1
|
Li H, Yang H, Pu X, Xu Y, Zhu K, Xue C, Huang H, Gan L, Yang H. Topological Transformation and Dimensional Reduction in Multicomponent Metal-Organic Frameworks for Gas Separations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414151. [PMID: 39663679 DOI: 10.1002/adma.202414151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/13/2024] [Indexed: 12/13/2024]
Abstract
Multicomponent MOFs have offered a wide range of opportunities to harness new properties. However, the synthesis of multicomponent MOFs remains challenging. This work demonstrates the synthesis of a family of multicomponent MOFs by topological transformation from well-established multicomponent partitioned acs (pacs) structures. Such transformation is based on the new understanding on the self-assembly process of pacs MOFs. A key to this understanding is that pacs structures, topologically regarded as the introduction of a pore-partitioning ligand into MOF-235/MIL-88 type framework, are likely to be formed in a layer-pillar-layer fashion in practical reactions. As the π-π interaction between layers and other chemical interactions during the self-assembly process are recognized, the structural transformation can be modulated from 3D pacs structures to 2D interrupted pacs structures (denoted i-pacs). It is especially noteworthy that such dimensional reduction is first observed in metal-organic frameworks and the i-pacs MOFs contain four structural modules and up to five components, which have the highest complexity among 2D MOFs. Interestingly, the i-pacs MOFs have significantly enhanced performance for CO2/N2 separation in comparison with pacs MOFs.
Collapse
Affiliation(s)
- Hui Li
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Huiyue Yang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xinya Pu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yitang Xu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Kai Zhu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chaozhuang Xue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
| | - Lei Gan
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Huajun Yang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
2
|
Han Z, Yang Y, Rushlow J, Liang RR, Zhou HC. Sequential Linker Installation in Metal-Organic Frameworks. Acc Chem Res 2024; 57:3217-3226. [PMID: 39414398 PMCID: PMC11542145 DOI: 10.1021/acs.accounts.4c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
ConspectusMetal-organic frameworks (MOFs) represent a sophisticated blend of inorganic and organic components, promoting the development of coordination chemistry greatly and offering a versatile platform for tailored functionalities. By combining various metal nodes, organic linkers, and functional guests, MOFs provide numerous pathways for their design, synthesis, and customization. Among these, sequential linker installation (SLI) stands out as a novel and crucial strategy, enabling the precise integration of desired properties and functions at the atomic scale. SLI enhances structural diversity and stability while facilitating the meticulous construction of robust frameworks by leveraging open metal sites and functional organic linkers at targeted locations. Compared to the direct synthesis of MOFs, postsynthetic modification methods allow for precise regulation of their structures and corresponding properties. While unlike conventional postsynthetic modification methods, SLI requires the careful selection of linkers and framework design to ensure precise positioning for installation, which gives rise to the well-designed and ordered positions for the installed linkers, confirmed directly by X-ray diffraction technology.Recent advancements in MOF synthesis have led to the creation of increasingly tailored flexible matrix structures, particularly due to the diverse connection modes of multicore metal clusters, especially for the Zr6 cluster. The spatial hindrance of certain ligands has resulted in the formation of unsaturated metal clusters and various missing linker pockets. Examples of these advanced MOFs include PCN-606, PCN-608, PCN-609, PCN-700, and PCN-808, which feature specific open metal sites and certain framework flexibility conducive to SLI. Strategically positioned open metal sites within these frameworks serve as predetermined anchor points for desired functional molecules, while the frameworks' flexibility can accommodate molecules of varying sizes to a certain extent, enlarging the scopes of application greatly. This precise positioning of functional groups enables the creation of tailored sites for enhanced applications, such as adsorption, catalysis, and recognition.In this Account, we delve into the intricate process of designing and synthesizing MOFs with appropriate missing-linker pockets for the aforementioned applications. We discuss the meticulous selection of functional linkers and the methods used to insert them into the corresponding missing-linker pockets within the MOFs. Additionally, we explore the diverse properties and functionalities of the resulting MOFs, focusing on their adsorptive, catalytic, and recognition performance. Furthermore, we provide insights into the future trajectory of SLI methods, complemented by our recent works. This Account not only reviews the evolution of the SLI method but also underscores its practical applications across various functional domains, paving a rational pathway for the future development of advanced multifunctional MOFs through this method.
Collapse
Affiliation(s)
- Zongsu Han
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Yihao Yang
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Joshua Rushlow
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Rong-Ran Liang
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
3
|
Nour A, Iqbal W, Navarro-Alapont J, Ferrando-Soria J, Magarò P, Elliani R, Tagarelli A, Maletta C, Mastropietro TF, Pardo E, Armentano D. Efficient Nickel and Cobalt Recovery by Metal-Organic Framework-Based Mixed Matrix Membranes (MMM-MOFs). ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:12014-12028. [PMID: 39148518 PMCID: PMC11323268 DOI: 10.1021/acssuschemeng.4c03427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
Green energy transition has supposed to give a huge boost to the electric vehicle rechargeable battery market. This has generated a compelling demand for raw materials, such as cobalt and nickel, which are key common constituents in lithium-ion batteries (LIBs). However, their existing mining protocols and the concentrated localization of such ores have made cobalt and nickel mineral conundrums, and their supplies experience shortages, which threaten to slow the progress of the renewable energy transition. Aiming to contribute to the sustainable recycling of these valuable metals from LIBs and wastewater, in this work, we explore the use of four mixed matrix membranes (MMMs) embedding different metal-organic frameworks (MOFs), i.e., MIL-53(Al), MIL-53(Fe), MIL-101(Fe), and {SrIICuII 6[(S,S)-serimox]3(OH)2(H2O)}·39H2O (SrCu 6 Ser) in polyether sulfone (PES), for the recovery of cobalt(II) and nickel(II) metal cations from mixed cobalt-nickel aqueous solutions containing common interfering ions. Whereas the neat PES membrane slightly contributes to the adsorption of metal ions, showing reduced removal efficiency values of 10.2 and 9.5% for Ni(II) and Co(II), respectively, the inclusion of MOFs in the polymeric matrix substantially improves the adsorption performances. The four MOF@PES MMMs efficiently remove these metals from water, with MIL-53(Al)@PES being the one that presents better performance, with a removal efficiency up to 95% of Ni(II) and Co(II). Remarkably, SrCu 6 Ser@PES exhibits outstanding selectivity toward cobalt(II) cations compared to of nickel(II) ones, with removal efficiencies of 63.7 and 15.1% for Co(II) and Ni(II), respectively. Overall, the remarkable efficiencies, versatility, high environmental robustness, and cost-effective synthesis shown by this family of MOF@PES MMMs situate them among the best adsorbents for the extraction of this kind of contaminants.
