1
|
Wu Z, Herok C, Friedrich A, Engels B, Marder TB, Hudson ZM. Impurities in Arylboronic Esters Induce Persistent Afterglow. J Am Chem Soc 2024. [PMID: 39499625 DOI: 10.1021/jacs.4c08329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Several recent reports suggest that arylboronic esters can exhibit room temperature phosphorescence (RTP), an optical property that is desirable for applications in security printing, oxygen sensing, and bioimaging. These findings challenged the fundamental notion that heavy elements or changes in orbital symmetry were required for intersystem crossing to occur in organic compounds. As we had not observed long afterglow in the many arylboronic esters we had synthesized over many years, we suspected that the RTP observed in these systems had a simpler explanation: the materials reported were impure. Herein, we synthesized 12 arylboronic esters that were previously reported to show RTP, and carefully purified them by column chromatography, recrystallization, and sublimation. We re-examined their photophysical properties alongside single-crystal X-ray diffraction analysis and detailed theoretical studies. While 4 of the 12 compounds showed long afterglows as crude products, none of them showed persistent RTP after careful purification. We also successfully isolated the impurity 4-amino-3,5-bis(pinacolatoboryl)benzonitrile (2), identifying it as the impurity responsible for inducing delayed fluorescence in 3,5-bis(pinacolatoboryl)benzonitrile (1). Doping 1 with 1.0 mol % 2 led to a persistent afterglow with a lifetime of 67 ms, which is mediated by a dimer charge transfer state. Our findings call for a re-examination of previous studies reporting RTP from arylboronic esters, highlight the importance of careful purification in photophysical research, and provide a practical strategy for designing organic materials with a long afterglow.
Collapse
Affiliation(s)
- Zhu Wu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Christoph Herok
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bernd Engels
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
2
|
Su X, Li G, He L, Chen S, Yang X, Wang G, Li S. Nickel-catalyzed, silyl-directed, ortho-borylation of arenes via an unusual Ni(II)/Ni(IV) catalytic cycle. Nat Commun 2024; 15:7549. [PMID: 39214987 PMCID: PMC11364840 DOI: 10.1038/s41467-024-51997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Nickel-catalyzed C-H bond functionalization reactions provide an impressive alternative to those with noble metal catalysts due to their unique reactivity and low cost. However, the regioselective C(sp2)-H borylation reaction of arenes accomplished by nickel catalyst remains limited. We herein disclose a silyl-directed ortho C(sp2)-H borylation of substituted arenes with a Ni(cod)2/PMe3/KHMDS catalyst system. Using readily available starting materials, this protocol provides easy access to ortho-borylated benzylic hydrosilanes bearing flexible substitution patterns. These products can serve as versatile building blocks for the synthesis of sila or sila/borine heterocycles under mild conditions. Control experiments and DFT calculations suggest that a catalytic amount of base prompts the formation of Ni(II)-Bpin-ate complex, likely related to the C(sp2)-H bond activation. This borylation reaction might follow an unusual Ni(II)/Ni(IV) catalytic cycle.
Collapse
Affiliation(s)
- Xiaoshi Su
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Guoao Li
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Linke He
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shengda Chen
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaoliang Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Shuhua Li
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| |
Collapse
|
3
|
Liu S, Luo Z, Zhao S, Luo M, Zeng X. Cr-catalyzed borylation of C(aryl)-F bonds using a terpyridine ligand. Chem Commun (Camb) 2024; 60:5201-5204. [PMID: 38651837 DOI: 10.1039/d4cc01330a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The defluoroborylation of fluoroarenes by chromium-catalyzed cleavage of unactivated C-F bonds is described. The reaction uses HBpin as the boron source, low-cost and commercially available chromium salt as the precatalyst, and terpyridine as a crucial ligand, providing a protocol with atom-efficient benefits and a wide range of applicable substrates for the functionalization of aryl C-F bonds. Preliminary mechanistic studies indicate that an unprecedented Cr-catalyzed magnesiation of the unactivated C-F bond occurred. The generated arylmagnesium intermediates then participated in the subsequent borylation reaction. The application of the strategy in the preparation of valuable derivatives is demonstrated by the late-stage functionalization of boronate ester groups.
Collapse
Affiliation(s)
- Senlin Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Zheng Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Shuaiyong Zhao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Meiming Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
4
|
Budiman YP, Perutz RN, Steel PG, Radius U, Marder TB. Applications of Transition Metal-Catalyzed ortho-Fluorine-Directed C-H Functionalization of (Poly)fluoroarenes in Organic Synthesis. Chem Rev 2024; 124:4822-4862. [PMID: 38564710 PMCID: PMC11046440 DOI: 10.1021/acs.chemrev.3c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
The synthesis of organic compounds efficiently via fewer steps but in higher yields is desirable as this reduces energy and reagent use, waste production, and thus environmental impact as well as cost. The reactivity of C-H bonds ortho to fluorine substituents in (poly)fluoroarenes with metal centers is enhanced relative to meta and para positions. Thus, direct C-H functionalization of (poly)fluoroarenes without prefunctionalization is becoming a significant area of research in organic chemistry. Novel and selective methodologies to functionalize (poly)fluorinated arenes by taking advantage of the reactivity of C-H bonds ortho to C-F bonds are continuously being developed. This review summarizes the reasons for the enhanced reactivity and the consequent developments in the synthesis of valuable (poly)fluoroarene-containing organic compounds.
Collapse
Affiliation(s)
- Yudha P. Budiman
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
| | - Robin N. Perutz
- Department
of Chemistry, University of York, York, YO10 5DD, U.K.
| | - Patrick G. Steel
- Department
of Chemistry, University of Durham, Science
Laboratories, South Road, Durham, DH1 3LE, U.K.
| | - Udo Radius
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
| | - Todd B. Marder
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
- Institute
for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg Germany
| |
Collapse
|
5
|
Budiman YP, Putra MH, Ramadhan MR, Hannifah R, Luz C, Ghafara IZ, Rustaman R, Ernawati EE, Mayanti T, Groß A, Radius U, Marder TB. Pd-Catalyzed Oxidative C-H Arylation of (Poly)fluoroarenes with Aryl Pinacol Boronates and Experimental and Theoretical Studies of its Reaction Mechanism. Chem Asian J 2024; 19:e202400094. [PMID: 38412058 DOI: 10.1002/asia.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
We report the synergistic combination of Pd(OAc)2 and Ag2O for the oxidative C-H arylation of (poly)fluoroarenes with aryl pinacol boronates (Ar-Bpin) in DMF as the solvent. This procedure can be conducted easily in air, and without using additional ligands, to afford the fluorinated unsymmetrical biaryl products in up to 98 % yield. Experimental studies suggest that the formation of [PdL2(C6F5)2] in DMF as coordinating solvent does not take place under the reaction conditions as it is stable to reductive elimination and thus would deactivate the catalyst. Thus, the intermediate [Pd(DMF)2(ArF)(Ar)] must be formed selectively to give desired arylation products. DFT calculations predict a low barrier (5.87 kcal/mol) for the concerted metalation deprotonation (CMD) process between C6F5H and the Pd(II) species formed after transmetalation between the Pd(II)X2 complex and aryl-Bpin which forms a Pd-Arrich species. Thus a Pd(Arrich)(Arpoor) complex is generated selectively which undergoes reductive elimination to generate the unsymmetrical biaryl product.
Collapse
Affiliation(s)
- Yudha P Budiman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | | | - Muhammad R Ramadhan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Raiza Hannifah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Christian Luz
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ilham Z Ghafara
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Rustaman Rustaman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Engela E Ernawati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Tri Mayanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, 89081, Ulm, Germany
- Helmholtz Institute Ulm (HIU), Electrochemical Energy Storage, 89069, Ulm, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
6
|
Pan QJ, Miao YQ, Cao HJ, Liu Z, Chen X. Visible Light-Induced 1,2-Diphenyldisulfane-Mediated Defluoroborylation of Polyfluoroarenes. J Org Chem 2024; 89:5049-5059. [PMID: 38491018 DOI: 10.1021/acs.joc.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
A green and practical protocol of defluoroborylation of polyfluoroarenes with stable and readily accessible NHC-borane was developed, using 1,2-diphenyldisulfane as a hydrogen atom transfer (HAT) and single electron transfer (SET) reagent precursor under visible-light irradiation, leading to the concise formation of value-added fluorinated organoboron scaffolds. Mechanism studies revealed the method underwent a boryl radical addition reaction with polyfluoroarene, followed by successive single electron transfer pathways and defluorination of the C-F bond to offer the targeted product. This unprecedented platform relies on 1,2-diphenyldisulfane and base without using expensive photocatalysts, highlighting the methodology has promising application value to prepare borylated polyfluoroarene compounds.
