, phase transition, and solubility, especially in the aqueous medium. This investigation demonstrates how the modulation of aqueous solubility can be achieved through photoisomerization and can further be utilized towards controlling the amount of catalytically active Cu(I) species in the aqueous conditions. Through this approach, light control over the catalytic activity was achieved for Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reactions, along with a partial recovery of the catalytically active species.
Collapse
Affiliation(s)
- Debapriya Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Knowledge City, Manauli, 140 306, India
| | - Ankit Kumar Gaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Knowledge City, Manauli, 140 306, India
| | - Ramanpreet Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Knowledge City, Manauli, 140 306, India
| | - Ashish
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Knowledge City, Manauli, 140 306, India
| | - Navneet Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Knowledge City, Manauli, 140 306, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Knowledge City, Manauli, 140 306, India
| |
Collapse
|
6
|
Sahare S, Ghoderao P, Chan Y, Lee SL. Surface supramolecular assemblies tailored by chemical/physical and synergistic stimuli: a scanning tunneling microscopy study. NANOSCALE 2023; 15:1981-2002. [PMID: 36515142 DOI: 10.1039/d2nr05264d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Supramolecular self-assemblies formed by various non-covalent interactions can produce diverse functional networks on solid surfaces. These networks have recently attracted much interest from both fundamental and application points of view. Unlike covalent organic frameworks (COFs), the properties of the assemblies differ from each other depending on the constituent motifs. These various motifs may find diverse applications such as in crystal engineering, surface modification, and molecular electronics. Significantly, these interactions between/among the molecular tectonics are relatively weak and reversible, which makes them responsive to external stimuli. Moreover, for a liquid-solid-interface environment, the dynamic processes are amenable to in situ observation using scanning tunneling microscopy (STM). In the literature, most review articles focus on supramolecular self-assembly interactions. This review summarizes the recent literature in which stimulation sources, including chemical, physical, and their combined stimuli, cooperatively tailor supramolecular assemblies on surfaces. The appropriate design and synthesis of functional molecules that can be integrated on different surfaces permits the use of nanostructured materials and devices for bottom-up nanotechnology. Finally, we discuss synergic effect on materials science.
Collapse
Affiliation(s)
- Sanjay Sahare
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
- Faculty of Physics, Adam Mickiewicz University, Poznań, 61-614, Poland
| | - Prachi Ghoderao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Yue Chan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Shern-Long Lee
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
7
|
Zhou Y, Maisonneuve S, Maurel F, Xie J, Métivier R. Competitive Photoisomerization and Energy Transfer Processes in Fluorescent Multichromophoric Systems. Chemistry 2022; 28:e202202071. [PMID: 36065043 PMCID: PMC10092411 DOI: 10.1002/chem.202202071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Indexed: 12/13/2022]
Abstract
Multichromophoric systems showing both fluorescence and photoisomerization are fascinating, with complex interchromophoric interactions. The experimental and theoretical study of a series of compounds, bearing a variable number of 4-dicyanomethylene-2-tert-butyl-6-(p-(N-(2-azidoethyl)-N-methyl)aminostyryl)-4H-pyran (DCM) units are reported. The photophysical properties of multi-DCM derivatives, namely 2DCM and 3DCM, were compared to the single model azido-functionalized DCM, in the E and Z isomers. The (EE)-2DCM and (EEE)-3DCM were synthesized via the click reaction. Steady-state spectroscopy and photokinetics experiments under UV or visible irradiation indicated the presence of intramolecular energy transfer processes among the DCM units. Homo- and hetero-energy transfer processes between adjacent chromophores were confirmed by fluorescence anisotropy and decays. Molecular dynamics simulations for 2DCM were carried out and analyzed using a Markov state model, providing geometrical parameters (orientation and distance between chromophores) and energy transfer efficiency. This work contributes to a better understanding and rationalization of multiple energy transfer processes occuring within multichromophoric systems.