Collapse
Affiliation(s)
- Amira Nour
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Italy
| | - Waseem Iqbal
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Italy
| | | | - Jesús Ferrando-Soria
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, Valencia 46980, Spain
| | - Pietro Magarò
- Dipartimento
di Ingegneria Meccanica, Energetica e Gestionale, Università della Calabria, Rende, Cosenza 87036, Italy
| | - Rosangela Elliani
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Italy
| | - Antonio Tagarelli
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Italy
| | - Carmine Maletta
- Dipartimento
di Ingegneria Meccanica, Energetica e Gestionale, Università della Calabria, Rende, Cosenza 87036, Italy
| | - Teresa F. Mastropietro
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Italy
| | - Emilio Pardo
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, Valencia 46980, Spain
| | - Donatella Armentano
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Italy
| |
Collapse
|
4
|
Chen Y, Xie H, Zhong Y, Sha F, Kirlikovali KO, Wang X, Zhang C, Li Z, Farha OK. Programmable Water Sorption through Linker Installation into a Zirconium Metal-Organic Framework. J Am Chem Soc 2024. [PMID: 38593469 DOI: 10.1021/jacs.3c14699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Hydrolytically stable materials exhibiting a wide range of programmable water sorption behaviors are crucial for on-demand water sorption systems. While notable advancements in employing metal-organic frameworks (MOFs) as promising water adsorbents have been made, developing a robust yet easily tailorable MOF scaffold for specific operational conditions remains a challenge. To address this demand, we employed a topology-guided linker installation strategy using NU-600, which is a zirconium-based MOF (Zr-MOF) that contains three vacant crystallographically defined coordination sites. Through a judicious selection of three N-heterocyclic auxiliary linkers of specific lengths, we installed them into designated sites, giving rise to six new MOFs bearing different combinations of linkers in predetermined positions. The resulting MOFs, denoted as NU-606 to NU-611, demonstrate enhanced structural stability against capillary force-driven channel collapse during water desorption due to the increased connectivity of the Zr6 clusters in the resulting MOFs. Furthermore, incorporating these auxiliary linkers with various hydrophilic N sites enables the systematic modulation of the pore-filling pressure from about 55% relative humidity (RH) for the parent NU-600 down to below 40% RH. This topology-driven linker installation strategy offers precise control of water sorption properties for MOFs, highlighting a facile route to design MOF adsorbents for use in water sorption applications.
Collapse
Affiliation(s)
- Yongwei Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yonghua Zhong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kent O Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiaoliang Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chenghui Zhang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Zhibo Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Xu X, Gao L, Yuan S. Stepwise construction of multi-component metal-organic frameworks. Dalton Trans 2023; 52:15233-15252. [PMID: 37555272 DOI: 10.1039/d3dt01668d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Multi-component metal-organic frameworks (MC-MOFs) are crystalline porous materials containing multiple organic ligands or mixed metals, which manifest new properties beyond the linear combination of the single component. However, the traditional one-pot synthesis method for MOFs is not always applicable for synthesizing MC-MOFs due to the competitive coordination of multiple ligands and metals. Therefore, the stepwise construction of MC-MOFs has been explored, which enables more precise control of the heterogeneity within the ordered MC-MOFs. This review provides a summary of the synthesis strategies, namely, ligand exchange, coordinative modification, covalent modification, ligand metalation, cluster metalation, and use of mixed-metal precursors, for the stepwise construction of MC-MOFs. Furthermore, we discuss the applications of MC-MOFs with ordered arrangements of multiple functionalities, focusing on gas adsorption and separation, water remediation, heterogeneous catalysis, luminescence, and chemical sensing.
Collapse
Affiliation(s)
- Xinyu Xu
- State Key Laboratory of Coordination Chemistry, School of chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Lei Gao
- State Key Laboratory of Coordination Chemistry, School of chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
6
|
Meng SS, Xu M, Guan H, Chen C, Cai P, Dong B, Tan WS, Gu YH, Tang WQ, Xie LG, Yuan S, Han Y, Kong X, Gu ZY. Anisotropic flexibility and rigidification in a TPE-based Zr-MOFs with scu topology. Nat Commun 2023; 14:5347. [PMID: 37660056 PMCID: PMC10475113 DOI: 10.1038/s41467-023-41055-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023] Open
Abstract
Tetraphenylethylene (TPE)-based ligands are appealing for constructing metal-organic frameworks (MOFs) with new functions and responsiveness. Here, we report a non-interpenetrated TPE-based scu Zr-MOF with anisotropic flexibility, that is, Zr-TCPE (H4TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene), remaining two anisotropic pockets. The framework flexibility is further anisotropically rigidified by installing linkers individually at specific pockets. By individually installing dicarboxylic acid L1 or L2 at pocket A or B, the framework flexibility along the b-axis or c-axis is rigidified, and the intermolecular or intramolecular motions of organic ligands are restricted, respectively. Synergistically, with dual linker installation, the flexibility is completely rigidified with the restriction of ligand motion, resulting in MOFs with enhanced stability and improved separation ability. Furthermore, in situ observation of the flipping of the phenyl ring and its rigidification process is made by 2H solid-state NMR. The anisotropic rigidification of flexibility in scu Zr-MOFs guides the directional control of ligand motion for designing stimuli-responsive emitting or efficient separation materials.
Collapse
Affiliation(s)
- Sha-Sha Meng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Hanxi Guan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, 324100, China
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Bo Dong
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wen-Shu Tan
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yu-Hao Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wen-Qi Tang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Lan-Gui Xie
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Electron Microscopy Center, South China University of Technology, Guangzhou, 510640, China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
8
|
Hao J, Lang F, Hao L, Yang Y, Zhang L, Zhang H, Li QW, Pang J, Bu XH. Enhancing the singlet oxygen capture and release rate of metal−organic frameworks through interpenetration tuning. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
9
|
Li J, Huang JY, Meng YX, Li L, Zhang LL, Jiang HL. Zr- and Ti-based metal-organic frameworks: synthesis, structures and catalytic applications. Chem Commun (Camb) 2023; 59:2541-2559. [PMID: 36749364 DOI: 10.1039/d2cc06948b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, Zr- and Ti-based metal-organic frameworks (MOFs) have gathered increasing interest in the field of chemistry and materials science, not only for their ordered porous structure, large surface area, and high thermal and chemical stability, but also for their various potential applications. Particularly, the unique features of Zr- and Ti-based MOFs enable them to be a highly versatile platform for catalysis. Although much effort has been devoted to developing Zr- and Ti-based MOF materials, they still suffer from difficulties in targeted synthesis, especially for Ti-based MOFs. In this Feature Article, we discuss the evolution of Zr- and Ti-based MOFs, giving a brief overview of their synthesis and structures. Furthermore, the catalytic uses of Zr- and Ti-based MOF materials in the previous 3-5 years have been highlighted. Finally, perspectives on the Zr- and Ti-based MOF materials are also proposed. This work provides in-depth insight into the advances in Zr- and Ti-based MOFs and boosts their catalytic applications.
Collapse
Affiliation(s)
- Ji Li
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China. .,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, ShaanXi, P. R. China
| | - Jin-Yi Huang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China.
| | - Yu-Xuan Meng
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China.
| | - Luyan Li
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Liang-Liang Zhang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China. .,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, ShaanXi, P. R. China.,Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, Zhejiang, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
10
|
Chen Y, Idrees KB, Mian MR, Son FA, Zhang C, Wang X, Farha OK. Reticular Design of Precise Linker Installation into a Zirconium Metal-Organic Framework to Reinforce Hydrolytic Stability. J Am Chem Soc 2023; 145:3055-3063. [PMID: 36696577 DOI: 10.1021/jacs.2c11830] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Reticular chemistry allows for the rational assembly of metal-organic frameworks (MOFs) with designed structures and desirable functionalities for advanced applications. However, it remains challenging to construct multi-component MOFs with unprecedented complexity and control through insertion of secondary or ternary linkers. Herein, we demonstrate that a Zr-based MOF, NU-600 with a (4,6)-connected she topology, has been judiciously selected to employ a linker installation strategy to precisely insert two linear linkers with different lengths into two crystallographically distinct pockets in a one-pot, de novo reaction. We reveal that the hydrolytic stability of these linker-inserted MOFs can be remarkably reinforced by increasing the Zr6 node connectivity, while maintaining comparable water uptake capacity and pore-filling pressure as the pristine NU-600. Furthermore, introducing hydrophilic -OH groups into the linear linker backbones to construct multivariate MOFs can effectively shift the pore-filling step to lower partial pressures. This methodology demonstrates a powerful strategy to reinforce the structural stability of other MOF frameworks by increasing the connectivity of metal nodes, capable of encouraging developments in fundamental sciences and practical applications.