Collapse
Affiliation(s)
- Qiao-Jing Pan
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yu-Qi Miao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hou-Ji Cao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhenxing Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
7
|
Li Z, Shi Z. Late-Stage Diversification of Phosphines by C-H Activation: A Robust Strategy for Ligand Design and Preparation. Acc Chem Res 2024; 57:1057-1072. [PMID: 38488874 DOI: 10.1021/acs.accounts.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
ConspectusThe advent of the twenty-first century marked a golden era in the realm of synthetic chemistry, exemplified by groundbreaking advancements in the field of C-H activation, which is a concept that quickly transitioned from mere academic fascination to an essential element within the synthetic chemist's toolkit. This methodological breakthrough has given rise to a wealth of opportunities spanning a wide range of chemical disciplines. It has facilitated the late-stage diversification of elaborate organic frameworks, encompassing the spectrum from simple methane to complex polymers, thus refining the lead optimization process and easing the production of diverse molecular analogues. Among these strides forward, the development of phosphorus(III)-directed C-H activation stands out as an increasingly significant and inventive approach for the design and synthesis of ligands, substantially redefining the contours of synthetic methodology.Phosphines, renowned for their roles as ligands and organocatalysts, have become fundamentally important in modern organic chemistry. Their efficiency as ligands is significantly affected by coordination with transition metals, which is essential for their involvement in catalytic processes, influencing both the catalytic activity and the selectivity. Historically, the fabrication of phosphines predominantly relied on synthesis employing complex, multistep procedures. Addressing this limitation, our research has delved into ligand design and synthesis through innovative catalytic P(III)-directed C-H activation strategies. In this Account, we have explored a spectrum of procedures, including direct arylation using metal catalysis, and ventured further into domains such as C-H alkylation, alkenylation, aminocarbonylation, alkynylation, borylation, and silylation. These advances have enriched the field by providing efficient methods for the late-stage diversification of biaryl-type monophosphines as well as enabled the C-H activation of triphenylphosphine and its derivatives. Moreover, we have successfully constructed libraries of diverse axially chiral binaphthyl phosphine ligands, showcasing their potency in asymmetric catalysis. Through this Account, we aim to illuminate the exciting possibilities presented by P(III)-directed C-H activation in propelling the boundaries of organic synthesis. By highlighting our pioneering work, we hope to inspire further developments in this promising field of chemistry.
Collapse
Affiliation(s)
- Zexian Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
8
|
Guo L, Chu R, Hao X, Lei Y, Li H, Ma D, Wang G, Tung CH, Wang Y. Ag 3PO 4 enables the generation of long-lived radical cations for visible light-driven [2 + 2] and [4 + 2] pericyclic reactions. Nat Commun 2024; 15:979. [PMID: 38302484 PMCID: PMC10834519 DOI: 10.1038/s41467-024-45217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
Photocatalytic redox reactions are important for synthesizing fine chemicals from olefins, but the limited lifetime of radical cation intermediates severely restricts semiconductor photocatalysis efficiency. Here, we report that Ag3PO4 can efficiently catalyze intramolecular and intermolecular [2 + 2] and Diels-Alder cycloadditions under visible-light irradiation. The approach is additive-free, catalyst-recyclable. Mechanistic studies indicate that visible-light irradiation on Ag3PO4 generates holes with high oxidation power, which oxidize aromatic alkene adsorbates into radical cations. In photoreduced Ag3PO4, the conduction band electron (eCB-) has low reduction power due to the delocalization among the Ag+-lattices, while the particle surfaces have a strong electrostatic interaction with the radical cations, which considerably stabilize the radical cations against recombination with eCB-. The radical cation on the particle's surfaces has a lifetime of more than 2 ms, 75 times longer than homogeneous systems. Our findings highlight the effectiveness of inorganic semiconductors for challenging radical cation-mediated synthesis driven by sunlight.
Collapse
Affiliation(s)
- Lirong Guo
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan, 250100, Jinan, China
| | - Rongchen Chu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan, 250100, Jinan, China
| | - Xinyu Hao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan, 250100, Jinan, China
| | - Yu Lei
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences Beijing, 100190, Beijing, China
| | - Haibin Li
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan, 250100, Jinan, China
| | - Dongge Ma
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing, 100048, Beijing, China
| | - Guo Wang
- Department of Chemistry Capital Normal University Beijing, 100048, Beijing, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan, 250100, Jinan, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan, 250100, Jinan, China.
| |
Collapse
|
9
|
Tendera L, Kuehn L, Marder TB, Radius U. On the Reactivity of a NHC Nickel Bis-Boryl Complex: Reductive Elimination and Formation of Mono-Boryl Complexes. Chemistry 2023; 29:e202302310. [PMID: 37551752 DOI: 10.1002/chem.202302310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/09/2023]
Abstract
The synthesis of the first terminal mono-boryl complexes of nickel, which are not stabilized by a pincer ligand, is reported. The reaction of the nickel bis-boryl complex cis-[Ni(i Pr2 ImMe )2 (Bcat)2 ] 1 (cat=1,2-O2 C6 H4 ) with the small donor ligand PMe3 led to a complete ligand exchange at nickel with reductive elimination of B2 cat2 and formation of the bis-NHC adduct [B2 cat2 ⋅ (i Pr2 ImMe )2 ] 3 and [Ni(PMe3 )4 ] 2 as the metal-containing species. Electrophilic attack of MeI on complex 1 or ligand dismutation of 1 with trans-[Ni(i Pr2 ImMe )2 Br2 ] led to loss of only one boryl ligand of 1 and afforded the nickel mono-boryl complexes trans-[Ni(i Pr2 ImMe )2 (Bcat)Br] 4 a and trans-[Ni(i Pr2 ImMe )2 (Bcat)I] 4 b.
Collapse
Affiliation(s)
- Lukas Tendera
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Laura Kuehn
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Udo Radius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
10
|
Choy PY, Tse MH, Kwong FY. Recent Expedition in Pd- and Rh-Catalyzed C (Ar) -B Bond Formations and Their Applications in Modern Organic Syntheses. Chem Asian J 2023; 18:e202300649. [PMID: 37655883 DOI: 10.1002/asia.202300649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/02/2023]
Abstract
Transition metal-catalyzed borylation has emerged as a powerful and versatile strategy for synthesizing organoboron compounds. These compounds have found widespread applications in various aspects, including organic synthesis, materials science, and medicinal chemistry. This review provides a concise summary of the recent advances in palladium- and rhodium-catalyzed borylation from 2013 to 2023. The review covers the representative examples of catalysts, substrates scope and reaction conditions, with particular emphasis on the development of catalyst systems, such as phosphine ligands, NHC-carbene, and more. The diverse array of borylative products obtained for further applications in Suzuki-Miyaura coupling, and other transformations, are also discussed. Future directions in this rapidly evolving field, with the goal of designing more efficient, selective borylation methodologies are highlighted, too.
