1
|
Parthiban J, Awasthi MK, Kharde TA, Kalita K, Singh SK. Recent progress in molecular transition metal catalysts for hydrogen production from methanol and formaldehyde. Dalton Trans 2024; 53:4363-4389. [PMID: 38349644 DOI: 10.1039/d3dt03668e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Hydrogen is considered as a potential alternative and sustainable energy carrier, but its safe storage and transportation are still challenging due to its low volumetric energy density. Notably, C1-based substrates, methanol and formaldehyde, containing high hydrogen contents of 12.5 wt% and 6.7 wt%, respectively, can release hydrogen on demand in the presence of a suitable catalyst. Advantageously, both methanol and aqueous formaldehyde are liquid at room temperature, and hence can be stored and transported considerably more safely than hydrogen gas. Moreover, these C1-based substrates can be produced from biomass waste and can also be regenerated from CO2, a greenhouse gas. In this review, the recent progress in hydrogen production from methanol and formaldehyde over noble to non-noble metal complex-based molecular transition metal catalysts is extensively reviewed. This review also focuses on the critical role of the structure-activity relationship of the catalyst in the dehydrogenation pathway.
Collapse
Affiliation(s)
- Jayashree Parthiban
- Catalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India.
| | - Mahendra K Awasthi
- Catalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India.
| | - Tushar A Kharde
- Catalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India.
| | - Khanindra Kalita
- Catalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India.
| | - Sanjay Kumar Singh
- Catalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India.
| |
Collapse
|
2
|
Landaeta VR, Horsley Downie TM, Wolf R. Low-Valent Transition Metalate Anions in Synthesis, Small Molecule Activation, and Catalysis. Chem Rev 2024; 124:1323-1463. [PMID: 38354371 PMCID: PMC10906008 DOI: 10.1021/acs.chemrev.3c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 02/16/2024]
Abstract
This review surveys the synthesis and reactivity of low-oxidation state metalate anions of the d-block elements, with an emphasis on contributions reported between 2006 and 2022. Although the field has a long and rich history, the chemistry of transition metalate anions has been greatly enhanced in the last 15 years by the application of advanced concepts in complex synthesis and ligand design. In recent years, the potential of highly reactive metalate complexes in the fields of small molecule activation and homogeneous catalysis has become increasingly evident. Consequently, exciting applications in small molecule activation have been developed, including in catalytic transformations. This article intends to guide the reader through the fascinating world of low-valent transition metalates. The first part of the review describes the synthesis and reactivity of d-block metalates stabilized by an assortment of ligand frameworks, including carbonyls, isocyanides, alkenes and polyarenes, phosphines and phosphorus heterocycles, amides, and redox-active nitrogen-based ligands. Thereby, the reader will be familiarized with the impact of different ligand types on the physical and chemical properties of metalates. In addition, ion-pairing interactions and metal-metal bonding may have a dramatic influence on metalate structures and reactivities. The complex ramifications of these effects are examined in a separate section. The second part of the review is devoted to the reactivity of the metalates toward small inorganic molecules such as H2, N2, CO, CO2, P4 and related species. It is shown that the use of highly electron-rich and reactive metalates in small molecule activation translates into impressive catalytic properties in the hydrogenation of organic molecules and the reduction of N2, CO, and CO2. The results discussed in this review illustrate that the potential of transition metalate anions is increasingly being tapped for challenging catalytic processes with relevance to organic synthesis and energy conversion. Therefore, it is hoped that this review will serve as a useful resource to inspire further developments in this dynamic research field.
Collapse
Affiliation(s)
| | | | - Robert Wolf
- University of Regensburg, Institute
of Inorganic Chemistry, 93040 Regensburg, Germany
| |
Collapse
|
3
|
de Zwart FJ, Sinha V, Trincado M, Grützmacher H, de Bruin B. Computational mechanistic studies of ruthenium catalysed methanol dehydrogenation. Dalton Trans 2022; 51:3019-3026. [PMID: 35079760 PMCID: PMC8862544 DOI: 10.1039/d1dt04168a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Homogeneous ruthenium catalysed methanol dehydrogenation could become a key reaction for hydrogen production in liquid fuel cells. In order to improve existing catalytic systems, mechanistic insight is paramount in directing future studies. Herein, we describe what computational mechanistic research has taught us so far about ruthenium catalysed dehydrogenation reactions. In general, two mechanistic pathways can be operative in these reactions: a metal-centered or a metal-ligand cooperative (Noyori-Morris type) minimum energy reaction pathway (MERP). Discerning between these mechanisms on the basis of computational studies has proven to be highly input dependent, and to circumvent pitfalls it is important to consider several factors, such as solvent effects, metal-ligand cooperativity, alternative geometries, and complex electronic structures of metal centres. This Frontiers article summarizes the reported computational research performed on ruthenium catalyzed dehydrogenation reactions performed in the past decade, and serves as a guide for future research.