Collapse
Affiliation(s)
- Yongwei Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, People's Republic of China
| | - Karam B Idrees
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohammad Rasel Mian
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Florencia A Son
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chenghui Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Xingjie Wang
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Wang S, Zhang Q, Wang Z, Zheng L, Zhang X, Fan Y, Fu P, Xiong X, Pan M. One and Two‐Photon Excited Fluorescence Optimization of Metal–Organic Frameworks with Symmetry‐Reduced AIEgen‐Ligand. Angew Chem Int Ed Engl 2022; 61:e202211356. [DOI: 10.1002/anie.202211356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Shi‐Cheng Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510006 China
| | - Qiang‐Sheng Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510006 China
| | - Zheng Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510006 China
- College of Chemistry and Chemical Engineering Key Laboratory of Chemical Additives for China National Light Industry Shaanxi University of Science and Technology Xi'an 710021 China
| | - Lin Zheng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510006 China
| | - Xiao‐Dong Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510006 China
| | - Ya‐Nan Fan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510006 China
| | - Peng‐Yan Fu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510006 China
| | | | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
12
|
Wang SC, Zhang QS, Wang Z, Zheng L, Zhang XD, Fan YN, Fu PY, Xiong XH, Pan M. One and Two‐Photon Excited Fluorescence Optimization of Metal−Organic Frameworks with Symmetry‐Reduced AIEgen‐Ligand. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Zheng Wang
- Sun Yat-Sen University School of Chemistry CHINA
| | - Lin Zheng
- Sun Yat-Sen University School of Chemistry CHINA
| | | | - Ya-Nan Fan
- Sun Yat-Sen University School of Chemistry CHINA
| | - Peng-Yan Fu
- Sun Yat-Sen University School of Chemistry CHINA
| | | | - Mei Pan
- Sun Yat-Sen University School of Chemistry and Chemical Engineering 135 West Xingang Road 510275 Guangzhou CHINA
| |
Collapse
|
13
|
Peng SS, Zhang GS, Shao XB, Gu C, Liu XQ, Sun LB. Generation of Strong Basicity in Metal-Organic Frameworks: How Do Coordination Solvents Matter? ACS APPLIED MATERIALS & INTERFACES 2022; 14:8058-8065. [PMID: 35107005 DOI: 10.1021/acsami.1c24299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solid strong bases with an ordered pore structure (OPS-SSBs) have attracted much attention because of their high catalytic activity and shape selectivity as heterogeneous catalysts in various reactions. Nevertheless, high temperatures are required to fabricate OPS-SSBs by using traditional methods. Herein, we report for the first time that the coordination solvents affect basicity generation in metal-organic frameworks (MOFs) greatly and that strong basicity can be formed at comparatively low temperatures. A typical MOF, MIL-53, was employed, and three different solvents, namely, water, methanol, and N,N-dimethylformamide (DMF), were coordinated, respectively, by means of solvent exchange. Thermogravimetry-mass spectrometer analysis shows that the conversion temperature of base precursor KNO3 is quite different on MIL-53 coordinated with different solvents. The conversion of KNO3 to basic sites takes place at 350, 300, and 250 °C on MIL-53 coordinated with water, methanol, and DMF, respectively. It is fascinating to observe the generation temperature of strongly basic sites at 250 °C, which is noticeably lower than that on various supports, such as mesoporous silica SBA-15 (600 °C), zeolite Y (700 °C), and metal oxide ZrO2 (730 °C). This is due to the redox interaction between coordination solvents and KNO3, leading to a significant decrease in the temperature for KNO3 conversion. Consequently, OPS-SSBs were prepared successfully with an ordered pore structure and strong basicity. The obtained OPS-SSBs show good shape selectivity in Knoevenagel condensation of aromatic aldehydes with different active methylene compounds. Moreover, these solid bases are highly active in the synthesis of dimethyl carbonate through transesterification reaction. This work might open up a new avenue for the fabrication of various functional materials at low temperatures through redox interactions.
Collapse
Affiliation(s)
- Song-Song Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Guo-Song Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiang-Bin Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Chen Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiao-Qin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
14
|
Li WL, Li TR, Du X, Zhao JP, liu F. Hexahydric Components Metal Organic Frameworks Constructed by Multiple Ligands and Mixed-Valence Ions. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00291d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we report two multi-component MOFs [CH3NH2CH3]2[FeIII2MII10(tz)11(HCO2)12(btc)5/3] (MII10 = FeII10 for 1 and MII10 = FeII2CoII8 for 2) obtained by solvothermal assembling formate, benzene-1,3,5-tricarboxylate (btc) and 1,2,4 triazole...
Collapse
|
15
|
Mixed component metal-organic frameworks: Heterogeneity and complexity at the service of application performances. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214273] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Li ZJ, Lei M, Bao H, Ju Y, Lu H, Li Y, Zhang ZH, Guo X, Qian Y, He MY, Wang JQ, Liu W, Lin J. A cationic thorium-organic framework with triple single-crystal-to-single-crystal transformation peculiarities for ultrasensitive anion recognition. Chem Sci 2021; 12:15833-15842. [PMID: 35024107 PMCID: PMC8672715 DOI: 10.1039/d1sc03709a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
Single-crystal-to-single-crystal transformation of metal-organic frameworks has been met with great interest, as it allows for the creation of new materials in a stepwise manner and direct visualization of structural transitions when subjected to external stimuli. However, it remains a peculiarity among numerous metal-organic frameworks, particularly for the ones constructed from tetravalent metal cations. Herein, we present a cationic thorium-organic framework displaying unprecedented triple single-crystal-to-single-crystal transformations in organic solvents, water, and NaIO3 solution. Notably, both the interpenetration conversion and topological change driven by the SC-SC transformation have remained elusive for thorium-organic frameworks. Moreover, the single-crystal-to-single-crystal transition in NaIO3 solution can efficiently and selectively turn the ligand-based emission off, leading to the lowest limit of detection (0.107 μg kg-1) of iodate, one of the primary species of long-lived fission product 129I in aqueous medium, among all luminescent sensors.
Collapse
Affiliation(s)
- Zi-Jian Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Min Lei
- School of Environmental and Material Engineering, Yantai University Yantai 264005 P. R. China
| | - Hongliang Bao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Yu Ju
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University Changzhou 213164 China
| | - Huangjie Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 637371 Singapore
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University Changzhou 213164 China
| | - Xiaofeng Guo
- Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University Pullman WA 99164-4630 USA
| | - Yuan Qian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University Changzhou 213164 China
| | - Jian-Qiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University Yantai 264005 P. R. China
| | - Jian Lin
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- School of Nuclear Science and Technology, Xi'an Jiaotong University No. 28, Xianning West Road Xi'an 710049 P. R. China
| |
Collapse
|
17
|
Elumalai V, Hansen JH. Synthesis of 5,7-diarylindoles via Suzuki-Miyaura coupling in water. Org Biomol Chem 2021; 19:10343-10347. [PMID: 34812462 DOI: 10.1039/d1ob02058g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of novel 5,7-diaryl and diheteroaryl indoles has been explored via efficient double Suzuki-Miyaura coupling. The method notably employs a low catalyst loading of Pd(PPh3)4 (1.5 mol%/coupling) and water as the reaction solvent to obtain 5,7-diarylated indoles without using N-protecting groups in up to 91% yield. The approach is also suitable for N-protected and 3-substituted indoles and constitutes an important green and convenient arylation strategy for the benzenoid ring of indoles. The synthesized diarylindoles are fluorescent.