Collapse
Affiliation(s)
- Pui Ying Choy
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
- Shenzhen Center of Novel Functional Molecules, Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, CUHK Shenzhen Research Institute, No. 10. Second Yuexing Road, Shenzhen, 518507, P. R. China
| | - Man Ho Tse
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
| | - Fuk Yee Kwong
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P. R. China
- Shenzhen Center of Novel Functional Molecules, Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, CUHK Shenzhen Research Institute, No. 10. Second Yuexing Road, Shenzhen, 518507, P. R. China
| |
Collapse
|
11
|
Rehman MU, Adeel M, Alshehri SM, Aiman U, Villinger A, Bullo S, Baby R, Asghar MA, Kuznetsov AE, Sanyang ML. Novel Fluorinated Biphenyl Compounds Synthesized via Pd(0)-Catalyzed Reactions: Experimental and Computational Studies. ACS OMEGA 2023; 8:29414-29423. [PMID: 37599924 PMCID: PMC10433329 DOI: 10.1021/acsomega.3c01993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023]
Abstract
Five new difluorinated biphenyl compounds, 4'-(tert-butyl)-3,4-difluoro-1,1'-biphenyl (TBDFBP), 1-(3',4'-difluoro-[1,1'-biphenyl]-4-yl)ethanone (DFBPE), 3',4'-difluoro-2,5-dimethoxy-1,1'-biphenyl (DFDMBP), 3,4-difluoro-3'-nitro-1,1'-biphenyl (DFNBP), and (3',4'-difluoro-[1,1'-biphenyl]-3-yl)(methyl)sulfane (DFBPMS), have been successfully synthesized by the well-known Suzuki-Miyaura coupling with excellent yields averaging 78%. UV-visible, Fourier transform infrared ,and 13C NMR and 1H NMR spectroscopies along with single-crystal X-ray diffraction (SC-XRD) analysis (for TBDFBP and DFBPE) were used for the structure elucidation of the synthesized compounds. The SC-XRD results demonstrated the crystal systems of the studied compounds, TBDFBP and DFBPE, to be monoclinic, and their space groups were found to be P21/c. Also, a detailed density functional theory study was performed. The calculated structures for TBDFBP and DFBPE were found to agree quite well with the experimental results. The natural bonding orbital charge analysis suggested that molecules of these compounds should interact quite noticeably with each other in the solid phase and with polar solvent molecules. Molecular electrostatic potential analysis suggests that accumulation of positive and negative potential implies possibility of quite significant dipole-dipole intermolecular interactions in crystals of these compounds, as well as quite strong interactions with polar solvent molecules. The global reactivity parameters analysis suggests all compounds to be quite stable in redox reactions, with the compound DFNBP being relatively more reactive and the compounds TBDFBP and DFDMBP being relatively more stable.
Collapse
Affiliation(s)
- Muhammad
Atta Ur Rehman
- Institute
of Chemical Sciences, Gomal University, Dera Ismail Khan 29220, Khyber Pukhtoon Khuwa, Pakistan
| | - Muhammad Adeel
- Institute
of Chemical Sciences, Gomal University, Dera Ismail Khan 29220, Khyber Pukhtoon Khuwa, Pakistan
| | - Saad M. Alshehri
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Ume Aiman
- Institute
of Chemical Sciences, Gomal University, Dera Ismail Khan 29220, Khyber Pukhtoon Khuwa, Pakistan
| | - Alexander Villinger
- Institute
of Chemistry, Department of Inorganic Chemistry, University of Rostock, Albert Einstein Strasse, 18059 Rostock, Germany
| | - Saifullah Bullo
- Department
of Human and Rehabilitation Sciences, Begum
Nusrat Bhutto Women University, Sukkur 65200, Sindh, Pakistan
| | - Rabia Baby
- Department
of Education, Sukkur IBA University, Sukkur 65200, Pakistan
| | - Muhammad Adnan Asghar
- Department
of Chemistry, Division of Science and Technology, University of Education Lahore, Lahore 89002, Pakistan
| | - Aleksey E. Kuznetsov
- Departamento
de Química, Campus Santiago Vitacura, Universidad Técnica Federico Santa María, Avenue Santa María 6400, Vitacura 7660251, Chile
| | - Muhammed Lamin Sanyang
- Directorate
of Research and Consultancy, University
of The Gambia, Kanifing Campus, MDI Road, P.O Box 3530, Serrekunda 3530, The Gambia
| |
Collapse
|
12
|
Thangavadivale VG, Tendera L, Bertermann R, Radius U, Beweries T, Perutz RN. Solution and solid-state studies of hydrogen and halogen bonding with N-heterocyclic carbene supported nickel(II) fluoride complexes. Faraday Discuss 2023; 244:62-76. [PMID: 37097153 DOI: 10.1039/d2fd00171c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nickel fluoride complexes of the type [Ni(F)(L)2(ArF)] (L = phosphine, ArF = fluorinated arene) are well-known to form strong halogen and hydrogen bonds in solution and in the solid state. A comprehensive study of such non-covalent interactions using bis(carbene) complexes as acceptors and suitable halogen and hydrogen bond donors is presented. In solution, the complex [Ni(F)(iPr2Im)2(C6F5)] forms halogen and hydrogen bonds with iodopentafluorobenzene and indole, respectively, which have formation constants (K300) an order of magnitude greater than those of structurally related phosphine supported nickel fluorides. Co-crystallisation of this complex and its backbone-methylated analogue [Ni(F)(iPr2Me2Im)2(C6F5)] with 1,4-diiodotetrafluorobenzene produces halogen bonding adducts which were characterised by X-ray analysis and 19F MAS solid state NMR analysis. Differences in the chemical shifts between the nickel fluoride and its halogen bonding adduct are well in line with data that were obtained from titration studies in solution.
Collapse
Affiliation(s)
| | - Lukas Tendera
- Institut für Anorganische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany.
| | - Rüdiger Bertermann
- Institut für Anorganische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany.
| | - Udo Radius
- Institut für Anorganische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany.
| | - Torsten Beweries
- Leibniz-Institut für Katalyse, Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - Robin N Perutz
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
13
|
Doi R, Kajiwara K, Negoro T, Koh K, Ogoshi S. Regioselective C-F Bond Transformations of Silyl Difluoroenolates. Org Lett 2023. [PMID: 37466250 DOI: 10.1021/acs.orglett.3c02057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Herein, we report the development of a nickel-catalyzed cross-coupling reaction of silyl difluoroenolates with aryl zinc reagents via C-F bond cleavage. Treatment of a stoichiometric amount of Ni(0)/N-heterocyclic carbene (NHC) with silyl difluoroenolates in the presence of a lithium salt resulted in C-F bond cleavage to selectively afford the corresponding (Z)-alkenyl Ni complexes. On the basis of the observations, we developed a catalytic cross-coupling reaction that selectively delivers a single geometric isomer of a fluoroenolate.
Collapse
Affiliation(s)
- Ryohei Doi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koki Kajiwara
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taiki Negoro
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kenta Koh
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Wu FP, Gu XW, Geng HQ, Wu XF. Copper-catalyzed defluorinative arylboration of vinylarenes with polyfluoroarenes. Chem Sci 2023; 14:2342-2347. [PMID: 36873842 PMCID: PMC9977451 DOI: 10.1039/d2sc06472c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/06/2023] [Indexed: 02/09/2023] Open
Abstract
An unprecedented but challenging defluorinative arylboration has been achieved. Enabled by a copper catalyst, an interesting procedure on defluorinative arylboration of styrenes has been established. With polyfluoroarenes as the substrates, this methodology offers flexible and facile access to provide a diverse assortment of products under mild reaction conditions. In addition, by using a chiral phosphine ligand, an enantioselective defluorinative arylboration was also realized, affording a set of chiral products with unprecedented levels of enantioselectivity.
Collapse
Affiliation(s)
- Fu-Peng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xing-Wei Gu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Hui-Qing Geng
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany .,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
15
|
Lamola JL, Moshapo PT, Holzapfel CW, Makhubela BC, Christopher Maumela M. Efficient system for facile access to ortho-substituted aryl boronates through palladium-catalysed borylation. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
16
|
Zapf L, Riethmann M, Föhrenbacher SA, Finze M, Radius U. An easy-to-perform evaluation of steric properties of Lewis acids. Chem Sci 2023; 14:2275-2288. [PMID: 36873848 PMCID: PMC9977453 DOI: 10.1039/d3sc00037k] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/04/2023] [Indexed: 02/08/2023] Open
Abstract
Steric and electronic effects play a very important role in chemistry, as these effects influence the shape and reactivity of molecules. Herein, an easy-to-perform approach to assess and quantify steric properties of Lewis acids with differently substituted Lewis acidic centers is reported. This model applies the concept of the percent buried volume (%V Bur) to fluoride adducts of Lewis acids, as many fluoride adducts are crystallographically characterized and are frequently calculated to judge fluoride ion affinities (FIAs). Thus, data such as cartesian coordinates are often easily available. A list of 240 Lewis acids together with topographic steric maps and cartesian coordinates of an oriented molecule suitable for the SambVca 2.1 web application is provided, together with different FIA values taken from the literature. Diagrams of %V Bur as a scale for steric demand vs. FIA as a scale for Lewis acidity provide valuable information about stereo-electronic properties of Lewis acids and an excellent evaluation of steric and electronic features of the Lewis acid under consideration. Furthermore, a novel LAB-Rep model (Lewis acid/base repulsion model) is introduced, which judges steric repulsion in Lewis acid/base pairs and helps to predict if an arbitrary pair of Lewis acid and Lewis base can form an adduct with respect to their steric properties. The reliability of this model was evaluated in four selected case studies, which demonstrate the versatility of this model. For this purpose, a user-friendly Excel spreadsheet was developed and is provided in the ESI, which works with listed buried volumes of Lewis acids %V Bur_LA and of Lewis bases %V Bur_LB, and no results from experimental crystal structures or quantum chemical calculations are necessary to evaluate steric repulsion in these Lewis acid/base pairs.