Collapse
Affiliation(s)
- Felix J de Zwart
- Van 't Hoff Institute for Molecular Sciences (HIMS), Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Vivek Sinha
- Inorganic Systems Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands.
| | - Monica Trincado
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Hansjörg Grützmacher
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Bas de Bruin
- Van 't Hoff Institute for Molecular Sciences (HIMS), Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Wang Q, Lan J, Liang R, Xia Y, Qin L, Chung LW, Zheng Z. New Tricks for an Old Dog: Grubbs Catalysts Enable Efficient Hydrogen Production from Aqueous-Phase Methanol Reforming. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qian Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jialing Lan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Rong Liang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yihao Xia
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lei Qin
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lung Wa Chung
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiping Zheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Kumar A, Daw P, Milstein D. Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chem Rev 2022; 122:385-441. [PMID: 34727501 PMCID: PMC8759071 DOI: 10.1021/acs.chemrev.1c00412] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 02/08/2023]
Abstract
As the world pledges to significantly cut carbon emissions, the demand for sustainable and clean energy has now become more important than ever. This includes both production and storage of energy carriers, a majority of which involve catalytic reactions. This article reviews recent developments of homogeneous catalysts in emerging applications of sustainable energy. The most important focus has been on hydrogen storage as several efficient homogeneous catalysts have been reported recently for (de)hydrogenative transformations promising to the hydrogen economy. Another direction that has been extensively covered in this review is that of the methanol economy. Homogeneous catalysts investigated for the production of methanol from CO2, CO, and HCOOH have been discussed in detail. Moreover, catalytic processes for the production of conventional fuels (higher alkanes such as diesel, wax) from biomass or lower alkanes have also been discussed. A section has also been dedicated to the production of ethylene glycol from CO and H2 using homogeneous catalysts. Well-defined transition metal complexes, in particular, pincer complexes, have been discussed in more detail due to their high activity and well-studied mechanisms.
Collapse
Affiliation(s)
- Amit Kumar
- School
of Chemistry, University of St. Andrews, North Haugh, Fife, U.K., KY16 9ST
| | - Prosenjit Daw
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Berhampur, Govt. ITI (transit Campus), Berhampur 760010, India
| | - David Milstein
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
6
|
Sun K, Shan H, Lu G, Cai C, Beller M. Synthesis of N-Heterocycles via Oxidant-Free Dehydrocyclization of Alcohols Using Heterogeneous Catalysts. Angew Chem Int Ed Engl 2021; 60:25188-25202. [PMID: 34138507 PMCID: PMC9292538 DOI: 10.1002/anie.202104979] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 01/15/2023]
Abstract
N-Heterocycles, such as pyrroles, pyrimidines, quinazolines, and quinoxalines, are important building blocks for organic chemistry and the fine-chemical industry. For their synthesis, catalytic borrowing hydrogen and acceptorless dehydrogenative coupling reactions of alcohols as sustainable reagents have received significant attention in recent years. To overcome the problems of product separation and catalyst reusability, several metal-based heterogeneous catalysts have been reported to achieve these transformations with good yields and selectivity. In this Minireview, we summarize recent developments using both noble and non-noble metal-based heterogeneous catalysts to synthesize N-heterocycles from alcohols and N-nucleophiles via acceptorless dehydrogenation or borrowing hydrogen methodologies. Furthermore, this Minireview introduces strategies for the preparation and functionalization of the corresponding heterogeneous catalysts, discusses the reaction mechanisms and the roles of metal electronic states, and the influence of support Lewis acid-base properties on these reactions.