Collapse
Affiliation(s)
- Vijayaragavan Elumalai
- Chemical Synthesis and Analysis Division, Department of Chemistry, UiT The Arctic University of Norway, Hansine Hansens veg 54, 9037 Tromsø, Norway.
| | - Jørn H Hansen
- Chemical Synthesis and Analysis Division, Department of Chemistry, UiT The Arctic University of Norway, Hansine Hansens veg 54, 9037 Tromsø, Norway.
| |
Collapse
|
18
|
Jin JC, Yang M, Zhang YL, Dutta A, Xie CG, Kumar A. Integration of mixed ligand into a multivariate metal-organic framework for enhanced UV-light photocatalytic degradation of Rhodamine B. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.08.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Dutta A, Pan Y, Liu JQ, Kumar A. Multicomponent isoreticular metal-organic frameworks: Principles, current status and challenges. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214074] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Lin W, Ning E, Yang L, Rao Y, Peng S, Li Q. Snapshots of Postsynthetic Modification in a Layered Metal-Organic Framework: Isometric Linker Exchange and Adaptive Linker Installation. Inorg Chem 2021; 60:11756-11763. [PMID: 34242019 DOI: 10.1021/acs.inorgchem.1c01341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Terminal ligand exchange and framework linker exchange have been frequently practiced as powerful tools to functionalize reticular structures such as metal-organic frameworks (MOFs). Herein, we report the postsynthetic modification (PSM) of a 6-connected layered MOF (hxl topology) to achieve a 12-connected fcu framework. In the PSM process, isometric linker exchange in the layers and linker installation between adjacent layers by the substitution of modulating ligands happen simultaneously. Snapshots of PSM at different time points reveal that the hxl domain is adaptively reorganized to create sites for new linker installation, and gradually the fcu domain dominates the crystal. Detailed kinetic analysis suggests that, although adaptive linker installation requires interlayer expansion of stackings in situ, it is kinetically faster than isometric linker exchange in the layers.
Collapse
Affiliation(s)
- Weimin Lin
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Erlong Ning
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Lingyi Yang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yin Rao
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Shuyin Peng
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Qiaowei Li
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
21
|
Cheng L, Cao L, Ren H, Guo Q, Deng H, Li Y. Pd(II)-Metalated and l-Proline-Decorated Multivariate UiO-67 as Bifunctional Catalyst for Asymmetric Sequential Reactions. Catal Letters 2021. [DOI: 10.1007/s10562-021-03719-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Yan W, Su J, Yang ZM, Lv S, Jin Z, Zuo JL. High-Performance Lithium-Ion Capacitors Based on Porosity-Regulated Zirconium Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005209. [PMID: 33270359 DOI: 10.1002/smll.202005209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Comprised of a battery anode and a supercapacitor cathode, hybrid lithium-ion capacitors (HLICs) are found to be an effective solution to realize both high power density and high energy density at the same time. Organic-inorganic hybrid materials with well-organized framework guided by the reticular chemistry are one of the promising anode materials for HLICs because of rich active sites and ordered porosity. Herein, metal-organic framework consisting of Zr4+ metal ions and tetrathiafulvalene-based ligands (Zr-MOF) is proposed as the pseudocapacitive anode of HLICs. The Zr-MOF possesses high stability, high crystallinity, and multiple meso-microporous channels favorable for ion transport. The as-prepared Zr-MOF||activated carbon HLICs present high energy density (122.5 Wh kg-1 ), high power density (12.5 kW kg-1 ), and stable cycling performance (86% capacity retention after 1000 cycles at 2000 mA g-1 ) within the operating voltage range of 1.0-4.0 V. The results expand the direct application of MOF for bridging the performance gap between batteries and supercapacitors.
Collapse
Affiliation(s)
- Wen Yan
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jian Su
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Zhi-Mei Yang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Sen Lv
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
23
|
Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213655] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Lv XL, Feng L, Wang KY, Xie LH, He T, Wu W, Li JR, Zhou HC. A Series of Mesoporous Rare-Earth Metal-Organic Frameworks Constructed from Organic Secondary Building Units. Angew Chem Int Ed Engl 2021; 60:2053-2057. [PMID: 33038039 DOI: 10.1002/anie.202011653] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 11/05/2022]
Abstract
Further development of metal-organic frameworks (MOFs) requires an establishment of hierarchical interaction within the framework. Herein, we report a series of mesoporous rare-earth (RE) MOFs that are constructed from an unusual 12-connected π-stacked pyrene secondary building unit (SBU) and a typical 12-connected RE6 cluster (RE=Eu, Y, Yb, Tb, Ce). The judicious design of a butterfly-shape pyrene ligand with a tert-butyl substituent enables the formation of the disordered 12-connected organic SBUs on its strong intermolecular π-π interactions. The assembly of 12-connected inorganic cuboctahedron SBUs and 12-connected organic distorted hexagonal prism SBUs generates an unprecedented network that can be further simplified into a 4,4-connected pts net linked from planar square and tetrahedra. This work provides fresh insights into the design and synthesis of frameworks constructed from coordinatively, covalently, and noncovalently linked building units.
Collapse
Affiliation(s)
- Xiu-Liang Lv
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China.,Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Liang Feng
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Kun-Yu Wang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Tao He
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Wei Wu
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
25
|
Lv X, Feng L, Wang K, Xie L, He T, Wu W, Li J, Zhou H. A Series of Mesoporous Rare‐Earth Metal–Organic Frameworks Constructed from Organic Secondary Building Units. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiu‐Liang Lv
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering Beijing University of Technology Beijing 100124 P. R. China
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Liang Feng
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Kun‐Yu Wang
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Lin‐Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering Beijing University of Technology Beijing 100124 P. R. China
| | - Tao He
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering Beijing University of Technology Beijing 100124 P. R. China
| | - Wei Wu
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering Beijing University of Technology Beijing 100124 P. R. China
| | - Jian‐Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering Beijing University of Technology Beijing 100124 P. R. China
| | - Hong‐Cai Zhou
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| |
Collapse
|
26
|
He X, Wang X, Xiao T, Zhang S, Zhu D. Creative Construction of a Series of Chiral 3D Indium-Organic Frameworks with a umy Topology. Inorg Chem 2021; 60:9-13. [PMID: 33307672 DOI: 10.1021/acs.inorgchem.0c02913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using 2,2'-R2-biphenyl-4,4'-dicarboxylic acid to bind with a cis-[InO4(μ2-OH)2] octahedron, three novel chiral 3D indium-organic frameworks, [In(μ2-OH)L] [1, L1, R = N(CH3)2; 2, L2, R = OCH3; 3, L3, R = CH3], have been hydrothermally synthesized without chiral reagents. Crystal structure analyses reveal that 1-3 show an unprecedented 4-connected umy topology with the Schläfli symbol (42·64). 1 exhibits high water stability and good sorption selectivity of CO2 over N2, while 3 displays high C2H2, C2H4, and C2H6 uptake capacity at 273 K.