Collapse
Affiliation(s)
- Ludwig Zapf
- Institute of Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany https://www.ak-radius.de https://go.uniwue.de/finze-group.,Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Melanie Riethmann
- Institute of Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany https://www.ak-radius.de https://go.uniwue.de/finze-group.,Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Steffen A Föhrenbacher
- Institute of Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany https://www.ak-radius.de https://go.uniwue.de/finze-group
| | - Maik Finze
- Institute of Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany https://www.ak-radius.de https://go.uniwue.de/finze-group.,Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Udo Radius
- Institute of Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany https://www.ak-radius.de https://go.uniwue.de/finze-group
| |
Collapse
|
17
|
Tendera L, Fantuzzi F, Marder TB, Radius U. Nickel boryl complexes and nickel-catalyzed alkyne borylation. Chem Sci 2023; 14:2215-2228. [PMID: 36845942 PMCID: PMC9945561 DOI: 10.1039/d2sc04690c] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/27/2023] [Indexed: 01/28/2023] Open
Abstract
The first nickel bis-boryl complexes cis-[Ni( i Pr2ImMe)2(Bcat)2], cis-[Ni( i Pr2ImMe)2(Bpin)2] and cis-[Ni( i Pr2ImMe)2(Beg)2] are reported, which were prepared via the reaction of a source of [Ni( i Pr2ImMe)2] with the diboron(4) compounds B2cat2, B2pin2 and B2eg2 ( i Pr2ImMe = 1,3-di-iso-propyl-4,5-dimethylimidazolin-2-ylidene; B2cat2 = bis(catecholato)diboron; B2pin2 = bis(pinacolato)diboron; B2eg2 = bis(ethylene glycolato)diboron). X-ray diffraction and DFT calculations strongly suggest that a delocalized, multicenter bonding scheme dictates the bonding situation of the NiB2 moiety in these square planar complexes, reminiscent of the bonding situation of "non-classical" H2 complexes. [Ni( i Pr2ImMe)2] also efficiently catalyzes the diboration of alkynes using B2cat2 as the boron source under mild conditions. In contrast to the known platinum-catalyzed diboration, the nickel system follows a different mechanistic pathway, which not only provides the 1,2-borylation product in excellent yields, but also provides an efficient approach to other products such as C-C coupled borylation products or rare tetra-borylated compounds. The mechanism of the nickel-catalyzed alkyne borylation was examined by means of stoichiometric reactions and DFT calculations. Oxidative addition of the diboron reagent to nickel is not dominant; the first steps of the catalytic cycle are coordination of the alkyne to [Ni( i Pr2ImMe)2] and subsequent borylation at the coordinated and, thus, activated alkyne to yield complexes of the type [Ni(NHC)2(η2-cis-(Bcat)(R)C[double bond, length as m-dash]C(R)(Bcat))], exemplified by the isolation and structural characterization of [Ni( i Pr2ImMe)2(η2-cis-(Bcat)(Me)C[double bond, length as m-dash]C(Me)(Bcat))] and [Ni( i Pr2ImMe)2(η2-cis-(Bcat)(H7C3)C[double bond, length as m-dash]C(C3H7)(Bcat))].
Collapse
Affiliation(s)
- Lukas Tendera
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Felipe Fantuzzi
- School of Chemistry and Forensic Science, University of KentPark Wood RdCanterburyCT2 7NHUK
| | - Todd B. Marder
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität WürzburgAm Hubland97074 WürzburgGermany,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität WürzburgAm Hubland97074 WürzburgGermany
| | - Udo Radius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
18
|
Xu W, Shao Q, Xia C, Zhang Q, Xu Y, Liu Y, Wu M. Visible-light-induced selective defluoroalkylations of polyfluoroarenes with alcohols. Chem Sci 2023; 14:916-922. [PMID: 36755709 PMCID: PMC9890929 DOI: 10.1039/d2sc06290a] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
To provide α-polyfluoroarylalcohols, a novel protocol for the selective defluoroalkylation of polyfluoroarenes with easily accessible alcohols was reported via the cooperation of photoredox and hydrogen atom transfer (HAT) strategies with the assistance of Lewis acids under visible light irradiation. The protocol featured broad scope, excellent regioselectivity for both C-H and C-F bond cleavages, and mild conditions. Mechanistic studies suggested that the reaction occurred through Lewis acid-promoted HAT to provide an alkyl radical and sequential addition to polyfluoroarenes. Impressively, the regioselectivity for C-F cleavage was verified with the Fukui function. The feasibility and application of this protocol on fluoroarene synthesis were well illustrated by gram-scale synthesis under both batch and flow conditions, late-stage decoration of bioactive compounds, and further transformations of the fluoroarylalcohols.
Collapse
Affiliation(s)
- Wengang Xu
- College of New Energy, China University of Petroleum (East China) Qingdao Shandong Province 266580 P. R. China
| | - Qi Shao
- College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China)QingdaoShandong Province266580P. R. China
| | - Congjian Xia
- College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China)QingdaoShandong Province266580P. R. China
| | - Qiao Zhang
- College of New Energy, China University of Petroleum (East China) Qingdao Shandong Province 266580 P. R. China
| | - Yadi Xu
- College of New Energy, China University of Petroleum (East China) Qingdao Shandong Province 266580 P. R. China
| | - Yingguo Liu
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou Henan Province 450001 P. R. China
| | - Mingbo Wu
- College of New Energy, China University of Petroleum (East China) Qingdao Shandong Province 266580 P. R. China .,College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao Shandong Province 266580 P. R. China
| |
Collapse
|
19
|
Wei Q, Lee Y, Liang W, Chen X, Mu BS, Cui XY, Wu W, Bai S, Liu Z. Photocatalytic direct borylation of carboxylic acids. Nat Commun 2022; 13:7112. [PMID: 36402764 PMCID: PMC9675845 DOI: 10.1038/s41467-022-34833-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022] Open
Abstract
The preparation of high value-added boronic acids from cheap and plentiful carboxylic acids is desirable. To date, the decarboxylative borylation of carboxylic acids is generally realized through the extra step synthesized redox-active ester intermediate or in situ generated carboxylic acid covalent derivatives above 150 °C reaction temperature. Here, we report a direct decarboxylative borylation method of carboxylic acids enabled by visible-light catalysis and that does not require any extra stoichiometric additives or synthesis steps. This operationally simple process produces CO2 and proceeds under mild reaction conditions, in terms of high step economy and good functional group compatibility. A guanidine-based biomimetic active decarboxylative mechanism is proposed and rationalized by mechanistic studies. The methodology reported herein should see broad application extending beyond borylation.
Collapse
Affiliation(s)
- Qiang Wei
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Yuhsuan Lee
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Weiqiu Liang
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Xiaolei Chen
- grid.32566.340000 0000 8571 0482Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000 China
| | - Bo-shuai Mu
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Xi-Yang Cui
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Wangsuo Wu
- grid.32566.340000 0000 8571 0482Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000 China
| | - Shuming Bai
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Zhibo Liu
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
20
|
Tao XW, Yi LN, Huang MY, Fu Y, Yang Q. Direct C(sp 3)-H Polyfluoroarylation: Access to Polyfluoroaryl Amino Acids via Rh-Catalyzed Selective C-F Bond Cleavage. J Org Chem 2022; 87:14476-14486. [PMID: 36226632 DOI: 10.1021/acs.joc.2c01906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A catalytic selective C-F bond alkylation method for polyfluoroarene with glycinates and derivatives in the presence of a DavePhos-ligated Rh catalyst was developed. This method avoids the preactivation of alkylating reagents and provides an efficient and straightforward route to synthesize a series of polyfluoroaryl amino acids via C(sp3)-H functionalization. This reaction proceeds under mild conditions and exhibits high reactivity and excellent chemoselectivities. Meanwhile, the synthetic potential of this method was demonstrated by gram-scale synthesis, and further transformations proved the application value of the products as well.