Collapse
Affiliation(s)
- Kangkang Sun
- School of Chemical EngineeringNanjing University of Science & TechnologyXiaolingwei 200Nanjing210094P. R. China
- Applied Homogeneous CatalysisLeibniz-Institut für Katalyse e.VAlbert-Einstein-Straße 29a18059RostockGermany
| | - Hongbin Shan
- School of Chemical EngineeringNanjing University of Science & TechnologyXiaolingwei 200Nanjing210094P. R. China
| | - Guo‐Ping Lu
- School of Chemical EngineeringNanjing University of Science & TechnologyXiaolingwei 200Nanjing210094P. R. China
| | - Chun Cai
- School of Chemical EngineeringNanjing University of Science & TechnologyXiaolingwei 200Nanjing210094P. R. China
| | - Matthias Beller
- Applied Homogeneous CatalysisLeibniz-Institut für Katalyse e.VAlbert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
7
|
Sun K, Shan H, Lu G, Cai C, Beller M. Synthesis of
N
‐Heterocycles via Oxidant‐Free Dehydrocyclization of Alcohols Using Heterogeneous Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kangkang Sun
- School of Chemical Engineering Nanjing University of Science & Technology Xiaolingwei 200 Nanjing 210094 P. R. China
- Applied Homogeneous Catalysis Leibniz-Institut für Katalyse e.V Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Hongbin Shan
- School of Chemical Engineering Nanjing University of Science & Technology Xiaolingwei 200 Nanjing 210094 P. R. China
| | - Guo‐Ping Lu
- School of Chemical Engineering Nanjing University of Science & Technology Xiaolingwei 200 Nanjing 210094 P. R. China
| | - Chun Cai
- School of Chemical Engineering Nanjing University of Science & Technology Xiaolingwei 200 Nanjing 210094 P. R. China
| | - Matthias Beller
- Applied Homogeneous Catalysis Leibniz-Institut für Katalyse e.V Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
8
|
Trincado M, Bösken J, Grützmacher H. Homogeneously catalyzed acceptorless dehydrogenation of alcohols: A progress report. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213967] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
van Leest N, de Zwart FJ, Zhou M, de Bruin B. Controlling Radical-Type Single-Electron Elementary Steps in Catalysis with Redox-Active Ligands and Substrates. JACS AU 2021; 1:1101-1115. [PMID: 34467352 PMCID: PMC8385710 DOI: 10.1021/jacsau.1c00224] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Advances in (spectroscopic) characterization of the unusual electronic structures of open-shell cobalt complexes bearing redox-active ligands, combined with detailed mapping of their reactivity, have uncovered several new catalytic radical-type protocols that make efficient use of the synergistic properties of redox-active ligands, redox-active substrates, and the metal to which they coordinate. In this perspective, we discuss the tools available to study, induce, and control catalytic radical-type reactions with redox-active ligands and/or substrates, contemplating recent developments in the field, including some noteworthy tools, methods, and reactions developed in our own group. The main topics covered are (i) tools to characterize redox-active ligands; (ii) novel synthetic applications of catalytic reactions that make use of redox-active carbene and nitrene substrates at open-shell cobalt-porphyrins; (iii) development of catalytic reactions that take advantage of purely ligand- and substrate-based redox processes, coupled to cobalt-centered spin-changing events in a synergistic manner; and (iv) utilization of redox-active ligands to influence the spin state of the metal. Redox-active ligands have emerged as useful tools to generate and control reactive metal-coordinated radicals, which give access to new synthetic methodologies and intricate (electronic) structures, some of which are yet to be exposed.