Collapse
Affiliation(s)
- Xin He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.,School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Tianyu Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Shunlin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Dunru Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
27
|
Mercuri G, Moroni M, Fermi A, Bergamini G, Galli S, Giambastiani G, Rossin A. Zirconium Metal-Organic Frameworks Containing a Biselenophene Linker: Synthesis, Characterization, and Luminescent Properties. Inorg Chem 2020; 59:15832-15841. [PMID: 33073570 DOI: 10.1021/acs.inorgchem.0c02297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bicyclic ditopic linker 2,2'-biselenophene-5,5'-dicarboxylic acid (H2SpSp), specifically designed for metal-organic framework (MOF) construction, has been synthesized in good yield and fully characterized. The corresponding zirconium MOF (Zr-MOF) [Zr6O4(OH)4(SpSp)3.8Cl4.4] (1; where missing linkers are replaced by chloride anions as shown by X-ray fluorescence and elemental analysis) is isostructural with its bithiophene and bithiazole analogues. Starting from 1, an extension of the biselenophene-based Zr-MOF family has been successfully achieved, exploiting the structural analogy of the five-membered heterocycles selenophene, thiophene, and thiazole. Thus, three mixed-linker MOFs containing variable amounts of different bis(heterocyclic) dicarboxylic acids have been prepared and fully characterized: the two double-mixed [Zr6O4(OH)4(SpSp)2.6(TpTp)1.3Cl4.2] (2; H2TpTp = 2,2'-bithiophene-5,5'-dicarboxylic acid) and [Zr6O4(OH)4(SpSp)2(TzTz)1.8Cl4.4] (3; H2TzTz = 2,2'-bithiazole-5,5'-dicarboxylic acid) materials, as well as the triple-mixed [Zr6O4(OH)4(SpSp)1.6(TpTp)1.2(TzTz)1.4Cl3.6] (4) compound. The four MOFs are luminescent under UV irradiation, exhibiting emission wavelengths falling in the blue-green visible region, as observed for their constitutive linkers. These materials open new horizons in the preparation of porous luminescent sensors or multicolor emitters for light-emitting diodes.
Collapse
Affiliation(s)
- Giorgio Mercuri
- Istituto di Chimica dei Composti Organometallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.,Scuola di Scienze e Tecnologie, Università di Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Marco Moroni
- Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Andrea Fermi
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giacomo Bergamini
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Simona Galli
- Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Giuliano Giambastiani
- Istituto di Chimica dei Composti Organometallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.,Institute of Chemistry and Processes for Energy, Environment and Health, UMR 7515, CNRS, University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg, Cedex 02, France.,Alexander Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russian Federation
| | - Andrea Rossin
- Istituto di Chimica dei Composti Organometallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
28
|
Feng L, Pang J, She P, Li JL, Qin JS, Du DY, Zhou HC. Metal-Organic Frameworks Based on Group 3 and 4 Metals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004414. [PMID: 32902012 DOI: 10.1002/adma.202004414] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) based on group 3 and 4 metals are considered as the most promising MOFs for varying practical applications including water adsorption, carbon conversion, and biomedical applications. The relatively strong coordination bonds and versatile coordination modes within these MOFs endow the framework with high chemical stability, diverse structures and topologies, and interesting properties and functions. Herein, the significant progress made on this series of MOFs since 2018 is summarized and an update on the current status and future trends on the structural design of robust MOFs with high connectivity is provided. Cluster chemistry involving Y, lanthanides (Ln, from La to Lu), actinides (An, from Ac to Lr), Ti, and Zr is initially introduced. This is followed by a review of recently developed MOFs based on group 3 and 4 metals with their structures discussed based on the types of inorganic or organic building blocks. The novel properties and arising applications of these MOFs in catalysis, adsorption and separation, delivery, and sensing are highlighted. Overall, this review is expected to provide a timely summary on MOFs based on group 3 and 4 metals, which shall guide the future discovery and development of stable and functional MOFs for practical applications.
Collapse
Affiliation(s)
- Liang Feng
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Jiandong Pang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jia-Luo Li
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Dong-Ying Du
- National and Local United Engineering Lab for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843-3003, USA
| |
Collapse
|
29
|
Feng L, Day GS, Wang KY, Yuan S, Zhou HC. Strategies for Pore Engineering in Zirconium Metal-Organic Frameworks. Chem 2020. [DOI: 10.1016/j.chempr.2020.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Xu MM, Chen Q, Xie LH, Li JR. Exchange reactions in metal-organic frameworks: New advances. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213421] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Guan H, Li J, Zhou T, Pang Z, Fu Y, Cornelio J, Wang Q, Telfer SG, Kong X. Probing Nonuniform Adsorption in Multicomponent Metal-Organic Frameworks via Segmental Dynamics by Solid-State Nuclear Magnetic Resonance. J Phys Chem Lett 2020; 11:7167-7176. [PMID: 32787305 DOI: 10.1021/acs.jpclett.0c01593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The guest adsorption phenomena in multicomponent metal-organic frameworks (MOFs) are intricate due to their structural complexities. In this work, we studied two members of the isostructural series of MUF-77 frameworks that consist of long or short alkyl groups. The adsorption of methanol, N,N-dimethylaniline (DMA) and acridine orange (AO) in two structures of MUF-77 has been investigated. 2H solid-state nuclear magnetic resonance (SSNMR) and two-dimensional 1H-13C NMR spectroscopy were used to probe the dynamics of various compartments of MUF-77. Through the analyses of dynamic behavior by SSNMR and molecular dynamics simulations, we elucidate the spatial distribution of guest molecules are nonuniform around different chemical components, in different pore structures, and across different parts of MOF lattice. In addition, we reveal that the framework flexibility of MUF-77 with short alkyl groups is reduced upon guest adsorption yet the framework flexibility of MUF-77 with long alkyl groups increases upon loading with methanol.