Collapse
Affiliation(s)
- Yang Zhou
- ENS Paris-Saclay, Université Paris-Saclay CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Stéphane Maisonneuve
- ENS Paris-Saclay, Université Paris-Saclay CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | | | - Juan Xie
- ENS Paris-Saclay, Université Paris-Saclay CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Rémi Métivier
- ENS Paris-Saclay, Université Paris-Saclay CNRS, PPSM, 91190, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Erekath S, Chordiya K, Vidhya KV, Kahaly MU, Kalpathy SK. Self-aggregation, H-bonding, and photoresponse in film and solution states of azobenzene containing polyurea. Phys Chem Chem Phys 2022; 24:23447-23459. [PMID: 36128935 DOI: 10.1039/d2cp01200f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We critically understand the hydrogen bonding interactions and electronic transitions occurring in a thin film as well as in solution of a photo-responsive polymer, azo-polyurea (azo-PU). We synthesize azo-PU by covalent attachment of the azobenzene chromophore to the main chain of polyurea. Azo-PU shows reversible photoisomerization between trans and cis states upon light exposure, the occurrence of which is typically analysed using the π-π* and n-π* electronic transition peaks in the UV-visible absorption spectrum. We find that the π-π* and n-π* bands undergo a redshift and blueshift respectively on dissolving azo-PU in DMF solvent, resulting in a single overlapped peak in the spectrum. However, upon UV irradiation, these bands split into two independent transitions that are characteristic of azo-PU solid films. These observations are explained based on the changes in polymer-polymer and polymer-solvent interactions through hydrogen bonding and self-aggregation tendency. The experimental findings are corroborated using DFT simulations which provide useful insights into electronic orbital transitions, electron distribution, and hydrogen bonding interaction through IR vibrational modes.
Collapse
Affiliation(s)
- Swathi Erekath
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai-600036, India.
| | - Kalyani Chordiya
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, H-6728, Hungary. .,Institute of Physics, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary
| | - K V Vidhya
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai-600036, India.
| | - Mousumi Upadhyay Kahaly
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, H-6728, Hungary. .,Institute of Physics, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary
| | - Sreeram K Kalpathy
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai-600036, India.
| |
Collapse
|
9
|
Kumar P, Gupta D, Grewal S, Srivastava A, Kumar Gaur A, Venkataramani S. Multiple Azoarenes Based Systems - Photoswitching, Supramolecular Chemistry and Application Prospects. CHEM REC 2022; 22:e202200074. [PMID: 35860915 DOI: 10.1002/tcr.202200074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/16/2022] [Indexed: 11/05/2022]
Abstract
In the recent decades, the investigations on photoresponsive molecular systems with multiple azoarenes are quite popular in diverse perspectives ranging from fundamental understanding of multiple photoswitches, supramolecular chemistry, and various application prospects. In fact, several insightful and conceptual designs of such systems were investigated with architectural distinctions. In particular, the demonstration of applications such as data storage with the help of multistate or orthogonal photoswitches, light modulation of catalysis via cooperative switching, sensors using supramolecular host-guest interactions, and materials such as liquid crystals, grating, actuators, etc. are some of the milestones in this area. Herein, we cover the recent advancements in the research areas of multiazoarenes containing systems that have been classified into Type-1 {linear, non-linear, and core-based (A)}, Type-2 {tripodal C3 -symmetric (C3)} and Type-3 {macrocyclic (M)} structural motifs.
Collapse
Affiliation(s)
- Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Debapriya Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Surbhi Grewal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Anjali Srivastava
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Ankit Kumar Gaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| |
Collapse
|
10
|
Hnid I, Guan L, Chatir E, Cobo S, Lafolet F, Maurel F, Lacroix JC, Sun X. Visualization and Comprehension of Electronic and Topographic Contrasts on Cooperatively Switched Diarylethene-Bridged Ditopic Ligand. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1318. [PMID: 35458026 PMCID: PMC9029802 DOI: 10.3390/nano12081318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/22/2022]
Abstract
Diarylethene is a prototypical molecular switch that can be reversibly photoisomerized between its open and closed forms. Ligands bpy-DAE-bpy, consisting of a phenyl-diarylethene-phenyl (DAE) central core and bipyridine (bpy) terminal substituents, are able to self-organize. They are investigated by scanning tunneling microscopy at the solid-liquid interface. Upon light irradiation, cooperative photochromic switching of the ligands is recognized down to the submolecular level. The closed isomers show different electron density of states (DOS) contrasts, attributed to the HOMO or LUMO molecular orbitals observed. More importantly, the LUMO images show remarkable differences between the open and closed isomers, attributed to combined topographic and electronic contrasts mainly on the DAE moieties. The electronic contrasts from multiple HOMO or LUMO distributions, combined with topographic distortion of the open or closed DAE, are interpreted by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Imen Hnid
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| | - Lihao Guan
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| | - Elarbi Chatir
- Department of Chemistry, Université Grenoble Alpes, DCM-UMR 5250, F-38000 Grenoble, France; (E.C.); (S.C.)