Collapse
Affiliation(s)
- Xuan-Wen Tao
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Li-Na Yi
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Meng-Yi Huang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yun Fu
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qiang Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
21
|
Moore JT, Dorantes MJ, Pengmei Z, Schwartz TM, Schaffner J, Apps SL, Gaggioli CA, Das U, Gagliardi L, Blank DA, Lu CC. Light-Driven Hydrodefluorination of Electron-Rich Aryl Fluorides by an Anionic Rhodium-Gallium Photoredox Catalyst. Angew Chem Int Ed Engl 2022; 61:e202205575. [PMID: 36017770 PMCID: PMC9826370 DOI: 10.1002/anie.202205575] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 01/11/2023]
Abstract
An anionic Rh-Ga complex catalyzed the hydrodefluorination of challenging C-F bonds in electron-rich aryl fluorides and trifluoromethylarenes when irradiated with violet light in the presence of H2 , a stoichiometric alkoxide base, and a crown-ether additive. Based on theoretical calculations, the lowest unoccupied molecular orbital (LUMO), which is delocalized across both the Rh and Ga atoms, becomes singly occupied upon excitation, thereby poising the Rh-Ga complex for photoinduced single-electron transfer (SET). Stoichiometric and control reactions support that the C-F activation is mediated by the excited anionic Rh-Ga complex. After SET, the proposed neutral Rh0 intermediate was detected by EPR spectroscopy, which matched the spectrum of an independently synthesized sample. Deuterium-labeling studies corroborate the generation of aryl radicals during catalysis and their subsequent hydrogen-atom abstraction from the THF solvent to generate the hydrodefluorinated arene products. Altogether, the combined experimental and theoretical data support an unconventional bimetallic excitation that achieves the activation of strong C-F bonds and uses H2 and base as the terminal reductant.
Collapse
Affiliation(s)
- James T. Moore
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Michael J. Dorantes
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Zihan Pengmei
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Timothy M. Schwartz
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA,Institut für Anorganische ChemieUniversität BonnGerhard-Domagk-Str. 1Bonn53121Deutschland
| | - Jacob Schaffner
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Samantha L. Apps
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Carlo A. Gaggioli
- Department of ChemistryUniversity of Chicago5735 S Ellis Ave.ChicagoIllinois60637USA
| | - Ujjal Das
- Institut für Anorganische ChemieUniversität BonnGerhard-Domagk-Str. 1Bonn53121Deutschland
| | - Laura Gagliardi
- Department of ChemistryUniversity of Chicago5735 S Ellis Ave.ChicagoIllinois60637USA
| | - David A. Blank
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Connie C. Lu
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA,Institut für Anorganische ChemieUniversität BonnGerhard-Domagk-Str. 1Bonn53121Deutschland
| |
Collapse
|
22
|
Bayer L, Birenheide BS, Krämer F, Lebedkin S, Breher F. Heterobimetallic Gold/Ruthenium Complexes Synthesized via Post-functionalization and Applied in Dual Photoredox Gold Catalysis. Chemistry 2022; 28:e202201856. [PMID: 35924459 DOI: 10.1002/chem.202201856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 01/07/2023]
Abstract
The synthesis of heterobimetallic AuI /RuII complexes of the general formula syn- and anti-[{AuCl}(L1∩L2){Ru(bpy)2 }][PF6 ]2 is reported. The ditopic bridging ligand L1∩L2 refers to a P,N hybrid ligand composed of phosphine and bipyridine substructures, which was obtained via a post-functionalization strategy based on Diels-Alder reaction between a phosphole and a maleimide moiety. It was found that the stereochemistry at the phosphorus atom of the resulting 7-phosphanorbornene backbone can be controlled by executing the metal coordination and the cycloaddition reaction in a different order. All precursors, as well as the mono- and multimetallic complexes, were isolated and fully characterized by various spectroscopic methods such as NMR, IR, and UV-vis spectroscopy as well as cyclic voltammetry. Photophysical measurements show efficient phosphorescence for the investigated monometallic complex anti-[(L1∩L2){Ru(bpy)2 }][PF6 ]2 and the bimetallic analogue syn-[{AuCl}(L1∩L2){Ru(bpy)2 }][PF6 ]2 , thus indicating a small influence of the {AuCl} fragment on the photoluminescence properties. The heterobimetallic AuI /RuII complexes syn- and anti-[{AuCl}(L1∩L2){Ru(bpy)2 }][PF6 ]2 are both active catalysts in the P-arylation of aryldiazonium salts promoted by visible light with H-phosphonate affording arylphosphonates in yields of up to 91 %. Both dinuclear complexes outperform their monometallic counterparts.
Collapse
Affiliation(s)
- Lea Bayer
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Division Molecular Chemistry, Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Bernhard S Birenheide
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Division Molecular Chemistry, Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Felix Krämer
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Division Molecular Chemistry, Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Sergei Lebedkin
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Postfach 3630, 76021, Karlsruhe, Germany
| | - Frank Breher
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Division Molecular Chemistry, Engesserstraße 15, 76131, Karlsruhe, Germany
| |
Collapse
|
23
|
Dodd NA, Cao Y, Bacsa J, Towles EC, Gray TG, Sadighi JP. Three-Electron Nickel(I)/Nickel(0) Half-Bond. Inorg Chem 2022; 61:16317-16324. [PMID: 36179078 DOI: 10.1021/acs.inorgchem.2c02291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An (N-heterocyclic carbene)nickel(I) cation precursor reacts with the corresponding nickel(0) complex to form a dinickel(I,0) monocation. The Ni···Ni distance in this cation is 0.93 Å shorter than in the analogous dinickel(0) complex. Although the solid-state structure shows equivalent Ni centers, density functional theory calculations indicate significant electronic localization. Reactions with CO and NO form mononuclear carbonyl and nitrosyl complexes. Oxidative addition of an aryl bromide results in C-arylation of the carbene ligands.
Collapse
Affiliation(s)
- Neil A Dodd
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Yu Cao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - John Bacsa
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States.,X-ray Crystallography Center, Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Eric C Towles
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Thomas G Gray
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Joseph P Sadighi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
24
|
Chen YJ, Deng WH, Guo JD, Ci RN, Zhou C, Chen B, Li XB, Guo XN, Liao RZ, Tung CH, Wu LZ. Transition-Metal-Free, Site-Selective C-F Arylation of Polyfluoroarenes via Electrophotocatalysis. J Am Chem Soc 2022; 144:17261-17268. [PMID: 36070360 DOI: 10.1021/jacs.2c08068] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Direct CAr-F arylation is effective and sustainable for synthesis of polyfluorobiaryls with different degrees of fluorination, which are important motifs in medical and material chemistry. However, with no aid of transition metals, the engagement of CAr-F bond activation has proved difficult. Herein, an unprecedented transition-metal-free strategy is reported for site-selective CAr-F arylation of polyfluoroarenes with simple (het)arenes. By merging N,N-bis(2,6-diisopropylphenyl)perylene-3,4,9,10-bis(dicarboximide)-catalyzed electrophotocatalytic reduction and anodic nitroxyl radical oxidation in an electrophotocatalytic cell, various polyfluoroaromatics (2F-6F and 8F), especially inactive partially fluorinated aromatics, undergo sacrificial-reagents-free C-F bond arylation with high regioselectivity, and the yields are comparable to those for reported transition-metal catalysis. This atom- and step-economic protocol features a paired electrocatalysis with organic mediators in both cathodic and anodic processes. The broad substrate scope and good functional-group compatibility highlight the merits of this operationally simple strategy. Moreover, the easy gram-scale synthesis and late-stage functionalization collectively advocate for the practical value, which would promote the vigorous development of fluorine chemistry.