Collapse
Affiliation(s)
- Hanxi Guan
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jiachen Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Tianyou Zhou
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Zhenfeng Pang
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yao Fu
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Joel Cornelio
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Qi Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Shane G Telfer
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Xueqian Kong
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
32
|
Pang J, Di Z, Qin JS, Yuan S, Lollar CT, Li J, Zhang P, Wu M, Yuan D, Hong M, Zhou HC. Precisely Embedding Active Sites into a Mesoporous Zr-Framework through Linker Installation for High-Efficiency Photocatalysis. J Am Chem Soc 2020; 142:15020-15026. [DOI: 10.1021/jacs.0c05758] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jiandong Pang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Zhengyi Di
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, Changchun 130012, China
| | - Shuai Yuan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Christina T. Lollar
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Jialuo Li
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Peng Zhang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Mingyan Wu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
33
|
Liu L, Yao Z, Ye Y, Yang Y, Lin Q, Zhang Z, O’Keeffe M, Xiang S. Integrating the Pillared-Layer Strategy and Pore-Space Partition Method to Construct Multicomponent MOFs for C2H2/CO2 Separation. J Am Chem Soc 2020; 142:9258-9266. [DOI: 10.1021/jacs.0c00612] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lizhen Liu
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
- College of Materials Science and Engineering, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, P.R. China
| | - Zizhu Yao
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| | - Yingxiang Ye
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| | - Yike Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| | - Quanjie Lin
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| | - Michael O’Keeffe
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, P. R. China
| |
Collapse
|
34
|
Wen GL, Liu B, Liu DF, Wang FW, Li L, Zhu L, Song DM, Huang CX, Wang YY. Four congenetic zinc(II) MOFs from delicate solvent-regulated strategy: Structural diversities and fluorescent properties. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Schoedel A, Rajeh S. Why Design Matters: From Decorated Metal Oxide Clusters to Functional Metal–Organic Frameworks. Top Curr Chem (Cham) 2020; 378:19. [DOI: 10.1007/s41061-020-0281-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 01/14/2020] [Indexed: 11/29/2022]
|
36
|
Zhou M, El-Sayed ESM, Ju Z, Wang W, Yuan D. The synthesis and applications of chiral pyrrolidine functionalized metal–organic frameworks and covalent-organic frameworks. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01103j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Proline based ligands show versatile functionality to construct chiral MOFs and COFs; meanwhile, the resulted frameworks are potential materials for enantioselective adsorption and asymmetric catalysis.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| | - El-Sayed M. El-Sayed
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| | - Zhanfeng Ju
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| | - Wenjing Wang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| |
Collapse
|
37
|
Chong S, Kim J. Rational modifications of PCN-700 to induce electrical conductivity: a computational study. Dalton Trans 2020; 49:102-113. [DOI: 10.1039/c9dt03865e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using computational methods, rational modifications of PCN-700 are performed to newly induce electrical conductivity in a previously insulating metal–organic framework.
Collapse
Affiliation(s)
- Sanggyu Chong
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- South Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- South Korea
| |
Collapse
|
38
|
Huang ZW, Hu KQ, Mei L, Kong XH, Yu JP, Liu K, Zeng LW, Chai ZF, Shi WQ. A mixed-ligand strategy regulates thorium-based MOFs. Dalton Trans 2020; 49:983-987. [DOI: 10.1039/c9dt04158c] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A thorium-based MOF formed via the synergistic construction of porphyrin and bipyridyl based on the mixed-ligand strategy has the effect of enhancing photocatalysis.
Collapse
Affiliation(s)
- Zhi-wei Huang
- Laboratory of Nuclear Energy Chemistry. Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Kong-qiu Hu
- Laboratory of Nuclear Energy Chemistry. Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry. Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Xiang-he Kong
- Laboratory of Nuclear Energy Chemistry. Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Ji-pan Yu
- Laboratory of Nuclear Energy Chemistry. Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Kang Liu
- Laboratory of Nuclear Energy Chemistry. Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Li-wen Zeng
- Laboratory of Nuclear Energy Chemistry. Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry. Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
- Engineering Laboratory of Advanced Energy Materials
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry. Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| |
Collapse
|
39
|
Chen YK, Tao Y, Qin HF, Pang HY, Bian HD, Yao D, Huang FP. The stepwise substitution in the hierarchical building of {Co11Cd6} cluster-based MOFs from {Co14} precursor. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00537a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A heterometallic aggregation of {Co11Cd6} can be hierarchical built from a {Co14} precursor directly. HRESI-MS technique was used to track the stepwise Cd2+-capture: {Co14} → {Co8} → {Co8Cd2} → {Co8Cd3} → {Co8Cd4} → {Co8Cd5} → {Co8Cd6} → {Co11Cd6}.
Collapse
Affiliation(s)
- Yun-Kai Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Ye Tao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Huang-Fei Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Hua-Yu Pang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - He-Dong Bian
- School of Chemistry and Chemical Engineering
- Guangxi University for Nationalities
- Key Laboratory of Chemistry and Engineering of Forest Products
- Nanning
- P. R. China
| | - Di Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Fu-Ping Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|
40
|
Wang Y, Feng L, Zhang K, Wang K, Fan W, Wang X, Guo B, Dai F, Zhang L, Sun D, Zhou H. Uncovering Structural Opportunities for Zirconium Metal-Organic Frameworks via Linker Desymmetrization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901855. [PMID: 31832322 PMCID: PMC6891898 DOI: 10.1002/advs.201901855] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/12/2019] [Indexed: 06/10/2023]
Abstract
The discovery of metal-organic frameworks (MOFs) mimicking inorganic minerals with intricate topologies requires elaborate linker design guidelines. Herein, the concept of linker desymmetrization into the design of tetratopic linker based Zr-MOFs is applied. A series of bent tetratopic linkers with various substituents are utilized to construct Zr-MOFs with distinct cluster connectivities and topologies. For example, the assembly between a bent linker L-SO2 with C 2v symmetry and an 8-connected Zr6 cluster leads to the formation of an scu topology, while another flu topology can be obtained by the combination of a novel 8-connected Zr6 cluster and a bent linker L-O with C 1 symmetry. Further utilization of restricted bent linker [(L-(CH3)6)] gives rise to a fascinating (4, 6)-c cor net, originated from the corundum lattice, with an unprecedented 6-c Zr6 cluster. In addition, the removal of toxic selenite ions in aqueous solution is performed by PCN-903-(CH3)6 which exhibits rapid and efficient detoxification. This work uncovers new structural opportunities for Zr-MOFs via linker desymmetrization and provides novel design strategies for the discovery of sophisticated topologies for practical applications.