| | - Saioa Cobo
- Department of Chemistry, Université Grenoble Alpes, DCM-UMR 5250, F-38000 Grenoble, France; (E.C.); (S.C.)
| | - Frédéric Lafolet
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| | - François Maurel
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| | - Jean-Christophe Lacroix
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| | - Xiaonan Sun
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| |
Collapse
|
11
|
Grewal S, Kumar P, Roy S, Bala I, Sah C, Kumar Pal S, Venkataramani S. Deciphering Internal and External π-Conjugation in C 3 -Symmetric Multiple Azobenzene Connected Systems in Self-Assembly. Chemistry 2022; 28:e202104602. [PMID: 35166400 DOI: 10.1002/chem.202104602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 12/28/2022]
Abstract
Two tripodal C3 -symmetric photoswitchable molecular systems T1 and T2 are reported that have extended conjugation at external and internal positions using an acryl group. The influence of the extended π-bonds in their absorption properties, thermal relaxation of the photoisomers and their propensities in forming supramolecular self-assemblies have been explored through spectroscopy, and microscopic studies. In particular, the investigations on the self-assembly have been carried out using scanning electron microscopy (SEM), transmission electron microscopy (TEM), polarized optical microscopy (POM), X-ray diffraction studies (XRD) and atomic force microscopy (AFM). Remarkably, the position of the acryl group influences the behaviour of the two target molecules in supramolecular assembly, and also in the formation of photoresponsive organic hydrogels or microcrystals.
Collapse
Affiliation(s)
- Surbhi Grewal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, 140306, India
| | - Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, 140306, India
| | - Saonli Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, 140306, India
| | - Indu Bala
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, 140306, India
| | - Chitranjan Sah
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, 140306, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, 140306, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, 140306, India
| |
Collapse
|
12
|
Zhang S, Chen C, Li J, Ma C, Li X, Ma W, Zhang M, Cheng F, Deng K, Zeng Q. The self-assembly and pyridine regulation of a hydrogen-bonded dimeric building block formed by a low-symmetric aromatic carboxylic acid. NANOSCALE 2022; 14:2419-2426. [PMID: 35098290 DOI: 10.1039/d1nr07840b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The supramolecular self-assembly behavior of a low-symmetric aromatic carboxylic acid molecule (H5BHB) and its co-assembly behavior with a series of pyridine molecules (BPD, BPDYB and TPDYB) were studied at the heptanoic acid/HOPG liquid-solid interface. Scanning tunneling microscopy (STM) observations revealed that H5BHB molecules tend to form dimeric building blocks which then assemble into a close-packed structure. BPD, BPDYB and TPDYB pyridine molecules were all able to form a stable two-component co-assembled structure with the H5BHB molecule, and in these co-assembled structures, the H5BHB molecule still takes the form of a dimer. It was found that the pyridine molecules were able to regulate the self-assembly structure of the H5BHB molecule, and the molecular arrangement of the co-assembly structures varies with the shape of the pyridine molecules. Based on the analysis of the STM results and density functional theory (DFT) calculations, the formation mechanism of the assembled structures was revealed.
Collapse
Affiliation(s)
- Siqi Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Chen Chen
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Jianqiao Li
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Chunyu Ma
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Xiaokang Li
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Min Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Ke Deng
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Qingdao Zeng
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
- Center of Materials Science and Optoelectonics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Koch M, Saphiannikova M, Guskova O. Columnar Aggregates of Azobenzene Stars: Exploring Intermolecular Interactions, Structure, and Stability in Atomistic Simulations. Molecules 2021; 26:7598. [PMID: 34946680 PMCID: PMC8703797 DOI: 10.3390/molecules26247598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
We present a simulation study of supramolecular aggregates formed by three-arm azobenzene (Azo) stars with a benzene-1,3,5-tricarboxamide (BTA) core in water. Previous experimental works by other research groups demonstrate that such Azo stars assemble into needle-like structures with light-responsive properties. Disregarding the response to light, we intend to characterize the equilibrium state of this system on the molecular scale. In particular, we aim to develop a thorough understanding of the binding mechanism between the molecules and analyze the structural properties of columnar stacks of Azo stars. Our study employs fully atomistic molecular dynamics (MD) simulations to model pre-assembled aggregates with various sizes and arrangements in water. In our detailed approach, we decompose the binding energies of the aggregates into the contributions due to the different types of non-covalent interactions and the contributions of the functional groups in the Azo stars. Initially, we investigate the origin and strength of the non-covalent interactions within a stacked dimer. Based on these findings, three arrangements of longer columnar stacks are prepared and equilibrated. We confirm that the binding energies of the stacks are mainly composed of π-π interactions between the conjugated parts of the molecules and hydrogen bonds formed between the stacked BTA cores. Our study quantifies the strength of these interactions and shows that the π-π interactions, especially between the Azo moieties, dominate the binding energies. We clarify that hydrogen bonds, which are predominant in BTA stacks, have only secondary energetic contributions in stacks of Azo stars but remain necessary stabilizers. Both types of interactions, π-π stacking and H-bonds, are required to maintain the columnar arrangement of the aggregates.