Collapse
Affiliation(s)
- Ya-Jing Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wen-Hao Deng
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Jia-Dong Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Rui-Nan Ci
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiao-Ning Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
25
|
Moore JT, Dorantes MJ, Pengmei Z, Schwartz TM, Schaffner J, Apps SL, Gaggioli CA, Das U, Gagliardi L, Blank DA, Lu CC. Light‐Driven Hydrodefluorination of Electron‐Rich Aryl Fluorides by an Anionic Rhodium‐Gallium Photoredox Catalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- James T. Moore
- University of Minnesota College of Science and Engineering Chemistry UNITED STATES
| | - Michael J. Dorantes
- University of Minnesota College of Science and Engineering Chemistry UNITED STATES
| | - Zihan Pengmei
- University of Chicago Department of Chemistry Chemistry UNITED STATES
| | - Timothy M. Schwartz
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Inorganic Chemistry GERMANY
| | - Jacob Schaffner
- University of Minnesota College of Science and Engineering Chemistry UNITED STATES
| | - Samantha L. Apps
- University of Minnesota College of Science and Engineering Chemistry UNITED STATES
| | - Carlo A. Gaggioli
- University of Chicago Department of Chemistry Chemistry UNITED STATES
| | - Ujjal Das
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Inorganic Chemistry GERMANY
| | - Laura Gagliardi
- University of Chicago Department of Chemistry Chemistry UNITED STATES
| | - David A. Blank
- University of Minnesota College of Science and Engineering Chemistry UNITED STATES
| | - Connie C. Lu
- University of Minnesota College of Science and Engineering Chemistry Gerhard-Domagk-Straße 1 53121 Bonn GERMANY
| |
Collapse
|
26
|
Tendera L, Krummenacher I, Radius U. Cationic Nickel d9‐Metalloradicals [Ni(NHC)2]+. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lukas Tendera
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Anorganische Chemie GERMANY
| | - Ivo Krummenacher
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Anorganische Chemie GERMANY
| | - Udo Radius
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Institut für Anorganische Chemie Am Hubland 97074 Würzburg GERMANY
| |
Collapse
|
27
|
Wang S, Ma P, Shaik S, Chen H. Valence-Inverted States of Nickel(II) Complexes Perform Facile C-H Bond Activation. J Am Chem Soc 2022; 144:14607-14613. [PMID: 35925767 DOI: 10.1021/jacs.2c03835] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Valence-inverted reactivity (VIR) is discovered here through high-level computations of excited states of Ni(II) complexes that are generated by triplet energy transfer. For example, the so-generated 3[(Ar)(bpy)NiII(Br)] species possesses a valence-inverted occupancy, dxy1dxz1dx2-y22, wherein the uppermost dx2-y2 orbital is metal-ligand antibonding. This state promotes C-H bond activation of THF and its cross-coupling to the aryl ligand. Thus, due to the metal-ligand antibonding character of dx2-y2, the dxy1dx2-y22 subshell opens a Ni-coordination site by shifting the bidentate bipyridine ligand to monodentate plus a dangling pyridine. The tricoordinate Ni(II) intermediate inserts into a C-H bond of THF, transfers a proton to the dangling pyridine moiety, and eventually generates an arylated THF by reductive-coupling. The calculated high kinetic isotope effect is in accord with experiment, both revealing C-H activation. The VIR pattern is novel, its cross-coupling reaction is highly useful, and it is generally expected to occur in other d8 complexes.
Collapse
Affiliation(s)
- Shaohong Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengchen Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190400 Jerusalem, Israel
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
28
|
Fan F, Zhao L, Luo M, Zeng X. Chromium-Catalyzed Selective Cross-Electrophile Coupling between Unactivated C(aryl)–F and C(aryl)–O Bonds. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fei Fan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lixing Zhao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Meiming Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
29
|
Ma X, Kuang Z, Song Q. Recent Advances in the Construction of Fluorinated Organoboron Compounds. JACS AU 2022; 2:261-279. [PMID: 35252978 PMCID: PMC8889561 DOI: 10.1021/jacsau.1c00129] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 05/05/2023]
Abstract
Fluorinated organoboron compounds are important synthetic building blocks that combine the unique characteristics of a fluorinated motif with the versatile synthetic applications of organoboron moiety. This review article guides the research on fluorinated organoboron compounds mainly from four aspects in recent years: selective monodefluoroborylation of polyfluoroarenes and polyfluoroalkenes, selective borylation of fluorinated substrates, selective fluorination of organoboron compounds, and borofluorination of alkynes/olefins. In addition, this review will provide a necessary guidance and inspiration for the research on the valuable synthetic building block fluorinated organoboron compounds.
Collapse
Affiliation(s)
- Xingxing Ma
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Zhijie Kuang
- Institute
of Next Generation Matter Transformation, College of Materials Science
Engineering & Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
- Institute
of Next Generation Matter Transformation, College of Materials Science
Engineering & Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| |
Collapse
|
30
|
Marciniec B, Pietraszuk C, Pawluć P, Maciejewski H. Inorganometallics (Transition Metal-Metalloid Complexes) and Catalysis. Chem Rev 2022; 122:3996-4090. [PMID: 34967210 PMCID: PMC8832401 DOI: 10.1021/acs.chemrev.1c00417] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 11/28/2022]
Abstract
While the formation and breaking of transition metal (TM)-carbon bonds plays a pivotal role in the catalysis of organic compounds, the reactivity of inorganometallic species, that is, those involving the transition metal (TM)-metalloid (E) bond, is of key importance in most conversions of metalloid derivatives catalyzed by TM complexes. This Review presents the background of inorganometallic catalysis and its development over the last 15 years. The results of mechanistic studies presented in the Review are related to the occurrence of TM-E and TM-H compounds as reactive intermediates in the catalytic transformations of selected metalloids (E = B, Si, Ge, Sn, As, Sb, or Te). The Review illustrates the significance of inorganometallics in catalysis of the following processes: addition of metalloid-hydrogen and metalloid-metalloid bonds to unsaturated compounds; activation and functionalization of C-H bonds and C-X bonds with hydrometalloids and bismetalloids; activation and functionalization of C-H bonds with vinylmetalloids, metalloid halides, and sulfonates; and dehydrocoupling of hydrometalloids. This first Review on inorganometallic catalysis sums up the developments in the catalytic methods for the synthesis of organometalloid compounds and their applications in advanced organic synthesis as a part of tandem reactions.
Collapse
Affiliation(s)
- Bogdan Marciniec
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań,
Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Cezary Pietraszuk
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Piotr Pawluć
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań,
Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Hieronim Maciejewski
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| |
Collapse
|
31
|
Zhu Z, Lin L, Xiao J, Shi Z. Nickel‐Catalyzed Stereo‐ and Enantioselective Cross‐Coupling of
gem
‐Difluoroalkenes with Carbon Electrophiles by C−F Bond Activation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ziqi Zhu
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Lin Lin
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Jieshuai Xiao
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 China
| |
Collapse
|
32
|
Xi L, Du L, Shi Z. Nickel-catalyzed reductive cross-coupling of polyfluoroarenes with alkyl electrophiles by site-selective C–F bond activation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Huang M, Hu J, Krummenacher I, Friedrich A, Braunschweig H, Westcott SA, Radius U, Marder TB. Base-Mediated Radical Borylation of Alkyl Sulfones. Chemistry 2022; 28:e202103866. [PMID: 34713940 PMCID: PMC9299846 DOI: 10.1002/chem.202103866] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/06/2022]
Abstract
A practical and direct method was developed for the production of versatile alkyl boronate esters via transition metal-free borylation of primary and secondary alkyl sulfones. The key to the success of the strategy is the use of bis(neopentyl glycolato) diboron (B2 neop2 ), with a stoichiometric amount of base as a promoter. The practicality and industrial potential of this protocol are highlighted by its wide functional group tolerance, the late-stage modification of complex compounds, no need for further transesterification, and operational simplicity. Radical clock, radical trap experiments, and EPR studies were conducted which show that the borylation process involves radical intermediates.
Collapse
Affiliation(s)
- Mingming Huang
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jiefeng Hu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Stephen A. Westcott
- Department of Chemistry & BiochemistryMount Allison UniversitySackvilleNB E4L 1G8Canada
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
34
|
Wang Z, Sun Y, Shen LY, Yang WC, Meng F, Li P. Photochemical and electrochemical strategies in C–F bond activation and functionalization. Org Chem Front 2022. [DOI: 10.1039/d1qo01512e] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recent advances in photochemical or electrochemical C–F bond activation and functionalization have been summarized and discussed.