Collapse
Affiliation(s)
- Yutong Wang
- College of ScienceSchool of Materials Science and EngineeringChina University of Petroleum (East China)QingdaoShandong266580China
| | - Liang Feng
- Department of ChemistryTexas A&M UniversityCollege StationTX77843USA
| | - Kai Zhang
- College of ScienceSchool of Materials Science and EngineeringChina University of Petroleum (East China)QingdaoShandong266580China
| | - Kun‐Yu Wang
- Department of ChemistryTexas A&M UniversityCollege StationTX77843USA
| | - Weidong Fan
- College of ScienceSchool of Materials Science and EngineeringChina University of Petroleum (East China)QingdaoShandong266580China
| | - Xiaokang Wang
- College of ScienceSchool of Materials Science and EngineeringChina University of Petroleum (East China)QingdaoShandong266580China
| | - Bingbing Guo
- College of ScienceSchool of Materials Science and EngineeringChina University of Petroleum (East China)QingdaoShandong266580China
| | - Fangna Dai
- College of ScienceSchool of Materials Science and EngineeringChina University of Petroleum (East China)QingdaoShandong266580China
| | - Liangliang Zhang
- Xi'an Institute of Flexible ElectronicsNorthwestern Polytechnical UniversityXi'an710072China
| | - Daofeng Sun
- College of ScienceSchool of Materials Science and EngineeringChina University of Petroleum (East China)QingdaoShandong266580China
| | - Hong‐Cai Zhou
- Department of ChemistryTexas A&M UniversityCollege StationTX77843USA
- Department of Materials Science and EngineeringTexas A&M UniversityCollege StationTX77843‐3003USA
| |
Collapse
|
41
|
Feng L, Wang Y, Zhang K, Wang K, Fan W, Wang X, Powell JA, Guo B, Dai F, Zhang L, Wang R, Sun D, Zhou H. Molecular Pivot‐Hinge Installation to Evolve Topology in Rare‐Earth Metal–Organic Frameworks. Angew Chem Int Ed Engl 2019; 58:16682-16690. [DOI: 10.1002/anie.201910717] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Liang Feng
- Department of ChemistryTexas A&M University College Station TX 77843 USA
| | - Yutong Wang
- College of ScienceSchool of Materials Science and EngineeringChina University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Kai Zhang
- College of ScienceSchool of Materials Science and EngineeringChina University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Kun‐Yu Wang
- Department of ChemistryTexas A&M University College Station TX 77843 USA
| | - Weidong Fan
- College of ScienceSchool of Materials Science and EngineeringChina University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Xiaokang Wang
- College of ScienceSchool of Materials Science and EngineeringChina University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Joshua A. Powell
- Department of ChemistryTexas A&M University College Station TX 77843 USA
| | - Bingbing Guo
- College of ScienceSchool of Materials Science and EngineeringChina University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Fangna Dai
- College of ScienceSchool of Materials Science and EngineeringChina University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Liangliang Zhang
- Xi'an Institute of Flexible ElectronicsNorthwestern Polytechnical University Xi'an 710072 China
| | - Rongming Wang
- College of ScienceSchool of Materials Science and EngineeringChina University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Daofeng Sun
- College of ScienceSchool of Materials Science and EngineeringChina University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Hong‐Cai Zhou
- Department of ChemistryTexas A&M University College Station TX 77843 USA
- Department of Materials Science and EngineeringTexas A&M University College Station Texas 77843-3003 USA
| |
Collapse
|
42
|
Yilmaz G, Peh SB, Zhao D, Ho GW. Atomic- and Molecular-Level Design of Functional Metal-Organic Frameworks (MOFs) and Derivatives for Energy and Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901129. [PMID: 31728281 PMCID: PMC6839644 DOI: 10.1002/advs.201901129] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/21/2019] [Indexed: 05/12/2023]
Abstract
Continuing population growth and accelerated fossil-fuel consumption with recent technological advancements have engendered energy and environmental concerns, urging researchers to develop advanced functional materials to overcome the associated problems. Metal-organic frameworks (MOFs) have emerged as frontier materials due to their unique porous organic-inorganic hybrid periodic assembly and exceptional diversity in structural properties and chemical functionalities. In particular, the modular nature and modularity-dependent activity of MOFs and MOF derivatives have accentuated the delicate atomic- and molecular design and synthesis of MOFs, and their meticulous conversion into carbons and transition-metal-based materials. Synthetic control over framework architecture, content, and reactivity has led to unprecedented merits relevant to various energy and environmental applications. Herein, an overview of the atomic- and molecular-design strategies of MOFs to realize application-targeted properties is provided. Recent progress on the development of MOFs and MOF derivatives based on these strategies, along with their performance, is summarized with a special emphasis on design-structure and functionality-activity relationships. Next, the respective energy- and environmental-related applications of catalysis and energy storage, as well as gas storage-separation and water harvesting with close association to the energy-water-environment nexus are highlighted. Last, perspectives on current challenges and recommendations for further development of MOF-based materials are also discussed.
Collapse
Affiliation(s)
- Gamze Yilmaz
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117583Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering4 Engineering Drive 4Singapore117585Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering4 Engineering Drive 4Singapore117585Singapore
| | - Ghim Wei Ho
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117583Singapore
- Institute of Materials Research and EngineeringA*STAR (Agency for Science, Technology and Research)3 Research LinkSingapore117602Singapore
| |
Collapse
|
43
|
Kalinke LHG, Cangussu D, Mon M, Bruno R, Tiburcio E, Lloret F, Armentano D, Pardo E, Ferrando-Soria J. Metal-Organic Frameworks as Playgrounds for Reticulate Single-Molecule Magnets. Inorg Chem 2019; 58:14498-14506. [PMID: 31621305 DOI: 10.1021/acs.inorgchem.9b02086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Achieving fine control on the structure of metal-organic frameworks (MOFs) is mandatory to obtain target physical properties. Herein, we present how the combination of a metalloligand approach and a postsynthetic method is a suitable and highly useful synthetic strategy to success on this extremely difficult task. First, a novel oxamato-based tetranuclear cobalt(III) compound with a tetrahedron-shaped geometry is used, for the first time, as the metalloligand toward calcium(II) metal ions to lead to a diamagnetic CaII-CoIII three-dimensional (3D) MOF (1). In a second stage, in a single-crystal-to-single-crystal manner, the calcium(II) ions are replaced by terbium(III), dysprosium(III), holmium(III), and erbium(III) ions to yield four isostructural novel LnIII-CoIII [Ln = Tb (2), Dy (3), Ho (4), and Er (5)] 3D MOFs. Direct-current magnetic properties for 2-5 show typical performances for the ground-state terms of the lanthanoid cations [7F6 (TbIII), 6H15/2 (DyIII), 5I8 (HoIII), and 4I15/2 (ErIII)]. Analysis of the χMT data indicates that the ground state is the lowest MJ value, that is, MJ = 0 (2 and 4) and ±1/2 (3 and 5). Kramers' ions (3 and 5) exhibit field-induced emergent frequency-dependent alternating-current magnetic susceptibility signals, which is indicative of the presence of slow magnetic relaxation typical of single-molecule magnets.
Collapse
Affiliation(s)
- Lucas H G Kalinke
- Departament de Química Inorgànica, Instituto de Ciencia Molecular , Universitat de València , 46980 Paterna , València , Spain.,Instituto Federal de Goiás , 75131-457 , Anápolis , Goiás Brazil.,Instituto de Química , Universidade Federal de Goiás , 74690-900 , Goiânia , Goiás Brazil
| | - Danielle Cangussu
- Instituto de Química , Universidade Federal de Goiás , 74690-900 , Goiânia , Goiás Brazil
| | - Marta Mon
- Departament de Química Inorgànica, Instituto de Ciencia Molecular , Universitat de València , 46980 Paterna , València , Spain
| | - Rosaria Bruno
- Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , Rende 87036 , Cosenza , Italy
| | - Estefania Tiburcio
- Departament de Química Inorgànica, Instituto de Ciencia Molecular , Universitat de València , 46980 Paterna , València , Spain
| | - Francesc Lloret
- Departament de Química Inorgànica, Instituto de Ciencia Molecular , Universitat de València , 46980 Paterna , València , Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , Rende 87036 , Cosenza , Italy
| | - Emilio Pardo