Collapse
Affiliation(s)
- Markus Koch
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany;
| | - Marina Saphiannikova
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany;
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062 Dresden, Germany
| | - Olga Guskova
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany;
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
14
|
Fang D, Zhang ZY, Shangguan Z, He Y, Yu C, Li T. (Hetero)arylazo-1,2,3-triazoles: "Clicked" Photoswitches for Versatile Functionalization and Electronic Decoupling. J Am Chem Soc 2021; 143:14502-14510. [PMID: 34476949 DOI: 10.1021/jacs.1c08704] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of light-responsive chemical systems often relies on the rational design and suitable incorporation of molecular photoswitches such as azobenzenes. Linking a photoswitch core with another π-conjugated molecular entity may give rise to intramolecular electronic coupling, which can dramatically impair the photoswitch function. Decoupling strategies have been developed based on additionally inserting a linker that can disrupt the through-bond electronic communication. Here we show that 1,2,3-triazole-a commonly used decoupling spacer-can be directly merged into the azoswitch core to construct a class of "self-decoupling" azoswitches called (hetero)arylazo-1,2,3-triazoles. Such azotriazole photoswitches are easily accessed and modularly functionalized by click chemistry. Their photoswitch property can be optimized by rational design of the substituent groups or heteroaryl rings, allowing (near-)quantitative E⇆Z photoisomerization yields and tunable Z-isomer thermal half-lives from days to years. Combined experimental and theoretical results demonstrate that the electronic structure of the photoswitch core is not substantially affected by various substituents attached to the 1,2,3-triazole unit, benefiting from its cross-conjugated nature. The combination of clickable synthesis, tunable photoswitch property, and self-decoupling ability makes (hetero)arylazo-1,2,3-triazoles intriguing molecular tools in developing photoresponsive systems with desired performance.
Collapse
Affiliation(s)
- Dong Fang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhichun Shangguan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yixin He
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Diez Cabanes V, Van Dyck C, Osella S, Cornil D, Cornil J. Challenges for Incorporating Optical Switchability in Organic-Based Electronic Devices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27737-27748. [PMID: 34105343 DOI: 10.1021/acsami.1c05489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transistors operate by controlling the current flowing from a source to a drain electrode via a third electrode (gate), thus giving access to a binary treatment (ON/OFF or 0/1) of the signal currently exploited in microelectronics. Introducing a second independent lever to modulate the current would allow for more complex logic functions amenable to a single electronic component and hence to new opportunities for advanced electrical signal processing. One avenue is to add this second dimension with light by incorporating photochromic molecules in current organic-based electronic devices. In this Spotlight, we describe different concepts that have been implemented in organic thin films and in molecular junctions as well as some pitfalls that have been highlighted thanks to theoretical modeling.