Collapse
Affiliation(s)
- Nicolaas
P. van Leest
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Felix J. de Zwart
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Minghui Zhou
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
10
|
de Zwart FJ, Reus B, Laporte AAH, Sinha V, de Bruin B. Metrical Oxidation States of 1,4-Diazadiene-Derived Ligands. Inorg Chem 2021; 60:3274-3281. [PMID: 33587616 PMCID: PMC8023656 DOI: 10.1021/acs.inorgchem.0c03685] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The
conventional method of assigning formal oxidation states (FOSs)
to metals and ligands is an important tool for understanding and predicting
the chemical reactivity, in particular, in catalysis research. For
complexes containing redox-noninnocent ligands, the oxidation state
of the ligand can be ambiguous (i.e., their spectroscopic oxidation
state can differ from the FOS) and thus frustrates the assignment
of the oxidation state of the metal. A quantitative correlation between
the empirical metric data of redox-active
ligands and their oxidation states using a metrical oxidation state
(MOS) model has been developed for catecholate- and amidophenoxide-derived
ligands by Brown. In the present work, we present a MOS model for
1,4-diazabutadiene (DADn) ligands. This
model is based on a similar approach as reported by Brown, correlating
the intra-ligand bond lengths of the DADn moiety in a quantitative manner with the MOS using geometrical information
from X-ray structures in the Cambridge Crystallographic Data Center
(CCDC) database. However, an accurate determination of the MOS of
these ligands turned out to be dependent on the coordination mode
of the DAD2– moiety, which can adopt both a planar
κ2-N2-geometry and a
η4-N2C2 π-coordination mode in (transition) metal complexes
in its doubly reduced, dianionic enediamide oxidation state. A reliable
MOS model was developed taking the intrinsic differences in intra-ligand
bond distances between these coordination modes of the DAD2– ligand into account. Three different models were defined and tested
using different geometric parameters (C=C → M distance,
M–N–C angle, and M–N–C–C torsion
angle) to describe the C=C backbone coordination with the metal
in the η4-N2-C2 π-coordination mode of the DAD2– ligand. Statistical analysis revealed that the C=C →
M distance best describes the η4-N2-C2 coordination mode using
a cutoff value of 2.46 Å for π-coordination. The developed
MOS model was used to validate the oxidation state assignment of elements
not contained within the training set (Sr, Yb, and Ho), thus demonstrating
the applicability of the MOS model to a wide range of complexes. Chromium
complexes with complex electronic structures were also shown to be
accurately described by MOS analysis. Furthermore, it is shown that
a combination of MOS analysis and FOD calculations provides an inexpensive
method to gain insight into the electronic structure of singlet spin
state (S = 0) [M(trop2dad)] transition-metal complexes
showing (potential) singlet biradical character. Assigning oxidation states to metals
and ligands is an important
tool for understanding and predicting the chemical reactivity. For
complexes containing redox-noninnocent ligands, the oxidation state
of the ligand can be ambiguous. We present a metrical oxidation state
model for 1,4-diazabutadiene ligands, correlating the intra-ligand
bond lengths with the oxidation state using information from X-ray
structures. This model accounts for the difference in bond length
distances between the different coordination modes of the fully reduced
ligand.
Collapse
Affiliation(s)
- Felix J de Zwart
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Bente Reus
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Annechien A H Laporte
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Vivek Sinha
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
11
|
Govindarajan N, Beks H, Meijer EJ. Variability of Ligand pKa during Homogeneously Catalyzed Aqueous Methanol Dehydrogenation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03907] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nitish Govindarajan
- Amsterdam Center for Multiscale Modeling and Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, 2800 Kongens, Lyngby, Denmark
| | - Hugo Beks
- Amsterdam Center for Multiscale Modeling and Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Evert Jan Meijer
- Amsterdam Center for Multiscale Modeling and Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
12
|
Liu TT, Tang SY, Hu B, Liu P, Bi S, Jiang YY. Mechanism and Origin of Chemoselectivity of Ru-Catalyzed Cross-Coupling of Secondary Alcohols to β-Disubstituted Ketones. J Org Chem 2020; 85:12444-12455. [DOI: 10.1021/acs.joc.0c01671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tian-Tian Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Shi-Ya Tang
- SINOPEC Research Institute of Safety Engineering, Qingdao 266000, People’s Republic of China
| | - Bing Hu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| |
Collapse
|
13
|
Govindarajan N, Sinha V, Trincado M, Grützmacher H, Meijer EJ, Bruin B. An In‐Depth Mechanistic Study of Ru‐Catalysed Aqueous Methanol Dehydrogenation and Prospects for Future Catalyst Design. ChemCatChem 2020. [DOI: 10.1002/cctc.202000057] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nitish Govindarajan
- Van ‘t Hoff Institute for Molecular Sciences and Amsterdam Center for Multiscale Modeling Science Park 904 1098 XH Amsterdam The Netherlands