Collapse
Affiliation(s)
- Zhanghong Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Yu Sun
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Liu-Yu Shen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Wen-Chao Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Fei Meng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Pinhua Li
- Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. of China
| |
Collapse
|
35
|
Kuehn L, Zapf L, Werner L, Stang M, Würtemberger-Pietsch S, Krummenacher I, Braunschweig H, Lacôte E, Marder TB, Radius U. NHC induced radical formation via homolytic cleavage of B–B bonds and its role in organic reactions. Chem Sci 2022; 13:8321-8333. [PMID: 35919710 PMCID: PMC9297536 DOI: 10.1039/d2sc02096c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
New borylation methodologies have been reported recently, wherein diboron(4) compounds apparently participate in free radical couplings via the homolytic cleavage of the B–B bond. We report herein that bis-NHC adducts of the type (NHC)2·B2(OR)4, which are thermally unstable and undergo intramolecular ring expansion reactions (RER), are sources of boryl radicals of the type NHC–BR2˙, exemplified by Me2ImMe·Bneop˙ 1a (Me2ImMe = 1,3,4,5-tetramethyl-imidazolin-2-ylidene, neop = neopentylglycolato), which are formed by homolytic B–B bond cleavage. Attempts to apply the boryl moiety 1a in a metal-free borylation reaction by suppressing the RER failed. However, based on these findings, a protocol was developed using Me2ImMe·B2pin23 for the transition metal- and additive-free boryl transfer to substituted aryl iodides and bromides giving aryl boronate esters in good yields. Analysis of the side products and further studies concerning the reaction mechanism revealed that radicals are likely involved. An aryl radical was trapped by TEMPO, an EPR resonance, which was suggestive of a boron-based radical, was detected in situ, and running the reaction in styrene led to the formation of polystyrene. The isolation of a boronium cation side product, [(Me2ImMe)2·Bpin]+I−7, demonstrated the fate of the second boryl moiety of B2pin2. Interestingly, Me2ImMe NHC reacts with aryl iodides and bromides generating radicals. A mechanism for the boryl radical transfer from Me2ImMe·B2pin23 to aryl iodides and bromides is proposed based on these experimental observations. Bis-NHC adducts of the type (NHC)2·B2(OR)4 are sources of boryl radicals of the type NHC–BR2˙, which are formed by homolytic B–B bond cleavage.![]()
Collapse
Affiliation(s)
- Laura Kuehn
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ludwig Zapf
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Luis Werner
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Stang
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sabrina Würtemberger-Pietsch
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Emmanuel Lacôte
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, CNES, ArianeGroup, LHCEP, Bât. Raulin, 2 rue Victor Grignard, F-69622 Villeurbanne, France
| | - Todd B. Marder
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute for Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
36
|
Zhu Z, Lin L, Xiao J, Shi Z. Nickel-Catalyzed Stereo- and Enantioselective Cross-Coupling of gem-Difluoroalkenes with Carbon Electrophiles by C-F Bond Activation. Angew Chem Int Ed Engl 2021; 61:e202113209. [PMID: 34889493 DOI: 10.1002/anie.202113209] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 11/07/2022]
Abstract
Stereo- and enantioselective cross-electrophile coupling involving C-F bond activation is reported. Treatment of gem-difluoroalkenes with racemic benzyl electrophiles in the presence of a chiral nickel complex using B2 pin2 as a stoichiometric reductant allows the construction of a C(sp2 )-C(sp3 ) bond under mild conditions, affording a broad range of monofluoroalkenes bearing stereogenic allylic centers. Initial mechanistic studies indicate that a radical chain pathway may be operating, wherein the ester group in the gem-difluoroalkene promotes C-F bond activation through oxidative addition to a Ni species.
Collapse
Affiliation(s)
- Ziqi Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Lin Lin
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jieshuai Xiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.,College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
37
|
|
38
|
Zhang J, Geng S, Feng Z. Advances in silylation and borylation of fluoroarenes and gem-difluoroalkenes via C-F bond cleavage. Chem Commun (Camb) 2021; 57:11922-11934. [PMID: 34700335 DOI: 10.1039/d1cc04729a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Organoboron and organosilane compounds are widely used in organic synthesis and pharmaceuticals. In addition, the C-F bond functionalization is a useful tool for the construction of carbon-carbon and carbon-heteroatom bonds. In particular, the late-stage functionalization of bioactive molecules through defluoroborylation and defluorosilylation reactions will provide good opportunities for the development and diversification of new medicinal compounds. Thus, this feature article summarized the methods for the defluorosilylation and defluoroborylation of unreactive monofluoroarenes and gem-difluoroalkenes from 2000 to 2021, which might create some new ideas and will be helpful for further research in this field. These defluoroborylation and defluorosilylation strategies can be applied to synthesize silylated arenes, borylated arenes, silylated fluoroalkenes, and borylated fluoroalkenes, thus providing impressive advantages over traditional methods for the synthesis of organoboron and organosilane compounds in terms of divergent structures.
Collapse
Affiliation(s)
- Juan Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Shasha Geng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - Zhang Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| |
Collapse
|
39
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
40
|
Das A, Chatani N. The Directing Group: A Tool for Efficient and Selective C–F Bond Activation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03896] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Amrita Das
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
41
|
Cui E, Qiao D, Li H, Guo L, Tung CH, Wang Y. Engaging Ag(0) single atoms in silver(I) salts-mediated C-B and C-S coupling under visible light irradiation. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Sabater S, Schmidt D, Schmidt H(S, Kuntze‐Fechner MW, Zell T, Isaac CJ, Rajabi NA, Grieve H, Blackaby WJM, Lowe JP, Macgregor SA, Mahon MF, Radius U, Whittlesey MK. [Ni(NHC) 2 ] as a Scaffold for Structurally Characterized trans [H-Ni-PR 2 ] and trans [R 2 P-Ni-PR 2 ] Complexes. Chemistry 2021; 27:13221-13234. [PMID: 34190374 PMCID: PMC8518396 DOI: 10.1002/chem.202101484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 11/06/2022]
Abstract
The addition of PPh2 H, PPhMeH, PPhH2 , P(para-Tol)H2 , PMesH2 and PH3 to the two-coordinate Ni0 N-heterocyclic carbene species [Ni(NHC)2 ] (NHC=IiPr2 , IMe4 , IEt2 Me2 ) affords a series of mononuclear, terminal phosphido nickel complexes. Structural characterisation of nine of these compounds shows that they have unusual trans [H-Ni-PR2 ] or novel trans [R2 P-Ni-PR2 ] geometries. The bis-phosphido complexes are more accessible when smaller NHCs (IMe4 >IEt2 Me2 >IiPr2 ) and phosphines are employed. P-P activation of the diphosphines R2 P-PR2 (R2 =Ph2 , PhMe) provides an alternative route to some of the [Ni(NHC)2 (PR2 )2 ] complexes. DFT calculations capture these trends with P-H bond activation proceeding from unconventional phosphine adducts in which the H substituent bridges the Ni-P bond. P-P bond activation from [Ni(NHC)2 (Ph2 P-PPh2 )] adducts proceeds with computed barriers below 10 kcal mol-1 . The ability of the [Ni(NHC)2 ] moiety to afford isolable terminal phosphido products reflects the stability of the Ni-NHC bond that prevents ligand dissociation and onward reaction.
Collapse
Affiliation(s)
- Sara Sabater
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUK
| | - David Schmidt
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | | | | | - Thomas Zell
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Connie J. Isaac
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUK
| | - Nasir A. Rajabi
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Harry Grieve
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUK
| | | | - John P. Lowe
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUK
| | | | - Mary F. Mahon
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUK
| | - Udo Radius
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | | |
Collapse
|
43
|
Xu W, Zhang Q, Shao Q, Xia C, Wu M. Photocatalytic C−F Bond Activation of Fluoroarenes,
gem
‐Difluoroalkenes and Trifluoromethylarenes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100426] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wengang Xu
- College of New Energy China University of Petroleum China East 266580 Qingdao P. R. China
| | - Qiao Zhang
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| | - Qi Shao
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| | - Congjian Xia
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| | - Mingbo Wu
- College of New Energy China University of Petroleum China East 266580 Qingdao P. R. China
- College of Chemical Engineering State Key Laboratory of Heavy Oil Processing China University of Petroleum (China East) 266580 Qingdao P. R. China
| |
Collapse
|
44
|
O'Connor TJ, Mai BK, Nafie J, Liu P, Toste FD. Generation of Axially Chiral Fluoroallenes through a Copper-Catalyzed Enantioselective β-Fluoride Elimination. J Am Chem Soc 2021; 143:13759-13768. [PMID: 34465099 DOI: 10.1021/jacs.1c05769] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herein we report the copper-catalyzed silylation of propargylic difluorides to generate axially chiral, tetrasubstituted monofluoroallenes in both good yields (27 examples >80%) and enantioselectivities (82-98% ee). Compared to previously reported synthetic routes to axially chiral allenes (ACAs) from prochiral substrates, a mechanistically distinct reaction has been developed: the enantiodiscrimination between enantiotopic fluorides to set an axial stereocenter. DFT calculations and vibrational circular dichroism (VCD) suggest that β-fluoride elimination from an alkenyl copper intermediate likely proceeds through a syn-β-fluoride elimination pathway rather than an anti-elimination pathway. The effects of the C1-symmetric Josiphos-derived ligand on reactivity and enantioselectivity were investigated. Not only does this report showcase that alkenyl copper species (like their alkyl counterparts) can undergo β-fluoride elimination, but this elimination can be achieved in an enantioselective fashion.