Collapse
Affiliation(s)
- Valentin Diez Cabanes
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine & CNRS, 54000 Nancy, France
| | - Colin Van Dyck
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
| | - David Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| |
Collapse
|
16
|
Guo Q, Liu J, Yang H, Lei Z. Synthesis of Photo, Oxidation, Reduction Triple‐Stimuli‐Responsive Interface‐Cross‐Linked Polymer Micelles as Nanocarriers for Controlled Release. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qiong Guo
- Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Jiangtao Liu
- Shaanxi University of Chinese Medicine Xianyang 712046 P. R. China
| | - Hong Yang
- Shaanxi Normal University Xi'an 710062 P. R. China
| | - Zhongli Lei
- Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| |
Collapse
|
17
|
Gupta D, Gaur AK, Kumar P, Kumar H, Mahadevan A, Devi S, Roy S, Venkataramani S. Tuning of Bistability, Thermal Stability of the Metastable States, and Application Prospects in the C 3 -Symmetric Designs of Multiple Azo(hetero)arenes Systems. Chemistry 2021; 27:3463-3472. [PMID: 33107995 DOI: 10.1002/chem.202004620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Light-responsive molecular systems with multiple photoswitches in C3 -symmetric designs have enormous application potential. The design part of such molecular systems is critical due to its influence in several properties associated with the photoswitches. In order to tune, and in the evaluation of the design-property relationship, we synthesized 18 tripodal systems with variations in the core, linkers, connectivity, and azo(hetero)arene photoswitches. Through extensive spectroscopic and computational studies, we envisaged the factors controlling near-quantitative photoisomerization in both the directions (bistability) and the thermal stability of the metastable states. Furthermore, we also evaluated the impact of designs in obtaining reversible photo-responsive sol-gel phase transitions, solvatochromism, photo- and thermochromism.
Collapse
Affiliation(s)
- Debapriya Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Ankit Kumar Gaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Himanshu Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Anjali Mahadevan
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Sudha Devi
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Saonli Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| |
Collapse
|
18
|
Zhao G, Liu W, Yuan F, Liu J. Three Mn–viologen complexes containing 1-carboxyethyl-4,4′-bipyridinium: crystal structures, photochromism and theoretical calculations. NEW J CHEM 2021. [DOI: 10.1039/d0nj06279k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Three Mn–viologen complexes containing CEbpy were prepared and displayed excellent photochromic properties by intramolecular or intermolecular electron transfer.
Collapse
Affiliation(s)
- Guozheng Zhao
- Key Laboratory of Magnetic Molecules
- Magnetic Information Materials Ministry of Education
- The School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
| | - Wenya Liu
- Key Laboratory of Magnetic Molecules
- Magnetic Information Materials Ministry of Education
- The School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
| | - Fang Yuan
- Key Laboratory of Magnetic Molecules
- Magnetic Information Materials Ministry of Education
- The School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
| | - Jinjian Liu
- Key Laboratory of Magnetic Molecules
- Magnetic Information Materials Ministry of Education
- The School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
| |
Collapse
|
19
|
Chae JA, Jeong S, Kim HJ, Tojo T, Oh Y, Chi WS, Yoon H, Kim H. Fibrous mesoporous polymer monoliths: macromolecular design and enhanced photocatalytic degradation of aromatic dyes. Polym Chem 2021. [DOI: 10.1039/d1py00049g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A bottom-up design provides polymer monoliths comprising two monomers that form mesoporous, compressible, random fiber networks, as in marine sponges.
Collapse
Affiliation(s)
- Ji Ae Chae
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute
- Chonnam National University
- Gwangju 61186
- Korea
| | - Songah Jeong
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute
- Chonnam National University
- Gwangju 61186
- Korea
| | - Hea Ji Kim
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute
- Chonnam National University
- Gwangju 61186
- Korea
| | - Tomohiro Tojo
- Department of Electrical and Electronic Engineering
- Faculty of Science and Technology
- Shizuoka Institute of Science and Technology
- Fukuroi
- Japan
| | - Yuree Oh
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute
- Chonnam National University
- Gwangju 61186
- Korea
| | - Won Seok Chi
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute
- Chonnam National University
- Gwangju 61186
- Korea
| | - Hyeonseok Yoon
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute
- Chonnam National University
- Gwangju 61186
- Korea
| | - Hyungwoo Kim
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute
- Chonnam National University
- Gwangju 61186
- Korea
| |
Collapse
|
20
|