| | - Vivek Sinha
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Van ‘t Hoff Institute for Molecular Sciences Science Park 904 1098 XH Amsterdam The Netherlands
| | - Monica Trincado
- Department of Chemistry and Applied Biosciences ETH Zürich Zürich CH-8093 Switzerland
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences ETH Zürich Zürich CH-8093 Switzerland
| | - Evert Jan Meijer
- Van ‘t Hoff Institute for Molecular Sciences and Amsterdam Center for Multiscale Modeling Science Park 904 1098 XH Amsterdam The Netherlands
| | - Bas Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Van ‘t Hoff Institute for Molecular Sciences Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
14
|
Tindall DJ, Menche M, Schelwies M, Paciello RA, Schäfer A, Comba P, Rominger F, Hashmi ASK, Schaub T. Ru0 or RuII: A Study on Stabilizing the “Activated” Form of Ru-PNP Complexes with Additional Phosphine Ligands in Alcohol Dehydrogenation and Ester Hydrogenation. Inorg Chem 2020; 59:5099-5115. [DOI: 10.1021/acs.inorgchem.0c00337] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Daniel J. Tindall
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, D-69120 Heidelberg, Germany
| | - Maximilian Menche
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, D-69120 Heidelberg, Germany
- BASF SE, Quantum Chemistry & Molecular Simulation, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| | - Mathias Schelwies
- BASF SE, Organic Synthesis, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| | - Rocco A. Paciello
- BASF SE, Organic Synthesis, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| | - Ansgar Schäfer
- BASF SE, Quantum Chemistry & Molecular Simulation, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| | - Peter Comba
- Institute of Inorganic Chemistry & Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 275, D-69120 Heidelberg, Germany
| | - Frank Rominger
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - A. Stephen K. Hashmi
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, D-69120 Heidelberg, Germany
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, D-69120 Heidelberg, Germany
- BASF SE, Organic Synthesis, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| |
Collapse
|
15
|
Casas F, Trincado M, Rodriguez‐Lugo R, Baneerje D, Grützmacher H. A Diaminopropane Diolefin Ru(0) Complex Catalyzes Hydrogenation and Dehydrogenation Reactions. ChemCatChem 2019. [DOI: 10.1002/cctc.201901739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Fernando Casas
- Department of Chemistry and Applied BiosciencesETH Zürich Zürich 8093 Switzerland
| | - Monica Trincado
- Department of Chemistry and Applied BiosciencesETH Zürich Zürich 8093 Switzerland
| | - Rafael Rodriguez‐Lugo
- Laboratorio de BioinorgánicaCentro de Química Instituto Venezolano de Investigaciones Científicas (IVIC) Caracas 1020 A Venezuela
| | - Dipshikha Baneerje
- Department of Chemistry and Applied BiosciencesETH Zürich Zürich 8093 Switzerland
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied BiosciencesETH Zürich Zürich 8093 Switzerland
| |
Collapse
|
16
|
Tavakoli G, Armstrong JE, Naapuri JM, Deska J, Prechtl MHG. Chemoenzymatic Hydrogen Production from Methanol through the Interplay of Metal Complexes and Biocatalysts. Chemistry 2019; 25:6474-6481. [PMID: 30648769 DOI: 10.1002/chem.201806351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 01/26/2023]
Abstract
Microbial methylotrophic organisms can serve as great inspiration in the development of biomimetic strategies for the dehydrogenative conversion of C1 molecules under ambient conditions. In this Concept article, a concise personal perspective on the recent advancements in the field of biomimetic catalytic models for methanol and formaldehyde conversion, in the presence and absence of enzymes and co-factors, towards the formation of hydrogen under ambient conditions is given. In particular, formaldehyde dehydrogenase mimics have been introduced in stand-alone C1 -interconversion networks. Recently, coupled systems with alcohol oxidase and dehydrogenase enzymes have been also developed for in situ formation and decomposition of formaldehyde and/or reduced/oxidized nicotinamide adenine dinucleotide (NADH/ NAD+ ). Although C1 molecules are already used in many industries for hydrogen production, these conceptual bioinspired low-temperature energy conversion processes may lead one day to more efficient energy storage systems enabling renewable and sustainable hydrogen generation for hydrogen fuel cells under ambient conditions using C1 molecules as fuels for mobile and miniaturized energy storage solutions in which harsh conditions like those in industrial plants are not applicable.
Collapse
Affiliation(s)
- Ghazal Tavakoli
- Department of Chemistry, University of Cologne, Greinstr. 6, 50939, Köln, Germany
| | - Jessica E Armstrong
- Department of Chemistry, University of Cologne, Greinstr. 6, 50939, Köln, Germany.,Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, 06511-8499, USA
| | - Janne M Naapuri
- Department of Chemistry & Materials Science, Aalto University, Kemistintie 1, FI-02150, Espoo, Finland
| | - Jan Deska
- Department of Chemistry & Materials Science, Aalto University, Kemistintie 1, FI-02150, Espoo, Finland
| | - Martin H G Prechtl
- Department of Chemistry, University of Cologne, Greinstr. 6, 50939, Köln, Germany.,Institute of Natural Science and Environment, Roskilde University, 4000, Roskilde, Denmark
| |
Collapse
|