- Departament de Química Inorgànica, Instituto de Ciencia Molecular , Universitat de València , 46980 Paterna , València , Spain
| | - Jesus Ferrando-Soria
- Departament de Química Inorgànica, Instituto de Ciencia Molecular , Universitat de València , 46980 Paterna , València , Spain
| |
Collapse
|
44
|
Feng L, Wang Y, Zhang K, Wang K, Fan W, Wang X, Powell JA, Guo B, Dai F, Zhang L, Wang R, Sun D, Zhou H. Molecular Pivot‐Hinge Installation to Evolve Topology in Rare‐Earth Metal–Organic Frameworks. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Liang Feng
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Yutong Wang
- College of Science School of Materials Science and Engineering China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Kai Zhang
- College of Science School of Materials Science and Engineering China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Kun‐Yu Wang
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Weidong Fan
- College of Science School of Materials Science and Engineering China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Xiaokang Wang
- College of Science School of Materials Science and Engineering China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Joshua A. Powell
- Department of Chemistry Texas A&M University College Station TX 77843 USA
| | - Bingbing Guo
- College of Science School of Materials Science and Engineering China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Fangna Dai
- College of Science School of Materials Science and Engineering China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Liangliang Zhang
- Xi'an Institute of Flexible Electronics Northwestern Polytechnical University Xi'an 710072 China
| | - Rongming Wang
- College of Science School of Materials Science and Engineering China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Daofeng Sun
- College of Science School of Materials Science and Engineering China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Hong‐Cai Zhou
- Department of Chemistry Texas A&M University College Station TX 77843 USA
- Department of Materials Science and Engineering Texas A&M University College Station Texas 77843-3003 USA
| |
Collapse
|
45
|
Jia S, Xiao X, Li Q, Li Y, Duan Z, Li Y, Li X, Lin Z, Zhao Y, Huang W. Tuning the Connectivity, Rigidity, and Functionality of Two-Dimensional Zr-Based Metal–Organic Frameworks. Inorg Chem 2019; 58:12748-12755. [DOI: 10.1021/acs.inorgchem.9b01666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wei Huang
- Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
46
|
Ning E, Yang L, Tu B, Pang Q, Li X, Xu H, Qi Y, Li Q. Interface construction in microporous metal–organic frameworks from luminescent terbium-based building blocks. J Colloid Interface Sci 2019; 552:372-377. [DOI: 10.1016/j.jcis.2019.05.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 12/25/2022]
|
47
|
Vismara R, Tuci G, Tombesi A, Domasevitch KV, Di Nicola C, Giambastiani G, Chierotti MR, Bordignon S, Gobetto R, Pettinari C, Rossin A, Galli S. Tuning Carbon Dioxide Adsorption Affinity of Zinc(II) MOFs by Mixing Bis(pyrazolate) Ligands with N-Containing Tags. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26956-26969. [PMID: 31276365 DOI: 10.1021/acsami.9b08015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The four zinc(II) mixed-ligand metal-organic frameworks (MIXMOFs) Zn(BPZ)x(BPZNO2)1-x, Zn(BPZ)x(BPZNH2)1-x, Zn(BPZNO2)x(BPZNH2)1-x, and Zn(BPZ)x(BPZNO2)y(BPZNH2)1-x-y (H2BPZ = 4,4'-bipyrazole; H2BPZNO2 = 3-nitro-4,4'-bipyrazole; H2BPZNH2 = 3-amino-4,4'-bipyrazole) were prepared through solvothermal routes and fully investigated in the solid state. Isoreticular to the end members Zn(BPZ) and Zn(BPZX) (X = NO2, NH2), they are the first examples ever reported of (pyr)azolate MIXMOFs. Their crystal structure is characterized by a three-dimensional open framework with one-dimensional square or rhombic channels decorated by the functional groups. Accurate information about ligand stoichiometric ratio was determined (for the first time on MIXMOFs) through integration of selected ligands skeleton resonances from 13C cross polarized magic angle spinning solid-state NMR spectra collected on the as-synthesized materials. Like other poly(pyrazolate) MOFs, the four MIXMOFs are thermally stable, with decomposition temperatures between 708 and 726 K. As disclosed by N2 adsorption at 77 K, they are micro-mesoporous materials with Brunauer-Emmett-Teller specific surface areas in the range 400-600 m2/g. A comparative study (involving also the single-ligand analogues) of CO2 adsorption capacity, CO2 isosteric heat of adsorption (Qst), and CO2/N2 selectivity in equimolar mixtures at p = 1 bar and T = 298 K cast light on interesting trends, depending on ligand tag nature or ligand stoichiometric ratio. In particular, the amino-decorated compounds show higher Qst values and CO2/N2 selectivity vs the nitro-functionalized analogues; in addition, tag "dilution" [upon passing from Zn(BPZX) to Zn(BPZ)x(BPZX)1-x] increases CO2 adsorption selectivity over N2. The simultaneous presence of amino and nitro groups is not beneficial for CO2 uptake. Among the compounds studied, the best compromise among uptake capacity, Qst, and CO2/N2 selectivity is represented by Zn(BPZ)x(BPZNH2)1-x.
Collapse
Affiliation(s)
- Rebecca Vismara
- Dipartimento di Scienza e Alta Tecnologia , Università dell'Insubria , Via Valleggio 11 , 22100 Como , Italy
| | - Giulia Tuci
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR) , Via Madonna del Piano 10 , 50019 Sesto Fiorentino (Firenze) , Italy
| | | | | | | | - Giuliano Giambastiani
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR) , Via Madonna del Piano 10 , 50019 Sesto Fiorentino (Firenze) , Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali , Via Giusti 9 , 50121 Firenze , Italy
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES) , UMR 7515 CNRS-University of Strasbourg (UdS) , 25, rue Becquerel , Strasbourg 67087 Cedex 02, France
| | - Michele R Chierotti
- Department of Chemistry and NIS Centre , University of Torino , Via Giuria 7 , Torino 10125 , Italy
| | - Simone Bordignon
- Department of Chemistry and NIS Centre , University of Torino , Via Giuria 7 , Torino 10125 , Italy
| | - Roberto Gobetto
- Department of Chemistry and NIS Centre , University of Torino , Via Giuria 7 , Torino 10125 , Italy
| | | | - Andrea Rossin
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR) , Via Madonna del Piano 10 , 50019 Sesto Fiorentino (Firenze) , Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali , Via Giusti 9 , 50121 Firenze , Italy
| | - Simona Galli
- Dipartimento di Scienza e Alta Tecnologia , Università dell'Insubria , Via Valleggio 11 , 22100 Como , Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali , Via Giusti 9 , 50121 Firenze , Italy
| |
Collapse
|
48
|
|
49
|
Zhang W, Yang JM, Yang RN, Yang BC, Quan S, Jiang X. Effect of free carboxylic acid groups in UiO-66 analogues on the adsorption of dyes from water: Plausible mechanisms for adsorption and gate-opening behavior. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.100] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Tu B, Diestel L, Shi Z, Bandara WRLN, Chen Y, Lin W, Zhang Y, Telfer SG, Li Q. Harnessing Bottom‐Up Self‐Assembly To Position Five Distinct Components in an Ordered Porous Framework. Angew Chem Int Ed Engl 2019; 58:5348-5353. [DOI: 10.1002/anie.201900863] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Binbin Tu
- Department of ChemistryiChEM (Collaborative Innovation Center of Chemistry for Energy Materials)Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan University Shanghai 200433 China
| | - Lisa Diestel
- MacDiarmid Institute for Advanced Materials and NanotechnologyInstitute of Fundamental SciencesMassey University Palmerston North 4442 New Zealand
| | - Zhao‐Lin Shi
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
| | - W. R. L. Nisansala Bandara
- MacDiarmid Institute for Advanced Materials and NanotechnologyInstitute of Fundamental SciencesMassey University Palmerston North 4442 New Zealand
| | - Yi Chen
- Department of ChemistryiChEM (Collaborative Innovation Center of Chemistry for Energy Materials)Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan University Shanghai 200433 China
| | - Weimin Lin
- Department of ChemistryiChEM (Collaborative Innovation Center of Chemistry for Energy Materials)Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan University Shanghai 200433 China
| | - Yue‐Biao Zhang
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
| | - Shane G. Telfer
- MacDiarmid Institute for Advanced Materials and NanotechnologyInstitute of Fundamental SciencesMassey University Palmerston North 4442 New Zealand
| | - Qiaowei Li
- Department of ChemistryiChEM (Collaborative Innovation Center of Chemistry for Energy Materials)Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan University Shanghai 200433 China
| |
Collapse
|