Berrocal J, Heideman GH, de Waal BFM, Meijer EW, Feringa BL. Combinatorial Selection Among Geometrical Isomers of Discrete Long-Carbon-Chain Naphthalenediimides Induces Local Order at the Liquid/Solid Interface. ACS NANO 2020; 14:13865-13875. [PMID: 32914965 PMCID: PMC7596778 DOI: 10.1021/acsnano.0c06274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
We report two families of naphthalenediimides (NDIs) symmetrically functionalized with discrete carbon chains comprising up to 55 carbon atoms (Cn-NDI-Cn, n = 39, 44, 50, and 55) and their self-assembly at the 1-phenyloctane/highly oriented pyrolytic graphite interface (1-PO/HOPG interface). The compounds differ by the presence or absence of two or three internal double bonds in the carbon chains (unsaturated and saturated Cn-NDI-Cn, respectively). Combinatorial distributions of geometrical isomers displaying either the E- or Z-configuration at each double bond are obtained for the unsaturated compounds. Analysis of the self-assembled monolayers of equally long unsaturated and saturated Cn-NDI-Cn by scanning tunneling microscopy (STM) reveal that all Cn-NDI-Cn tend to form lamellar systems featuring alternating areas of aromatic cores and carbon chains. Extended chain lengths are found to significantly increase disorder in the self-assembled monolayers due to misalignments and enhanced strength of interchain interactions. This phenomenon is antagonized by the local order-inducing effect of the internal double bonds: unsaturated Cn-NDI-Cn give qualitatively more ordered self-assembled monolayers compared to their saturated counterparts. The use of combinatorial distributions of unsaturated Cn-NDI-Cn geometrical isomers does not represent a limitation to achieve local order in the self-assembled monolayers. The self-assembly process operates a combinatorial search and selects the geometrical isomer(s) affording the most thermodynamically stable pattern, highlighting the adaptive character of the system. Finally, the antagonistic interplay between the extended carbon chain lengths and the presence of internal double bonds brings to the discovery of the lamellar "phase C" morphology for unsaturated Cn-NDI-Cn with n ≥ 50.
Collapse
Affiliation(s)
- José
Augusto Berrocal
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The
Netherlands
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, The Netherlands
| | - G. Henrieke Heideman
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The
Netherlands
| | - Bas F. M. de Waal
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, The Netherlands
| | - E. W. Meijer
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, The Netherlands
| | - Ben L. Feringa
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The
Netherlands
| |
Collapse
|
21
|
Muñoz J, Campos-Lendinez Á, Crivillers N, Mas-Torrent M. Selective Discrimination of Toxic Polycyclic Aromatic Hydrocarbons in Water by Targeting π-Stacking Interactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26688-26693. [PMID: 32403928 DOI: 10.1021/acsami.0c05557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of highly sensitive and selective devices for rapid screening of polycyclic aromatic hydrocarbons (PAHs) in water is nowadays a crucial challenge owing to their alarming abundance in the environment and adverse health effects. Herein, inspired by the unique π-stacking interactions taking place between identical small aromatic molecules, a novel, generic, and straightforward methodology to electrochemically determine and discriminate such pollutants is described. Such a method is focused on covalently anchoring different PAHs on an indium tin oxide electrode surface by means of self-assembled monolayers. The surface-anchored PAHs act as recognition units to selectivity interact with a specific PAH target of the same nature. By tailoring the recognition platform with four different model PAH molecules (naphthalene, anthracene, pyrene, and fluoranthene) and carrying out an electronic tongue approximation, the selective discrimination and quantification of the selected PAHs in aqueous samples at ultralow concentrations were achieved impedimetrically, which were also validated using a certified reference PAH mixture.
Collapse
Affiliation(s)
- Jose Muñoz
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and CIBER-BBN, Campus UAB, 08193 Bellaterra, Spain
| | - Ángel Campos-Lendinez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and CIBER-BBN, Campus UAB, 08193 Bellaterra, Spain
| | - Núria Crivillers
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and CIBER-BBN, Campus UAB, 08193 Bellaterra, Spain
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) and CIBER-BBN, Campus UAB, 08193 Bellaterra, Spain
| |
Collapse
|
22
|
Fuentes E, Gerth M, Berrocal JA, Matera C, Gorostiza P, Voets IK, Pujals S, Albertazzi L. An Azobenzene-Based Single-Component Supramolecular Polymer Responsive to Multiple Stimuli in Water. J Am Chem Soc 2020; 142:10069-10078. [PMID: 32395995 PMCID: PMC7497294 DOI: 10.1021/jacs.0c02067] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
![]()
One
of the most appealing features of supramolecular assemblies
is their ability to respond to external stimuli due to their noncovalent
nature. This provides the opportunity to gain control over their size,
morphology, and chemical properties and is key toward some of their
applications. However, the design of supramolecular systems able to
respond to multiple stimuli in a controlled fashion is still challenging.