Collapse
Affiliation(s)
- Thomas J O'Connor
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jordan Nafie
- BioTools, Inc., 17546 Bee Line Highway, Jupiter, Florida 33458, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
45
|
Abstract
AbstractNickel-catalyzed cross-coupling and photoredox catalytic reactions has found widespread utilities in organic synthesis. Redox processes are key intermediate steps in many catalytic cycles. As a result, it is pertinent to measure and document the redox potentials of various nickel species as precatalysts, catalysts, and intermediates. The redox potentials of a transition-metal complex are governed by its oxidation state, ligand, and the solvent environment. This article tabulates experimentally measured redox potentials of nickel complexes supported on common ligands under various conditions. This review article serves as a versatile tool to help synthetic organic and organometallic chemists evaluate the feasibility and kinetics of redox events occurring at the nickel center, when designing catalytic reactions and preparing nickel complexes.1 Introduction1.1 Scope1.2 Measurement of Formal Redox Potentials1.3 Redox Potentials in Nonaqueous Solution2 Redox Potentials of Nickel Complexes2.1 Redox Potentials of (Phosphine)Ni Complexes2.2 Redox Potentials of (Nitrogen)Ni Complexes2.3 Redox Potentials of (NHC)Ni Complexes
Collapse
|
46
|
Talavera M, Braun T. Versatile Reaction Pathways of 1,1,3,3,3-Pentafluoropropene at Rh(I) Complexes [Rh(E)(PEt 3 ) 3 ] (E=H, GePh 3 , Si(OEt) 3 , F, Cl): C-F versus C-H Bond Activation Steps. Chemistry 2021; 27:11926-11934. [PMID: 34118095 PMCID: PMC8456946 DOI: 10.1002/chem.202101508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 11/08/2022]
Abstract
The reaction of the rhodium(I) complexes [Rh(E)(PEt3)3] (E=GePh3 (1), H (6), F (7)) with 1,1,3,3,3‐pentafluoropropene afforded the defluorinative germylation products Z/E‐2‐(triphenylgermyl)‐1,3,3,3‐tetrafluoropropene and the fluorido complex [Rh(F)(CF3CHCF2)(PEt3)2] (2) together with the fluorophosphorane E‐(CF3)CH=CF(PFEt3). For [Rh(Si(OEt)3)(PEt3)3] (4) the coordination of the fluoroolefin was found to give [Rh{Si(OEt)3}(CF3CHCF2)(PEt3)2] (5). Two equivalents of complex 2 reacted further by C−F bond oxidative addition to yield [Rh(CF=CHCF3)(PEt3)2(μ‐F)3Rh(CF3CHCF2)(PEt3)] (9). The role of the fluorido ligand on the reactivity of complex 2 was assessed by comparison with the analogous chlorido complex. The use of complexes 1, 4 and 6 as catalysts for the derivatization of 1,1,3,3,3‐pentafluoropropene provided products, which were generated by hydrodefluorination, hydrometallation and germylation reactions.
Collapse
Affiliation(s)
- Maria Talavera
- Department of Chemistry, Universität zu Berlin, Brook-Taylor Str. 2, 12489, Berlin, Germany
| | - Thomas Braun
- Department of Chemistry, Universität zu Berlin, Brook-Taylor Str. 2, 12489, Berlin, Germany
| |
Collapse
|
47
|
Chen C, Wang ZJ, Lu H, Zhao Y, Shi Z. Generation of non-stabilized alkyl radicals from thianthrenium salts for C-B and C-C bond formation. Nat Commun 2021; 12:4526. [PMID: 34312381 PMCID: PMC8313578 DOI: 10.1038/s41467-021-24716-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Sulfonium salts bearing a positively charged sulfur atom with three organic substituents have intrigued chemists for more than a century for their unusual structures and high chemical reactivity. These compounds are known to undergo facile single-electron reduction to emerge as a valuable and alternative source of aryl radicals for organic synthesis. However, the generation of non-stabilized alkyl radicals from sulfonium salts has been a challenge for several decades. Here we report the treatment of S-(alkyl) thianthrenium salts to generate non-stabilized alkyl radicals as key intermediates granting the controlled and selective outcome of the ensuing reactions under mild photoredox conditions. The value of these reagents has been demonstrated through the efficient construction of alkylboronates and other transformations, including heteroarylation, alkylation, alkenylation, and alkynylation. The developed method is practical, and provides the opportunity to convert C-OH bond to C-B and C-C bonds.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zheng-Jun Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
48
|
Liu Z, Kole GK, Budiman YP, Tian Y, Friedrich A, Luo X, Westcott SA, Radius U, Marder TB. Transition Metal Catalyst‐Free, Base‐Promoted 1,2‐Additions of Polyfluorophenylboronates to Aldehydes and Ketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhiqiang Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Goutam Kumar Kole
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Department of Chemistry College of Engineering and Technology SRM Institute of Science and Technology SRM Nagar Kattankulathur Tamil Nadu 603203 India
| | - Yudha P. Budiman
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Department of Chemistry Faculty of Mathematics and Natural Sciences Universitas Padjadjaran 45363 Jatinangor Indonesia
| | - Ya‐Ming Tian
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Xiaoling Luo
- Chongqing Key Laboratory of Inorganic Functional Materials College of Chemistry Chongqing Normal University Chongqing 401331 China
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry Mount Allison University Sackville NB E4L 1G8 Canada
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
49
|
Liu Z, Kole GK, Budiman YP, Tian Y, Friedrich A, Luo X, Westcott SA, Radius U, Marder TB. Transition Metal Catalyst-Free, Base-Promoted 1,2-Additions of Polyfluorophenylboronates to Aldehydes and Ketones. Angew Chem Int Ed Engl 2021; 60:16529-16538. [PMID: 33901332 PMCID: PMC8362073 DOI: 10.1002/anie.202103686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/18/2021] [Indexed: 12/23/2022]
Abstract
A novel protocol for the transition metal-free 1,2-addition of polyfluoroaryl boronate esters to aldehydes and ketones is reported, which provides secondary alcohols, tertiary alcohols, and ketones. Control experiments and DFT calculations indicate that both the ortho-F substituents on the polyfluorophenyl boronates and the counterion K+ in the carbonate base are critical. The distinguishing features of this procedure include the employment of commercially available starting materials and the broad scope of the reaction with a wide variety of carbonyl compounds giving moderate to excellent yields. Intriguing structural features involving O-H⋅⋅⋅O and O-H⋅⋅⋅N hydrogen bonding, as well as arene-perfluoroarene interactions, in this series of racemic polyfluoroaryl carbinols have also been addressed.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Goutam Kumar Kole
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Department of ChemistryCollege of Engineering and TechnologySRM Institute of Science and TechnologySRM NagarKattankulathurTamil Nadu603203India
| | - Yudha P. Budiman
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Department of ChemistryFaculty of Mathematics and Natural SciencesUniversitas Padjadjaran45363JatinangorIndonesia
| | - Ya‐Ming Tian
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Xiaoling Luo
- Chongqing Key Laboratory of Inorganic Functional MaterialsCollege of ChemistryChongqing Normal UniversityChongqing401331China
| | - Stephen A. Westcott
- Department of Chemistry and BiochemistryMount Allison UniversitySackvilleNBE4L 1G8Canada
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
50
|
|