Here we report the synthesis and characterization of a novel discotic
molecule, which self-assembles in water into a single-component supramolecular
polymer that responds to multiple independent stimuli. The building
block of such an assembly is a C3-symmetric
monomer, consisting of a benzene-1,3,5-tricarboxamide core conjugated
to a series of natural and non-natural functional amino acids. This
design allows the use of rapid and efficient solid-phase synthesis
methods and the modular implementation of different functionalities.
The discotic monomer incorporates a hydrophobic azobenzene moiety,
an octaethylene glycol chain, and a C-terminal lysine. Each of these
blocks was chosen for two reasons: to drive the self-assembly in water
by a combination of H-bonding and hydrophobicity and to impart specific
responsiveness. With a combination of microscopy and spectroscopy
techniques, we demonstrate self-assembly in water and responsiveness
to temperature, light, pH, and ionic strength. This work shows the
potential to integrate independent mechanisms for controlling self-assembly
in a single-component supramolecular polymer by the rational monomer
design and paves the way toward the use of multiresponsive systems
in water.
Collapse
Affiliation(s)
- Edgar Fuentes
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08036, Spain
| | - Marieke Gerth
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry & Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology (TUE), Eindhoven 5612 AZ, The Netherlands.,Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TUE), Eindhoven 5612 AZ, The Netherlands
| | - José Augusto Berrocal
- Adolphe Merkle Institute, Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08036, Spain.,Network Biomedical Research Centre in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08036, Spain.,Network Biomedical Research Centre in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08011, Spain
| | - Ilja K Voets
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TUE), Eindhoven 5612 AZ, The Netherlands
| | - Silvia Pujals
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08036, Spain.,Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona, Barcelona 08011, Spain
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08036, Spain.,Department of Biomedical Engineering, Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology (TUE), Eindhoven 5612 AZ, The Netherlands
| |
Collapse
|
23
|
Tecilla P, Bonifazi D. Configurational Selection in Azobenzene-Based Supramolecular Systems Through Dual-Stimuli Processes. ChemistryOpen 2020; 9:529-544. [PMID: 32373423 PMCID: PMC7197086 DOI: 10.1002/open.202000045] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/30/2020] [Indexed: 11/21/2022] Open
Abstract
Azobenzene is one of the most studied light-controlled molecular switches and it has been incorporated in a large variety of supramolecular systems to control their structural and functional properties. Given the peculiar isomeric distribution at the photoexcited state (PSS), azobenzene derivatives have been used as photoactive framework to build metastable supramolecular systems that are out of the thermodynamic equilibrium. This could be achieved exploiting the peculiar E/Z photoisomerization process that can lead to isomeric ratios that are unreachable in thermal equilibrium conditions. The challenge in the field is to find molecular architectures that, under given external circumstances, lead to a given isomeric ratio in a reversible and predictable manner, ensuring an ultimate control of the configurational distribution and system composition. By reviewing early and recent works in the field, this review aims at describing photoswitchable systems that, containing an azobenzene dye, display a controlled configurational equilibrium by means of a molecular recognition event. Specifically, examples include programmed photoactive molecular architectures binding cations, anions and H-bonded neutral guests. In these systems the non-covalent molecular recognition adds onto the thermal and light stimuli, equipping the supramolecular architecture with an additional external trigger to select the desired configuration composition.
Collapse
Affiliation(s)
- Paolo Tecilla
- Dipartimento di Matematica e GeoscienzeUniversità degli Studi di TriesteVia Weiss 2 134127TriesteItaly
| | - Davide Bonifazi
- School of ChemistryCardiff University Main BuildingPark PlaceCF10 3ATCardiff, WalesUK
| |
Collapse
|
24
|
Peng X, Zhao F, Peng Y, Li J, Zeng Q. Dynamic surface-assisted assembly behaviours mediated by external stimuli. SOFT MATTER 2020; 16:54-63. [PMID: 31712788 DOI: 10.1039/c9sm01847f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supramolecular self-assembly behaviors on solid substrates have been widely investigated in the last few decades. Owing to the complexity of interfacial assembly systems, the precise regulation of supramolecular nanostructures is still challenging and waits to be solved. The supramolecular nanostructures are governed by non-covalent bonds, so they can be disrupted and influenced by an external environment. In this review, the dynamic supramolecular nanostructures that are mediated by external stimuli containing guest species, light irradiation, temperature and electric field are discussed in detail. The research studies mentioned in this article are all accomplished by STM, and the effects of these external stimuli on the assembled nanostructures have been elucidated exhaustively here.
Collapse
Affiliation(s)
- Xuan Peng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China. and Center of Materials Science and Optoelectonics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengying Zhao
- Jiangxi College of Applied Technology, Ganzhou 341000, China. and Engineering Research Center of Nano-Geo Materials of Ministry of Education, P. R. China University of Geosciences, Wuhan 430074, China
| | - Yang Peng
- Jiangxi College of Applied Technology, Ganzhou 341000, China. and Engineering Research Center of Nano-Geo Materials of Ministry of Education, P. R. China University of Geosciences, Wuhan 430074, China
| | - Jing Li
- Jiangxi College of Applied Technology, Ganzhou 341000, China. and Engineering Research Center of Nano-Geo Materials of Ministry of Education, P. R. China University of Geosciences, Wuhan 430074, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China. and Center of Materials Science and Optoelectonics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Galanti A, Santoro J, Mannancherry R, Duez Q, Diez-Cabanes V, Valášek M, De Winter J, Cornil J, Gerbaux P, Mayor M, Samorì P. A New Class of Rigid Multi(azobenzene) Switches Featuring Electronic Decoupling: Unravelling the Isomerization in Individual Photochromes. J Am Chem Soc 2019; 141:9273-9283. [DOI: 10.1021/jacs.9b02544] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Agostino Galanti
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Jasmin Santoro
- Karlsruhe Institute of Technology KIT, Institute of Nanotechnology, P.O. Box
3640, 76021 Karlsruhe, Germany
| | - Rajesh Mannancherry
- Department of Chemistry, University of Basel, St. Johannsring 19, 4056 Basel, Switzerland
| | - Quentin Duez
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Valentin Diez-Cabanes
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Michal Valášek
- Karlsruhe Institute of Technology KIT, Institute of Nanotechnology, P.O. Box
3640, 76021 Karlsruhe, Germany
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Marcel Mayor
- Karlsruhe Institute of Technology KIT, Institute of Nanotechnology, P.O. Box
3640, 76021 Karlsruhe, Germany
- Department of Chemistry, University of Basel, St. Johannsring 19, 4056 Basel, Switzerland
- Lehn Institute of Functional Materials (LFM), School of Chemistry, Sun Yat-Sen University (SYSU), Guangzhou 510275, China
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
26
|
Zhu Q, Wang S, Chen P. Diazocine Derivatives: A Family of Azobenzenes for Photochromism with Highly Enhanced Turn-On Fluorescence. Org Lett 2019; 21:4025-4029. [DOI: 10.1021/acs.orglett.9b01215] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qian Zhu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People’s Republic of China
| | - Suning Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People’s Republic of China
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People’s Republic of China
| |
Collapse
|
27
|
Photoresponsive Supramolecular Hydrogel Co-assembled from Fmoc-Phe-OH and 4,4′-Azopyridine for Controllable Dye Release. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2223-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Liu JJ, Li J, Zhao GZ. Photochromism of supramolecular assemblies based on benzenecarboxylate donors and viologen acceptors. NEW J CHEM 2019. [DOI: 10.1039/c9nj00796b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Similar viologen acceptors, a regular change in donor moieties and photochromism provide an ideal model for elucidating D–A matching rules.
Collapse
Affiliation(s)
- Jin-jian Liu
- Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education
- The School of Chemical and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Jing Li
- Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education
- The School of Chemical and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Guo-zheng Zhao
- Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education
- The School of Chemical and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| |
Collapse
|
29
|
Liu J, Li J, Lu W. Effect of counter cations on the photochromic behaviors of three Zn–viologen complexes. NEW J CHEM 2019. [DOI: 10.1039/c9nj03022k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Similar viologen cations, regular change in acceptor moieties and photochromism provide an ideal model for elucidating D–A matching rules.
Collapse
Affiliation(s)
- Jinjian Liu
- Key Laboratory of Magnetic Molecules
- Magnetic Information Materials Ministry of Education
- The School of Chemical and Material Science
- Shanxi Normal University
- Linfen 041004
| | - Jing Li
- Key Laboratory of Magnetic Molecules
- Magnetic Information Materials Ministry of Education
- The School of Chemical and Material Science
- Shanxi Normal University
- Linfen 041004
| | - Wenbo Lu
- Key Laboratory of Magnetic Molecules
- Magnetic Information Materials Ministry of Education
- The School of Chemical and Material Science
- Shanxi Normal University
- Linfen 041004
| |
Collapse
|